1
|
Farmer AL, Febo M, Wilkes BJ, Lewis MH. Environmental enrichment reduces restricted repetitive behavior by altering gray matter microstructure. PLoS One 2024; 19:e0307290. [PMID: 39083450 PMCID: PMC11290697 DOI: 10.1371/journal.pone.0307290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024] Open
Abstract
Restricted, repetitive behaviors are common symptoms in neurodevelopmental disorders including autism spectrum disorder. Despite being associated with poor developmental outcomes, repetitive behaviors remain poorly understood and have limited treatment options. Environmental enrichment attenuates the development of repetitive behaviors, but the exact mechanisms remain obscure. Using the C58 mouse model of repetitive behavior, we performed diffusion tensor imaging to examine microstructural alterations associated with the development of repetitive behavior and its attenuation by environmental enrichment. The C57BL/6 mouse strain, which displays little or no repetitive behavior, was used as a control group. We observed widespread differences in diffusion metrics between C58 mice and C57BL/6 mice. In juvenile C58 mice, repetitive motor behavior displayed strong negative correlations with fractional anisotropy in multiple gray matter regions, whereas in young adult C58 mice, high repetitive motor behavior was most strongly associated with lower fractional anisotropy and higher radial diffusivity in the striatum. Environmental enrichment increased fractional anisotropy and axial diffusivity throughout gray matter regions in the brains of juvenile C58 mice and overlapped predominantly with cerebellar and sensory regions associated with repetitive behavior. Our results suggest environmental enrichment reduces repetitive behavior development by altering gray matter microstructure in the cerebellum, medial entorhinal cortex, and sensory processing regions in juvenile C58 mice. Under standard laboratory conditions, early pathology in these regions appears to contribute to later striatal and white matter dysfunction in adult C58 mice. Future studies should examine the role these regions play in the development of repetitive behavior and the relationship between sensory processing and cerebellar deficits and repetitive behavior.
Collapse
Affiliation(s)
- Anna L. Farmer
- Department of Psychology, University of Florida, Gainesville, Florida, United States of America
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, Florida, United States of America
| | - Bradley J. Wilkes
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States of America
| | - Mark H. Lewis
- Department of Psychology, University of Florida, Gainesville, Florida, United States of America
- Department of Psychiatry, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
2
|
Granov R, Vedad S, Wang SH, Durham A, Shah D, Pasinetti GM. The Role of the Neural Exposome as a Novel Strategy to Identify and Mitigate Health Inequities in Alzheimer's Disease and Related Dementias. Mol Neurobiol 2024:10.1007/s12035-024-04339-6. [PMID: 38967905 DOI: 10.1007/s12035-024-04339-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
With the continuous increase of the elderly population, there is an urgency to understand and develop relevant treatments for Alzheimer's disease and related dementias (ADRD). In tandem with this, the prevalence of health inequities continues to rise as disadvantaged communities fail to be included in mainstream research. The neural exposome poses as a relevant mechanistic approach and tool for investigating ADRD onset, progression, and pathology as it accounts for several different factors: exogenous, endogenous, and behavioral. Consequently, through the neural exposome, health inequities can be addressed in ADRD research. In this paper, we address how the neural exposome relates to ADRD by contributing to the discourse through defining how the neural exposome can be developed as a tool in accordance with machine learning. Through this, machine learning can allow for developing a greater insight into the application of transferring and making sense of experimental mouse models exposed to health inequities and potentially relate it to humans. The overall goal moving beyond this paper is to define a multitude of potential factors that can increase the risk of ADRD onset and integrate them to create an interdisciplinary approach to the study of ADRD and subsequently translate the findings to clinical research.
Collapse
Affiliation(s)
- Ravid Granov
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA
| | - Skyler Vedad
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA
| | - Shu-Han Wang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA
| | - Andrea Durham
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA
| | - Divyash Shah
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA.
- Geriatrics Research, Education and Clinical Center, JJ Peters VA Medical Center, Bronx, NY, 10468, USA.
| |
Collapse
|
3
|
Takashima Y, Biane JS, Tuszynski MH. Selective plasticity of layer 2/3 inputs onto distal forelimb controlling layer 5 corticospinal neurons with skilled grasp motor training. Cell Rep 2024; 43:113986. [PMID: 38598336 DOI: 10.1016/j.celrep.2024.113986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/12/2024] [Accepted: 03/07/2024] [Indexed: 04/12/2024] Open
Abstract
Layer 5 neurons of the neocortex receive their principal inputs from layer 2/3 neurons. We seek to identify the nature and extent of the plasticity of these projections with motor learning. Using optogenetic and viral intersectional tools to selectively stimulate distinct neuronal subsets in rat primary motor cortex, we simultaneously record from pairs of corticospinal neurons associated with distinct features of motor output control: distal forelimb vs. proximal forelimb. Activation of Channelrhodopsin2-expressing layer 2/3 afferents onto layer 5 in untrained animals produces greater monosynaptic excitation of neurons controlling the proximal forelimb. Following skilled grasp training, layer 2/3 inputs onto corticospinal neurons controlling the distal forelimb associated with skilled grasping become significantly stronger. Moreover, peak excitatory response amplitude nearly doubles while latency shortens, and excitatory-to-inhibitory latencies become significantly prolonged. These findings demonstrate distinct, highly segregated, and cell-specific plasticity of layer 2/3 projections during skilled grasp motor learning.
Collapse
Affiliation(s)
| | - Jeremy S Biane
- Department of Psychiatry, UCSF, San Francisco, CA 94158, USA
| | - Mark H Tuszynski
- Department of Neurosciences, UCSD, La Jolla, CA 92093, USA; Department of Psychiatry, UCSF, San Francisco, CA 94158, USA; VA Medical Center, San Diego, CA 92161, USA.
| |
Collapse
|
4
|
Neves LT, Paz LV, Wieck A, Mestriner RG, de Miranda Monteiro VAC, Xavier LL. Environmental Enrichment in Stroke Research: an Update. Transl Stroke Res 2024; 15:339-351. [PMID: 36717476 DOI: 10.1007/s12975-023-01132-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023]
Abstract
Environmental enrichment (EE) refers to different forms of stimulation, where the environment is designed to improve the levels of sensory, cognitive, and motor stimuli, inducing stroke recovery in animal models. Stroke is a leading cause of mortality and neurological disability among older adults, hence the importance of developing strategies to improve recovery for such patients. This review provides an update on recent findings, compiling information regarding the parameters affected by EE exposure in both preclinical and clinical studies. During stroke recovery, EE exposure has been shown to improve both the cognitive and locomotor aspects, inducing important neuroplastic alterations, increased angiogenesis and neurogenesis, and modified gene expression, among other effects. There is a need for further research in this field, particularly in those aspects where the evidence is inconclusive. Moreover, it is necessary refine and adapt the EE paradigms for application in human patients.
Collapse
Affiliation(s)
- Laura Tartari Neves
- Programa de Pós-Graduação Em Biologia Celular E Molecular, Laboratório deBiologiaCelular ETecidual, Pontifical Catholic University of Rio Grande Do Sul, PUCRS. Escola de Ciências da Saúde E da Vida, Av. Ipiranga 6681, Prédio 12C, Sala 104, Porto Alegre, Rio Grande Do Sul, CEP, 90619-900, Brazil
| | - Lisiê Valéria Paz
- Programa de Pós-Graduação Em Biologia Celular E Molecular, Laboratório deBiologiaCelular ETecidual, Pontifical Catholic University of Rio Grande Do Sul, PUCRS. Escola de Ciências da Saúde E da Vida, Av. Ipiranga 6681, Prédio 12C, Sala 104, Porto Alegre, Rio Grande Do Sul, CEP, 90619-900, Brazil
| | - Andréa Wieck
- Programa de Pós-Graduação Em Biologia Celular E Molecular, Laboratório deBiologiaCelular ETecidual, Pontifical Catholic University of Rio Grande Do Sul, PUCRS. Escola de Ciências da Saúde E da Vida, Av. Ipiranga 6681, Prédio 12C, Sala 104, Porto Alegre, Rio Grande Do Sul, CEP, 90619-900, Brazil
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - Jardim Botânico, Porto Alegre, RS, 90610-000, Brazil
| | - Régis Gemerasca Mestriner
- Programa de Pós-Graduação Em Biologia Celular E Molecular, Laboratório deBiologiaCelular ETecidual, Pontifical Catholic University of Rio Grande Do Sul, PUCRS. Escola de Ciências da Saúde E da Vida, Av. Ipiranga 6681, Prédio 12C, Sala 104, Porto Alegre, Rio Grande Do Sul, CEP, 90619-900, Brazil
| | - Valentina Aguiar Cardozo de Miranda Monteiro
- Programa de Pós-Graduação Em Biologia Celular E Molecular, Laboratório deBiologiaCelular ETecidual, Pontifical Catholic University of Rio Grande Do Sul, PUCRS. Escola de Ciências da Saúde E da Vida, Av. Ipiranga 6681, Prédio 12C, Sala 104, Porto Alegre, Rio Grande Do Sul, CEP, 90619-900, Brazil
| | - Léder Leal Xavier
- Programa de Pós-Graduação Em Biologia Celular E Molecular, Laboratório deBiologiaCelular ETecidual, Pontifical Catholic University of Rio Grande Do Sul, PUCRS. Escola de Ciências da Saúde E da Vida, Av. Ipiranga 6681, Prédio 12C, Sala 104, Porto Alegre, Rio Grande Do Sul, CEP, 90619-900, Brazil.
| |
Collapse
|
5
|
Farmer AL, Lewis MH. Reduction of restricted repetitive behavior by environmental enrichment: Potential neurobiological mechanisms. Neurosci Biobehav Rev 2023; 152:105291. [PMID: 37353046 DOI: 10.1016/j.neubiorev.2023.105291] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/04/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
Restricted repetitive behaviors (RRB) are one of two diagnostic criteria for autism spectrum disorder and common in other neurodevelopmental and psychiatric disorders. The term restricted repetitive behavior refers to a wide variety of inflexible patterns of behavior including stereotypy, self-injury, restricted interests, insistence on sameness, and ritualistic and compulsive behavior. However, despite their prevalence in clinical populations, their underlying causes remain poorly understood hampering the development of effective treatments. Intriguingly, numerous animal studies have demonstrated that these behaviors are reduced by rearing in enriched environments (EE). Understanding the processes responsible for the attenuation of repetitive behaviors by EE should offer insights into potential therapeutic approaches, as well as shed light on the underlying neurobiology of repetitive behaviors. This review summarizes the current knowledge of the relationship between EE and RRB and discusses potential mechanisms for EE's attenuation of RRB based on the broader EE literature. Existing gaps in the literature and future directions are also discussed.
Collapse
Affiliation(s)
- Anna L Farmer
- Department of Psychology, University of Florida, Gainesville, FL, USA.
| | - Mark H Lewis
- Department of Psychology, University of Florida, Gainesville, FL, USA; Department of Psychiatry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
6
|
Pintori N, Piva A, Guardiani V, Decimo I, Chiamulera C. Brief Environmental Enrichment exposure enhances contextual-induced sucrose-seeking with and without memory reactivation in rats. Behav Brain Res 2022; 416:113556. [PMID: 34474039 DOI: 10.1016/j.bbr.2021.113556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/21/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022]
Abstract
Chronic Environmental Enrichment (EE) has been shown to prevent the relapse to addictive behaviours, such as drug-taking and -seeking. Recently, acute EE was shown to reduce cue-induced sucrose-seeking, but its effects on contextual (Cx)-induced sucrose-seeking is still unknown. Here we report the effects of brief EE exposure on Cx-induced sucrose-seeking with and without prior Cx-memory reactivation. Adult male Sprague-Dawley rats were trained to sucrose self-administration associated to a specific conditioning Cx (CxA), followed by a 7-day extinction in a different Cx (CxB). Afterwards, rats were exposed for 22 h to EE, and 1 h later to either i) Cx-induced sucrose-seeking (1 h, renewal without Cx-memory reactivation), ii) or two different Cx-memory reactivations: short (2-min) and long (15-min) CxA-retrieval session (Cx-Ret). In Cx-Ret experiments, CxA-induced sucrose-seeking test (1 h) was done after a subsequent 3-day extinction phase. The assessment of molecular markers of memory reactivation/reconsolidation, Zif-268 and rpS6P, was performed 2 h after Cx-Ret. Brief EE exposure enhanced Cx-induced sucrose-seeking without and with short but not long Cx-retrieval. Moreover, EE impaired discriminative responding at test prior to long, whereas improved it with or without short Cx-retrieval. Different changes in Zif-268 and rpS6P expression induced by short vs. long Cx-Ret were correlated to behavioural data, suggesting the occurrence of different memory processes affected by EE. Our data show that brief EE exposure may differently affect subsequent appetitive relapse depending on the modality of re-exposure to conditioned context. This finding suggests caution and further studies to understand the proper conditions for the use of EE against appetitive and addiction disorders.
Collapse
Affiliation(s)
- N Pintori
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy.
| | - A Piva
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy
| | - V Guardiani
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy
| | - I Decimo
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy
| | - C Chiamulera
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy
| |
Collapse
|
7
|
Environmental Enrichment Sharpens Sensory Acuity by Enhancing Information Coding in Barrel Cortex and Premotor Cortex. eNeuro 2021; 8:ENEURO.0309-20.2021. [PMID: 33893166 PMCID: PMC8143018 DOI: 10.1523/eneuro.0309-20.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/20/2022] Open
Abstract
Environmental enrichment (EE) is beneficial to sensory functions. Thus, elucidating the neural mechanism underlying improvement of sensory stimulus discrimination is important for developing therapeutic strategies. We aim to advance the understanding of such neural mechanism. We found that tactile enrichment improved tactile stimulus feature discrimination. The neural correlate of such improvement was revealed by analyzing single-cell information coding in both the primary somatosensory cortex and the premotor cortex of awake behaving animals. Our results show that EE enhances the decision-information coding capacity of cells that are tuned to adjacent whiskers, and of premotor cortical cells.
Collapse
|
8
|
Minehart JA, Speer CM. A Picture Worth a Thousand Molecules-Integrative Technologies for Mapping Subcellular Molecular Organization and Plasticity in Developing Circuits. Front Synaptic Neurosci 2021; 12:615059. [PMID: 33469427 PMCID: PMC7813761 DOI: 10.3389/fnsyn.2020.615059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/07/2020] [Indexed: 12/23/2022] Open
Abstract
A key challenge in developmental neuroscience is identifying the local regulatory mechanisms that control neurite and synaptic refinement over large brain volumes. Innovative molecular techniques and high-resolution imaging tools are beginning to reshape our view of how local protein translation in subcellular compartments drives axonal, dendritic, and synaptic development and plasticity. Here we review recent progress in three areas of neurite and synaptic study in situ-compartment-specific transcriptomics/translatomics, targeted proteomics, and super-resolution imaging analysis of synaptic organization and development. We discuss synergies between sequencing and imaging techniques for the discovery and validation of local molecular signaling mechanisms regulating synaptic development, plasticity, and maintenance in circuits.
Collapse
Affiliation(s)
| | - Colenso M. Speer
- Department of Biology, University of Maryland, College Park, MD, United States
| |
Collapse
|
9
|
Cushman JD, Drew MR, Krasne FB. The environmental sculpting hypothesis of juvenile and adult hippocampal neurogenesis. Prog Neurobiol 2020; 199:101961. [PMID: 33242572 DOI: 10.1016/j.pneurobio.2020.101961] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 10/02/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022]
Abstract
We propose that a major contribution of juvenile and adult hippocampal neurogenesis is to allow behavioral experience to sculpt dentate gyrus connectivity such that sensory attributes that are relevant to the animal's environment are more strongly represented. This "specialized" dentate is then able to store a larger number of discriminable memory representations. Our hypothesis builds on accumulating evidence that neurogenesis declines to low levels prior to adulthood in many species. Rather than being necessary for ongoing hippocampal function, as several current theories posit, we argue that neurogenesis has primarily a prospective function, in that it allows experience to shape hippocampal circuits and optimize them for future learning in the particular environment in which the animal lives. Using an anatomically-based simulation of the hippocampus (BACON), we demonstrate that environmental sculpting of this kind would reduce overlap among hippocampal memory representations and provide representation cells with more information about an animal's current situation; consequently, it would allow more memories to be stored and accurately recalled without significant interference. We describe several new, testable predictions generated by the sculpting hypothesis and evaluate the hypothesis with respect to existing evidence. We argue that the sculpting hypothesis provides a strong rationale for why juvenile and adult neurogenesis occurs specifically in the dentate gyrus and why it declines significantly prior to adulthood.
Collapse
Affiliation(s)
- Jesse D Cushman
- Neurobehavioral Core Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, United States.
| | - Michael R Drew
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, United States.
| | - Franklin B Krasne
- Department of Psychology, University of California Los Angeles, Box 951563, Los Angeles, CA 90095-1563, United States.
| |
Collapse
|
10
|
Cheyne JE, Montgomery JM. The cellular and molecular basis of in vivo synaptic plasticity in rodents. Am J Physiol Cell Physiol 2020; 318:C1264-C1283. [PMID: 32320288 DOI: 10.1152/ajpcell.00416.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Plasticity within the neuronal networks of the brain underlies the ability to learn and retain new information. The initial discovery of synaptic plasticity occurred by measuring synaptic strength in vivo, applying external stimulation and observing an increase in synaptic strength termed long-term potentiation (LTP). Many of the molecular pathways involved in LTP and other forms of synaptic plasticity were subsequently uncovered in vitro. Over the last few decades, technological advances in recording and imaging in live animals have seen many of these molecular mechanisms confirmed in vivo, including structural changes both pre- and postsynaptically, changes in synaptic strength, and changes in neuronal excitability. A well-studied aspect of neuronal plasticity is the capacity of the brain to adapt to its environment, gained by comparing the brains of deprived and experienced animals in vivo, and in direct response to sensory stimuli. Multiple in vivo studies have also strongly linked plastic changes to memory by interfering with the expression of plasticity and by manipulating memory engrams. Plasticity in vivo also occurs in the absence of any form of external stimulation, i.e., during spontaneous network activity occurring with brain development. However, there is still much to learn about how plasticity is induced during natural learning and how this is altered in neurological disorders.
Collapse
Affiliation(s)
- Juliette E Cheyne
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Johanna M Montgomery
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
Rantamäki T, Kohtala S. Encoding, Consolidation, and Renormalization in Depression: Synaptic Homeostasis, Plasticity, and Sleep Integrate Rapid Antidepressant Effects. Pharmacol Rev 2020; 72:439-465. [DOI: 10.1124/pr.119.018697] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
12
|
Chidambaram SB, Rathipriya AG, Bolla SR, Bhat A, Ray B, Mahalakshmi AM, Manivasagam T, Thenmozhi AJ, Essa MM, Guillemin GJ, Chandra R, Sakharkar MK. Dendritic spines: Revisiting the physiological role. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:161-193. [PMID: 30654089 DOI: 10.1016/j.pnpbp.2019.01.005] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 01/04/2019] [Accepted: 01/12/2019] [Indexed: 12/11/2022]
Abstract
Dendritic spines are small, thin, specialized protrusions from neuronal dendrites, primarily localized in the excitatory synapses. Sophisticated imaging techniques revealed that dendritic spines are complex structures consisting of a dense network of cytoskeletal, transmembrane and scaffolding molecules, and numerous surface receptors. Molecular signaling pathways, mainly Rho and Ras family small GTPases pathways that converge on actin cytoskeleton, regulate the spine morphology and dynamics bi-directionally during synaptic activity. During synaptic plasticity the number and shapes of dendritic spines undergo radical reorganizations. Long-term potentiation (LTP) induction promote spine head enlargement and the formation and stabilization of new spines. Long-term depression (LTD) results in their shrinkage and retraction. Reports indicate increased spine density in the pyramidal neurons of autism and Fragile X syndrome patients and reduced density in the temporal gyrus loci of schizophrenic patients. Post-mortem reports of Alzheimer's brains showed reduced spine number in the hippocampus and cortex. This review highlights the spine morphogenesis process, the activity-dependent structural plasticity and mechanisms by which synaptic activity sculpts the dendritic spines, the structural and functional changes in spines during learning and memory using LTP and LTD processes. It also discusses on spine status in neurodegenerative diseases and the impact of nootropics and neuroprotective agents on the functional restoration of dendritic spines.
Collapse
Affiliation(s)
- Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India.
| | - A G Rathipriya
- Food and Brain Research Foundation, Chennai, Tamil Nadu, India
| | - Srinivasa Rao Bolla
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, Damam, Saudi Arabia
| | - Abid Bhat
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India
| | - Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India
| | - Arehally Marappa Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India
| | - Thamilarasan Manivasagam
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| | - Arokiasamy Justin Thenmozhi
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
| | - Gilles J Guillemin
- Neuropharmacology Group, Faculty of Medicine and Health Sciences, Deb Bailey MND Research Laboratory, Macquarie University, Sydney, NSW 2109, Australia
| | - Ramesh Chandra
- Department of Chemistry, Ambedkar Centre for BioMedical Research, Delhi University, Delhi 110007, India
| | - Meena Kishore Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, 107, Wiggins Road, Saskatoon, SK S7N 5C9, Canada.
| |
Collapse
|
13
|
Kentner AC, Cryan JF, Brummelte S. Resilience priming: Translational models for understanding resiliency and adaptation to early life adversity. Dev Psychobiol 2019; 61:350-375. [PMID: 30311210 PMCID: PMC6447439 DOI: 10.1002/dev.21775] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/22/2018] [Accepted: 07/10/2018] [Indexed: 12/20/2022]
Abstract
Despite the increasing attention to early life adversity and its long-term consequences on health, behavior, and the etiology of neurodevelopmental disorders, our understanding of the adaptations and interventions that promote resiliency and rescue against such insults are underexplored. Specifically, investigations of the perinatal period often focus on negative events/outcomes. In contrast, positive experiences (i.e. enrichment/parental care//healthy nutrition) favorably influence development of the nervous and endocrine systems. Moreover, some stressors result in adaptations and demonstrations of later-life resiliency. This review explores the underlying mechanisms of neuroplasticity that follow some of these early life experiences and translates them into ideas for interventions in pediatric settings. The emerging role of the gut microbiome in mediating stress susceptibility is also discussed. Since many negative outcomes of early experiences are known, it is time to identify mechanisms and mediators that promote resiliency against them. These range from enrichment, quality parental care, dietary interventions and those that target the gut microbiota.
Collapse
Affiliation(s)
- Amanda C. Kentner
- School of Arts & Sciences, Massachusetts College of Pharmacy and Health Sciences, 179 Longwood Ave, Boston, MA 02115,
| | - John F. Cryan
- Dept. Anatomy & Neuroscience & APC Microbiome Institute, University College Cork, College Rd., Cork, Ireland,
| | - Susanne Brummelte
- Department of Psychology, Wayne State University, 5057 Woodward Ave, Detroit, MI 48202,
| |
Collapse
|
14
|
Shepherd A, Zhang TD, Zeleznikow-Johnston AM, Hannan AJ, Burrows EL. Transgenic Mouse Models as Tools for Understanding How Increased Cognitive and Physical Stimulation Can Improve Cognition in Alzheimer's Disease. Brain Plast 2018; 4:127-150. [PMID: 30564551 PMCID: PMC6296266 DOI: 10.3233/bpl-180076] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cognitive decline appears as a core feature of dementia, of which the most prevalent form, Alzheimer's disease (AD) affects more than 45 million people worldwide. There is no cure, and therapeutic options remain limited. A number of modifiable lifestyle factors have been identified that contribute to cognitive decline in dementia. Sedentary lifestyle has emerged as a major modifier and accordingly, boosting mental and physical activity may represent a method to prevent decline in dementia. Beneficial effects of increased physical activity on cognition have been reported in healthy adults, showing potential to harness exercise and cognitive stimulation as a therapy in dementia. 'Brain training' (cognitive stimulation) has also been investigated as an intervention protecting against cognitive decline with normal aging. Consequently, the utility of exercise regimes and/or cognitive stimulation to improve cognition in dementia in clinical populations has been a major area of study. However, these therapies are in their infancy and efficacy is unclear. Investigations utilising animal models, where dose and timing of treatment can be tightly controlled, have provided many mechanistic insights. Genetically engineered mouse models are powerful tools to investigate mechanisms underlying cognitive decline, and also how environmental manipulations can alter both cognitive outcomes and pathology. A myriad of effects following physical activity and housing in enriched environments have been reported in transgenic mice expressing Alzheimer's disease-associated mutations. In this review, we comprehensively evaluate all studies applying environmental enrichment and/or increased physical exercise to transgenic mouse models of Alzheimer's disease. It is unclear whether interventions must be applied before first onset of cognitive deficits to be effective. In order to determine the importance of timing of interventions, we specifically scrutinised studies exposing transgenic mice to exercise and environmental enrichment before and after first report of cognitive impairment. We discuss the strengths and weaknesses of these preclinical studies and suggest approaches for enhancing rigor and using mechanistic insights to inform future therapeutic interventions.
Collapse
Affiliation(s)
- Amy Shepherd
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - Tracy D Zhang
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - Ariel M Zeleznikow-Johnston
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, Australia
| | - Emma L Burrows
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
15
|
Vanderheyden WM, Goodman AG, Taylor RH, Frank MG, Van Dongen HPA, Gerstner JR. Astrocyte expression of the Drosophila TNF-alpha homologue, Eiger, regulates sleep in flies. PLoS Genet 2018; 14:e1007724. [PMID: 30379810 PMCID: PMC6209136 DOI: 10.1371/journal.pgen.1007724] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/30/2018] [Indexed: 01/15/2023] Open
Abstract
Sleep contributes to cognitive functioning and is sufficient to alter brain morphology and function. However, mechanisms underlying sleep regulation remain poorly understood. In mammals, tumor necrosis factor-alpha (TNFα) is known to regulate sleep, and cytokine expression may represent an evolutionarily ancient mechanism in sleep regulation. Here we show that the Drosophila TNFα homologue, Eiger, mediates sleep in flies. We show that knockdown of Eiger in astrocytes, but not in neurons, significantly reduces sleep duration, and total loss-of-function reduces the homeostatic response to sleep loss. In addition, we show that neuronal, but not astrocyte, expression of the TNFα receptor superfamily member, Wengen, is necessary for sleep deprivation-induced homeostatic response and for mediating increases in sleep in response to human TNFα. These data identify a novel astrocyte-to-neuron signaling mechanism in the regulation of sleep homeostasis and show that the Drosophila cytokine, Eiger, represents an evolutionarily conserved mechanism of sleep regulation across phylogeny. Every animal sleeps, from fruit flies to humans. However, the function of sleep is still currently unknown. Identifying conserved mechanisms of sleep regulation in evolutionarily ancient organisms may help us to understand the function of sleep. Therefore, we have examined whether Eiger, the homologue of the cytokine tumor necrosis factor-alpha (TNFα), regulates sleep in the fruit fly as it does in higher mammals. Cytokines are inflammatory molecules and are typically elevated following infection or fever and may contribute to increased sleepiness when sick. We found that, in the fruit fly, Eiger regulates sleep duration just like TNFα does in mammals: increasing cytokine levels increased sleep duration while decreasing Eiger reduced sleep. In addition, we found that Eiger expression in glial astrocytes, is responsible for the alteration in sleep duration. We also examined the necessity of Eiger receptor activation on neurons and found that astrocyte-to-neuron communication was required for regulating the normal increases in sleep following sleep deprivation. These data show that a novel cytokine mechanism regulates sleep in flies and mammals, and provides insight into conserved roles of astrocytes in sleep behavior.
Collapse
Affiliation(s)
- William M. Vanderheyden
- Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, United States of America
- Sleep and Performance Research Center, Washington State University, Spokane, Washington, United States of America
- * E-mail: (WMV); (JRG)
| | - Alan G. Goodman
- School of Molecular Biosciences and Paul G. Allen School of Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Rebecca H. Taylor
- Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, United States of America
- Sleep and Performance Research Center, Washington State University, Spokane, Washington, United States of America
| | - Marcos G. Frank
- Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, United States of America
- Sleep and Performance Research Center, Washington State University, Spokane, Washington, United States of America
| | - Hans P. A. Van Dongen
- Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, United States of America
- Sleep and Performance Research Center, Washington State University, Spokane, Washington, United States of America
| | - Jason R. Gerstner
- Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, United States of America
- Sleep and Performance Research Center, Washington State University, Spokane, Washington, United States of America
- * E-mail: (WMV); (JRG)
| |
Collapse
|
16
|
Brown SM, Bush SJ, Summers KM, Hume DA, Lawrence AB. Environmentally enriched pigs have transcriptional profiles consistent with neuroprotective effects and reduced microglial activity. Behav Brain Res 2018; 350:6-15. [PMID: 29778628 PMCID: PMC6002610 DOI: 10.1016/j.bbr.2018.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/27/2018] [Accepted: 05/15/2018] [Indexed: 01/03/2023]
Abstract
Environmental enrichment (EE) is widely used to study the effects of external factors on brain development, function and health in rodent models, but very little is known of the effects of EE on the brain in a large animal model such as the pig. Twenty-four young pigs (aged 5 weeks at start of study, 1:1 male: female ratio) were housed in environmentally enriched (EE) pens and provided with additional enrichment stimulation (a bag filled with straw) once daily. Litter, weight and sex matched controls n= (24) were housed in barren (B) conditions. Behaviour was recorded on alternate days from study day 10. After 21 days, RNA-sequencing of the frontal cortex of male piglets culled one hour after the enrichment stimulation, but not those at 4 h after stimulation, showed upregulation of genes involved in neuronal activity and synaptic plasticity in the EE compared to the B condition. This result is mirrored in the behavioural response to the stimulation which showed a peak in activity around the 1 h time-point. By contrast, EE piglets displayed a signature consistent with a relative decrease in microglial activity compared to those in the B condition. These results confirm those from rodents, suggesting that EE may also confer neuronal health benefits in large mammal models, through a potential relative reduction in neuroinflammatory process and increase in neuroprotection driven by an enrichment-induced increase in behavioural activity.
Collapse
Affiliation(s)
- S M Brown
- The Roslin Institute, University of Edinburgh, Easter Bush, EH25 9RG, UK.
| | - S J Bush
- The Roslin Institute, University of Edinburgh, Easter Bush, EH25 9RG, UK; Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - K M Summers
- The Roslin Institute, University of Edinburgh, Easter Bush, EH25 9RG, UK; Mater Research Institute-UQ, Translational Research Institute, 37 Kent St, Woolloongabba, QLd, 4102, Australia
| | - D A Hume
- The Roslin Institute, University of Edinburgh, Easter Bush, EH25 9RG, UK; Mater Research Institute-UQ, Translational Research Institute, 37 Kent St, Woolloongabba, QLd, 4102, Australia
| | - A B Lawrence
- The Roslin Institute, University of Edinburgh, Easter Bush, EH25 9RG, UK; SRUC, West Mains Road, Edinburgh, EH9 3JG, UK
| |
Collapse
|
17
|
Crouzier L, Maurice T. Assessment of Topographic Memory in Mice in a Complex Environment Using the Hamlet Test. ACTA ACUST UNITED AC 2018; 8:e43. [DOI: 10.1002/cpmo.43] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lucie Crouzier
- MMDN, University of Montpellier; INSERM, EPHE, UMR-S1198 Montpellier France
| | - Tangui Maurice
- MMDN, University of Montpellier; INSERM, EPHE, UMR-S1198 Montpellier France
| |
Collapse
|
18
|
Stiles J. The Effects of Early Focal Brain Injury on Lateralization of Cognitive Function. CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE 2018. [DOI: 10.1177/096372149800700101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Joan Stiles
- Department of Cognitive Science, University of California, San Diego, La Jolla, California
| |
Collapse
|
19
|
Zhao LR, Willing A. Enhancing endogenous capacity to repair a stroke-damaged brain: An evolving field for stroke research. Prog Neurobiol 2018; 163-164:5-26. [PMID: 29476785 PMCID: PMC6075953 DOI: 10.1016/j.pneurobio.2018.01.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 01/11/2018] [Accepted: 01/30/2018] [Indexed: 02/07/2023]
Abstract
Stroke represents a severe medical condition that causes stroke survivors to suffer from long-term and even lifelong disability. Over the past several decades, a vast majority of stroke research targets neuroprotection in the acute phase, while little work has been done to enhance stroke recovery at the later stage. Through reviewing current understanding of brain plasticity, stroke pathology, and emerging preclinical and clinical restorative approaches, this review aims to provide new insights to advance the research field for stroke recovery. Lifelong brain plasticity offers the long-lasting possibility to repair a stroke-damaged brain. Stroke impairs the structural and functional integrity of entire brain networks; the restorative approaches containing multi-components have great potential to maximize stroke recovery by rebuilding and normalizing the stroke-disrupted entire brain networks and brain functioning. The restorative window for stroke recovery is much longer than previously thought. The optimal time for brain repair appears to be at later stage of stroke rather than the earlier stage. It is expected that these new insights will advance our understanding of stroke recovery and assist in developing the next generation of restorative approaches for enhancing brain repair after stroke.
Collapse
Affiliation(s)
- Li-Ru Zhao
- Department of Neurosurgery, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Alison Willing
- Center for Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, 33612, USA.
| |
Collapse
|
20
|
Abstract
During development, the environment exerts a profound influence on the wiring of brain circuits. Due to the limited resolution of studies in fixed tissue, this experience-dependent structural plasticity was once thought to be restricted to a specific developmental time window. The recent introduction of two-photon microscopy for in vivo imaging has opened the door to repeated monitoring of individual neurons and the study of structural plasticity mechanisms at a very fine scale. In this review, we focus on recent work showing that synaptic structural rearrangements are a key mechanism mediating neural circuit adaptation and behavioral plasticity in the adult brain. We examine this work in the context of classic studies in the visual systems of model organisms, which have laid much of the groundwork for our understanding of activity-dependent synaptic remodeling and its role in brain plasticity.
Collapse
Affiliation(s)
- Kalen P Berry
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; .,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Elly Nedivi
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; .,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
21
|
Tréfier A, Pellissier LP, Musnier A, Reiter E, Guillou F, Crépieux P. G Protein-Coupled Receptors As Regulators of Localized Translation: The Forgotten Pathway? Front Endocrinol (Lausanne) 2018; 9:17. [PMID: 29456523 PMCID: PMC5801404 DOI: 10.3389/fendo.2018.00017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/15/2018] [Indexed: 12/31/2022] Open
Abstract
G protein-coupled receptors (GPCRs) exert their physiological function by transducing a complex signaling network that coordinates gene expression and dictates the phenotype of highly differentiated cells. Much is known about the gene networks they transcriptionally regulate upon ligand exposure in a process that takes hours before a new protein is synthesized. However, far less is known about GPCR impact on the translational machinery and subsequent mRNA translation, although this gene regulation level alters the cell phenotype in a strikingly different timescale. In fact, mRNA translation is an early response kinetically connected to signaling events, hence it leads to the synthesis of a new protein within minutes following receptor activation. By these means, mRNA translation is responsive to subtle variations of the extracellular environment. In addition, when restricted to cell subcellular compartments, local mRNA translation contributes to cell micro-specialization, as observed in synaptic plasticity or in cell migration. The mechanisms that control where in the cell an mRNA is translated are starting to be deciphered. But how an extracellular signal triggers such local translation still deserves extensive investigations. With the advent of high-throughput data acquisition, it now becomes possible to review the current knowledge on the translatome that some GPCRs regulate, and how this information can be used to explore GPCR-controlled local translation of mRNAs.
Collapse
Affiliation(s)
- Aurélie Tréfier
- Biologie et Bioinformatique des Systèmes de Signalisation, INRA, UMR85, Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, UMR7247, Nouzilly, France
- Université François Rabelais, Tours, France
- IFCE, Nouzilly, France
| | - Lucie P. Pellissier
- Déficit de Récompense, GPCR et sociabilité, INRA, UMR85, Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, UMR7247, Nouzilly, France
- Université François Rabelais, Tours, France
- IFCE, Nouzilly, France
| | - Astrid Musnier
- Biologie et Bioinformatique des Systèmes de Signalisation, INRA, UMR85, Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, UMR7247, Nouzilly, France
- Université François Rabelais, Tours, France
- IFCE, Nouzilly, France
| | - Eric Reiter
- Biologie et Bioinformatique des Systèmes de Signalisation, INRA, UMR85, Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, UMR7247, Nouzilly, France
- Université François Rabelais, Tours, France
- IFCE, Nouzilly, France
| | - Florian Guillou
- Plasticité Génomique et Expression Phénotypique, INRA, UMR85, Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, UMR7247, Nouzilly, France
- Université François Rabelais, Tours, France
- IFCE, Nouzilly, France
| | - Pascale Crépieux
- Biologie et Bioinformatique des Systèmes de Signalisation, INRA, UMR85, Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, UMR7247, Nouzilly, France
- Université François Rabelais, Tours, France
- IFCE, Nouzilly, France
- *Correspondence: Pascale Crépieux,
| |
Collapse
|
22
|
Antoniou M, Wright SM. Uncovering the Mechanisms Responsible for Why Language Learning May Promote Healthy Cognitive Aging. Front Psychol 2017; 8:2217. [PMID: 29326636 PMCID: PMC5736569 DOI: 10.3389/fpsyg.2017.02217] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/07/2017] [Indexed: 01/08/2023] Open
Abstract
One of the great challenges facing humankind in the 21st century is preserving healthy brain function in our aging population. Individuals over 60 are the fastest growing age group in the world, and by 2050, it is estimated that the number of people over the age of 60 will triple. The typical aging process involves cognitive decline related to brain atrophy, especially in frontal brain areas and regions that subserve declarative memory, loss of synaptic connections, and the emergence of neuropathological symptoms associated with dementia. The disease-state of this age-related cognitive decline is Alzheimer's disease and other dementias, which may cause older adults to lose their independence and rely on others to live safely, burdening family members and health care systems in the process. However, there are two lines of research that offer hope to those seeking to promote healthy cognitive aging. First, it has been observed that lifestyle variables such as cognitive leisure activities can moderate the risk of Alzheimer's disease, which has led to the development of plasticity-based interventions for older adults designed to protect against the adverse effects of cognitive decline. Second, there is evidence that lifelong bilingualism acts as a safeguard in preserving healthy brain function, possibly delaying the incidence of dementia by several years. In previous work, we have suggested that foreign language learning programs aimed at older populations are an optimal solution for building cognitive reserve because language learning engages an extensive brain network that is known to overlap with the regions negatively affected by the aging process. Here, we will outline potential future lines of research that may uncover the mechanism responsible for the emergence of language learning related brain advantages, such as language typology, bi- vs. multi-lingualism, age of acquisition, and the elements that are likely to result in the largest gains.
Collapse
Affiliation(s)
- Mark Antoniou
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, NSW, Australia
| | - Sarah M Wright
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, NSW, Australia
| |
Collapse
|
23
|
Bilkey DK, Cheyne KR, Eckert MJ, Lu X, Chowdhury S, Worley PF, Crandall JE, Abraham WC. Exposure to complex environments results in more sparse representations of space in the hippocampus. Hippocampus 2017; 27:1178-1191. [PMID: 28686801 PMCID: PMC5752118 DOI: 10.1002/hipo.22762] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/30/2017] [Accepted: 06/27/2017] [Indexed: 12/27/2022]
Abstract
The neural circuitry mediating sensory and motor representations is adaptively tuned by an animal's interaction with its environment. Similarly, higher order representations such as spatial memories can be modified by exposure to a complex environment (CE), but in this case the changes in brain circuitry that mediate the effect are less well understood. Here, we show that prolonged CE exposure was associated with increased selectivity of CA1 "place cells" to a particular recording arena compared to a social control (SC) group. Furthermore, fewer CA1 and DG neurons in the CE group expressed high levels of Arc protein, a marker of recent activation, following brief exposure to a completely novel environment. The reduced Arc expression was not attributable to overall changes in cell density or number. These data indicate that one effect of CE exposure is to modify high-level spatial representations in the brain by increasing the sparsity of population coding within networks of neurons. Greater sparsity could result in a more efficient and compact coding system that might alter behavioural performance on spatial tasks. The results from a behavioural experiment were consistent with this hypothesis, as CE-treated animals habituated more rapidly to a novel environment despite showing equivalent initial responding.
Collapse
Affiliation(s)
- David K. Bilkey
- Department of Psychology and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Kirsten R. Cheyne
- Department of Psychology and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Michael J. Eckert
- Department of Psychology and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Xiaodong Lu
- Department of Psychology and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Shoaib Chowdhury
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe St, Baltimore, MD 21205, USA
| | - Paul F. Worley
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe St, Baltimore, MD 21205, USA
| | - James E. Crandall
- Eunice Kennedy Shriver Center, University of Massachusetts Medical School Waltham, MA 02452, USA
| | - Wickliffe C. Abraham
- Department of Psychology and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
24
|
Hegde P, O'Mara S, Laxmi TR. Extinction of Contextual Fear with Timed Exposure to Enriched Environment: A Differential Effect. Ann Neurosci 2017; 24:90-104. [PMID: 28588364 DOI: 10.1159/000475898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/30/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Extinction of fear memory depends on the environmental and emotional cues. Furthermore, consolidation of extinction is also dependent on the environmental exposure. But, the relationship of the time of the exposure to a variety of environmental cues is not well known. The important region involved in facilitation of extinction of fear memory is through diversion of the flow of information leaving the lateral nucleus of amygdala. PURPOSE The study aimed to address a question to explain how these brain regions react to environmental stimulation during the retention and extinction of fear memory. METHODS An enriched environment (EE) is assumed to mediate extinction of fear memory, we examined the apparent discrepancy between the effects of defensive response, the freezing behavior induced by Pavlovian classical fear conditioning by subjecting them to variance in the timing to EE. The different timing of EE exposure was 10 days of EE either before fear conditioning and/or after extinction training to the rats. The local field potentials was recorded from CA1 hippocampus, lateral nucleus of amygdala and infralimbic region of medial prefrontal cortex (mPFC) during the fear learning and extinction from the control rats and rats exposed to EE before and after fear conditioning. RESULTS Exposure to EE before the fear conditioning and after extinction training was more effective in the extinction fear memory. In addition, we also found switching from exploratory locomotion to freezing during retention of contextual fear memory which was associated with decreased theta power and reduced synchronized theta oscillations in CA1-hippocampus, lateral nucleus of amygdala, and infralimbic region of mPFC. CONCLUSION Thus, we propose that the timing of exposure to EE play a key role in the extinction of fear memory.
Collapse
Affiliation(s)
- Preethi Hegde
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Shane O'Mara
- School of Psychology and Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Thenkanidiyoor Rao Laxmi
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Bangalore, India
| |
Collapse
|
25
|
Ali M, Cholvin T, Muller MA, Cosquer B, Kelche C, Cassel JC, Pereira de Vasconcelos A. Environmental enrichment enhances systems-level consolidation of a spatial memory after lesions of the ventral midline thalamus. Neurobiol Learn Mem 2017; 141:108-123. [DOI: 10.1016/j.nlm.2017.03.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 03/06/2017] [Indexed: 11/26/2022]
|
26
|
Eldomiaty MA, Almasry SM, Desouky MK, Algaidi SA. Voluntary running improves depressive behaviours and the structure of the hippocampus in rats: A possible impact of myokines. Brain Res 2016; 1657:29-42. [PMID: 27919728 DOI: 10.1016/j.brainres.2016.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 12/23/2022]
Abstract
This study investigated the impact of voluntary exercise on depressive behaviours, serum and hippocampal levels of myokines, and histopathological features of hippocampal formation in rats. Depressed rats were allowed to voluntarily run on a wheel for 3weeks. Locomotor activity was assessed by a forced swimming test and the myokine levels in sera and hippocampal homogenates were measured using Enzyme-linked Immunosorbent Assay. Brain sections were analysed for hippocampal structure and neuronal counts. Voluntary running produced significant increase in the distance moved by rats and significant decrease in immobility duration. After voluntary running, there were significant increases in serum and hippocampal brain-derived neurotrophic factor (BDNF) and macrophage migration inhibitory factor (MIF), significant increase in hippocampal vascular endothelial growth factor (VEGF), and significant decrease in serum interleukin-6 (IL-6). Significant correlation was detected between the serum levels of BDNF and MIF (r=0.276) as well as IL-6 (r=-0.340). In addition, significant correlation was observed between hippocampal BDNF levels and MIF (r=0.500) and VEGF levels (r=0.279). After voluntary running, there was significant decrease in number degenerated neurons in hippocampal areas and significant increase in number of healthy neurons in the upper limb of the dentate gyrus, but not in its lower limb, compared to depression group. This study showed the relation of myokines to the development and/or relief of depression, as well as the correlation between serum and hippocampal myokine levels. Attention should be paid to studying the biological effects of myokines on different hippocampal areas that could respond differently to treatments.
Collapse
Affiliation(s)
- Magda A Eldomiaty
- Department of Anatomy, Faculty of Medicine, Taibah University, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Tanta University, Egypt.
| | - Shaima M Almasry
- Department of Anatomy, Faculty of Medicine, Taibah University, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansura University, Egypt
| | - Maha K Desouky
- Department of Anatomy, Faculty of Medicine, Taibah University, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Menia University, Egypt
| | - Sami A Algaidi
- Department of Anatomy, Faculty of Medicine, Taibah University, Saudi Arabia
| |
Collapse
|
27
|
Bechard AR, Cacodcar N, King MA, Lewis MH. How does environmental enrichment reduce repetitive motor behaviors? Neuronal activation and dendritic morphology in the indirect basal ganglia pathway of a mouse model. Behav Brain Res 2015; 299:122-31. [PMID: 26620495 DOI: 10.1016/j.bbr.2015.11.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 12/19/2022]
Abstract
Repetitive motor behaviors are observed in many neurodevelopmental and neurological disorders (e.g., autism spectrum disorders, Tourette syndrome, fronto-temporal dementia). Despite their clinical importance, the neurobiology underlying these highly stereotyped, apparently functionless behaviors is poorly understood. Identification of mechanisms that mediate the development of repetitive behaviors will aid in the discovery of new therapeutic targets and treatment development. Using a deer mouse model, we have shown that decreased indirect basal ganglia pathway activity is associated with high levels of repetitive behavior. Environmental enrichment (EE) markedly attenuates the development of such aberrant behaviors in mice, although mechanisms driving this effect are unknown. We hypothesized that EE would reduce repetitive motor behaviors by increasing indirect basal ganglia pathway function. We assessed neuronal activation and dendritic spine density in basal ganglia of adult deer mice reared in EE and standard housing. Significant increases in neuronal activation and dendritic spine densities were observed only in the subthalamic nucleus (STN) and globus pallidus (GP), and only for those mice that exhibited an EE-induced decrease in repetitive motor behavior. As the STN and GP lie within the indirect pathway, these data suggest that EE-induced attenuation of repetitive motor behaviors is associated with increased functional activation of the indirect basal ganglia pathway. These results are consistent with our other findings highlighting the importance of the indirect pathway in mediating repetitive motor behaviors.
Collapse
Affiliation(s)
- Allison R Bechard
- Department of Psychology, University of Florida, Gainesville, FL, USA.
| | - Nadia Cacodcar
- Department of Psychology, University of Florida, Gainesville, FL, USA
| | - Michael A King
- Department of Pharmacology, University of Florida, Gainesville, FL, USA
| | - Mark H Lewis
- Department of Psychology, University of Florida, Gainesville, FL, USA; Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
28
|
Motanis H, Buonomano D. Delayed in vitro development of Up states but normal network plasticity in Fragile X circuits. Eur J Neurosci 2015; 42:2312-21. [PMID: 26138886 DOI: 10.1111/ejn.13010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/26/2015] [Accepted: 06/29/2015] [Indexed: 11/30/2022]
Abstract
A broad range of neurophysiological phenotypes have been reported since the generation of the first mouse model of Fragile X syndrome (FXS). However, it remains unclear which phenotypes are causally related to the cognitive deficits associated with FXS. Indeed, because many of these phenotypes are known to be modulated by experience, a confounding factor in the interpretation of many studies is whether some phenotypes are an indirect consequence of abnormal development and experience. To help diminish this confound we first conducted an in vitro developmental study of spontaneous neural dynamics in cortical organotypic cultures. A significant developmental increase in network activity and Up states was observed in both wild-type and Fmr1(-/y) circuits, along with a specific developmental delay in the emergence of Up states in knockout circuits. To determine whether Up state regulation is generally impaired in FXS circuits, we examined Up state plasticity using chronic optogenetic stimulation. Wild-type and Fmr1(-/y) stimulated circuits exhibited a significant decrease in overall spontaneous activity including Up state frequency; however, no significant effect of genotype was observed. These results demonstrate that developmental delays characteristic of FXS are recapitulated during in vitro development, and that Up state abnormalities are probably a direct consequence of the disease, and not an indirect consequence of abnormal experience. However, the fact that Fmr1(-/y) circuits exhibited normal homeostatic modulation of Up states suggests that these plasticity mechanisms are largely intact, and that some of the previously reported plasticity deficits could reflect abnormal experience or the engagement of compensatory mechanisms.
Collapse
Affiliation(s)
- Helen Motanis
- Departments of Neurobiology and Psychology, Integrative Center for Learning and Memory, University of California, 695 Young Drive, Gonda, Los Angeles, CA, 90095, USA
| | - Dean Buonomano
- Departments of Neurobiology and Psychology, Integrative Center for Learning and Memory, University of California, 695 Young Drive, Gonda, Los Angeles, CA, 90095, USA
| |
Collapse
|
29
|
Scholz J, Allemang-Grand R, Dazai J, Lerch JP. Environmental enrichment is associated with rapid volumetric brain changes in adult mice. Neuroimage 2015; 109:190-8. [DOI: 10.1016/j.neuroimage.2015.01.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/06/2015] [Accepted: 01/08/2015] [Indexed: 12/31/2022] Open
|
30
|
MAEGELE M, BRAUN M, WAFAISADE A, SCHÄFER N, LIPPERT-GRUENER M, KREIPKE C, RAFOLS J, SCHÄFER U, ANGELOV DN, STUERMER E. Long-Term Effects of Enriched Environment on Neurofunctional Outcome and CNS Lesion Volume After Traumatic Brain Injury in Rats. Physiol Res 2015; 64:129-45. [DOI: 10.33549/physiolres.932664] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
To determine whether the exposure to long term enriched environment (EE) would result in a continuous improvement of neurological recovery and ameliorate the loss of brain tissue after traumatic brain injury (TBI) vs. standard housing (SH). Male Sprague-Dawley rats (300-350 g, n=28) underwent lateral fluid percussion brain injury or SHAM operation. One TBI group was held under complex EE for 90 days, the other under SH. Neuromotor and sensorimotor dysfunction and recovery were assessed after injury and at days 7, 15, and 90 via Composite Neuroscore (NS), RotaRod test, and Barnes Circular Maze (BCM). Cortical tissue loss was assessed using serial brain sections. After day 7 EE animals showed similar latencies and errors as SHAM in the BCM. SH animals performed notably worse with differences still significant on day 90 (p<0.001). RotaRod test and NS revealed superior results for EE animals after day 7. The mean cortical volume was significantly higher in EE vs. SH animals (p=0.003). In summary, EE animals after lateral fluid percussion (LFP) brain injury performed significantly better than SH animals after 90 days of recovery. The window of opportunity may be wide and also lends further credibility to the importance of long term interventions in patients suffering from TBI.
Collapse
Affiliation(s)
- M. MAEGELE
- Department for Traumatology and Orthopedic Surgery, Cologne-Merheim Medical Center (CMMC), University Witten-Herdecke (Campus Cologne-Merheim), Cologne, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Griesbach GS, Hovda DA. Cellular and molecular neuronal plasticity. HANDBOOK OF CLINICAL NEUROLOGY 2015; 128:681-90. [DOI: 10.1016/b978-0-444-63521-1.00042-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
32
|
Frotscher M, Studer D, Graber W, Chai X, Nestel S, Zhao S. Fine structure of synapses on dendritic spines. Front Neuroanat 2014; 8:94. [PMID: 25249945 PMCID: PMC4158982 DOI: 10.3389/fnana.2014.00094] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 08/24/2014] [Indexed: 12/16/2022] Open
Abstract
Camillo Golgi's "Reazione Nera" led to the discovery of dendritic spines, small appendages originating from dendritic shafts. With the advent of electron microscopy (EM) they were identified as sites of synaptic contact. Later it was found that changes in synaptic strength were associated with changes in the shape of dendritic spines. While live-cell imaging was advantageous in monitoring the time course of such changes in spine structure, EM is still the best method for the simultaneous visualization of all cellular components, including actual synaptic contacts, at high resolution. Immunogold labeling for EM reveals the precise localization of molecules in relation to synaptic structures. Previous EM studies of spines and synapses were performed in tissue subjected to aldehyde fixation and dehydration in ethanol, which is associated with protein denaturation and tissue shrinkage. It has remained an issue to what extent fine structural details are preserved when subjecting the tissue to these procedures. In the present review, we report recent studies on the fine structure of spines and synapses using high-pressure freezing (HPF), which avoids protein denaturation by aldehydes and results in an excellent preservation of ultrastructural detail. In these studies, HPF was used to monitor subtle fine-structural changes in spine shape associated with chemically induced long-term potentiation (cLTP) at identified hippocampal mossy fiber synapses. Changes in spine shape result from reorganization of the actin cytoskeleton. We report that cLTP was associated with decreased immunogold labeling for phosphorylated cofilin (p-cofilin), an actin-depolymerizing protein. Phosphorylation of cofilin renders it unable to depolymerize F-actin, which stabilizes the actin cytoskeleton. Decreased levels of p-cofilin, in turn, suggest increased actin turnover, possibly underlying the changes in spine shape associated with cLTP. The findings reviewed here establish HPF as an appropriate method for studying the fine structure and molecular composition of synapses on dendritic spines.
Collapse
Affiliation(s)
- Michael Frotscher
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf Hamburg Germany
| | - Daniel Studer
- Institute of Anatomy, University of Bern Bern Switzerland
| | - Werner Graber
- Institute of Anatomy, University of Bern Bern Switzerland
| | - Xuejun Chai
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf Hamburg Germany
| | - Sigrun Nestel
- Institute of Anatomy and Cell Biology, University of Freiburg Freiburg Germany
| | - Shanting Zhao
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf Hamburg Germany
| |
Collapse
|
33
|
Doll CA, Broadie K. Impaired activity-dependent neural circuit assembly and refinement in autism spectrum disorder genetic models. Front Cell Neurosci 2014; 8:30. [PMID: 24570656 PMCID: PMC3916725 DOI: 10.3389/fncel.2014.00030] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/21/2014] [Indexed: 01/23/2023] Open
Abstract
Early-use activity during circuit-specific critical periods refines brain circuitry by the coupled processes of eliminating inappropriate synapses and strengthening maintained synapses. We theorize these activity-dependent (A-D) developmental processes are specifically impaired in autism spectrum disorders (ASDs). ASD genetic models in both mouse and Drosophila have pioneered our insights into normal A-D neural circuit assembly and consolidation, and how these developmental mechanisms go awry in specific genetic conditions. The monogenic fragile X syndrome (FXS), a common cause of heritable ASD and intellectual disability, has been particularly well linked to defects in A-D critical period processes. The fragile X mental retardation protein (FMRP) is positively activity-regulated in expression and function, in turn regulates excitability and activity in a negative feedback loop, and appears to be required for the A-D remodeling of synaptic connectivity during early-use critical periods. The Drosophila FXS model has been shown to functionally conserve the roles of human FMRP in synaptogenesis, and has been centrally important in generating our current mechanistic understanding of the FXS disease state. Recent advances in Drosophila optogenetics, transgenic calcium reporters, highly-targeted transgenic drivers for individually-identified neurons, and a vastly improved connectome of the brain are now being combined to provide unparalleled opportunities to both manipulate and monitor A-D processes during critical period brain development in defined neural circuits. The field is now poised to exploit this new Drosophila transgenic toolbox for the systematic dissection of A-D mechanisms in normal versus ASD brain development, particularly utilizing the well-established Drosophila FXS disease model.
Collapse
Affiliation(s)
- Caleb A Doll
- Department of Biological Sciences, Vanderbilt University Nashville, TN, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University Nashville, TN, USA ; Kennedy Center for Research on Human Development, Vanderbilt University Nashville, TN, USA
| |
Collapse
|
34
|
Halperin JM, Marks DJ, Bedard ACV, Chacko A, Curchack JT, Yoon CA, Healey DM. Training executive, attention, and motor skills: a proof-of-concept study in preschool children With ADHD. J Atten Disord 2013; 17:711-21. [PMID: 22392551 DOI: 10.1177/1087054711435681] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To examine whether cognitive enhancement can be delivered through play to preschoolers with ADHD and whether it would affect severity of ADHD symptoms. METHOD Twenty-nine 4- and 5-year-old children and their parents participated in separate group sessions (3-5 children/group). Child groups were introduced games designed to enhance inhibitory control, working memory, attention, visuospatial abilities, planning, and motor skills. Parent groups were encouraged playing these games with their children at least 30 to 45 min/day and taught strategies for scaffolding difficulty levels and dealing with obstacles to daily playing. RESULTS Parent ratings and session attendance indicated considerable satisfaction with the program. Parent (p < .001) and teacher (p = .003) ratings on the ADHD-Rating Scale-IV (ADHD-RS-IV) indicated significant improvement in ADHD severity from pre- to post-treatment, which persisted 3 months later. CONCLUSION This play-based intervention for preschoolers with ADHD is readily implemented at home. Preliminary evidence suggests efficacy beyond the termination of active treatment.
Collapse
|
35
|
Foreign language training as cognitive therapy for age-related cognitive decline: a hypothesis for future research. Neurosci Biobehav Rev 2013; 37:2689-98. [PMID: 24051310 DOI: 10.1016/j.neubiorev.2013.09.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 08/22/2013] [Accepted: 09/09/2013] [Indexed: 12/11/2022]
Abstract
Over the next fifty years, the number of older adults is set to reach record levels. Protecting older adults from the age-related effects of cognitive decline is one of the greatest challenges of the next few decades as it places increasing pressure on families, health systems, and economies on a global scale. The disease-state of age-related cognitive decline-Alzheimer's disease and other dementias-hijacks our consciousness and intellectual autonomy. However, there is evidence that cognitively stimulating activities protect against the adverse effects of cognitive decline. Similarly, bilingualism is also considered to be a safeguard. We propose that foreign language learning programs aimed at older populations are an optimal solution for building cognitive reserve because language learning engages an extensive brain network that is known to overlap with the regions negatively affected by the aging process. It is recommended that future research should test this potentially fruitful hypothesis.
Collapse
|
36
|
Birch AM, McGarry NB, Kelly AM. Short-term environmental enrichment, in the absence of exercise, improves memory, and increases NGF concentration, early neuronal survival, and synaptogenesis in the dentate gyrus in a time-dependent manner. Hippocampus 2013; 23:437-50. [PMID: 23460346 DOI: 10.1002/hipo.22103] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2013] [Indexed: 11/10/2022]
Abstract
Environmental manipulations can enhance neuroplasticity in the brain, with enrichment-induced cognitive improvements being linked to increased expression of growth factors, such as neurotrophins, and enhanced hippocampal neurogenesis. There is, however, a great deal of variation in environmental enrichment protocols used in the literature, making it difficult to assess the role of particular aspects of enrichment upon memory and the underlying associated mechanisms. This study sought to evaluate the efficacy of environmental enrichment, in the absence of exercise, as a cognitive enhancer and assess the role of Nerve Growth Factor (NGF), neurogenesis and synaptogenesis in this process. We report that rats housed in an enriched environment for 3 and 6 weeks (wk) displayed improved recognition memory, while rats enriched for 6 wk also displayed improved spatial and working memory. Neurochemical analyses revealed significant increases in NGF concentration and subgranular progenitor cell survival (as measured by BrdU+ nuclei) in the dentate gyrus of rats enriched for 6 wk, suggesting that these cellular changes may mediate the enrichment-induced memory improvements. Further analysis revealed a significant positive correlation between recognition task performance and BrdU+ nuclei. In addition, rats enriched for 6 wk showed a significant increase in expression of synaptophysin and synapsin I in the dentate gyrus, indicating that environmental enrichment can increase synaptogenesis. These data indicate a time-dependent cognitive-enhancing effect of environmental enrichment that is independent of physical activity. These data also support a role for increased concentration of NGF in dentate gyrus, synaptogenesis, and neurogenesis in mediating this effect.
Collapse
Affiliation(s)
- Amy M Birch
- Department of Physiology, School of Medicine & Trinity College Institute of Neuroscience, University of Dublin, Trinity College, Dublin, Ireland
| | | | | |
Collapse
|
37
|
Vivar C, Potter MC, van Praag H. All about running: synaptic plasticity, growth factors and adult hippocampal neurogenesis. Curr Top Behav Neurosci 2013; 15:189-210. [PMID: 22847651 PMCID: PMC4565722 DOI: 10.1007/7854_2012_220] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Accumulating evidence from animal and human research shows exercise benefits learning and memory, which may reduce the risk of neurodegenerative diseases, and could delay age-related cognitive decline. Exercise-induced improvements in learning and memory are correlated with enhanced adult hippocampal neurogenesis and increased activity-dependent synaptic plasticity. In this present chapter we will highlight the effects of physical activity on cognition in rodents, as well as on dentate gyrus (DG) neurogenesis, synaptic plasticity, spine density, neurotransmission and growth factors, in particular brain-derived nerve growth factor (BDNF).
Collapse
Affiliation(s)
- Carmen Vivar
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, NIA/NIH Biomedical Research Center, Suite 100, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | | | | |
Collapse
|
38
|
Mustroph ML, Chen S, Desai SC, Cay EB, DeYoung EK, Rhodes JS. Aerobic exercise is the critical variable in an enriched environment that increases hippocampal neurogenesis and water maze learning in male C57BL/6J mice. Neuroscience 2012; 219:62-71. [PMID: 22698691 DOI: 10.1016/j.neuroscience.2012.06.007] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 06/01/2012] [Accepted: 06/04/2012] [Indexed: 10/28/2022]
Abstract
Previous studies have shown that housing mice with toys and running wheels increases adult hippocampal neurogenesis and enhances performance on the water maze. However, the relative contribution of running versus enrichment to the neurogenic and pro-cognitive effects is not clear. Recently, it was demonstrated that enrichment devoid of running wheels does not significantly enhance adult hippocampal neurogenesis in female C57BL/6J mice. However, novel toys were not rotated into the cages, and dietary enrichment was not included, so it could be argued that the environment was not enriched enough. In addition, only females were studied, and animals were group-housed, making it impossible to record individual running behavior or to determine the time spent running versus exploring the toys. Therefore, we repeated the study in singly housed male C57BL/6J mice and enhanced enrichment by rotating novel tactile, visual, dietary, auditory, and vestibular stimuli into the cages. Mice were housed for 32 days in one of four groups: running-only, enrichment-only, running plus enrichment, and standard cage. The first 10 days bromodeoxyuridine (BrdU) was administered to label dividing cells. The last 5 days mice were tested on the water maze, and then euthanized to measure number of BrdU cells co-labeled with neuronal nuclear marker (NeuN) in the dentate gyrus. Mice in the running-only group ran, on average, equivalent distances as animals in the running plus enrichment group. The combination of enrichment and running did not significantly increase hippocampal neurogenesis any more than running alone did. Animals in the running-only condition were the only group to show enhanced acquisition on water maze relative to standard cage controls. We confirm and extend the conclusion that environmental enrichment alone does not significantly increase hippocampal neurogenesis or bestow spatial learning benefits in male C57BL/6J mice, even when the modalities of enrichment are very broad.
Collapse
Affiliation(s)
- M L Mustroph
- Neuroscience Program, The Beckman Institute for Advanced Science and Technology, 405 North Mathews Avenue, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Neill D. Should Alzheimer's disease be equated with human brain ageing? A maladaptive interaction between brain evolution and senescence. Ageing Res Rev 2012; 11:104-22. [PMID: 21763787 DOI: 10.1016/j.arr.2011.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/26/2011] [Accepted: 06/28/2011] [Indexed: 10/18/2022]
Abstract
In this review Alzheimer's disease is seen as a maladaptive interaction between human brain evolution and senescence. It is predicted to occur in everyone although does not necessarily lead to dementia. The pathological process is initiated in relation to a senescence mediated functional down-regulation in the posteromedial cortex (Initiation Phase). This leads to a loss of glutamatergic excitatory input to layer II entorhinal cortex neurons. A human specific maladaptive neuroplastic response is initiated in these neurons leading to neuronal dysfunction, NFT formation and death. This leads to further loss of glutamatergic excitatory input and propagation of the maladaptive response along excitatory pathways linking evolutionary progressed vulnerable neurons (Propagation Phase). Eventually neurons are affected in many brain areas resulting in dementia. Possible therapeutic approaches include enhancing glutamatergic transmission. The theory may have implications with regards to how Alzheimer's disease is classified.
Collapse
|
40
|
Withers GS, Wallace CS, Gibbs EM, Emery IR, Applegate ML. Synapses on demand require dendrites at the ready: how defining stages of dendritic development in vitro could inform studies of behaviorally driven information storage in the brain. Dev Psychobiol 2011; 53:443-55. [PMID: 21678392 DOI: 10.1002/dev.20560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bill Greenough's work provides a framework for thinking about synaptogenesis not only as a key step in the initial wiring of neural systems according to a species typical plan (i.e., experience-expectant development), but also as a mechanism for storing information based an individual's unique experience over its lifetime (i.e., experience-dependent plasticity). Analysis of synaptic development in vitro brings a new opportunity to test the limits of expectant-expectant development at the level of the individual neuron. We analyzed dendritic growth, synapse formation, and the development of specialized cytoplasmic microdomains during development in cultured hippocampal neurons, to determine if the timing of each of these events is correlated. Taken together, the findings reported here support the hypotheses that (1) dendritic development is rate limiting in synapse formation and (2) synaptic circuits are assembled in a step-wise fashion consistent with a stage-specific shift from genomically pre-programmed to activity-dependent mechanisms.
Collapse
Affiliation(s)
- Ginger S Withers
- Department of Biology, Whitman College, Walla Walla, WA 99362, USA.
| | | | | | | | | |
Collapse
|
41
|
Carulli D, Foscarin S, Rossi F. Activity-dependent plasticity and gene expression modifications in the adult CNS. Front Mol Neurosci 2011; 4:50. [PMID: 22144945 PMCID: PMC3226246 DOI: 10.3389/fnmol.2011.00050] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 11/11/2011] [Indexed: 01/20/2023] Open
Abstract
Information processing, memory formation, or functional recovery after nervous system damage depend on the ability of neurons to modify their functional properties or their connections. At the cellular/molecular level, structural modifications of neural circuits are finely regulated by intrinsic neuronal properties and growth-regulatory cues in the extracellular milieu. Recently, it has become clear that stimuli coming from the external world, which comprise sensory inflow, motor activity, cognitive elaboration, or social interaction, not only provide the involved neurons with instructive information needed to shape connection patterns to sustain adaptive function, but also exert a powerful influence on intrinsic and extrinsic growth-related mechanisms, so to create permissive conditions for neuritic remodeling. Here, we present an overview of recent findings concerning the effects of experience on molecular mechanisms underlying CNS structural plasticity, both in physiological conditions and after damage, with particular focus on activity-dependent modulation of growth-regulatory genes and epigenetic modifications.
Collapse
Affiliation(s)
- Daniela Carulli
- Department of Neuroscience, Neuroscience Institute of Turin, University of TurinTurin, Italy
- Neuroscience Institute Cavalieri-Ottolenghi, University of TurinTurin, Italy
| | - Simona Foscarin
- Department of Neuroscience, Neuroscience Institute of Turin, University of TurinTurin, Italy
- Neuroscience Institute Cavalieri-Ottolenghi, University of TurinTurin, Italy
| | - Ferdinando Rossi
- Department of Neuroscience, Neuroscience Institute of Turin, University of TurinTurin, Italy
- Neuroscience Institute Cavalieri-Ottolenghi, University of TurinTurin, Italy
| |
Collapse
|
42
|
Weiler IJ. Descartins, the memory molecules. Dev Psychobiol 2011; 53:476-81. [PMID: 21678395 DOI: 10.1002/dev.20564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Investigation of protein translation at the synapse, using functioning synaptic particles termed synaptoneurosomes, has led to identification of Fragile X protein as a key synaptic component. In its absence, some key mRNAs are translated more diffusely in the cell, and more slowly. Recent studies have implicated ERK (extracellular receptor regulated kinase) as a central factor in regulating the kinetics of translation at the synapse.
Collapse
Affiliation(s)
- Ivan Jeanne Weiler
- Psychology Department and Beckman Institute, University of Illinois at Urbana-Champaign, USA.
| |
Collapse
|
43
|
Greenwood PM, Parasuraman R. Neuronal and cognitive plasticity: a neurocognitive framework for ameliorating cognitive aging. Front Aging Neurosci 2010; 2:150. [PMID: 21151819 PMCID: PMC2999838 DOI: 10.3389/fnagi.2010.00150] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 10/22/2010] [Indexed: 12/16/2022] Open
Abstract
What is the neurocognitive basis for the considerable individual differences observed in functioning of the adult mind and brain late in life? We review the evidence that in healthy old age the brain remains capable of both neuronal and cognitive plasticity, including in response to environmental and experiential factors. Neuronal plasticity (e.g., neurogenesis, synaptogenesis, cortical re-organization) refers to neuron-level changes that can be stimulated by experience. Cognitive plasticity (e.g., increased dependence on executive function) refers to adaptive changes in patterns of cognition related to brain activity. We hypothesize that successful cognitive aging requires interactions between these two forms of plasticity. Mechanisms of neural plasticity underpin cognitive plasticity and in turn, neural plasticity is stimulated by cognitive plasticity. We examine support for this hypothesis by considering evidence that neural plasticity is stimulated by learning and novelty and enhanced by both dietary manipulations (low-fat, dietary restriction) and aerobic exercise. We also examine evidence that cognitive plasticity is affected by education and training. This is a testable hypothesis which could be assessed in humans in randomized trials comparing separate and combined effects of cognitive training, exercise, and diet on measures of cognitive and brain integrity. Greater understanding of the factors influencing the course of cognitive aging and of the mechanisms underlying those factors could provide information on which people could base choices that improve their ability to age successfully.
Collapse
Affiliation(s)
- Pamela M Greenwood
- Arch Laboratory, Psychology Department, George Mason University Fairfax, VA, USA
| | | |
Collapse
|
44
|
Tottenham N, Hare TA, Quinn BT, McCarry TW, Nurse M, Gilhooly T, Millner A, Galvan A, Davidson MC, Eigsti IM, Thomas KM, Freed PJ, Booma ES, Gunnar MR, Altemus M, Aronson J, Casey BJ. Prolonged institutional rearing is associated with atypically large amygdala volume and difficulties in emotion regulation. Dev Sci 2010; 13:46-61. [PMID: 20121862 PMCID: PMC2817950 DOI: 10.1111/j.1467-7687.2009.00852.x] [Citation(s) in RCA: 523] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Early adversity, for example poor caregiving, can have profound effects on emotional development. Orphanage rearing, even in the best circumstances, lies outside of the bounds of a species-typical caregiving environment. The long-term effects of this early adversity on the neurobiological development associated with socio-emotional behaviors are not well understood. Seventy-eight children, who include those who have experienced orphanage care and a comparison group, were assessed. Magnetic resonance imaging (MRI) was used to measure volumes of whole brain and limbic structures (e.g. amygdala, hippocampus). Emotion regulation was assessed with an emotional go-nogo paradigm, and anxiety and internalizing behaviors were assessed using the Screen for Child Anxiety Related Emotional Disorders, the Child Behavior Checklist, and a structured clinical interview. Late adoption was associated with larger corrected amygdala volumes, poorer emotion regulation, and increased anxiety. Although more than 50% of the children who experienced orphanage rearing met criteria for a psychiatric disorder, with a third having an anxiety disorder, the group differences observed in amygdala volume were not driven by the presence of an anxiety disorder. The findings are consistent with previous reports describing negative effects of prolonged orphanage care on emotional behavior and with animal models that show long-term changes in the amygdala and emotional behavior following early postnatal stress. These changes in limbic circuitry may underlie residual emotional and social problems experienced by children who have been internationally adopted.
Collapse
Affiliation(s)
- Nim Tottenham
- Sackler Institute for Developmental Psychobiology, Weill Medical College of Cornell University, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Nithianantharajah J, Hannan AJ. The neurobiology of brain and cognitive reserve: mental and physical activity as modulators of brain disorders. Prog Neurobiol 2009; 89:369-82. [PMID: 19819293 DOI: 10.1016/j.pneurobio.2009.10.001] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 09/16/2009] [Accepted: 10/01/2009] [Indexed: 12/23/2022]
Abstract
The concept of 'cognitive reserve', and a broader theory of 'brain reserve', were originally proposed to help explain epidemiological data indicating that individuals who engaged in higher levels of mental and physical activity via education, occupation and recreation, were at lower risk of developing Alzheimer's disease and other forms of dementia. Subsequently, behavioral, cellular and molecular studies in animals (predominantly mice and rats) have revealed dramatic effects of environmental enrichment, which involves enhanced levels of sensory, cognitive and motor stimulation via housing in novel, complex environments. Furthermore, increasing levels of voluntary physical exercise, via ad libitum access to running wheels, can have significant effects on brain and behavior, thus informing the relative effects of mental and physical activity. More recently, animal models of brain disorders have been compared under environmentally stimulating and standard housing conditions, and this has provided new insights into environmental modulators and gene-environment interactions involved in pathogenesis. Here, we review animal studies that have investigated the effects of modifying mental and physical activity via experimental manipulations, and discuss their relevance to brain and cognitive reserve (BCR). Recent evidence suggests that the concept of BCR is not only relevant to brain aging, neurodegenerative diseases and dementia, but also to other neurological and psychiatric disorders. Understanding the cellular and molecular mechanisms mediating BCR may not only facilitate future strategies aimed at optimising healthy brain aging, but could also identify molecular targets for novel pharmacological approaches aimed at boosting BCR in 'at risk' and symptomatic individuals with various brain disorders.
Collapse
Affiliation(s)
- Jess Nithianantharajah
- Howard Florey Institute, Florey Neuroscience Institutes, University of Melbourne, Victoria 3010, Australia
| | | |
Collapse
|
46
|
Carmichael ST. Translating the frontiers of brain repair to treatments: starting not to break the rules. Neurobiol Dis 2009; 37:237-42. [PMID: 19770043 DOI: 10.1016/j.nbd.2009.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 09/13/2009] [Indexed: 01/12/2023] Open
Abstract
The field of neural repair in stroke has identified cellular systems of reorganization and possible molecular mechanisms. Conceptual barriers now limit the generation of clinically useful agents. First, it is not clear what the causal mechanisms of neural repair are in stroke. Second, adequate delivery systems for neural repair drugs need to be determined for candidate molecules. Third, ad hoc applications of existing pharmacological agents that enhance attention, mood or arousal to stroke have failed. New approaches that specifically harness the molecular systems of learning and memory provide a new avenue for stroke repair drugs. Fourth, combinatorial treatments for neural repair need to be considered for clinical therapies. Finally, neural repair therapies have as a goal altering brain connections, cognitive maps and active neural networks. These actions may trigger a unique set of "neural repair side effects" that need to be considered in planning clinical trials.
Collapse
Affiliation(s)
- S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
47
|
Holtmaat A, Svoboda K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 2009; 10:647-58. [PMID: 19693029 DOI: 10.1038/nrn2699] [Citation(s) in RCA: 1296] [Impact Index Per Article: 86.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Synaptic plasticity in adult neural circuits may involve the strengthening or weakening of existing synapses as well as structural plasticity, including synapse formation and elimination. Indeed, long-term in vivo imaging studies are beginning to reveal the structural dynamics of neocortical neurons in the normal and injured adult brain. Although the overall cell-specific morphology of axons and dendrites, as well as of a subpopulation of small synaptic structures, are remarkably stable, there is increasing evidence that experience-dependent plasticity of specific circuits in the somatosensory and visual cortex involves cell type-specific structural plasticity: some boutons and dendritic spines appear and disappear, accompanied by synapse formation and elimination, respectively. This Review focuses on recent evidence for such structural forms of synaptic plasticity in the mammalian cortex and outlines open questions.
Collapse
Affiliation(s)
- Anthony Holtmaat
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, Switzerland.
| | | |
Collapse
|
48
|
Clarke J, Mala H, Windle V, Chernenko G, Corbett D. The effects of repeated rehabilitation "tune-ups" on functional recovery after focal ischemia in rats. Neurorehabil Neural Repair 2009; 23:886-94. [PMID: 19675122 DOI: 10.1177/1545968309341067] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND For most stroke survivors, rehabilitation therapy is the only treatment option available. The beneficial effects of early rehabilitation on neuroplasticity and functional recovery have been modeled in experimental stroke using a combination of enriched environment and rehabilitation. However, the impact of a secondary intervention, such as a periodic return to therapy, remains unclear. OBJECTIVE This study examines whether a return to enriched rehabilitation (ie, "tune-up") can further promote functional recovery or produce beneficial changes in brain plasticity in the chronic phase of stroke recovery. METHODS Rats were exposed to focal ischemia (endothelin-1 applied to forelimb sensorimotor cortex and dorsolateral striatum) and allowed to recover either in standard housing or in a combination of enriched environment and rehabilitative reaching for 9 weeks. Animals were then exposed to rotating periods of standard housing (5 weeks) and intensive "tune-up" therapy consisting of various sensorimotor/cognitive activities (2 weeks). Functional recovery was assessed using the Montoya staircase, beam-traversing, and cylinder tests, and Golgi-Cox analysis was used to examine dendritic complexity in the contralesional forelimb motor cortex. RESULTS Although early enriched rehabilitation significantly improved sensorimotor function in both the beam and staircase tests, "tune-up" therapy had no effect on recovery. Golgi-Cox analysis revealed no effect of treatment on dendritic complexity. CONCLUSIONS This study reaffirms the benefits of early rehabilitation for functional recovery after stroke. However, "tune-up" therapy provided no benefit in ischemic animals regardless of earlier rehabilitation experience. It is possible that alternative approaches in the chronic phase may prove more effective.
Collapse
Affiliation(s)
- Jared Clarke
- BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St John's, Newfoundland, Canada
| | | | | | | | | |
Collapse
|
49
|
Modeling brain reserve: experience-dependent neuronal plasticity in healthy and Huntington's disease transgenic mice. Am J Geriatr Psychiatry 2009; 17:196-209. [PMID: 19454847 DOI: 10.1097/jgp.0b013e318196a632] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Experience-dependent modification of neuronal and synaptic connectivity may represent a mechanism of relevance to the theory of brain or cognitive reserve. The authors have investigated structural correlates of synaptic function and plasticity, through analysis of dendritic morphology after environmental enrichment, a paradigm for investigation of experience-dependent plasticity. DESIGN Using a transgenic mouse model for Huntington's disease (HD), R6/1 and wild-type mice were exposed to either standard housing or environmental enrichment from 4 until 20 weeks of age. MEASUREMENTS Golgi-stained neurons were analyzed for dendritic branching and spine density in the hippocampus, somatosensory, and motor cortices. RESULTS Symptomatic R6/1 HD mice showed an absence of dendritic spine pathology, although there were region-specific decreases in dendritic diameter, branching, and complexity, as well as neuronal soma area. Furthermore, the authors demonstrate that environmental enrichment induces subtle, region-specific effects on dendritic morphology and spine density in wild-type control animals, but had less of an effect in HD mice, which has implications for our understanding of the cellular mechanisms mediating experience-dependent plasticity in HD. CONCLUSIONS These results show that gross structural alterations are less likely to contribute to the cognitive, psychiatric, and motor symptoms in HD, and suggest that subtle molecular and functional changes may underlie HD symptomatology. Furthermore, the enrichment-induced effects on dendritic morphology may contribute to strengthening neuronal and synaptic connectivity, and provide a mechanism for how the brain may more efficiently use existing neuronal networks and recruit alternate networks when required. These findings not only have implications for HD, but the authors also propose that the concept of enrichment and cognitive reserve may be relevant to many brain disorders, including neurologic and psychiatric, where cognitive dysfunction is a part of symptomatology.
Collapse
|
50
|
Effects of tongue force training on orolingual motor cortical representation. Behav Brain Res 2009; 201:229-32. [PMID: 19428638 DOI: 10.1016/j.bbr.2009.02.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 01/20/2009] [Accepted: 02/13/2009] [Indexed: 11/20/2022]
Abstract
Previous research has demonstrated that training rats in a skilled reaching condition will induce task-related changes in the caudal forelimb area (CFA) of motor cortex. The purpose of the present study was to determine whether task-specific changes can be induced within the orofacial area of the motor cortex in rats. Specifically, we compared changes of the orofacial motor cortical representation in lick-trained rats to age-matched controls. For 1 month, six water-restricted Sprague-Dawley rats were trained to lick an isometric force-sensing disc at increasing forces for water reinforcement. The rats were trained daily for 6 min starting with forces of 1g, and increasing over the course of the month to 10, 15, 20, 25 and finally 30 g. One to three days following the last training session, the animals were subjected to a neurophysiological motor mapping procedure in which motor representations corresponding to the orofacial and adjacent areas were defined using intracortical microstimulation (ICMS) techniques. We found no statistical difference in the topographical representation of the control (mean=2.03 mm(2)) vs. trained (1.87 mm(2)) rats. This result indicates that force training alone is insufficient to drive changes in the size of the cortical representation. We also recorded the minimum current threshold required to elicit a motor response at each site of microstimulation. We found that the lick-trained rats had a significantly lower average minimum threshold (29.1+/-1.0 microA) for evoking movements related to the task compared to control rats (34.6+/-1.1 microA). These results indicate that while tongue force training alone does not produce lasting changes in the size of the orofacial cortical motor representation, tongue force training decreases the current thresholds necessary for eliciting an ICMS-evoked motor response.
Collapse
|