1
|
Pariani AP, Almada E, Hidalgo F, Borini-Etichetti C, Vena R, Marín L, Favre C, Goldenring JR, Cecilia Larocca M. Identification of a novel mechanism for LFA-1 organization during NK cytolytic response. J Cell Physiol 2023; 238:227-241. [PMID: 36477412 DOI: 10.1002/jcp.30921] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022]
Abstract
The elimination of transformed and viral infected cells by natural killer (NK) cells requires a specialized junction between NK and target cells, denominated immunological synapse (IS). After initial recognition, the IS enables the directed secretion of lytic granules content into the susceptible target cell. The lymphocyte function-associated antigen (LFA)-1 regulates NK effector function by enabling NK-IS assembly and maturation. The pathways underlying LFA-1 accumulation at the IS in NK cells remained uncharacterized. A kinase anchoring protein 350 (AKAP350) is a centrosome/Golgi-associated protein, which, in T cells, participates in LFA-1 activation by mechanisms that have not been elucidated. We first evaluated AKAP350 participation in NK cytolytic activity. Our results showed that the decrease in AKAP350 levels by RNA interference (AKAP350KD) inhibited NK-YTS cytolytic activity, without affecting conjugate formation. The impairment of NK effector function in AKAP350KD cells correlated with decreased LFA-1 clustering and defective IS maturation. AKAP350KD cells that were exclusively activated via LFA-1 showed impaired LFA-1 organization and deficient lytic granule translocation as well. In NK AKAP350KD cells, activation signaling through Vav1 was preserved up to 10 min of interaction with target cells, but significantly decreased afterwards. Experiments in YTS and in ex vivo NK cells identified an intracellular pool of LFA-1, which partially associated with the Golgi apparatus and, upon NK activation, redistributed to the IS in an AKAP350-dependent manner. The analysis of Golgi organization indicated that the decrease in AKAP350 expression led to the disruption of the Golgi integrity in NK cells. Alteration of Golgi function by BFA treatment or AKAP350 delocalization from this organelle also led to impaired LFA-1 localization at the IS. Therefore, this study characterizes AKAP350 participation in the modulation of NK effector function, revealing the existence of a Golgi-dependent trafficking pathway for LFA-1, which is relevant for LFA-1 organization at NK-lytic IS.
Collapse
Affiliation(s)
- Alejandro P Pariani
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Evangelina Almada
- Instituto de Inmunología Clínica y Experimental de Rosario, CONICET-UNR, Rosario, Argentina
| | - Florencia Hidalgo
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Carla Borini-Etichetti
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Rodrigo Vena
- Instituto de Biología Molecular y Celular de Rosario, CONICET-UNR, Rosario, Argentina
| | - Leandra Marín
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Cristián Favre
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - James R Goldenring
- Epithelial Biology Center and Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Maria Cecilia Larocca
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| |
Collapse
|
2
|
Pineau J, Moreau H, Duménil AML, Pierobon P. Polarity in immune cells. Curr Top Dev Biol 2023; 154:197-222. [PMID: 37100518 DOI: 10.1016/bs.ctdb.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Immune cells are responsible for pathogen detection and elimination, as well as for signaling to other cells the presence of potential danger. In order to mount an efficient immune response, they need to move and search for a pathogen, interact with other cells, and diversify the population by asymmetric cell division. All these actions are regulated by cell polarity: cell polarity controls cell motility, which is crucial for scanning peripheral tissues to detect pathogens, and recruiting immune cells to sites of infection; immune cells, in particular lymphocytes, communicate with each other by a direct contact called immunological synapse, which entails a global polarization of the cell and plays a role in activating lymphocyte response; finally, immune cells divide asymmetrically from a precursor, generating a diversity of phenotypes and cell types among daughter cells, such as memory and effector cells. This review aims at providing an overview from both biology and physics perspectives of how cell polarity shapes the main immune cell functions.
Collapse
Affiliation(s)
- Judith Pineau
- Institut Curie, PSL Research University, INSERM U932, Paris, Cedex, France; Université Paris Cité, Paris, France
| | - Hélène Moreau
- Institut Curie, PSL Research University, INSERM U932, Paris, Cedex, France
| | | | - Paolo Pierobon
- Institut Curie, PSL Research University, INSERM U932, Paris, Cedex, France.
| |
Collapse
|
3
|
Flow goes forward and cells step backward: endothelial migration. Exp Mol Med 2022; 54:711-719. [PMID: 35701563 PMCID: PMC9256678 DOI: 10.1038/s12276-022-00785-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 12/28/2022] Open
Abstract
Systemic and pulmonary circulations constitute a complex organ that serves multiple important biological functions. Consequently, any pathological processing affecting the vasculature can have profound systemic ramifications. Endothelial and smooth muscle are the two principal cell types composing blood vessels. Critically, endothelial proliferation and migration are central to the formation and expansion of the vasculature both during embryonic development and in adult tissues. Endothelial populations are quite heterogeneous and are both vasculature type- and organ-specific. There are profound molecular, functional, and phenotypic differences between arterial, venular and capillary endothelial cells and endothelial cells in different organs. Given this endothelial cell population diversity, it has been challenging to determine the origin of endothelial cells responsible for the angiogenic expansion of the vasculature. Recent technical advances, such as precise cell fate mapping, time-lapse imaging, genome editing, and single-cell RNA sequencing, have shed new light on the role of venous endothelial cells in angiogenesis under both normal and pathological conditions. Emerging data indicate that venous endothelial cells are unique in their ability to serve as the primary source of endothelial cellular mass during both developmental and pathological angiogenesis. Here, we review recent studies that have improved our understanding of angiogenesis and suggest an updated model of this process. Cells that line the inside of veins possess a unique ability to grow new blood vessels and a better understanding of these cells could lead to new treatments for cancer, autoimmunity and other diseases associated with abnormal blood vessel formation. Michael Simons and colleagues from Yale University School of Medicine in New Haven, USA, review the attributes of venous endothelial cells, such as their unique ability to proliferate and migrate against blood flow, and then to form new intricate networks of minute blood vessels, in response to appropriate signals. The authors discuss emerging evidence implicating these cells in a variety of diseases, and suggest that drugs aimed at modulating the molecular function or migratory activities of venous endothelial cells could be used to correct abnormal blood vessel expansion.
Collapse
|
4
|
González-Mancha N, Rodríguez-Rodríguez C, Alcover A, Merida I. Sorting Nexin 27 Enables MTOC and Secretory Machinery Translocation to the Immune Synapse. Front Immunol 2022; 12:814570. [PMID: 35095913 PMCID: PMC8790036 DOI: 10.3389/fimmu.2021.814570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/20/2021] [Indexed: 11/24/2022] Open
Abstract
Sorting nexin 27 (SNX27) association to the retromer complex mediates intracellular trafficking of cargoes containing PSD95/Dlg1/ZO-1 (PDZ)-binding C-terminal sequences from endosomes to the cell surface, preventing their lysosomal degradation. Antigen recognition by T lymphocyte leads to the formation of a highly organized structure named the immune synapse (IS), which ensures cell-cell communication and sustained T cell activation. At the neuronal synapse, SNX27 recycles PDZ-binding receptors and its defective expression is associated with synaptic dysfunction and cognitive impairment. In T lymphocytes, SNX27 was found localized at recycling endosomal compartments that polarized to the IS, suggesting a function in polarized traffic to this structure. Proteomic analysis of PDZ-SNX27 interactors during IS formation identify proteins with known functions in cytoskeletal reorganization and lipid regulation, such as diacylglycerol (DAG) kinase (DGK) ζ, as well as components of the retromer and WASH complex. In this study, we investigated the consequences of SNX27 deficiency in cytoskeletal reorganization during IS formation. Our analyses demonstrate that SNX27 controls the polarization towards the cell-cell interface of the PDZ-interacting cargoes DGKζ and the retromer subunit vacuolar protein sorting protein 26, among others. SNX27 silencing abolishes the formation of a DAG gradient at the IS and prevents re-localization of the dynactin complex component dynactin-1/p150Glued, two events that correlate with impaired microtubule organizing center translocation (MTOC). SNX27 silenced cells show marked alteration in cytoskeleton organization including a failure in the organization of the microtubule network and defects in actin clearance at the IS. Reduced SNX27 expression was also found to hinder the arrangement of signaling microclusters at the IS, as well as the polarization of the secretory machinery towards the antigen presenting cells. Our results broaden the knowledge of SNX27 function in T lymphocytes by showing a function in modulating IS organization through regulated trafficking of cargoes.
Collapse
Affiliation(s)
- Natalia González-Mancha
- Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Cristina Rodríguez-Rodríguez
- Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Andrés Alcover
- Institut Pasteur, Université de Paris, Unité Biologie Cellulaire des Lymphocytes, INSERM U1224, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue-2018, Paris, France
| | - Isabel Merida
- Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| |
Collapse
|
5
|
Stötzel I, Kiermaier E. The central role of the centrosome. eLife 2022; 11:84659. [PMID: 36508246 PMCID: PMC9744438 DOI: 10.7554/elife.84659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The centrosome decides which branch extending from the body of microglia will successfully engulf and clear away dead neurons.
Collapse
Affiliation(s)
- Isabel Stötzel
- Life and Medical Sciences (LIMES) Institute, Immune and Tumor Biology, University of BonnBonnGermany
| | - Eva Kiermaier
- Life and Medical Sciences (LIMES) Institute, Immune and Tumor Biology, University of BonnBonnGermany
| |
Collapse
|
6
|
Centrosomes and Centrosome Equivalents in Other Systems. THE CENTROSOME AND ITS FUNCTIONS AND DYSFUNCTIONS 2022; 235:85-104. [DOI: 10.1007/978-3-031-20848-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Gutierrez-Guerrero A, Mancilla-Herrera I, Maravillas-Montero JL, Martinez-Duncker I, Veillette A, Cruz-Munoz ME. SLAMF7 selectively favors degranulation to promote cytotoxicity in human NK cells. Eur J Immunol 2021; 52:62-74. [PMID: 34693521 DOI: 10.1002/eji.202149406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/01/2021] [Accepted: 10/20/2021] [Indexed: 01/08/2023]
Abstract
NK cells play an important role in immunity by recognizing and eliminating cells undergoing infection or malignant transformation. This role is dependent on the ability of NK cells to lyse targets cells in a perforin-dependent mechanism and by secreting inflammatory cytokines. Both effector functions are controlled by several cell surface receptors. The Signaling Lymphocyte Activation Molecule (SLAM) family of receptors plays an essential role in regulating NK cell activation. Several studies have demonstrated that SLAMF7 regulates NK cell activation. However, the molecular and cellular mechanisms by which SLAMF7 influences NK effector functions are unknown. Here, we present evidence that physiological ligation of SLAMF7 in human NK cells enhances the lysis of target cells expressing SLAMF7. This effect was dependent on the ability of SLAMF7 to promote NK cell degranulation rather than cytotoxic granule polarization or cell adhesion. Moreover, SLAMF7-dependent NK cell degranulation was predominantly dependent on PLC-γ when compared to PI3K. These data provide novel information on the cellular mechanism by which SLAMF7 regulates human NK cell activation. Finally, this study supports a model for NK cell activation where activated receptors contribute by regulating specific discrete cellular events rather than multiple cellular processes.
Collapse
Affiliation(s)
- Arturo Gutierrez-Guerrero
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México.,Instituto de Investigación en Ciencias Básicas y Aplicadas, Mexico City, México
| | | | - Jose L Maravillas-Montero
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México, Mexico City, México.,Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | - Ivan Martinez-Duncker
- Centro de Investigación en Dinámica celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Andre Veillette
- Institute de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - Mario E Cruz-Munoz
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| |
Collapse
|
8
|
Abstract
Mechanistic (or mammalian) target of rapamycin complex 1 (mTORC1) is a major signalling kinase in cells that regulates proliferation and metabolism and is controlled by extrinsic and intrinsic signals. The lysosome has received considerable attention as a major hub of mTORC1 activation. However, mTOR has also been located to a variety of other intracellular sites, indicating the possibility of spatial regulation of mTORC1 signalling within cells. In particular, there have been numerous recent reports of mTORC1 activation associated with the Golgi apparatus. Here, we review the evidence for the regulation of mTORC1 signalling at the Golgi in mammalian cells. mTORC1 signalling is closely linked to the morphology of the Golgi architecture; a number of Golgi membrane tethers/scaffolds that influence Golgi architecture in mammalian cells that directly or indirectly regulate mTORC1 activation have been identified. Perturbation of the Golgi mTORC1 pathway arising from fragmentation of the Golgi has been shown to promote oncogenesis. Here, we highlight the potential mechanisms for the activation mTORC1 at the Golgi, which is emerging as a major site for mTORC1 signalling.
Collapse
Affiliation(s)
- Christian Makhoul
- The Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Paul A Gleeson
- The Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
9
|
Gros OJ, Damstra HGJ, Kapitein LC, Akhmanova A, Berger F. Dynein self-organizes while translocating the centrosome in T-cells. Mol Biol Cell 2021; 32:855-868. [PMID: 33689395 PMCID: PMC8108531 DOI: 10.1091/mbc.e20-10-0668] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/12/2021] [Accepted: 03/04/2021] [Indexed: 12/16/2022] Open
Abstract
T-cells massively restructure their internal architecture upon reaching an antigen-presenting cell (APC) to form the immunological synapse (IS), a cell-cell interface necessary for efficient elimination of the APC. This reorganization occurs through tight coordination of cytoskeletal processes: actin forms a peripheral ring, and dynein motors translocate the centrosome toward the IS. A recent study proposed that centrosome translocation involves a microtubule (MT) bundle that connects the centrosome perpendicularly to dynein at the synapse center: the "stalk." The synapse center, however, is actin-depleted, while actin was assumed to anchor dynein. We propose that dynein is attached to mobile membrane anchors, and investigate this model with computer simulations. We find that dynein organizes into a cluster in the synapse when translocating the centrosome, aligning MTs into a stalk. By implementing both a MT-capture-shrinkage and a MT-sliding mechanism, we explicitly demonstrate that this organization occurs in both systems. However, results obtained with MT-sliding dynein are more robust and display a stalk morphology consistent with our experimental data obtained with expansion microscopy. Thus, our simulations suggest that actin organization in T-cells during activation defines a specific geometry in which MT-sliding dynein can self-organize into a cluster and cause stalk formation.
Collapse
Affiliation(s)
- Oane J Gros
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Hugo G J Damstra
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Lukas C Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Florian Berger
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
10
|
Hooikaas PJ, Damstra HG, Gros OJ, van Riel WE, Martin M, Smits YT, van Loosdregt J, Kapitein LC, Berger F, Akhmanova A. Kinesin-4 KIF21B limits microtubule growth to allow rapid centrosome polarization in T cells. eLife 2020; 9:62876. [PMID: 33346730 PMCID: PMC7817182 DOI: 10.7554/elife.62876] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/20/2020] [Indexed: 12/11/2022] Open
Abstract
When a T cell and an antigen-presenting cell form an immunological synapse, rapid dynein-driven translocation of the centrosome toward the contact site leads to reorganization of microtubules and associated organelles. Currently, little is known about how the regulation of microtubule dynamics contributes to this process. Here, we show that the knockout of KIF21B, a kinesin-4 linked to autoimmune disorders, causes microtubule overgrowth and perturbs centrosome translocation. KIF21B restricts microtubule length by inducing microtubule pausing typically followed by catastrophe. Catastrophe induction with vinblastine prevented microtubule overgrowth and was sufficient to rescue centrosome polarization in KIF21B-knockout cells. Biophysical simulations showed that a relatively small number of KIF21B molecules can restrict mirotubule length and promote an imbalance of dynein-mediated pulling forces that allows the centrosome to translocate past the nucleus. We conclude that proper control of microtubule length is important for allowing rapid remodeling of the cytoskeleton and efficient T cell polarization. The immune system is composed of many types of cells that can recognize foreign molecules and pathogens so they can eliminate them. When cells in the body become infected with a pathogen, they can process the pathogen’s proteins and present them on their own surface. Specialized immune cells can then recognize infected cells and interact with them, forming an ‘immunological synapse’. These synapses play an important role in immune response: they activate the immune system and allow it to kill harmful cells. To form an immunological synapse, an immune cell must reorganize its internal contents, including an aster-shaped scaffold made of tiny protein tubes called microtubules. The center of this scaffold moves towards the immunological synapse as it forms. This re-orientation of the microtubules towards the immunological synapse is known as 'polarization' and it happens very rapidly, but it is not yet clear how it works. One molecule involved in the polarization process is called KIF21B, a protein that can walk along microtubules, building up at the ends and affecting their growth. Whether KIF21B makes microtubules grow more quickly, or more slowly, is a matter of debate, and the impact microtubule length has on immunological synapse formation is unknown. Here, Hooikaas, Damstra et al. deleted the gene for KIF21B from human immune cells called T cells to find out how it affected their ability to form an immunological synapse. Without KIF21B, the T cells grew microtubules that were longer than normal, and had trouble forming immunological synapses. When the T cells were treated with a drug that stops microtubule growth, their ability to form immunological synapses was restored, suggesting a role for KIF21B. To explore this further, Hooikaas, Damstra et al. replaced the missing KIF21B gene with a gene that coded for a version of the protein that could be seen using microscopy. This revealed that, when KIF21B reaches the ends of microtubules, it stops their growth and triggers their disassembly. Computational modelling showed that cells find it hard to reorient their microtubule scaffolding when the individual tubes are too long. It only takes a small number of KIF21B molecules to shorten the microtubules enough to allow the center of the scaffold to move. Research has linked the KIF21B gene to autoimmune conditions like multiple sclerosis. Microtubules also play an important role in cell division, a critical process driving all types of cancer. Drugs that affect microtubule growth are already available, and a deeper understanding of KIF21B and microtubule regulation in immune cells could help to improve treatments in the future.
Collapse
Affiliation(s)
- Peter Jan Hooikaas
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Hugo Gj Damstra
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Oane J Gros
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Wilhelmina E van Riel
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Maud Martin
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Yesper Th Smits
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jorg van Loosdregt
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Lukas C Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Florian Berger
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
11
|
Garcia E, Ismail S. Spatiotemporal Regulation of Signaling: Focus on T Cell Activation and the Immunological Synapse. Int J Mol Sci 2020; 21:E3283. [PMID: 32384769 PMCID: PMC7247333 DOI: 10.3390/ijms21093283] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 01/22/2023] Open
Abstract
In a signaling network, not only the functions of molecules are important but when (temporal) and where (spatial) those functions are exerted and orchestrated is what defines the signaling output. To temporally and spatially modulate signaling events, cells generate specialized functional domains with variable lifetime and size that concentrate signaling molecules, enhancing their transduction potential. The plasma membrane is a key in this regulation, as it constitutes a primary signaling hub that integrates signals within and across the membrane. Here, we examine some of the mechanisms that cells exhibit to spatiotemporally regulate signal transduction, focusing on the early events of T cell activation from triggering of T cell receptor to formation and maturation of the immunological synapse.
Collapse
Affiliation(s)
- Esther Garcia
- CR-UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Shehab Ismail
- CR-UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| |
Collapse
|
12
|
Lam MT, Mace EM, Orange JS. A research-driven approach to the identification of novel natural killer cell deficiencies affecting cytotoxic function. Blood 2020; 135:629-637. [PMID: 31945148 PMCID: PMC7046607 DOI: 10.1182/blood.2019000925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/13/2019] [Indexed: 12/17/2022] Open
Abstract
Natural killer cell deficiencies (NKDs) are an emerging phenotypic subtype of primary immune deficiency. NK cells provide a defense against virally infected cells using a variety of cytotoxic mechanisms, and patients who have defective NK cell development or function can present with atypical, recurrent, or severe herpesviral infections. The current pipeline for investigating NKDs involves the acquisition and clinical assessment of patients with a suspected NKD followed by subsequent in silico, in vitro, and in vivo laboratory research. Evaluation involves initially quantifying NK cells and measuring NK cell cytotoxicity and expression of certain NK cell receptors involved in NK cell development and function. Subsequent studies using genomic methods to identify the potential causative variant are conducted along with variant impact testing to make genotype-phenotype connections. Identification of novel genes contributing to the NKD phenotype can also be facilitated by applying the expanding knowledge of NK cell biology. In this review, we discuss how NKDs that affect NK cell cytotoxicity can be approached in the clinic and laboratory for the discovery of novel gene variants.
Collapse
Affiliation(s)
- Michael T Lam
- Department of Pediatrics, Columbia University Medical Center, New York, NY; and
- Medical Scientist Training Program, and
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, TX
| | - Emily M Mace
- Department of Pediatrics, Columbia University Medical Center, New York, NY; and
| | - Jordan S Orange
- Department of Pediatrics, Columbia University Medical Center, New York, NY; and
| |
Collapse
|
13
|
Abstract
The components of the endothelial cell cytoskeleton that have been shown to be important in maintaining endothelial structural integrity and in regulating endothelial repair include F-actin microfilament bundles, including stress fibers, and microtubules, and centrosomes. Endothelial cells contain peripheral and central actin microfilaments. The dense peripheral band (DPB) consists of peripheral actin microfilament bundles which are associated with vinculin adhesion plaques and are most prominent in low or no hemodynamic shear stress conditions. The central microfilaments are very prominent in areas of elevated hemodynamic shear stress. There is a redistribution of actin microfilaments characterized by a decrease of peripheral actin and an increase in central microfilaments under a variety of conditions, including exposure to thrombin, phorbol-esters, and hemodynamic shear stress. During reendothelialization, there is a sequential series of cytoskeletal changes. The DPB remains intact during the rapid lamellipodia mediated repair of very small wounds except at the base of the lamellipodia where it is splayed. The DPB is reduced or absent when cell locomotion occurs to repair a wound. In addition, when cell locomotion is required, the centrosome, in the presence of intact microtubules, redistributes to the front of the cell to establish cell polarity and acts as a modulator of the directionality of migration. This occurs prior to the loss of the DPB but does not occur in very small wounds that close without migration. Thus, the cytoskeleton is a dynamic intracellular system which regulates endothelial integrity and repair and is modulated by external stimuli that are present at the vessel wall-blood interface.
Collapse
Affiliation(s)
- Avrum I. Gotlieb
- The Toronto Hospital–General Division, Vascular Research Laboratory, 200 Elizabeth Street, CCRW 1-857, Toronto, Ontario, Canada M5G 2C4
| |
Collapse
|
14
|
Saeed MB, Record J, Westerberg LS. Two sides of the coin: Cytoskeletal regulation of immune synapses in cancer and primary immune deficiencies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:1-97. [DOI: 10.1016/bs.ircmb.2020.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Rieger L, O’Connor R. Controlled Signaling-Insulin-Like Growth Factor Receptor Endocytosis and Presence at Intracellular Compartments. Front Endocrinol (Lausanne) 2020; 11:620013. [PMID: 33584548 PMCID: PMC7878670 DOI: 10.3389/fendo.2020.620013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022] Open
Abstract
Ligand-induced activation of the IGF-1 receptor triggers plasma-membrane-derived signal transduction but also triggers receptor endocytosis, which was previously thought to limit signaling. However, it is becoming ever more clear that IGF-1R endocytosis and trafficking to specific subcellular locations can define specific signaling responses that are important for key biological processes in normal cells and cancer cells. In different cell types, specific cell adhesion receptors and associated proteins can regulate IGF-1R endocytosis and trafficking. Once internalized, the IGF-1R may be recycled, degraded or translocated to the intracellular membrane compartments of the Golgi apparatus or the nucleus. The IGF-1R is present in the Golgi apparatus of migratory cancer cells where its signaling contributes to aggressive cancer behaviors including cell migration. The IGF-1R is also found in the nucleus of certain cancer cells where it can regulate gene expression. Nuclear IGF-1R is associated with poor clinical outcomes. IGF-1R signaling has also been shown to support mitochondrial biogenesis and function, and IGF-1R inhibition causes mitochondrial dysfunction. How IGF-1R intracellular trafficking and compartmentalized signaling is controlled is still unknown. This is an important area for further study, particularly in cancer.
Collapse
|
16
|
T cell activation and immune synapse organization respond to the microscale mechanics of structured surfaces. Proc Natl Acad Sci U S A 2019; 116:19835-19840. [PMID: 31527238 DOI: 10.1073/pnas.1906986116] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cells have the remarkable ability to sense the mechanical stiffness of their surroundings. This has been studied extensively in the context of cells interacting with planar surfaces, a conceptually elegant model that also has application in biomaterial design. However, physiological interfaces are spatially complex, exhibiting topographical features that are described over multiple scales. This report explores mechanosensing of microstructured elastomer surfaces by CD4+ T cells, key mediators of the adaptive immune response. We show that T cells form complex interactions with elastomer micropillar arrays, extending processes into spaces between structures and forming local areas of contraction and expansion dictated by the layout of microtubules within this interface. Conversely, cytoskeletal reorganization and intracellular signaling are sensitive to the pillar dimensions and flexibility. Unexpectedly, these measures show different responses to substrate rigidity, suggesting competing processes in overall T cell mechanosensing. The results of this study demonstrate that T cells sense the local rigidity of their environment, leading to strategies for biomaterial design.
Collapse
|
17
|
Kulkarni-Gosavi P, Makhoul C, Gleeson PA. Form and function of the Golgi apparatus: scaffolds, cytoskeleton and signalling. FEBS Lett 2019; 593:2289-2305. [PMID: 31378930 DOI: 10.1002/1873-3468.13567] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 01/09/2023]
Abstract
In addition to the classical functions of the Golgi in membrane transport and glycosylation, the Golgi apparatus of mammalian cells is now recognised to contribute to the regulation of a range of cellular processes, including mitosis, DNA repair, stress responses, autophagy, apoptosis and inflammation. These processes are often mediated, either directly or indirectly, by membrane scaffold molecules, such as golgins and GRASPs which are located on Golgi membranes. In many cases, these scaffold molecules also link the actin and microtubule cytoskeleton and influence Golgi morphology. An emerging theme is a strong relationship between the morphology of the Golgi and regulation of a variety of signalling pathways. Here, we review the molecular regulation of the morphology of the Golgi, especially the role of the golgins and other scaffolds in the interaction with the microtubule and actin networks. In addition, we discuss the impact of the modulation of the Golgi ribbon in various diseases, such as neurodegeneration and cancer, to the pathology of disease.
Collapse
Affiliation(s)
- Prajakta Kulkarni-Gosavi
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Christian Makhoul
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Paul A Gleeson
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| |
Collapse
|
18
|
Makhoul C, Gosavi P, Gleeson PA. Golgi Dynamics: The Morphology of the Mammalian Golgi Apparatus in Health and Disease. Front Cell Dev Biol 2019; 7:112. [PMID: 31334231 PMCID: PMC6616279 DOI: 10.3389/fcell.2019.00112] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022] Open
Abstract
In vertebrate cells the Golgi consists of individual stacks fused together into a compact ribbon structure. The function of the ribbon structure of the Golgi has only begun to be appreciated (De Matteis et al., 2008; Gosavi and Gleeson, 2017; Wei and Seemann, 2017). Recent advances have identified a role for the Golgi in the regulation of a broad range of cellular processes and of particular interest is that the modulation of the Golgi ribbon is associated with regulation of a number of signaling pathways (Makhoul et al., 2018). Various cell responses, such as inflammation, and various disorders and diseases, including neurodegeneration and cancer, are associated with the loss of the Golgi ribbon and the appearance of a dispersed or semi-dispersed Golgi. Often the dispersed Golgi is referred to as a “fragmented” morphology. However, the description of a dispersed Golgi ribbon as “fragmented” is inadequate as it does not accurately define the morphological state of the Golgi. This issue is particularly relevant as there are an increasing number of reports describing Golgi fragmentation under physiological and pathological conditions. Knowledge of the precise Golgi architecture is relevant to an appreciation of the functional status of the Golgi apparatus and the underlying molecular mechanism for the contribution of the Golgi to different cellular processes. Here we propose a classification to define the various morphological states of the non-ribbon architecture of the Golgi in mammalian cells as a guide to more precisely define the relationship between the morphological and functional status of this organelle.
Collapse
Affiliation(s)
- Christian Makhoul
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Prajakta Gosavi
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Paul A Gleeson
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Zucchetti AE, Bataille L, Carpier JM, Dogniaux S, San Roman-Jouve M, Maurin M, Stuck MW, Rios RM, Baldari CT, Pazour GJ, Hivroz C. Tethering of vesicles to the Golgi by GMAP210 controls LAT delivery to the immune synapse. Nat Commun 2019; 10:2864. [PMID: 31253807 PMCID: PMC6599081 DOI: 10.1038/s41467-019-10891-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 06/08/2019] [Indexed: 01/06/2023] Open
Abstract
The T cell immune synapse is a site of intense vesicular trafficking. Here we show that the golgin GMAP210, known to capture vesicles and organize membrane traffic at the Golgi, is involved in the vesicular transport of LAT to the immune synapse. Upon activation, more GMAP210 interact with LAT-containing vesicles and go together with LAT to the immune synapse. Regulating LAT recruitment and LAT-dependent signaling, GMAP210 controls T cell activation. Using a rerouting and capture assay, we show that GMAP210 captures VAMP7-decorated vesicles. Overexpressing different domains of GMAP210, we also show that GMAP210 allows their specific delivery to the immune synapse by tethering LAT-vesicles to the Golgi. Finally, in a model of ectopic expression of LAT in ciliated cells, we show that GMAP210 tethering activity controls the delivery of LAT to the cilium. Hence, our results reveal a function for the golgin GMAP210 conveying specific vesicles to the immune synapse.
Collapse
Affiliation(s)
- Andres Ernesto Zucchetti
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Laurence Bataille
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Jean-Marie Carpier
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France.,Immunobiology Department, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Stéphanie Dogniaux
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Mabel San Roman-Jouve
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Mathieu Maurin
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Michael W Stuck
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Rosa M Rios
- Cell Dynamics and Signaling Department, CABIMER-CSIC/US/UPO, 41092, Seville, Spain
| | - Cosima T Baldari
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Claire Hivroz
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France.
| |
Collapse
|
20
|
Mani M, Thao DT, Kim BC, Lee UH, Kim DJ, Jang SH, Back SH, Lee BJ, Cho WJ, Han IS, Park JW. DRG2 knockdown induces Golgi fragmentation via GSK3β phosphorylation and microtubule stabilization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1463-1474. [PMID: 31199931 DOI: 10.1016/j.bbamcr.2019.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/19/2019] [Accepted: 06/04/2019] [Indexed: 01/01/2023]
Abstract
The perinuclear stacks of the Golgi apparatus maintained by dynamic microtubules are essential for cell migration. Activation of Akt (protein kinase B, PKB) negatively regulates glycogen synthase kinase 3β (GSK3β)-mediated tau phosphorylation, which enhances tau binding to microtubules and microtubule stability. In this study, experiments were performed on developmentally regulated GTP-binding protein 2 (DRG2)-stably knockdown HeLa cells to determine whether knockdown of DRG2 in HeLa cells treated with epidermal growth factor (EGF) affects microtubule dynamics, perinuclear Golgi stacking, and cell migration. Here, we show that DRG2 plays a key role in regulating microtubule stability, perinuclear Golgi stack formation, and cell migration. DRG2 knockdown prolonged the EGF receptor (EGFR) localization in endosome, enhanced Akt activity and inhibitory phosphorylation of GSK3β. Tau, a target of GSK3β, was hypo-phosphorylated in DRG2-knockdown cells and showed greater association with microtubules, resulting in microtubule stabilization. DRG2-knockdown cells showed defects in microtubule growth and microtubule organizing centers (MTOC), Golgi fragmentation, and loss of directional cell migration. These results reveal a previously unappreciated role for DRG2 in the regulation of perinuclear Golgi stacking and cell migration via its effects on GSK3β phosphorylation, and microtubule stability.
Collapse
Affiliation(s)
- Muralidharan Mani
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Dang Thi Thao
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Beom Chang Kim
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Unn Hwa Lee
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Dong Jun Kim
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Soo Hwa Jang
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Sung Hoon Back
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Byung Ju Lee
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Wha Ja Cho
- Metainflammation Research Center, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - In-Seob Han
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea.
| | - Jeong Woo Park
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea.
| |
Collapse
|
21
|
Equine Herpesvirus 1 Bridles T Lymphocytes To Reach Its Target Organs. J Virol 2019; 93:JVI.02098-18. [PMID: 30651370 PMCID: PMC6430527 DOI: 10.1128/jvi.02098-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/03/2019] [Indexed: 11/20/2022] Open
Abstract
Equine herpesvirus 1 (EHV1) is an ancestral alphaherpesvirus that is related to herpes simplex virus 1 and causes respiratory, reproductive, and neurological disorders in Equidae. EHV1 is indisputably a master at exploiting leukocytes to reach its target organs, accordingly evading the host immunity. However, the role of T lymphocytes in cell-associated viremia remains poorly understood. Here we show that activated T lymphocytes efficiently become infected and support viral replication despite the presence of protective immunity. We demonstrate a restricted expression of viral proteins on the surfaces of infected T cells, which prevents immune recognition. In addition, we indicate a hampered release of progeny, which results in the accumulation of nucleocapsids in the T cell nucleus. Upon engagement with the target endothelium, late viral proteins orchestrate viral synapse formation and viral transfer to the contact cell. Our findings have significant implications for the understanding of EHV1 pathogenesis, which is essential for developing innovative therapies to prevent the devastating clinical symptoms of infection. Equine herpesvirus 1 (EHV1) replicates in the respiratory epithelium and disseminates through the body via a cell-associated viremia in leukocytes, despite the presence of neutralizing antibodies. “Hijacked” leukocytes, previously identified as monocytic cells and T lymphocytes, transmit EHV1 to endothelial cells of the endometrium or central nervous system, causing reproductive (abortigenic variants) or neurological (neurological variants) disorders. In the present study, we questioned the potential route of EHV1 infection of T lymphocytes and how EHV1 misuses T lymphocytes as a vehicle to reach the endothelium of the target organs in the absence or presence of immune surveillance. Viral replication was evaluated in activated and quiescent primary T lymphocytes, and the results demonstrated increased infection of activated versus quiescent, CD4+ versus CD8+, and blood- versus lymph node-derived T cells. Moreover, primarily infected respiratory epithelial cells and circulating monocytic cells efficiently transferred virions to T lymphocytes in the presence of neutralizing antibodies. Albeit T-lymphocytes express all classes of viral proteins early in infection, the expression of viral glycoproteins on their cell surface was restricted. In addition, the release of viral progeny was hampered, resulting in the accumulation of viral nucleocapsids in the T cell nucleus. During contact of infected T lymphocytes with endothelial cells, a late viral protein(s) orchestrates T cell polarization and synapse formation, followed by anterograde dynein-mediated transport and transfer of viral progeny to the engaged cell. This represents a sophisticated but efficient immune evasion strategy to allow transfer of progeny virus from T lymphocytes to adjacent target cells. These results demonstrate that T lymphocytes are susceptible to EHV1 infection and that cell-cell contact transmits infectious virus to and from T lymphocytes. IMPORTANCE Equine herpesvirus 1 (EHV1) is an ancestral alphaherpesvirus that is related to herpes simplex virus 1 and causes respiratory, reproductive, and neurological disorders in Equidae. EHV1 is indisputably a master at exploiting leukocytes to reach its target organs, accordingly evading the host immunity. However, the role of T lymphocytes in cell-associated viremia remains poorly understood. Here we show that activated T lymphocytes efficiently become infected and support viral replication despite the presence of protective immunity. We demonstrate a restricted expression of viral proteins on the surfaces of infected T cells, which prevents immune recognition. In addition, we indicate a hampered release of progeny, which results in the accumulation of nucleocapsids in the T cell nucleus. Upon engagement with the target endothelium, late viral proteins orchestrate viral synapse formation and viral transfer to the contact cell. Our findings have significant implications for the understanding of EHV1 pathogenesis, which is essential for developing innovative therapies to prevent the devastating clinical symptoms of infection.
Collapse
|
22
|
Makhoul C, Gosavi P, Duffield R, Delbridge B, Williamson NA, Gleeson PA. Intersectin-1 interacts with the golgin GCC88 to couple the actin network and Golgi architecture. Mol Biol Cell 2019; 30:370-386. [PMID: 30540523 PMCID: PMC6589577 DOI: 10.1091/mbc.e18-05-0313] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/19/2018] [Accepted: 12/04/2018] [Indexed: 12/19/2022] Open
Abstract
The maintenance of the Golgi ribbon relies on a dynamic balance between the actin and microtubule networks; however, the pathways controlling actin networks remain poorly defined. Previously, we showed that the trans-Golgi network (TGN) membrane tether/golgin, GCC88, modulates the Golgi ribbon architecture. Here, we show that dispersal of the Golgi ribbon by GCC88 is dependent on actin and the involvement of nonmuscle myosin IIA. We have identified the long isoform of intersectin-1 (ITSN-1), a guanine nucleotide exchange factor for Cdc42, as a novel Golgi component and an interaction partner of GCC88 responsible for mediating the actin-dependent dispersal of the Golgi ribbon. We show that perturbation of Golgi morphology by changes in membrane flux, mediated by silencing the retromer subunit Vps26, or in a model of neurodegeneration, induced by Tau overexpression, are also dependent on the ITSN-1-GCC88 interaction. Overall, our study reveals a role for a TGN golgin and ITSN-1 in linking to the actin cytoskeleton and regulating the balance between a compact Golgi ribbon and a dispersed Golgi, a pathway with relevance to pathophysiological conditions.
Collapse
Affiliation(s)
- Christian Makhoul
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Prajakta Gosavi
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Regina Duffield
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Bronwen Delbridge
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Nicholas A. Williamson
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Paul A. Gleeson
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
23
|
Golán I, Rodríguez de la Fuente L, Costoya JA. NK Cell-Based Glioblastoma Immunotherapy. Cancers (Basel) 2018; 10:E522. [PMID: 30567306 PMCID: PMC6315402 DOI: 10.3390/cancers10120522] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/01/2018] [Accepted: 12/14/2018] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GB) is the most aggressive and most common malignant primary brain tumor diagnosed in adults. GB shows a poor prognosis and, unfortunately, current therapies are unable to improve its clinical outcome, imposing the need for innovative therapeutic approaches. The main reason for the poor prognosis is the great cell heterogeneity of the tumor mass and its high capacity for invading healthy tissues. Moreover, the glioblastoma microenvironment is capable of suppressing the action of the immune system through several mechanisms such as recruitment of cell modulators. Development of new therapies that avoid this immune evasion could improve the response to the current treatments for this pathology. Natural Killer (NK) cells are cellular components of the immune system more difficult to deceive by tumor cells and with greater cytotoxic activity. Their use in immunotherapy gains strength because they are a less toxic alternative to existing therapy, but the current research focuses on mimicking the NK attack strategy. Here, we summarize the most recent studies regarding molecular mechanisms involved in the GB and immune cells interaction and highlight the relevance of NK cells in the new therapeutic challenges.
Collapse
Affiliation(s)
- Irene Golán
- Molecular Oncology Laboratory MOL, Departamento de Fisioloxia, CiMUS, Facultade de Medicina, Universidade de Santiago de Compostela, IDIS, 15782 Santiago de Compostela, Spain.
| | - Laura Rodríguez de la Fuente
- Molecular Oncology Laboratory MOL, Departamento de Fisioloxia, CiMUS, Facultade de Medicina, Universidade de Santiago de Compostela, IDIS, 15782 Santiago de Compostela, Spain.
| | - Jose A Costoya
- Molecular Oncology Laboratory MOL, Departamento de Fisioloxia, CiMUS, Facultade de Medicina, Universidade de Santiago de Compostela, IDIS, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
24
|
Lim WM, Ito Y, Sakata-Sogawa K, Tokunaga M. CLIP-170 is essential for MTOC repositioning during T cell activation by regulating dynein localisation on the cell surface. Sci Rep 2018; 8:17447. [PMID: 30487641 PMCID: PMC6261991 DOI: 10.1038/s41598-018-35593-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 11/06/2018] [Indexed: 02/02/2023] Open
Abstract
The microtubule-organizing centre (MTOC) is repositioned to the centre of the contacted cell surface, the immunological synapse, during T cell activation. However, our understanding of its molecular mechanism remains limited. Here, we found that the microtubule plus-end tracking cytoplasmic linker protein 170 (CLIP-170) plays a novel role in MTOC repositioning using fluorescence imaging. Inhibition of CLIP-170 phosphorylation impaired both MTOC repositioning and interleukin-2 (IL-2) expression. T cell stimulation induced some fraction of dynein to colocalise with CLIP-170 and undergo plus-end tracking. Concurrently, it increased dynein in minus-end-directed movement. It also increased dynein relocation to the centre of the contact surface. Dynein not colocalised with CLIP-170 showed both an immobile state and minus-end-directed movement at a velocity in good agreement with the velocity of MTOC repositioning, which suggests that dynein at the immunological synapse may pull the microtubules and the MTOC. Although CLIP-170 is phosphorylated by AMP-activated protein kinase (AMPK) irrespective of stimulation, phosphorylated CLIP-170 is essential for dynein recruitment to plus-end tracking and for dynein relocation. This indicates that dynein relocation results from coexistence of plus-end- and minus-end-directed translocation. In conclusion, CLIP-170 plays an indispensable role in MTOC repositioning and full activation of T cells by regulating dynein localisation.
Collapse
Affiliation(s)
- Wei Ming Lim
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori, Yokohama, Kanagawa, 226-8501, Japan
| | - Yuma Ito
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori, Yokohama, Kanagawa, 226-8501, Japan
| | - Kumiko Sakata-Sogawa
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori, Yokohama, Kanagawa, 226-8501, Japan.
| | - Makio Tokunaga
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori, Yokohama, Kanagawa, 226-8501, Japan.
| |
Collapse
|
25
|
Metabolic reprogramming of natural killer cells in obesity limits antitumor responses. Nat Immunol 2018; 19:1330-1340. [PMID: 30420624 DOI: 10.1038/s41590-018-0251-7] [Citation(s) in RCA: 380] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 10/02/2018] [Indexed: 02/06/2023]
Abstract
Up to 49% of certain types of cancer are attributed to obesity, and potential mechanisms include overproduction of hormones, adipokines, and insulin. Cytotoxic immune cells, including natural killer (NK) cells and CD8+ T cells, are important in tumor surveillance, but little is known about the impact of obesity on immunosurveillance. Here, we show that obesity induces robust peroxisome proliferator-activated receptor (PPAR)-driven lipid accumulation in NK cells, causing complete 'paralysis' of their cellular metabolism and trafficking. Fatty acid administration, and PPARα and PPARδ (PPARα/δ) agonists, mimicked obesity and inhibited mechanistic target of rapamycin (mTOR)-mediated glycolysis. This prevented trafficking of the cytotoxic machinery to the NK cell-tumor synapse. Inhibiting PPARα/δ or blocking the transport of lipids into mitochondria reversed NK cell metabolic paralysis and restored cytotoxicity. In vivo, NK cells had blunted antitumor responses and failed to reduce tumor growth in obesity. Our results demonstrate that the lipotoxic obese environment impairs immunosurveillance and suggest that metabolic reprogramming of NK cells may improve cancer outcomes in obesity.
Collapse
|
26
|
The Golgi architecture and cell sensing. Biochem Soc Trans 2018; 46:1063-1072. [DOI: 10.1042/bst20180323] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/06/2018] [Accepted: 08/21/2018] [Indexed: 12/23/2022]
Abstract
An array of signalling molecules are located at the Golgi apparatus, including phosphoinositides, small GTPases, kinases, and phosphatases, which are linked to multiple signalling pathways. Initially considered to be associated predominantly with membrane trafficking, signalling pathways at the Golgi are now recognised to regulate a diverse range of higher-order functions. Many of these signalling pathways are influenced by the architecture of the Golgi. In vertebrate cells, the Golgi consists of individual stacks fused together into a compact ribbon structure and the function of this ribbon structure has been enigmatic. Notably, recent advances have identified a role for the Golgi ribbon in regulation of cellular processes. Fragmentation of the Golgi ribbon results in modulation of many signalling pathways. Various diseases and disorders, including cancer and neurodegeneration, are associated with the loss of the Golgi ribbon and the appearance of a dispersed fragmented Golgi. Here, we review the emerging theme of the Golgi as a cell sensor and highlight the relationship between the morphological status of the Golgi in vertebrate cells and the modulation of signalling networks.
Collapse
|
27
|
Díaz LR, Saavedra-López E, Romarate L, Mitxitorena I, Casanova PV, Cribaro GP, Gallego JM, Pérez-Vallés A, Forteza-Vila J, Alfaro-Cervello C, García-Verdugo JM, Barcia C, Barcia C. Imbalance of immunological synapse-kinapse states reflects tumor escape to immunity in glioblastoma. JCI Insight 2018; 3:120757. [PMID: 30232280 DOI: 10.1172/jci.insight.120757] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 08/17/2018] [Indexed: 12/19/2022] Open
Abstract
Since the proper activation of T cells requires the physical interaction with target cells through the formation of immunological synapses (IS), an alteration at this level could be a reason why tumors escape the immune response. As part of their life cycle, it is thought that T cells alternate between a static phase, the IS, and a dynamic phase, the immunological kinapse (IK), depending on high or low antigen sensing. Our investigation performed in tissue samples of human glioma shows that T cells are able to establish synapsing interactions not only with glioma tumorigenic cells, but also with stromal myeloid cells. Particularly, the IS displaying a T cell receptor-rich (TCR-rich) central supramolecular activation cluster (cSMAC) is preferentially established with stromal cells, as opposed to malignant cells. Conversely, T cells in the malignant areas showed distinct morphometric parameters compared with nonneoplastic tissue - the former characterized by an elongated shape, well-suited to kinaptic dynamics. Importantly, high-resolution 3-dimensional analyses demonstrated the existence of bona-fide IK preferentially arranged in malignant areas of the tumor. This imbalance of IS/IK states between these 2 microenvironments reveals the low antigenic sensing of T cells when patrolling tumorigenic cells and reflects the immunoevasive environment of the tumor.
Collapse
Affiliation(s)
- Laura R Díaz
- Department of Biochemistry and Molecular Biology, School of Medicine, and.,Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - Elena Saavedra-López
- Department of Biochemistry and Molecular Biology, School of Medicine, and.,Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - Leire Romarate
- Department of Biochemistry and Molecular Biology, School of Medicine, and.,Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - Izaskun Mitxitorena
- Department of Biochemistry and Molecular Biology, School of Medicine, and.,Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - Paola V Casanova
- Department of Biochemistry and Molecular Biology, School of Medicine, and.,Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - George P Cribaro
- Department of Biochemistry and Molecular Biology, School of Medicine, and.,Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | | | - Ana Pérez-Vallés
- Department of Pathology, Valencia General Hospital, Valencia, Spain
| | - Jerónimo Forteza-Vila
- Unidad Mixta CIPF/UCV de Investigación Oncológica, Instituto Valenciano de Patología, Universidad Católica de Valencia, Valencia, Spain
| | - Clara Alfaro-Cervello
- Laboratory of Comparative Neurobiology, Instituto Cavanilles, Universitat de València, CIBERNED, Valencia, Spain
| | - José M García-Verdugo
- Laboratory of Comparative Neurobiology, Instituto Cavanilles, Universitat de València, CIBERNED, Valencia, Spain
| | | | - Carlos Barcia
- Department of Biochemistry and Molecular Biology, School of Medicine, and.,Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
28
|
Hua K, Ferland RJ. Primary Cilia Reconsidered in the Context of Ciliopathies: Extraciliary and Ciliary Functions of Cilia Proteins Converge on a Polarity theme? Bioessays 2018; 40:e1700132. [PMID: 29882973 PMCID: PMC6239423 DOI: 10.1002/bies.201700132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 05/09/2018] [Indexed: 12/13/2022]
Abstract
Once dismissed as vestigial organelles, primary cilia have garnered the interest of scientists, given their importance in development/signaling, and for their implication in a new disease category known as ciliopathies. However, many, if not all, "cilia" proteins also have locations/functions outside of the primary cilium. These extraciliary functions can complicate the interpretation of a particular ciliopathy phenotype: it may be a result of defects at the cilium and/or at extraciliary locations, and it could be broadly related to a unifying cellular process for these proteins, such as polarity. Assembly of a cilium has many similarities to the development of other polarized structures. This evolutionarily preserved process for the assembly of polarized cell structures offers a perspective on how the cilium may have evolved. We hypothesize that cilia proteins are critical for cell polarity, and that core polarity proteins may have been specialized to form various cellular protrusions, including primary cilia.
Collapse
Affiliation(s)
- Kiet Hua
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA, 12208
| | - Russell J Ferland
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA, 12208
- Department of Neurology, Albany Medical College, Albany, New York, USA, 12208
| |
Collapse
|
29
|
Božič J, Stoka V, Dolenc I. Glucosamine prevents polarization of cytotoxic granules in NK-92 cells by disturbing FOXO1/ERK/paxillin phosphorylation. PLoS One 2018; 13:e0200757. [PMID: 30016365 PMCID: PMC6049946 DOI: 10.1371/journal.pone.0200757] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/02/2018] [Indexed: 12/14/2022] Open
Abstract
Glucosamine (GlcN) is a naturally occurring derivative of glucose and an over-the-counter food additive. However, the mechanism underlying GlcN action on cells is unknown. In this study, we investigated the effect of GlcN on natural killer (NK) cells. We demonstrate that GlcN affects NK-92 cell cytotoxicity by altering the distribution of cathepsin C, a cysteine protease required for granzyme processing in cytotoxic granules. The relocation of cathepsin C due to GlcN was shown to be accompanied by a decrease in the intracellular enzyme activity and its extracellular secretion. Similarly, the relocation of endosomal aspartic cathepsin E was observed. Furthermore, we elucidated that repositioning of cathepsin C is a consequence of altered signaling pathways of cytotoxic granule movement. The inhibition of phosphorylation upstream and downstream of ERK by GlcN disturbed the polarized release of cytotoxic vesicles. Considerable changes in the ERK phosphorylation dynamics, but not in those of p38 kinase or JNK, were observed in the IL2-activated NK-92 cells. We found decreased phosphorylation of the transcription factor FOXO1 and simultaneous prolonged phosphorylation of ERK as well as its nuclear translocation. Additionally, a protein downstream of the ERK phosphorylation cascade, paxillin, was less phosphorylated, resulting in a diffuse distribution of cytotoxic granules. Taken together, our results suggest that dietary GlcN affects signaling pathway activation of NK-92 immune cells.
Collapse
Affiliation(s)
- Janja Božič
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia
- International Postgraduate School Jozef Stefan, Ljubljana, Slovenia
| | - Veronika Stoka
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia
- International Postgraduate School Jozef Stefan, Ljubljana, Slovenia
- * E-mail: (ID); (VS)
| | - Iztok Dolenc
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia
- * E-mail: (ID); (VS)
| |
Collapse
|
30
|
Hua K, Ferland RJ. Primary cilia proteins: ciliary and extraciliary sites and functions. Cell Mol Life Sci 2018; 75:1521-1540. [PMID: 29305615 PMCID: PMC5899021 DOI: 10.1007/s00018-017-2740-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/21/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023]
Abstract
Primary cilia are immotile organelles known for their roles in development and cell signaling. Defects in primary cilia result in a range of disorders named ciliopathies. Because this organelle can be found singularly on almost all cell types, its importance extends to most organ systems. As such, elucidating the importance of the primary cilium has attracted researchers from all biological disciplines. As the primary cilia field expands, caution is warranted in attributing biological defects solely to the function of this organelle, since many of these "ciliary" proteins are found at other sites in cells and likely have non-ciliary functions. Indeed, many, if not all, cilia proteins have locations and functions outside the primary cilium. Extraciliary functions are known to include cell cycle regulation, cytoskeletal regulation, and trafficking. Cilia proteins have been observed in the nucleus, at the Golgi apparatus, and even in immune synapses of T cells (interestingly, a non-ciliated cell). Given the abundance of extraciliary sites and functions, it can be difficult to definitively attribute an observed phenotype solely to defective cilia rather than to some defective extraciliary function or a combination of both. Thus, extraciliary sites and functions of cilia proteins need to be considered, as well as experimentally determined. Through such consideration, we will understand the true role of the primary cilium in disease as compared to other cellular processes' influences in mediating disease (or through a combination of both). Here, we review a compilation of known extraciliary sites and functions of "cilia" proteins as a means to demonstrate the potential non-ciliary roles for these proteins.
Collapse
Affiliation(s)
- Kiet Hua
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA.
| | - Russell J Ferland
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA.
- Department of Neurology, Albany Medical College, Albany, NY, 12208, USA.
| |
Collapse
|
31
|
|
32
|
Carpier JM, Zucchetti AE, Bataille L, Dogniaux S, Shafaq-Zadah M, Bardin S, Lucchino M, Maurin M, Joannas LD, Magalhaes JG, Johannes L, Galli T, Goud B, Hivroz C. Rab6-dependent retrograde traffic of LAT controls immune synapse formation and T cell activation. J Exp Med 2018; 215:1245-1265. [PMID: 29440364 PMCID: PMC5881459 DOI: 10.1084/jem.20162042] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 11/30/2017] [Accepted: 01/11/2018] [Indexed: 12/24/2022] Open
Abstract
The adapter molecule linker for activation of T cells (LAT) orchestrates the formation of signalosomes upon T cell receptor (TCR) stimulation. LAT is present in different intracellular pools and is dynamically recruited to the immune synapse upon stimulation. However, the intracellular traffic of LAT and its function in T lymphocyte activation are ill defined. We show herein that LAT, once internalized, transits through the Golgi-trans-Golgi network (TGN), where it is repolarized to the immune synapse. This retrograde transport of LAT depends on the small GTPase Rab6 and the target soluble N-ethylmaleimide-sensitive factor attachment protein receptor (t-SNARE) Syntaxin-16, two regulators of the endosome-to-Golgi/TGN retrograde transport. We also show in vitro in Syntaxin-16- or Rab6-silenced human cells and in vivo in CD4+ T lymphocytes of the Rab6 knockout mouse that this retrograde traffic controls TCR stimulation. These results establish that the retrograde traffic of LAT from the plasma membrane to the Golgi-TGN controls the polarized delivery of LAT at the immune synapse and T lymphocyte activation.
Collapse
Affiliation(s)
- Jean-Marie Carpier
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| | - Andres E Zucchetti
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| | - Laurence Bataille
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| | - Stéphanie Dogniaux
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| | - Massiullah Shafaq-Zadah
- Cellular and Chemical Biology of Membranes and Therapeutic Delivery Unit, Institut Curie, Paris Sciences and Lettres Research University, INSERM U1143, CNRS UMR 3666, Paris, France
| | - Sabine Bardin
- Molecular Mechanisms of Intracellular Transport Group, Institut Curie, Paris Sciences and Lettres Research University, CNRS UMR 144, Paris, France
| | - Marco Lucchino
- Cellular and Chemical Biology of Membranes and Therapeutic Delivery Unit, Institut Curie, Paris Sciences and Lettres Research University, INSERM U1143, CNRS UMR 3666, Paris, France
| | - Mathieu Maurin
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| | - Leonel D Joannas
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| | - Joao Gamelas Magalhaes
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| | - Ludger Johannes
- Cellular and Chemical Biology of Membranes and Therapeutic Delivery Unit, Institut Curie, Paris Sciences and Lettres Research University, INSERM U1143, CNRS UMR 3666, Paris, France
| | - Thierry Galli
- Center of Psychiatry and Neurosciences, Membrane Traffic in Health and Diseased Brain, Université Paris Descartes, Sorbonne Paris Cité, INSERM ERL U950, Paris, France
| | - Bruno Goud
- Molecular Mechanisms of Intracellular Transport Group, Institut Curie, Paris Sciences and Lettres Research University, CNRS UMR 144, Paris, France
| | - Claire Hivroz
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| |
Collapse
|
33
|
Gosavi P, Gleeson PA. The Function of the Golgi Ribbon Structure - An Enduring Mystery Unfolds! Bioessays 2017; 39. [PMID: 28984991 DOI: 10.1002/bies.201700063] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/31/2017] [Indexed: 12/13/2022]
Abstract
The Golgi apparatus in vertebrate cells consists of individual Golgi stacks fused together in a continuous ribbon structure. The ribbon structure per se is not required to mediate the classical functions of this organelle and the relevance of the "ribbon" structure has been a mystery since first identified ultrastructurally in the 1950s. Recent advances recognize a role for the Golgi apparatus in a range of cellular processes, some mediated by signaling networks which are regulated at the Golgi. Here we review the cellular processes and signaling events regulated by the Golgi apparatus and, in particular, explore an emerging theme that the ribbon structure of the Golgi contributes directly to the regulation of these higher order functions.
Collapse
Affiliation(s)
- Prajakta Gosavi
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| | - Paul A Gleeson
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
34
|
Dieckmann NMG, Frazer GL, Asano Y, Stinchcombe JC, Griffiths GM. The cytotoxic T lymphocyte immune synapse at a glance. J Cell Sci 2017; 129:2881-6. [PMID: 27505426 DOI: 10.1242/jcs.186205] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The immune synapse provides an important structure for communication with immune cells. Studies on immune synapses formed by cytotoxic T lymphocytes (CTLs) highlight the dynamic changes and specialised mechanisms required to facilitate focal signalling and polarised secretion in immune cells. In this Cell Science at a Glance article and the accompanying poster, we illustrate the different steps that reveal the specialised mechanisms used to focus secretion at the CTL immune synapse and allow CTLs to be such efficient and precise serial killers.
Collapse
Affiliation(s)
- Nele M G Dieckmann
- Cambridge Institute for Medical Research, Biomedical Campus, Cambridge CB2 0XY, UK
| | - Gordon L Frazer
- Cambridge Institute for Medical Research, Biomedical Campus, Cambridge CB2 0XY, UK
| | - Yukako Asano
- Cambridge Institute for Medical Research, Biomedical Campus, Cambridge CB2 0XY, UK
| | - Jane C Stinchcombe
- Cambridge Institute for Medical Research, Biomedical Campus, Cambridge CB2 0XY, UK
| | - Gillian M Griffiths
- Cambridge Institute for Medical Research, Biomedical Campus, Cambridge CB2 0XY, UK
| |
Collapse
|
35
|
Udenwobele DI, Su RC, Good SV, Ball TB, Varma Shrivastav S, Shrivastav A. Myristoylation: An Important Protein Modification in the Immune Response. Front Immunol 2017; 8:751. [PMID: 28713376 PMCID: PMC5492501 DOI: 10.3389/fimmu.2017.00751] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/13/2017] [Indexed: 01/24/2023] Open
Abstract
Protein N-myristoylation is a cotranslational lipidic modification specific to the alpha-amino group of an N-terminal glycine residue of many eukaryotic and viral proteins. The ubiquitous eukaryotic enzyme, N-myristoyltransferase, catalyzes the myristoylation process. Precisely, attachment of a myristoyl group increases specific protein–protein interactions leading to subcellular localization of myristoylated proteins with its signaling partners. The birth of the field of myristoylation, a little over three decades ago, has led to the understanding of the significance of protein myristoylation in regulating cellular signaling pathways in several biological processes especially in carcinogenesis and more recently immune function. This review discusses myristoylation as a prerequisite step in initiating many immune cell signaling cascades. In particular, we discuss the hitherto unappreciated implication of myristoylation during myelopoiesis, innate immune response, lymphopoiesis for T cells, and the formation of the immunological synapse. Furthermore, we discuss the role of myristoylation in inducing the virological synapse during human immunodeficiency virus infection as well as its clinical implication. This review aims to summarize existing knowledge in the field and to highlight gaps in our understanding of the role of myristoylation in immune function so as to further investigate into the dynamics of myristoylation-dependent immune regulation.
Collapse
Affiliation(s)
- Daniel Ikenna Udenwobele
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada.,Department of Biochemistry, University of Nigeria, Nsukka, Enugu, Nigeria
| | - Ruey-Chyi Su
- JC Wilt Infectious Diseases Research Institute, National HIV and Retrovirology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Sara V Good
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
| | - Terry Blake Ball
- JC Wilt Infectious Diseases Research Institute, National HIV and Retrovirology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Shailly Varma Shrivastav
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada.,VastCon Inc., Winnipeg, MB, Canada
| | - Anuraag Shrivastav
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
36
|
Mazel T. Crosstalk of cell polarity signaling pathways. PROTOPLASMA 2017; 254:1241-1258. [PMID: 28293820 DOI: 10.1007/s00709-017-1075-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/02/2017] [Indexed: 06/06/2023]
Abstract
Cell polarity, the asymmetric organization of cellular components along one or multiple axes, is present in most cells. From budding yeast cell polarization induced by pheromone signaling, oocyte polarization at fertilization to polarized epithelia and neuronal cells in multicellular organisms, similar mechanisms are used to determine cell polarity. Crucial role in this process is played by signaling lipid molecules, small Rho family GTPases and Par proteins. All these signaling circuits finally govern the cytoskeleton, which is responsible for oriented cell migration, cell shape changes, and polarized membrane and organelle trafficking. Thus, typically in the process of cell polarization, most cellular constituents become polarized, including plasma membrane lipid composition, ion concentrations, membrane receptors, and proteins in general, mRNA, vesicle trafficking, or intracellular organelles. This review gives a brief overview how these systems talk to each other both during initial symmetry breaking and within the signaling feedback loop mechanisms used to preserve the polarized state.
Collapse
Affiliation(s)
- Tomáš Mazel
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague 2, Czech Republic.
- State Institute for Drug Control, Šrobárova 48, 100 41, Prague 10, Czech Republic.
| |
Collapse
|
37
|
Wortzel I, Koifman G, Rotter V, Seger R, Porat Z. High Throughput Analysis of Golgi Structure by Imaging Flow Cytometry. Sci Rep 2017; 7:788. [PMID: 28400563 PMCID: PMC5429768 DOI: 10.1038/s41598-017-00909-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/16/2017] [Indexed: 11/24/2022] Open
Abstract
The Golgi apparatus is a dynamic organelle, which regulates the vesicular trafficking. While cellular trafficking requires active changes of the Golgi membranes, these are not accompanied by changes in the general Golgi’s structure. However, cellular processes such as mitosis, apoptosis and migration require fragmentation of the Golgi complex. Currently, these changes are most commonly studied by basic immunofluorescence and quantified by manual and subjective classification of the Golgi structure in 100–500 stained cells. Several other high-throughput methods exist as well, but those are either complicated or do not provide enough morphological information. Therefore, a simple and informative high content methodology should be beneficial for the study of Golgi architecture. Here we describe the use of high-throughput imaging flow cytometry for quantification of Golgi fragmentation, which provides a simple way to analyze the changes in an automated, quantitative and non-biased manner. Furthermore, it provides a rapid and accurate way to analyze more than 50,000 cells per sample. Our results demonstrate that this method is robust and statistically powerful, thus, providing a much-needed analytical tool for future studies on Golgi dynamics, and can be adapted to other experimental systems.
Collapse
Affiliation(s)
- Inbal Wortzel
- Dept. of Biological Regulation, the Weizmann Institute of Science, Rehovot, Israel
| | - Gabriela Koifman
- Dept. Of Molecular Cell Biology, the Weizmann Institute of Science, Rehovot, Israel
| | - Varda Rotter
- Dept. Of Molecular Cell Biology, the Weizmann Institute of Science, Rehovot, Israel
| | - Rony Seger
- Dept. of Biological Regulation, the Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Porat
- Dept. of Life Sciences Core Facilities, the Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
38
|
Abstract
Ritter and Mellman highlight work by Hsu et al. exploring the role of lytic granule convergence in targeted killing by NK cells. To clear infection, cytotoxic lymphocytes must destroy target cells while avoiding nonspecific killing of surrounding healthy cells. In this issue, Hsu et al. (2016. J. Cell Biol.https://doi.org/10.1083/jcb.201604136) use live-cell imaging to show that lytic granule convergence protects bystander cells from unintended death by promoting polarized secretion of soluble cytolytic proteins toward the intended target.
Collapse
|
39
|
Maccari I, Zhao R, Peglow M, Schwarz K, Hornak I, Pasche M, Quintana A, Hoth M, Qu B, Rieger H. Cytoskeleton rotation relocates mitochondria to the immunological synapse and increases calcium signals. Cell Calcium 2016; 60:309-321. [PMID: 27451384 DOI: 10.1016/j.ceca.2016.06.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/24/2016] [Accepted: 06/24/2016] [Indexed: 11/18/2022]
Abstract
Ca2+ microdomains and spatially resolved Ca2+ signals are highly relevant for cell function. In T cells, local Ca2+ signaling at the immunological synapse (IS) is required for downstream effector functions. We present experimental evidence that the relocation of the MTOC towards the IS during polarization drags mitochondria along with the microtubule network. From time-lapse fluorescence microscopy we conclude that mitochondria rotate together with the cytoskeleton towards the IS. We hypothesize that this movement of mitochondria towards the IS together with their functionality of absorption and spatial redistribution of Ca2+ is sufficient to significantly increase the cytosolic Ca2+ concentration. To test this hypothesis we developed a whole cell model for Ca2+ homoeostasis involving specific geometries for mitochondria and use the model to calculate the spatial distribution of Ca2+ concentrations within the cell body as a function of the rotation angle and the distance from the IS. We find that an inhomogeneous distribution of PMCA pumps on the cell membrane, in particular an accumulation of PMCA at the IS, increases the global Ca2+ concentration and decreases the local Ca2+ concentration at the IS with decreasing distance of the MTOC from the IS. Unexpectedly, a change of CRAC/Orai activity is not required to explain the observed Ca2+ changes. We conclude that rotation-driven relocation of the MTOC towards the IS together with an accumulation of PMCA pumps at the IS are sufficient to control the observed Ca2+ dynamics in T-cells during polarization.
Collapse
Affiliation(s)
- Ilaria Maccari
- Theoretical Physics, Saarland University, 66041 Saarbrücken, Germany
| | - Renping Zhao
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Martin Peglow
- Theoretical Physics, Saarland University, 66041 Saarbrücken, Germany
| | - Karsten Schwarz
- Theoretical Physics, Saarland University, 66041 Saarbrücken, Germany
| | - Ivan Hornak
- Theoretical Physics, Saarland University, 66041 Saarbrücken, Germany
| | - Mathias Pasche
- Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Ariel Quintana
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Markus Hoth
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, 66421 Homburg, Germany.
| | - Bin Qu
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Heiko Rieger
- Theoretical Physics, Saarland University, 66041 Saarbrücken, Germany.
| |
Collapse
|
40
|
Barker AR, McIntosh KV, Dawe HR. Centrosome positioning in non-dividing cells. PROTOPLASMA 2016; 253:1007-1021. [PMID: 26319517 DOI: 10.1007/s00709-015-0883-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 08/22/2015] [Indexed: 06/04/2023]
Abstract
Centrioles and centrosomes are found in almost all eukaryotic cells, where they are important for organising the microtubule cytoskeleton in both dividing and non-dividing cells. The spatial location of centrioles and centrosomes is tightly controlled and, in non-dividing cells, plays an important part in cell migration, ciliogenesis and immune cell functions. Here, we examine some of the ways that centrosomes are connected to other organelles and how this impacts on cilium formation, cell migration and immune cell function in metazoan cells.
Collapse
Affiliation(s)
- Amy R Barker
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, EC1M 6BQ, London
| | - Kate V McIntosh
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Helen R Dawe
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| |
Collapse
|
41
|
Niedergang F, Di Bartolo V, Alcover A. Comparative Anatomy of Phagocytic and Immunological Synapses. Front Immunol 2016; 7:18. [PMID: 26858721 PMCID: PMC4729869 DOI: 10.3389/fimmu.2016.00018] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/14/2016] [Indexed: 11/17/2022] Open
Abstract
The generation of phagocytic cups and immunological synapses are crucial events of the innate and adaptive immune responses, respectively. They are triggered by distinct immune receptors and performed by different cell types. However, growing experimental evidence shows that a very close series of molecular and cellular events control these two processes. Thus, the tight and dynamic interplay between receptor signaling, actin and microtubule cytoskeleton, and targeted vesicle traffic are all critical features to build functional phagosomes and immunological synapses. Interestingly, both phagocytic cups and immunological synapses display particular spatial and temporal patterns of receptors and signaling molecules, leading to the notion of “phagocytic synapse.” Here, we discuss both types of structures, their organization, and the mechanisms by which they are generated and regulated.
Collapse
Affiliation(s)
- Florence Niedergang
- U1016, Institut Cochin, INSERM, Paris, France; UMR 8104, CNRS, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Vincenzo Di Bartolo
- Lymphocyte Cell Biology Unit, Department of Immunology, Institut Pasteur, Paris, France; U1221, INSERM, Paris, France
| | - Andrés Alcover
- Lymphocyte Cell Biology Unit, Department of Immunology, Institut Pasteur, Paris, France; U1221, INSERM, Paris, France
| |
Collapse
|
42
|
Ueda H, Zhou J, Xie J, Davis MM. Distinct Roles of Cytoskeletal Components in Immunological Synapse Formation and Directed Secretion. THE JOURNAL OF IMMUNOLOGY 2015; 195:4117-25. [PMID: 26392461 DOI: 10.4049/jimmunol.1402175] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 08/25/2015] [Indexed: 01/01/2023]
Abstract
A hallmark of CD4(+) T cell activation and immunological synapse (IS) formation is the migration of the microtubule organization center and associated organelles toward the APCs. In this study, we found that when murine CD4(+) T cells were treated with a microtubule-destabilizing agent (vinblastine) after the formation of IS, the microtubule organization center dispersed and all of the major cellular organelles moved away from the IS. Cytokines were no longer directed toward the synapse but were randomly secreted in quantities similar to those seen in synaptic secretion. However, if the actin cytoskeleton was disrupted at the same time with cytochalasin D, the organelles did not shift away from the IS. These findings suggest that there is a complex interplay between the microtubules and actin cytoskeleton, where microtubules are important for directing particular cytokines into the synapse, but they are not involved in the amount of cytokines that are produced for at least 1 h after IS formation. In addition, we found that they play a critical role in mobilizing organelles to reorient toward the synapse during T cell activation and in stabilizing organelles against the force that is generated through actin polymerization so that they move toward the APCs. These findings show that there is a complex interplay between these major cytoskeletal components during synapse formation and maintenance.
Collapse
Affiliation(s)
- Hironori Ueda
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305; and Department of Molecular Endocrinology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Jie Zhou
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305; and
| | - Jianming Xie
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305; and
| | - Mark M Davis
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305; and
| |
Collapse
|
43
|
Stinchcombe JC, Griffiths GM. Communication, the centrosome and the immunological synapse. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0463. [PMID: 25047617 PMCID: PMC4113107 DOI: 10.1098/rstb.2013.0463] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Recent findings on the behaviour of the centrosome at the immunological synapse suggest a critical role for centrosome polarization in controlling the communication between immune cells required to generate an effective immune response. The features observed at the immunological synapse show parallels to centrosome (basal body) polarization seen in cilia and flagella, and the cellular communication that is now known to occur at all of these sites.
Collapse
Affiliation(s)
- Jane C Stinchcombe
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 OXY, UK
| | - Gillian M Griffiths
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 OXY, UK
| |
Collapse
|
44
|
Golgi polarization plays a role in the directional migration of neonatal dermal fibroblasts induced by the direct current electric fields. Biochem Biophys Res Commun 2015; 460:255-60. [PMID: 25772616 DOI: 10.1016/j.bbrc.2015.03.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/05/2015] [Indexed: 12/30/2022]
Abstract
Directional cell migration requires cell polarization. The reorganization of the Golgi apparatus is an important phenomenon in the polarization and migration of many types of cells. Direct current electric fields (dc (EF) induced directional cell migration in a wide variety of cells. Here nHDFs migrated toward cathode under 1 V/cm dc EF, however 1 μM of brefeldin A (BFA) inhibited the dc EF induced directional migration. BFA (1 μM) did not cause the complete Golgi dispersal for 2 h. When the Golgi polarization maintained their direction of polarity, the direction of cell migration also kept toward the same direction of the Golgi polarization even though the dc EF was reversed. In this study, the importance of the Golgi polarization in the directional migration of nHDf under dc EF was identified.
Collapse
|
45
|
Abstract
The immune system uses much of the classic machinery of cell biology, but in ways that put a different spin on organization and function. Striking recent examples include the demonstration of intraflagellar transport protein and hedgehog contributions to the immune synapse, even though immune cells lack a primary cilium that would be the typical setting for this machinery. In a second example, lymphocytes have their own subfamily of integrins, the β2 subfamily, and only integrins in this family form a stable adhesion ring using freely mobile ligands, a key feature of the immunological synapse. Finally, we showed recently that T-cells use endosomal sorting complexes required for transport (ESCRTs) at the plasma membrane to generate T-cell antigen receptor–enriched microvesicles. It is unusual for the ESCRT pathway to operate at the plasma membrane, but this may allow a novel form of cell–cell communication by providing a multivalent ligand for major histocompatibility complex–peptide complexes and perhaps other receptors on the partnering B-cell. Immune cells are thus an exciting system for novel cell biology even with classical pathways that have been studied extensively in other cell types.
Collapse
Affiliation(s)
- Michael L Dustin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Headington OX3 7FY, United Kingdom; Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
46
|
Abstract
Natural killer (NK) cells are effector cells of the innate immune system that can lyse target cells without prior sensitization and have an important role in host defense to pathogens and transformed cells. A balance between negative and positive signals transmitted via germ line-encoded inhibitory and activating receptors controls the function of NK cells. Although the concept of "missing-self" would suggest that NK cells could target foreign allografts, the prevailing dogma has been that NK cells are not active participants in the mechanisms that culminate in the rejection of solid organ allografts. Recent studies, however, challenge this conclusion and instead implicate NK cells in contributing to both graft rejection and tolerance to an allograft. In this review, we highlight recent studies with the goal of understanding the complex NK cell interactions that impact alloimmunity.
Collapse
Affiliation(s)
- Uzi Hadad
- Division of Abdominal Transplantation, Department of Surgery and Stanford Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | | | | |
Collapse
|
47
|
Trivedi N, Ramahi JS, Karakaya M, Howell D, Kerekes RA, Solecki DJ. Leading-process actomyosin coordinates organelle positioning and adhesion receptor dynamics in radially migrating cerebellar granule neurons. Neural Dev 2014; 9:26. [PMID: 25467954 PMCID: PMC4289176 DOI: 10.1186/1749-8104-9-26] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/26/2014] [Indexed: 01/29/2023] Open
Abstract
Background During brain development, neurons migrate from germinal zones to their final positions to assemble neural circuits. A unique saltatory cadence involving cyclical organelle movement (e.g., centrosome motility) and leading-process actomyosin enrichment prior to nucleokinesis organizes neuronal migration. While functional evidence suggests that leading-process actomyosin is essential for centrosome motility, the role of the actin-enriched leading process in globally organizing organelle transport or traction forces remains unexplored. Results We show that myosin ii motors and F-actin dynamics are required for Golgi apparatus positioning before nucleokinesis in cerebellar granule neurons (CGNs) migrating along glial fibers. Moreover, we show that primary cilia are motile organelles, localized to the leading-process F-actin-rich domain and immobilized by pharmacological inhibition of myosin ii and F-actin dynamics. Finally, leading process adhesion dynamics are dependent on myosin ii and F-actin. Conclusions We propose that actomyosin coordinates the overall polarity of migrating CGNs by controlling asymmetric organelle positioning and cell-cell contacts as these cells move along their glial guides. Electronic supplementary material The online version of this article (doi:10.1186/1749-8104-9-26) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Ryan A Kerekes
- Department of Developmental Neurobiology, St, Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| | | |
Collapse
|
48
|
Jeganathan S, Fiorino C, Naik U, Sun HS, Harrison RE. Modulation of osteoclastogenesis with macrophage M1- and M2-inducing stimuli. PLoS One 2014; 9:e104498. [PMID: 25101660 PMCID: PMC4125219 DOI: 10.1371/journal.pone.0104498] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/14/2014] [Indexed: 12/15/2022] Open
Abstract
Macrophages are generated through the differentiation of monocytes in tissues and they have important functions in innate and adaptive immunity. In addition to their roles as phagocytes, macrophages can be further differentiated, in the presence of receptor activator of nuclear factor kappa-B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF), into osteoclasts (multinucleated giant cells that are responsible for bone resorption). In this work, we set out to characterize whether various inflammatory stimuli, known to induce macrophage polarization, can alter the type of multinucleated giant cell obtained from RANKL differentiation. Following a four-day differentiation protocol, along with lipopolysaccharide (LPS)/interferon gamma (IFNγ) as one stimulus, and interleukin-4 (IL-4) as the other, three types of multinucleated cells were generated. Using various microscopy techniques (bright field, epifluorescence and scanning electron), functional assays, and western blotting for osteoclast markers, we found that, as expected, RANKL treatment alone resulted in osteoclasts, whereas the addition of LPS/IFNγ to RANKL pre-treated macrophages generated Langhans-type giant cells, while IL-4 led to giant cells resembling foreign body giant cells with osteoclast-like characteristics. Finally, to gain insight into the modulation of osteoclastogenesis, we characterized the formation and morphology of RANKL and LPS/IFNγ-induced multinucleated giant cells.
Collapse
Affiliation(s)
- Sujeeve Jeganathan
- Ontario Cancer Institute and Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Cara Fiorino
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Urja Naik
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - He song Sun
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Rene E. Harrison
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| |
Collapse
|
49
|
Mace EM, Dongre P, Hsu HT, Sinha P, James AM, Mann SS, Forbes LR, Watkin LB, Orange JS. Cell biological steps and checkpoints in accessing NK cell cytotoxicity. Immunol Cell Biol 2014; 92:245-55. [PMID: 24445602 PMCID: PMC3960583 DOI: 10.1038/icb.2013.96] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 11/06/2013] [Indexed: 12/11/2022]
Abstract
Natural killer (NK) cell-mediated cytotoxicity is governed by the formation of a lytic immune synapse in discrete regulated steps, which give rise to an extensive array of cellular checkpoints in accessing NK cell-mediated cytolytic defense. Appropriate progression through these cell biological steps is critical for the directed secretion of specialized secretory lysosomes and subsequent target cell death. Here we highlight recent discoveries in the formation of the NK cell cytolytic synapse as well as the molecular steps and cell biological checkpoints required for this essential host defense process.
Collapse
Affiliation(s)
- Emily M Mace
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Prachi Dongre
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Hsiang-Ting Hsu
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Papiya Sinha
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | | | - Shaina S Mann
- Case Western Reserve Medical School, Cleveland, OH, USA
| | - Lisa R Forbes
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Levi B Watkin
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Jordan S Orange
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
50
|
Arnette C, Efimova N, Zhu X, Clark GJ, Kaverina I. Microtubule segment stabilization by RASSF1A is required for proper microtubule dynamics and Golgi integrity. Mol Biol Cell 2014; 25:800-10. [PMID: 24478455 PMCID: PMC3952850 DOI: 10.1091/mbc.e13-07-0374] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
RASSF1A is a microtubule-associated protein. This study provides evidence for RASSF1A regulating MT dynamics via segmental binding to provide local stabilization of the MT network, thus facilitating MT rescue. RASSF1A reconfigures the MT network through bundling of nearby MTs and provides a stable platform to maintain Golgi integrity. The tumor suppressor and microtubule-associated protein Ras association domain family 1A (RASSF1A) has a major effect on many cellular processes, such as cell cycle progression and apoptosis. RASSF1A expression is frequently silenced in cancer and is associated with increased metastasis. Therefore we tested the hypothesis that RASSF1A regulates microtubule organization and dynamics in interphase cells, as well as its effect on Golgi integrity and cell polarity. Our results show that RASSF1A uses a unique microtubule-binding pattern to promote site-specific microtubule rescues, and loss of RASSF1A leads to decreased microtubule stability. Furthermore, RASSF1A-associated stable microtubule segments are necessary to prevent Golgi fragmentation and dispersal in cancer cells and maintain a polarized cell front. These results indicate that RASSF1A is a key regulator in the fine tuning of microtubule dynamics in interphase cells and proper Golgi organization and cell polarity.
Collapse
Affiliation(s)
- Christopher Arnette
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232 JG Brown Cancer Center, University of Louisville, Louisville, KY 40202
| | | | | | | | | |
Collapse
|