1
|
Khoo YW, Wang Q, Liu S, Zhan B, Xu T, Lv W, Liu G, Li S, Zhang Z. Resistance of the CRISPR-Cas13a Gene-Editing System to Potato Spindle Tuber Viroid Infection in Tomato and Nicotiana benthamiana. Viruses 2024; 16:1401. [PMID: 39339877 PMCID: PMC11437488 DOI: 10.3390/v16091401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Gene-editing technology, specifically the CRISPR-Cas13a system, has shown promise in breeding plants resistant to RNA viruses. This system targets RNA and, theoretically, can also combat RNA-based viroids. To test this, the CRISPR-Cas13a system was introduced into tomato plants via transient expression and into Nicotiana benthamiana through transgenic methods, using CRISPR RNAs (crRNAs) targeting the conserved regions of both sense and antisense genomes of potato spindle tuber viroid (PSTVd). In tomato plants, the expression of CRISPR-Cas13a and crRNAs substantially reduced PSTVd accumulation and alleviated disease symptoms. In transgenic N. benthamiana plants, the PSTVd levels were lower as compared to wild-type plants. Several effective crRNAs targeting the PSTVd genomic RNA were also identified. These results demonstrate that the CRISPR-Cas13a system can effectively target and combat viroid RNAs, despite their compact structures.
Collapse
Affiliation(s)
- Ying Wei Khoo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingsong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- National Citrus Engineering Research Center, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Shangwu Liu
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Binhui Zhan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tengfei Xu
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Wenxia Lv
- Inner Mongolia Zhongjia Agricultural Biotechnology Co., Ltd., Ulanqab 011800, China
| | - Guangjing Liu
- Inner Mongolia Zhongjia Agricultural Biotechnology Co., Ltd., Ulanqab 011800, China
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhixiang Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
2
|
Wang Y, Shi Y, Li H, Chang J. Understanding Citrus Viroid Interactions: Experience and Prospects. Viruses 2024; 16:577. [PMID: 38675919 PMCID: PMC11053686 DOI: 10.3390/v16040577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Citrus is the natural host of at least eight viroid species, providing a natural platform for studying interactions among viroids. The latter manifests as antagonistic or synergistic phenomena. The antagonistic effect among citrus viroids intuitively leads to reduced symptoms caused by citrus viroids, while the synergistic effect leads to an increase in symptom severity. The interaction phenomenon is complex and interesting, and a deep understanding of the underlying mechanisms induced during this viroid interaction is of great significance for the prevention and control of viroid diseases. This paper summarizes the research progress of citrus viroids in recent years, focusing on the interaction phenomenon and analyzing their interaction mechanisms. It points out the core role of the host RNA silencing mechanism and viroid-derived siRNA (vd-siRNA), and provides suggestions for future research directions.
Collapse
Affiliation(s)
- Yafei Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (Y.S.); (H.L.); (J.C.)
| | | | | | | |
Collapse
|
3
|
Steger G, Riesner D, Prusiner SB. Viroids, Satellite RNAs and Prions: Folding of Nucleic Acids and Misfolding of Proteins. Viruses 2024; 16:360. [PMID: 38543726 PMCID: PMC10975798 DOI: 10.3390/v16030360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 05/23/2024] Open
Abstract
Theodor ("Ted") Otto Diener (* 28 February 1921 in Zürich, Switzerland; † 28 March 2023 in Beltsville, MD, USA) pioneered research on viroids while working at the Plant Virology Laboratory, Agricultural Research Service, USDA, in Beltsville. He coined the name viroid and defined viroids' important features like the infectivity of naked single-stranded RNA without protein-coding capacity. During scientific meetings in the 1970s and 1980s, viroids were often discussed at conferences together with other "subviral pathogens". This term includes what are now called satellite RNAs and prions. Satellite RNAs depend on a helper virus and have linear or, in the case of virusoids, circular RNA genomes. Prions, proteinaceous infectious particles, are the agents of scrapie, kuru and some other diseases. Many satellite RNAs, like viroids, are non-coding and exert their function by thermodynamically or kinetically controlled folding, while prions are solely host-encoded proteins that cause disease by misfolding, aggregation and transmission of their conformations into infectious prion isoforms. In this memorial, we will recall the work of Ted Diener on subviral pathogens.
Collapse
Affiliation(s)
- Gerhard Steger
- Institut für Physikalische Biologie, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany;
| | - Detlev Riesner
- Institut für Physikalische Biologie, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany;
| | - Stanley B. Prusiner
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA;
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
4
|
Chaudhary S, Selvaraj V, Awasthi P, Bhuria S, Purohit R, Kumar S, Hallan V. Small Heat Shock Protein (sHsp22.98) from Trialeurodes vaporariorum Plays Important Role in Apple Scar Skin Viroid Transmission. Viruses 2023; 15:2069. [PMID: 37896846 PMCID: PMC10611230 DOI: 10.3390/v15102069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 10/29/2023] Open
Abstract
Trialeurodes vaporariorum, commonly known as the greenhouse whitefly, severely infests important crops and serves as a vector for apple scar skin viroid (ASSVd). This vector-mediated transmission may cause the spread of infection to other herbaceous crops. For effective management of ASSVd, it is important to explore the whitefly's proteins, which interact with ASSVd RNA and are thereby involved in its transmission. In this study, it was found that a small heat shock protein (sHsp) from T. vaporariorum, which is expressed under stress, binds to ASSVd RNA. The sHsp gene is 606 bp in length and encodes for 202 amino acids, with a molecular weight of 22.98 kDa and an isoelectric point of 8.95. Intermolecular interaction was confirmed through in silico analysis, using electrophoretic mobility shift assays (EMSAs) and northwestern assays. The sHsp22.98 protein was found to exist in both monomeric and dimeric forms, and both forms showed strong binding to ASSVd RNA. To investigate the role of sHsp22.98 during ASSVd infection, transient silencing of sHsp22.98 was conducted, using a tobacco rattle virus (TRV)-based virus-induced gene silencing system. The sHsp22.98-silenced whiteflies showed an approximate 50% decrease in ASSVd transmission. These results suggest that sHsp22.98 from T. vaporariorum is associated with viroid RNA and plays a significant role in transmission.
Collapse
Affiliation(s)
- Savita Chaudhary
- Plant Virology Laboratory, Division of Biotechnology, CSIR—Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India (R.P.)
| | - Vijayanandraj Selvaraj
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India (R.P.)
- Plant Molecular Virology Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, Uttar Pradesh, India
| | - Preshika Awasthi
- Plant Virology Laboratory, Division of Biotechnology, CSIR—Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Swati Bhuria
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India (R.P.)
- Plant Molecular Virology Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, Uttar Pradesh, India
| | - Rituraj Purohit
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India (R.P.)
- Bioinformatics Lab, Division of Biotechnology, CSIR—Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Surender Kumar
- Plant Virology Laboratory, Division of Biotechnology, CSIR—Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Vipin Hallan
- Plant Virology Laboratory, Division of Biotechnology, CSIR—Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India (R.P.)
| |
Collapse
|
5
|
Ortolá B, Daròs JA. Viroids: Non-Coding Circular RNAs Able to Autonomously Replicate and Infect Higher Plants. BIOLOGY 2023; 12:172. [PMID: 36829451 PMCID: PMC9952643 DOI: 10.3390/biology12020172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023]
Abstract
Viroids are a unique type of infectious agent, exclusively composed of a relatively small (246-430 nt), highly base-paired, circular, non-coding RNA. Despite the small size and non-coding nature, the more-than-thirty currently known viroid species infectious of higher plants are able to autonomously replicate and move systemically through the host, thereby inducing disease in some plants. After recalling viroid discovery back in the late 60s and early 70s of last century and discussing current hypotheses about their evolutionary origin, this article reviews our current knowledge about these peculiar infectious agents. We describe the highly base-paired viroid molecules that fold in rod-like or branched structures and viroid taxonomic classification in two families, Pospiviroidae and Avsunviroidae, likely gathering nuclear and chloroplastic viroids, respectively. We review current knowledge about viroid replication through RNA-to-RNA rolling-circle mechanisms in which host factors, notably RNA transporters, RNA polymerases, RNases, and RNA ligases, are involved. Systemic movement through the infected plant, plant-to-plant transmission and host range are also discussed. Finally, we focus on the mechanisms of viroid pathogenesis, in which RNA silencing has acquired remarkable importance, and also for the initiation of potential biotechnological applications of viroid molecules.
Collapse
Affiliation(s)
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), 46022 Valencia, Spain
| |
Collapse
|
6
|
Marquez-Molins J, Juarez-Gonzalez VT, Gomez G, Pallas V, Martinez G. Occurrence of RNA post-transcriptional modifications in plant viruses and viroids and their correlation with structural and functional features. Virus Res 2023; 323:198958. [PMID: 36209921 PMCID: PMC10194119 DOI: 10.1016/j.virusres.2022.198958] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Post-transcriptional modifications of RNA bases are widespread across all the tree of life and have been linked to RNA maturation, stability, and molecular interactions. RNA modifications have been extensively described in endogenous eukaryotic mRNAs, however, little is known about the presence of RNA modifications in plant viral and subviral RNAs. Here, we used a computational approach to infer RNA modifications in plant-pathogenic viruses and viroids using high-throughput annotation of modified ribonucleotides (HAMR), a software that predicts modified ribonucleotides using high-throughput RNA sequencing data. We analyzed datasets from representative members of different plant viruses and viroids and compared them to plant-endogenous mRNAs. Our approach was able to predict potential RNA chemical modifications (RCMs) in all analyzed pathogens. We found that both DNA and RNA viruses presented a wide range of RCM proportions while viroids had lowest values. Furthermore, we found that for viruses with segmented genomes, some genomic RNAs had a higher proportion of RCM. Interestingly, nuclear-replicating viroids showed most of the predicted modifications located in the pathogenesis region, pointing towards a possible functional role of RCMs in their infectious cycle. Thus, our results strongly suggest that plant viral and subviral RNAs might contain a variety of previously unreported RNA modifications, thus opening a new perspective in the multifaceted process of plant-pathogen interactions.
Collapse
Affiliation(s)
- Joan Marquez-Molins
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València (UV), Parc Científic, Cat. Agustín Escardino 9, Paterna 46980, Spain; Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat Politècnica de València, CPI 8E, Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Vasti Thamara Juarez-Gonzalez
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 750 07, Sweden
| | - Gustavo Gomez
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València (UV), Parc Científic, Cat. Agustín Escardino 9, Paterna 46980, Spain
| | - Vicente Pallas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat Politècnica de València, CPI 8E, Av. de los Naranjos s/n, Valencia 46022, Spain
| | - German Martinez
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 750 07, Sweden.
| |
Collapse
|
7
|
Identification and primary distribution of Citrus viroid V in citrus in Punjab, Pakistan. Mol Biol Rep 2022; 49:11433-11441. [PMID: 36002656 DOI: 10.1007/s11033-022-07677-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/06/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Citrus plants are prone to infection by different viroids which deteriorate their vigor and production. Citrus viroid V (CVd-V) is among the six citrus viroids, belongs to genus Apscaviroid (family Pospiviroidae) which induces symptoms of mild necrotic lesions on branches and cracks on trunk portion. METHODS AND RESULTS A survey was conducted to evaluate the prevalence of CVd-V in core and non-core citrus cultivated areas of Punjab, Pakistan. A total of 154 samples from different citrus cultivars were tested for CVd-V infection by RT-PCR. The results revealed 66.66% disease incidence of CVd-V. Citrus cultivars Palestinia Sweet lime, Roy Ruby, Olinda Valencia, Kaghzi lime, and Dancy were identified as new citrus hosts of CVd-V for the first time from Pakistan. The viroid infection was confirmed by biological indexing on indicator host Etrog citron. The reported primers used for the detection of CVd-V did not amplify, rather showed non-specific amplification, which led to the designing of new primers. Whereas, new back-to-back designed primers (CVd-V AF1/CVd-V AR1) detected CVd-V successfully and obtained an expected amplified product of CVd-V with 294 bp. Sequencing analysis confirmed the new host of CVd-V showing 98-100% nucleotide sequence homology with those reported previously from other countries while 100% sequence homology to the isolates reported from Pakistan. Based on phylogenetic analysis using all CVd-V sequences in GenBank, two main CVd-V groups (I and II) were identified, and newly identified isolates during this study fall in the group I. CONCLUSION The study revealed that there are some changes in the nucleotide sequences of CVd-V which made difficult for their detection using reported primers. All isolates of Pakistan showed high sequence homology with other isolates of CVd-V from Iran and USA whereas; the isolates from China, Japan, Tunisia, and Africa are distantly related. It is evident that CVd-V is spreading in all citrus cultivars in Pakistan.
Collapse
|
8
|
Aviña-Padilla K, Zamora-Macorra EJ, Ochoa-Martínez DL, Alcántar-Aguirre FC, Hernández-Rosales M, Calderón-Zamora L, Hammond RW. Mexico: A Landscape of Viroid Origin and Epidemiological Relevance of Endemic Species. Cells 2022; 11:cells11213487. [PMID: 36359881 PMCID: PMC9653797 DOI: 10.3390/cells11213487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Viroids are single-stranded, circular RNA molecules (234-406 nt) that infect a wide range of crop species and cause economic losses in agriculture worldwide. They are characterized by the existence of a population of sequence variants, attributed to the low fidelity of RNA polymerases involved in their transcription, resulting in high mutation rates. Therefore, these biological entities exist as quasispecies. This feature allows them to replicate within a wide range of host plants, both monocots and dicots. Viroid hosts include economically important crops such as tomato, citrus, and fruit trees such as peach and avocado. Given the high risk of introducing viroids to viroid disease-free countries, these pathogens have been quarantined globally. As discussed herein, Mexico represents a geographical landscape of viroids linked to their origin and comprises considerable biodiversity. The biological features of viroid species endemic to Mexico are highlighted in this communication. In addition, we report the phylogenetic relationships among viroid and viroid strains, their economic impact, geographical distribution, and epidemiological features, including a broad host range and possible long-distance, seed, or insect-mediated transmission. In summary, this review could be helpful for a better understanding of the biology of viroid diseases and future programs on control of movement and spread to avoid economic losses in agricultural industries.
Collapse
Affiliation(s)
- Katia Aviña-Padilla
- Centro de Investigacion y de Estudios Avanzados del I.P.N. Unidad Irapuato, Irapuato 36821, Mexico
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Correspondence: or (K.A.-P.); (R.W.H.); Tel.: +1-301-504-5203 (R.W.H.)
| | | | | | | | | | - Loranda Calderón-Zamora
- Facultad de Biologia, Universidad Autonoma de Sinaloa, Calzada de las Americas y calle Universitarios, s/n Ciudad Universitaria, Culiacan 80013, Mexico
| | - Rosemarie W. Hammond
- USDA, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
- Correspondence: or (K.A.-P.); (R.W.H.); Tel.: +1-301-504-5203 (R.W.H.)
| |
Collapse
|
9
|
Shilpa N, Dhir S, Janardhana GR. Molecular detection and characterization of Potato spindle tuber viroid (PSTVd) infecting Tomato ( Solanum lycopersicum L.) in Karnataka State of India. Virusdisease 2022; 33:261-269. [PMID: 36277411 PMCID: PMC9481773 DOI: 10.1007/s13337-022-00782-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/16/2022] [Indexed: 11/27/2022] Open
Abstract
Potato Spindle Tuber Viroid (PSTVd) is a non-coding, infectious, small, circular RNA known to cause disease in agricultural and horticultural plants. In the present work, an investigation was conducted in the southern districts of Karnataka state to assess the possible pospiviroid infections on tomato plants that are considered natural hosts for viroids. A total of 83 tomato samples showing disease symptoms (virus or viroid-like) along with healthy ones were collected and subjected to viroid detection by conventional Reverse Transcriptase Polymer Chain Reaction (RT-PCR) using universal (Pospi1-RE/Pospi1-FW) and a specific set of primers (3H1/2H1). The study confirmed the presence of PSTVd in one of the samples of tomato collected from Banghatta village of Mandy District, with an expected amplicon of ~ 361 bp. The bioassay conducted on tomato plants (cv. Rutgers) proved the association of PSTVd, which was further confirmed by RT-PCR. The amplicons were cloned, sequenced, and the representative sequences were deposited in the NCBI GenBank. The sequence alignment and secondary structure analysis of the isolated viroid with other reference sequences revealed the variations in the pathogenicity, central conserved region, and Terminal right domains. The variations observed between the isolated PSTVd with that of other Indian isolates support that viroid may have been transmitted among the crop plants, possibly through seed or mechanical means.
Collapse
Affiliation(s)
- N. Shilpa
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru, Karnataka 570 006 India
- Molecular Phytodiagnostic Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru, Karnataka 570 006 India
| | - Sunny Dhir
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar Deemed to be University, Mullana, Ambala, 133207 India
| | - G. R. Janardhana
- Molecular Phytodiagnostic Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru, Karnataka 570 006 India
| |
Collapse
|
10
|
Yanagisawa H, Matsushita Y. Effect of potato spindle tuber viroid variants and infection stage on seed transmission through pollen. Lett Appl Microbiol 2022; 75:836-843. [DOI: 10.1111/lam.13756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/22/2022] [Accepted: 05/27/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Hironobu Yanagisawa
- Central Region Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Tsukuba Ibaraki 305‐8666 Japan
- Narita Branch, Yokohama Plant Protection Station, Aza‐Tennamino, Komaino, Narita Chiba 282‐0021 Japan
| | - Yosuke Matsushita
- Institute of Plant Protection National Agriculture and Food Research Organization (NARO), Tsukuba Ibaraki 305‐8519 Japan
| |
Collapse
|
11
|
Flores R, Navarro B, Serra P, Di Serio F. A scenario for the emergence of protoviroids in the RNA world and for their further evolution into viroids and viroid-like RNAs by modular recombinations and mutations. Virus Evol 2022; 8:veab107. [PMID: 35223083 PMCID: PMC8865084 DOI: 10.1093/ve/veab107] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/10/2021] [Accepted: 01/14/2022] [Indexed: 11/14/2022] Open
Abstract
Viroids are tiny, circular, and noncoding RNAs that are able to replicate and systemically infect plants. The smallest known pathogens, viroids have been proposed to represent survivors from the RNA world that likely preceded the cellular world currently dominating life on the earth. Although the small, circular, and compact nature of viroid genomes, some of which are also endowed with catalytic activity mediated by hammerhead ribozymes, support this proposal, the lack of feasible evolutionary routes and the identification of hammerhead ribozymes in a large number of DNA genomes of organisms along the tree of life have led some to question such a proposal. Here, we reassess the origin and subsequent evolution of viroids by complementing phylogenetic reconstructions with molecular data, including the primary and higher-order structure of the genomic RNAs, their replication, and recombination mechanisms and selected biological information. Features of some viroid-like RNAs found in plants, animals, and possibly fungi are also considered. The resulting evolutionary scenario supports the emergence of protoviroids in the RNA world, mainly as replicative modules, followed by a further increase in genome complexity based on module/domain shuffling and combination and mutation. Such a modular evolutionary scenario would have facilitated the inclusion in the protoviroid genomes of complex RNA structures (or coding sequences, as in the case of hepatitis delta virus and delta-like agents), likely needed for their adaptation from the RNA world to a life based on cells, thus generating the ancestors of current infectious viroids and viroid-like RNAs. Other noninfectious viroid-like RNAs, such as retroviroid-like RNA elements and retrozymes, could also be derived from protoviroids if their reverse transcription and integration into viral or eukaryotic DNA, respectively, are considered as a possible key step in their evolution. Comparison of evidence supporting a general and modular evolutionary model for viroids and viroid-like RNAs with that favoring alternative scenarios provides reasonable reasons to keep alive the hypothesis that these small RNA pathogens may be relics of a precellular world.
Collapse
Affiliation(s)
- Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia, Ingeniero Fausto Elio s/n, Valencia 46022, Spain
| | - Beatriz Navarro
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via Amendola 122/D, Bari 70126, Italy
| | - Pedro Serra
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia, Ingeniero Fausto Elio s/n, Valencia 46022, Spain
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via Amendola 122/D, Bari 70126, Italy
| |
Collapse
|
12
|
Katsarou K, Adkar-Purushothama CR, Tassios E, Samiotaki M, Andronis C, Lisón P, Nikolaou C, Perreault JP, Kalantidis K. Revisiting the Non-Coding Nature of Pospiviroids. Cells 2022; 11:265. [PMID: 35053381 PMCID: PMC8773695 DOI: 10.3390/cells11020265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/14/2022] Open
Abstract
Viroids are small, circular, highly structured pathogens that infect a broad range of plants, causing economic losses. Since their discovery in the 1970s, they have been considered as non-coding pathogens. In the last few years, the discovery of other RNA entities, similar in terms of size and structure, that were shown to be translated (e.g., cirRNAs, precursors of miRNA, RNA satellites) as well as studies showing that some viroids are located in ribosomes, have reignited the idea that viroids may be translated. In this study, we used advanced bioinformatic analysis, in vitro experiments and LC-MS/MS to search for small viroid peptides of the PSTVd. Our results suggest that in our experimental conditions, even though the circular form of PSTVd is found in ribosomes, no produced peptides were identified. This indicates that the presence of PSTVd in ribosomes is most probably not related to peptide production but rather to another unknown function that requires further study.
Collapse
Affiliation(s)
- Konstantina Katsarou
- Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Greece; (E.T.); (C.N.)
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 71110 Heraklion, Greece;
| | - Charith Raj Adkar-Purushothama
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de Médecine des Sciences de la Santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; (C.R.A.-P.); (J.-P.P.)
| | - Emilios Tassios
- Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Greece; (E.T.); (C.N.)
- Biomedical Sciences Research Center “Alexander Fleming”, Institute for Bioinnovation, 16672 Vari, Greece;
| | - Martina Samiotaki
- Biomedical Sciences Research Center “Alexander Fleming”, Institute for Bioinnovation, 16672 Vari, Greece;
| | - Christos Andronis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 71110 Heraklion, Greece;
| | - Purificación Lisón
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain;
| | - Christoforos Nikolaou
- Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Greece; (E.T.); (C.N.)
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 71110 Heraklion, Greece;
- Biomedical Sciences Research Center “Alexander Fleming”, Institute for Bioinnovation, 16672 Vari, Greece;
| | - Jean-Pierre Perreault
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de Médecine des Sciences de la Santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; (C.R.A.-P.); (J.-P.P.)
| | - Kriton Kalantidis
- Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Greece; (E.T.); (C.N.)
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 71110 Heraklion, Greece;
| |
Collapse
|
13
|
Conserved Motifs and Domains in Members of Pospiviroidae. Cells 2022; 11:cells11020230. [PMID: 35053346 PMCID: PMC8774013 DOI: 10.3390/cells11020230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/28/2021] [Accepted: 01/07/2022] [Indexed: 12/18/2022] Open
Abstract
In 1985, Keese and Symons proposed a hypothesis on the sequence and secondary structure of viroids from the family Pospiviroidae: their secondary structure can be subdivided into five structural and functional domains and “viroids have evolved by rearrangement of domains between different viroids infecting the same cell and subsequent mutations within each domain”; this article is one of the most cited in the field of viroids. Employing the pairwise alignment method used by Keese and Symons and in addition to more recent methods, we tried to reproduce the original results and extent them to further members of Pospiviroidae which were unknown in 1985. Indeed, individual members of Pospiviroidae consist of a patchwork of sequence fragments from the family but the lengths of fragments do not point to consistent points of rearrangement, which is in conflict with the original hypothesis of fixed domain borders.
Collapse
|
14
|
Hadjieva N, Apostolova E, Baev V, Yahubyan G, Gozmanova M. Transcriptome Analysis Reveals Dynamic Cultivar-Dependent Patterns of Gene Expression in Potato Spindle Tuber Viroid-Infected Pepper. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122687. [PMID: 34961158 PMCID: PMC8706270 DOI: 10.3390/plants10122687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Potato spindle tuber viroid (PSTVd) infects various plants. PSTVd pathogenesis is associated with interference with the cellular metabolism and defense signaling pathways via direct interaction with host factors or via the transcriptional or post-transcriptional modulation of gene expression. To better understand host defense mechanisms to PSTVd infection, we analyzed the gene expression in two pepper cultivars, Capsicum annuum Kurtovska kapia (KK) and Djulunska shipka (DS), which exhibit mild symptoms of PSTVd infection. Deep sequencing-based transcriptome analysis revealed differential gene expression upon infection, with some genes displaying contrasting expression patterns in KK and DS plants. More genes were downregulated in DS plants upon infection than in KK plants, which could underlie the more severe symptoms seen in DS plants. Gene ontology enrichment analysis revealed that most of the downregulated differentially expressed genes in both cultivars were enriched in the gene ontology term photosynthesis. The genes upregulated in DS plants fell in the biological process of gene ontology term defense response. We validated the expression of six overlapping differentially expressed genes that are involved in photosynthesis, plant hormone signaling, and defense pathways by quantitative polymerase chain reaction. The observed differences in the responses of the two cultivars to PSTVd infection expand the understanding of the fine-tuning of plant gene expression that is needed to overcome the infection.
Collapse
|
15
|
Steinbachová L, Matoušek J, Steger G, Matoušková H, Radišek S, Honys D. Transformation of Seed Non-Transmissible Hop Viroids in Nicotiana benthamiana Causes Distortions in Male Gametophyte Development. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112398. [PMID: 34834761 PMCID: PMC8624972 DOI: 10.3390/plants10112398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/22/2021] [Accepted: 11/03/2021] [Indexed: 05/27/2023]
Abstract
Viroids are small, non-coding, parasitic RNAs that promote developmental distortions in sensitive plants. We analyzed pollen of Nicotiana benthamiana after infection and/or ectopic transformation with cDNAs of citrus bark cracking viroid (CBCVd), apple fruit crinkle viroid (AFCVd) and potato spindle tuber viroid (PSTVd) variant AS1. These viroids were seed non-transmissible in N. benthamiana. All viroids propagated to high levels in immature anthers similar to leaves, while their levels were drastically reduced by approximately 3.6 × 103, 800 and 59 times in mature pollen of CBCVd, AFCVd and PSTVd infected N. benthamiana, respectively, in comparison to leaves. These results suggest similar elimination processes during male gametophyte development as in the Nicotiana tabacum we presented in our previous study. Mature pollen of N. benthamiana showed no apparent defects in infected plants although all three viroids induced strong pathological symptoms on leaves. While Nicotiana species have naturally bicellular mature pollen, we noted a rare occurrence of mature pollen with three nuclei in CBCVd-infected N. benthamiana. Changes in the expression of ribosomal marker proteins in AFCVd-infected pollen were detected, suggesting some changes in pollen metabolism. N. benthamiana transformed with 35S-driven viroid cDNAs showed strong symptoms including defects in pollen development. A large number of aborted pollen (34% and 62%) and a slight increase of young pollen grains (8% and 15%) were found in mature pollen of AFCVd and CBCVd transformants, respectively, in comparison to control plants (3.9% aborted pollen and 0.3% young pollen). Moreover, pollen grains with malformed nuclei or trinuclear pollen were found in CBCVd-transformed plants. Our results suggest that "forcing" overexpression of seed non-transmissible viroid led to strong pollen pathogenesis. Viroid adaptation to pollen metabolism can be assumed as an important factor for viroid transmissibility through pollen and seeds.
Collapse
Affiliation(s)
- Lenka Steinbachová
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6, Czech Republic;
| | - Jaroslav Matoušek
- Biology Centre of the Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (J.M.); (H.M.)
| | - Gerhard Steger
- Institut für Physikalische Biologie, Heinrich Heine University Düsseldorf, D-40204 Düsseldorf, Germany;
| | - Helena Matoušková
- Biology Centre of the Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (J.M.); (H.M.)
| | - Sebastjan Radišek
- Slovenian Institute of Hop Research and Brewing, Cesta Žalskega tabora 2, SI-3310 Žalec, Slovenia;
| | - David Honys
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6, Czech Republic;
| |
Collapse
|
16
|
Abstract
Viroids are small, single-stranded, circular RNAs infecting plants. Composed of only a few hundred nucleotides and being unable to code for proteins, viroids represent the lowest level of complexity for an infectious agent, even below that of the smallest known viruses. Despite the relatively small size, viroids contain RNA structural elements embracing all the information needed to interact with host factors involved in their infectious cycle, thus providing models for studying structure-function relationships of RNA. Viroids are specifically targeted to nuclei (family Pospiviroidae) or chloroplasts (family Avsunviroidae), where replication based on rolling-circle mechanisms takes place. They move locally and systemically through plasmodesmata and phloem, respectively, and may elicit symptoms in the infected host, with pathogenic pathways linked to RNA silencing and other plant defense responses. In this review, recent advances in the dissection of the complex interplay between viroids and plants are presented, highlighting knowledge gaps and perspectives for future research. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Beatriz Navarro
- Institute for Sustainable Plant Protection, National Research Council of Italy; I-70126 Bari, Italy;
| | - Ricardo Flores
- Institute of Molecular and Cellular Biology of Plants (UPV-CSIC), Polytechnic University of Valencia, 46022 Valencia, Spain
| | - Francesco Di Serio
- Institute for Sustainable Plant Protection, National Research Council of Italy; I-70126 Bari, Italy;
| |
Collapse
|
17
|
Marquez‐Molins J, Gomez G, Pallas V. Hop stunt viroid: A polyphagous pathogenic RNA that has shed light on viroid-host interactions. MOLECULAR PLANT PATHOLOGY 2021; 22:153-162. [PMID: 33305492 PMCID: PMC7814962 DOI: 10.1111/mpp.13022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
TAXONOMY Hop stunt viroid (HSVd) is the type species of the genus Hostuviroid (family Pospiviroidae). The other species of this genus is Dahlia latent viroid, which presents an identical central conserved region (CCR) but lacks other structural hallmarks present in Hop stunt viroid. HSVd replication occurs in the nucleus through an asymmetric rolling-circle model as in the other members of the family Pospiviroidae, which also includes the genera Pospiviroid, Cocadviroid, Apscaviroid, and Coleoviroid. PHYSICAL PROPERTIES Hop stunt viroid consists of a single-stranded, circular RNA of 295-303 nucleotides depending on isolates and sequence variants. The most stable secondary structure is a rod-like or quasi-rod-like conformation with two characteristic domains: a CCR and a terminal conserved hairpin similar to that of cocadviroids. HSVd lacks a terminal conserved region. HOSTS AND SYMPTOMS HSVd infects a very broad range of natural hosts and has been reported to be the causal agent of five different diseases (citrus cachexia, cucumber pale fruit, peach and plum apple apricot distortion, and hop stunt). It is distributed worldwide. TRANSMISSION HSVd is transmitted mechanically and by seed.
Collapse
Affiliation(s)
- Joan Marquez‐Molins
- Institute for Integrative Systems Biology (I2SysBio)Consejo Superior de Investigaciones Científicas, Universitat de ValènciaPaternaSpain
- Instituto de Biología Molecular y Celular de PlantasConsejo Superior de Investigaciones Científicas, Universitat Politècnica de ValènciaValenciaSpain
| | - Gustavo Gomez
- Institute for Integrative Systems Biology (I2SysBio)Consejo Superior de Investigaciones Científicas, Universitat de ValènciaPaternaSpain
| | - Vicente Pallas
- Instituto de Biología Molecular y Celular de PlantasConsejo Superior de Investigaciones Científicas, Universitat Politècnica de ValènciaValenciaSpain
| |
Collapse
|
18
|
Seo H, Kim K, Park WJ. Effect of VIRP1 Protein on Nuclear Import of Citrus Exocortis Viroid (CEVd). Biomolecules 2021; 11:biom11010095. [PMID: 33450991 PMCID: PMC7828392 DOI: 10.3390/biom11010095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/11/2021] [Indexed: 01/30/2023] Open
Abstract
Before replicating, Pospiviroidae viroids must move into the plant nucleus. However, the mechanisms of viroid nuclear import are not entirely understood. To study the nuclear import of viroids, we established a nuclear import assay system using onion cell strips and observed the import of Alexa Fluor-594-labeled citrus exocortis viroid (CEVd). To identify the plant factors involved in the nuclear import of viroids, we cloned the Viroid RNA-binding Protein 1 (VIRP1) gene from a tomato cultivar, Seokwang, and heterologously expressed and purified the VIRP1 protein. The newly prepared VIRP1 protein had alterations of amino acid residues at two points (H52R, A277G) compared with a reference VIRP1 protein (AJ249595). VIRP1 specifically bound to CEVd and promoted its nuclear import. However, it is still uncertain whether VIRP1 is the only factor required for the nuclear import of CEVd because CEVd entered the plant nuclei without VIRP1 in our assay system. The cause of the observed nuclear accumulation of CEVd in the absence of VIRP1 needs to be further clarified.
Collapse
|
19
|
SANO T. Progress in 50 years of viroid research-Molecular structure, pathogenicity, and host adaptation. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2021; 97:371-401. [PMID: 34380915 PMCID: PMC8403530 DOI: 10.2183/pjab.97.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/30/2021] [Indexed: 05/27/2023]
Abstract
Viroids are non-encapsidated, single-stranded, circular RNAs consisting of 246-434 nucleotides. Despite their non-protein-encoding RNA nature, viroids replicate autonomously in host cells. To date, more than 25 diseases in more than 15 crops, including vegetables, fruit trees, and flowers, have been reported. Some are pathogenic but others replicate without eliciting disease. Viroids were shown to have one of the fundamental attributes of life to adapt to environments according to Darwinian selection, and they are likely to be living fossils that have survived from the pre-cellular RNA world. In 50 years of research since their discovery, it was revealed that viroids invade host cells, replicate in nuclei or chloroplasts, and undergo nucleotide mutation in the process of adapting to new host environments. It was also demonstrated that structural motifs in viroid RNAs exert different levels of pathogenicity by interacting with various host factors. Despite their small size, the molecular mechanism of viroid pathogenicity turned out to be more complex than first thought.
Collapse
Affiliation(s)
- Teruo SANO
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, Japan
| |
Collapse
|
20
|
Ivanov AV, Shmyglya IV, Zherdev AV, Dzantiev BB, Safenkova IV. The Challenge for Rapid Detection of High-Structured Circular RNA: Assay of Potato Spindle Tuber Viroid Based on Recombinase Polymerase Amplification and Lateral Flow Tests. PLANTS 2020; 9:plants9101369. [PMID: 33076508 PMCID: PMC7650583 DOI: 10.3390/plants9101369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 01/14/2023]
Abstract
An assay was developed to detect the potato spindle tuber viroid (PSTVd), a dangerous plant pathogen that causes crop damage resulting in economic losses in the potato agriculture sector. The assay was based on the reverse transcription and recombinase polymerase amplification (RT-RPA) of PSTVd RNA coupled with amplicon detection via lateral flow assay (LFA). Primers labeled with fluorescein and biotin were designed for RT-RPA for effective recognition of the loop regions in the high-structured circular RNA of PSTVd. The labeled DNA amplicon was detected using lateral flow test strips consisting of a conjugate of gold nanoparticles with antibodies specific to fluorescein and streptavidin in the test zone. The RT-RPA-LFA detected 106 copies of in vitro transcribed PSTVd RNA in reaction or up to 1:107 diluted extracts of infected plant leaves. The assay took 30 min, including the RT-RPA stage and the LFA stage. The testing of healthy and infected potato samples showed full concordance between the developed RT-RPA-LFA and quantitative reverse transcription polymerase chain reaction (RT-qPCR) and the commercial kit. The obtained results proved the feasibility of using the developed assay to detect PSTVd from a natural source.
Collapse
Affiliation(s)
- Aleksandr V. Ivanov
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia; (A.V.I.); (A.V.Z.); (I.V.S.)
| | - Irina V. Shmyglya
- A. G. Lorch Russian Potato Research Center, Kraskovo 140051, Russia;
| | - Anatoly V. Zherdev
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia; (A.V.I.); (A.V.Z.); (I.V.S.)
| | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia; (A.V.I.); (A.V.Z.); (I.V.S.)
- Correspondence: ; Tel.: +7-495-954-3142
| | - Irina V. Safenkova
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia; (A.V.I.); (A.V.Z.); (I.V.S.)
| |
Collapse
|
21
|
Identification and Molecular Mechanisms of Key Nucleotides Causing Attenuation in Pathogenicity of Dahlia Isolate of Potato Spindle Tuber Viroid. Int J Mol Sci 2020; 21:ijms21197352. [PMID: 33027943 PMCID: PMC7583970 DOI: 10.3390/ijms21197352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/18/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
While the potato spindle tuber viroid (PSTVd) variant, PSTVd-Dahlia (PSTVd-D or PSTVd-Dwt) induces very mild symptoms in tomato cultivar 'Rutgers', PSTVd-Intermediate (PSTVd-I or PSTVd-Iwt) induces severe symptoms. These two variants differ by nine nucleotides, of which six mutations are located in the terminal left (TL) to the pathogenicity (P) domains. To evaluate the importance of mutations located in the TL to the P domains, ten types of point mutants were created by swapping the nucleotides between the two viroid variants. Bioassay in tomato plants demonstrated that two mutants created on PSTVd-Iwt at positions 42 and 64 resulted in symptom attenuation. Phenotypic and RT-qPCR analysis revealed that mutation at position 42 of PSTVd-Iwt significantly reduced disease severity and accumulation of the viroid, whereas mutation at position 64 showed a significant reduction in stunting when compared to the PSTVd-Iwt infected plant. RT-qPCR analysis on pathogenesis-related protein 1b1 and chalcone synthase genes showed a direct correlation with symptom severity whereas the expansin genes were down-regulated irrespective of the symptom severity. These results indicate that the nucleotides at positions 42 and 64 are in concert with the ones at positions 43, 310, and 311/312, which determines the slower and stable accumulation of PSTVd-D without eliciting excessive host defense responses thus contributing in the attenuation of disease symptom.
Collapse
|
22
|
Adkar-Purushothama CR, Perreault JP. Impact of Nucleic Acid Sequencing on Viroid Biology. Int J Mol Sci 2020; 21:ijms21155532. [PMID: 32752288 PMCID: PMC7432327 DOI: 10.3390/ijms21155532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/26/2022] Open
Abstract
The early 1970s marked two breakthroughs in the field of biology: (i) The development of nucleotide sequencing technology; and, (ii) the discovery of the viroids. The first DNA sequences were obtained by two-dimensional chromatography which was later replaced by sequencing using electrophoresis technique. The subsequent development of fluorescence-based sequencing method which made DNA sequencing not only easier, but many orders of magnitude faster. The knowledge of DNA sequences has become an indispensable tool for both basic and applied research. It has shed light biology of viroids, the highly structured, circular, single-stranded non-coding RNA molecules that infect numerous economically important plants. Our understanding of viroid molecular biology and biochemistry has been intimately associated with the evolution of nucleic acid sequencing technologies. With the development of the next-generation sequence method, viroid research exponentially progressed, notably in the areas of the molecular mechanisms of viroids and viroid diseases, viroid pathogenesis, viroid quasi-species, viroid adaptability, and viroid–host interactions, to name a few examples. In this review, the progress in the understanding of viroid biology in conjunction with the improvements in nucleotide sequencing technology is summarized. The future of viroid research with respect to the use of third-generation sequencing technology is also briefly envisaged.
Collapse
|
23
|
Leonetti P, Miesen P, van Rij RP, Pantaleo V. Viral and subviral derived small RNAs as pathogenic determinants in plants and insects. Adv Virus Res 2020; 107:1-36. [PMID: 32711727 DOI: 10.1016/bs.aivir.2020.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The phenotypic manifestations of disease induced by viruses and subviral infectious entities are the result of complex molecular interactions between host and viral factors. The viral determinants of the diseased phenotype have traditionally been sought at the level of structural or non-structural proteins. However, the discovery of RNA silencing mechanisms has led to speculations that determinants of the diseased phenotype are caused by viral nucleic acid sequences in addition to proteins. RNA silencing is a gene regulation mechanism conserved within eukaryotic kingdoms (with the exception of some yeast species), and in plants and insects it also functions as an antiviral mechanism. Non-coding RNAs of viral origin, ranging in size from 21 to 24 nucleotides (viral small interfering RNAs, vsiRNAs) accumulate in virus-infected tissues and organs, in some cases to comparable levels as the entire complement of host-encoded small interfering RNAs. Upon incorporation into RNA-induced silencing complexes, vsiRNAs can mediate cleavage or induce translational inhibition of nucleic acid targets in a sequence-specific manner. This review focuses on recent findings that suggest an increased complexity of small RNA-based interactions between virus and host. We mainly address plant viruses, but where applicable discuss insect viruses as well. Prominence is given to studies that have indisputably demonstrated that vsiRNAs determine diseased phenotype by either carrying sequence determinants or, indirectly, by altering host-gene regulatory pathways. Results from these studies suggest biotechnological applications, which are also discussed.
Collapse
Affiliation(s)
- Paola Leonetti
- Department of Biology, Agricultural and Food Sciences, Institute for Sustainable Plant Protection, CNR, Bari, Italy
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Vitantonio Pantaleo
- Department of Biology, Agricultural and Food Sciences, Institute for Sustainable Plant Protection, CNR, Bari, Italy..
| |
Collapse
|
24
|
Yang Y, Xing F, Li S, Che HY, Wu ZG, Candresse T, Li SF. Dendrobium viroid, a new monocot-infecting apscaviroid. Virus Res 2020; 282:197958. [PMID: 32277953 DOI: 10.1016/j.virusres.2020.197958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 12/17/2022]
Abstract
Viroids are small circular RNA molecules which have been found to infect many dicot species. Only coconut cadang-cadang viroid and coconut tinangaja viroid have been reported so far to infect a monocot (coconut). Data mining in silico has proven an efficient approach to identify new viruses/viroids, and a systematic screen of public transcriptomic data revealed a 648 nucleotides (nt) sequence potentially representing a novel viroid-like RNA in a transcriptome shotgun assembly from Dendrobium officinale. This sequence contained two central conserved regions (CCRs) characteristic of members of the genus Apscaviroid, indicating that the viroid-like RNA is 324 nt in length. The infectivity of dimeric RNA transcripts generated by in vitro transcription of a synthetic cDNA, was demonstrated by directly injecting into the stems of young Dendrobium officinale plants. The presence of this novel viroid, tentatively designated as Dendrobium viroid (DVd), in the inoculated plants was confirmed by 2D-PAGE together with northern hybridization. DVd is predicted to have a rod-like secondary structure containing a CCR and a terminal conserved region (TCR), and phylogenetic analysis shows that it groups with the known members of the genus Apscaviroid. It is most closely related to citrus viroid V (56% nt identity). A field survey revealed a low DVd incidence (0.96%) in Dendrobium species in China. To our best knowledge, DVd is the only viroid known to infect orchids and the third one from monocotyledonous plants.
Collapse
Affiliation(s)
- Yi Yang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Fei Xing
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuai Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hai-Yan Che
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Zhi-Gang Wu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou China
| | | | - Shi-Fang Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
25
|
Chiaki Y, Ito T. Characterization of a distinct variant of hop stunt viroid and a new apscaviroid detected in grapevines. Virus Genes 2020; 56:260-265. [PMID: 31916137 DOI: 10.1007/s11262-019-01728-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 12/27/2019] [Indexed: 10/25/2022]
Abstract
Using next-generation sequencing, we detected a novel variant of hop stunt viroid (HSVd) in grapevine 'Chenin blanc' (Vitis vinifera L.) and a new viroid species in 'Nachubearmarie' (Vitis labrusca L. × V. vinifera). The HSVd variant termed HSVd-CB has 296 nucleotides with up to 82% sequence identity with other HSVd variants such as HSVd-AP1 (Genbank accession EF523826). Many nucleotide changes, deletions, and insertions were sporadically found in HSVd-CB relative to HSVd-AP1 in the pathogenic and variable domains. Although several variations were also found in the central domain, few variations were found in the terminal left and right domains, including no variations in the terminal conserved hairpin. The new viroid, tentatively termed Japanese grapevine viroid (JGVd), has 367 nucleotides and has genetic features characteristic of the genus Apscaviroid. JGVd shared the highest nucleotide sequence identity (68%) with a persimmon latent viroid (PLVd) in its overall genome. However, the JGVd sequence shows chimerism with the partial genomes of other apscaviroids from apple, grapevine, and citrus. Phylogenetic analyses showed that only HSVd-CB formed a distinct branch from the cluster of the other HSVd variants and JGVd and PLVd formed a distinct branch from all other grapevine-infecting apscaviroids.
Collapse
Affiliation(s)
- Yuya Chiaki
- Grape and Persimmon Research Station, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Akitsu, Higashihiroshima, Hiroshima, 739-2494, Japan
| | - Takao Ito
- Grape and Persimmon Research Station, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Akitsu, Higashihiroshima, Hiroshima, 739-2494, Japan.
| |
Collapse
|
26
|
Adkar-Purushothama CR, Perreault JP. Current overview on viroid-host interactions. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1570. [PMID: 31642206 DOI: 10.1002/wrna.1570] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 01/03/2023]
Abstract
Viroids are one of the most enigmatic highly structured, circular, single-stranded RNA phytopathogens. Although they are not known to code for any peptide, viroids induce visible symptoms in susceptible host plants that resemble those associated with many plant viruses. It is known that viroids induce disease symptoms by direct interaction with host factors; however, the precise mechanism by which this occurs remains poorly understood. Studies on the host's responses to viroid infection, host susceptibility and nonhost resistance have been underway for several years, but much remains to be done in order to fully understand the complex nature of viroid-host interactions. Recent progress using molecular biology techniques combined with computational algorithms, in particular evidence of the role of viroid-derived small RNAs in the RNA silencing pathways of a disease network, has widened the knowledge of viroid pathogenicity. The complexity of viroid-host interactions has been revealed in the past decades to include, but not be limited to, the involvement of host factors, viroid structural complexity, and viroid-induced ribosomal stress, which is further boosted by the discovery of long noncoding RNAs (lncRNAs). In this review, the current understanding of the viroid-host interaction has been summarized with the goal of simplifying the complexity of viroid biology for future research. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Charith Raj Adkar-Purushothama
- MYM Nutraceuticals Inc, Vancouver, British Columbia, Canada.,RNA Group/Groupe ARN, Département de Biochimie, Faculté de médecine des sciences de la santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Québec, Canada
| | - Jean-Pierre Perreault
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de médecine des sciences de la santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Québec, Canada
| |
Collapse
|
27
|
Moreno M, Vázquez L, López-Carrasco A, Martín-Gago J, Flores R, Briones C. Direct visualization of the native structure of viroid RNAs at single-molecule resolution by atomic force microscopy. RNA Biol 2019; 16:295-308. [PMID: 30734641 PMCID: PMC6380281 DOI: 10.1080/15476286.2019.1572436] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/11/2018] [Accepted: 01/17/2019] [Indexed: 11/01/2022] Open
Abstract
Viroids are small infectious, non-protein-coding circular RNAs that replicate independently and, in some cases, incite diseases in plants. They are classified into two families: Pospiviroidae, composed of species that have a central conserved region (CCR) and replicate in the cell nucleus, and Avsunviroidae, containing species that lack a CCR and whose multimeric replicative intermediates of either polarity generated in plastids self-cleave through hammerhead ribozymes. The compact, rod-like or branched, secondary structures of viroid RNAs have been predicted by RNA folding algorithms and further examined using different in vitro and in vivo experimental techniques. However, direct data about their native tertiary structure remain scarce. Here we have applied atomic force microscopy (AFM) to image at single-molecule resolution different variant RNAs of three representative viroids: potato spindle tuber viroid (PSTVd, family Pospiviroidae), peach latent mosaic viroid and eggplant latent viroid (PLMVd and ELVd, family Avsunviroidae). Our results provide a direct visualization of their native, three-dimensional conformations at 0 and 4 mM Mg2+ and highlight the role that some elements of tertiary structure play in their stabilization. The AFM images show that addition of 4 mM Mg2+ to the folding buffer results in a size contraction in PSTVd and ELVd, as well as in PLMVd when the kissing-loop interaction that stabilizes its 3D structure is preserved.
Collapse
Affiliation(s)
- M. Moreno
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid, Spain
| | - L. Vázquez
- Departamento de Superficies y Recubrimientos, Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, Madrid, Spain
| | - A. López-Carrasco
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
| | - J.A. Martín-Gago
- Departamento de Superficies y Recubrimientos, Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, Madrid, Spain
| | - R. Flores
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
| | - C. Briones
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid, Spain
- Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Spain
| |
Collapse
|
28
|
Thibaut O, Claude B. Innate Immunity Activation and RNAi Interplay in Citrus Exocortis Viroid-Tomato Pathosystem. Viruses 2018; 10:E587. [PMID: 30373191 PMCID: PMC6266551 DOI: 10.3390/v10110587] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/18/2018] [Accepted: 10/24/2018] [Indexed: 12/21/2022] Open
Abstract
Although viroids are the smallest and simplest plant pathogens known, the molecular mechanisms underlying their pathogenesis remain unclear. To unravel these mechanisms, a dual approach was implemented consisting of in silico identification of potential tomato silencing targets of pospiviroids, and the experimental validation of these targets through the sequencing of small RNAs and RNA ends extracted from tomatoes infected with a severe isolate of Citrus exocortis viroid (CEVd). The generated RNA ends were also used to monitor the differentially-expressed genes. These analyses showed that when CEVd symptoms are well established: (i) CEVd are degraded by at least three Dicer-like (DCL) proteins and possibly by RNA-induced silencing complex (RISC), (ii) five different mRNAs are partially degraded through post-transcriptional gene silencing (PTGS), including argonaute 2a, which is further degraded in phasiRNAs, (iii) Dicer-like 2b and 2d are both upregulated and degraded in phasiRNAs, and (iv) CEVd infection induced a significant shift in gene expression allowing to explain the usual symptoms of pospiviroids on tomato and to demonstrate the constant activation of host innate immunity and systemic acquired resistance (SAR) by these pathogenic RNAs. Finally, based on in silico analysis, potential immunity receptor candidates of viroid-derived RNAs are suggested.
Collapse
Affiliation(s)
- Olivier Thibaut
- Life Sciences Department, Walloon agricultural research Centre, Rue de Liroux 4, 5030 Gembloux, Belgium.
- UCLouvain, Earth&Life Institute, Croix du Sud 2bte L7.05.03, 1348 Louvain-la-Neuve, Belgium.
| | - Bragard Claude
- UCLouvain, Earth&Life Institute, Croix du Sud 2bte L7.05.03, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
29
|
Yanagisawa H, Sano T, Hase S, Matsushita Y. Influence of the terminal left domain on horizontal and vertical transmissions of tomato planta macho viroid and potato spindle tuber viroid through pollen. Virology 2018; 526:22-31. [PMID: 30317103 DOI: 10.1016/j.virol.2018.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 11/18/2022]
Abstract
Viroids can be transmitted vertically and/or horizontally by pollen. Tomato planta macho viroid (TPMVd) has a high rate of horizontal transmission by pollen, whereas potato spindle tuber viroid (PSTVd) does not. To specify the domain(s) involved in horizontal transmission, four viroid chimeras were created by exchanging the terminal left (TL) and/or pathogenicity (P) domains between PSTVd and TPMVd. PSTVd-based chimeras containing TPMVd-TL and P, or TPMVd-TL alone, displayed a high rate of horizontal transmission. TPMVd-based chimeras containing PSTVd-TL and P lost infectivity, and those containing PSTVd-TL alone displayed a low rate of horizontal transmission. In addition, the vertical transmission rate was also higher in the mutants containing TPMVd-TL than in the others. These findings indicate that the sequences or structures in the TL and P (although the role is limited) domains are important not only for horizontal but also for vertical transmission by pollen.
Collapse
Affiliation(s)
- Hironobu Yanagisawa
- Central Region Agricultural Research Center, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8666, Japan; The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan.
| | - Teruo Sano
- Plant Pathology Laboratory, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8560, Japan.
| | - Shu Hase
- Plant Pathology Laboratory, Faculty of Agriculture, Yamagata University, Tsuruoka, Yamagata 997-0037, Japan.
| | - Yosuke Matsushita
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8519, Japan.
| |
Collapse
|
30
|
Potato Spindle Tuber Viroid Modulates Its Replication through a Direct Interaction with a Splicing Regulator. J Virol 2018; 92:JVI.01004-18. [PMID: 30068655 DOI: 10.1128/jvi.01004-18] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/29/2018] [Indexed: 12/13/2022] Open
Abstract
Viroids are circular noncoding RNAs (ncRNAs) that infect plants. Despite differences in the genetic makeup and biogenesis, viroids and various long ncRNAs all rely on RNA structure-based interactions with cellular factors for function. Viroids replicating in the nucleus utilize DNA-dependent RNA polymerase II for transcription, a process that involves a unique splicing form of transcription factor IIIA (TFIIIA-7ZF). Here, we provide evidence showing that potato spindle tuber viroid (PSTVd) interacts with a TFIIIA splicing regulator (ribosomal protein L5 [RPL5]) in vitro and in vivo PSTVd infection compromises the regulatory role of RPL5 over splicing of TFIIIA transcripts, while ectopic expression of RPL5 reduces TFIIIA-7ZF expression and attenuates PSTVd accumulation. Furthermore, we illustrate that the RPL5 binding site on the PSTVd genome resides in the central conserved region critical for replication. Together, our data suggest that viroids can regulate their own replication and modulate specific regulatory factors leading to splicing changes in only one or a few genes. This study also has implications for understanding the functional mechanisms of ncRNAs and elucidating the global splicing changes in various host-pathogen interactions.IMPORTANCE Viroids are the smallest replicons among all living entities. As circular noncoding RNAs, viroids can replicate and spread in plants, often resulting in disease symptoms. Potato spindle tuber viroid (PSTVd), the type species of nuclear-replicating viroids, requires a unique splicing form of transcription factor IIIA (TFIIIA-7ZF) for its propagation. Here, we provide evidence showing that PSTVd directly interacts with a splicing regulator, RPL5, to favor the expression of TFIIIA-7ZF, thereby promoting viroid replication. This finding provides new insights to better understand viroid biology and sheds light on the noncoding RNA-based regulation of splicing. Our discovery also establishes RPL5 as a novel negative factor regulating viroid replication in the nucleus and highlights a potential means for viroid control.
Collapse
|
31
|
Potato Spindle Tuber Viroid RNA-Templated Transcription: Factors and Regulation. Viruses 2018; 10:v10090503. [PMID: 30227597 PMCID: PMC6164485 DOI: 10.3390/v10090503] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/10/2018] [Accepted: 09/15/2018] [Indexed: 12/14/2022] Open
Abstract
Viroids are circular noncoding RNAs that infect plants. Without encoding any protein, these noncoding RNAs contain the necessary genetic information for propagation in hosts. Nuclear-replicating viroids employ DNA-dependent RNA polymerase II (Pol II) for replication, a process that makes a DNA-dependent enzyme recognize RNA templates. Recently, a splicing variant of transcription factor IIIA (TFIIIA-7ZF) was identified as essential for Pol II to replicate potato spindle tuber viroid (PSTVd). The expression of TFIIIA-7ZF, particularly the splicing event, is regulated by a ribosomal protein (RPL5). PSTVd modulates its expression through a direct interaction with RPL5 resulting in optimized expression of TFIIIA-7ZF. This review summarizes the recent discoveries of host factors and regulatory mechanisms underlying PSTVd-templated transcription processes and raises new questions that may help future exploration in this direction. In addition, it briefly compares the machinery and the regulatory mechanism for PSTVd with the replication/transcription system of human hepatitis delta virus.
Collapse
|
32
|
Więsyk A, Iwanicka-Nowicka R, Fogtman A, Zagórski-Ostoja W, Góra-Sochacka A. Time-Course Microarray Analysis Reveals Differences between Transcriptional Changes in Tomato Leaves Triggered by Mild and Severe Variants of Potato Spindle Tuber Viroid. Viruses 2018; 10:v10050257. [PMID: 29762480 PMCID: PMC5977250 DOI: 10.3390/v10050257] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/09/2018] [Accepted: 05/12/2018] [Indexed: 01/06/2023] Open
Abstract
Viroids are small non-capsidated non-coding RNA replicons that utilize host factors for efficient propagation and spread through the entire plant. They can incite specific disease symptoms in susceptible plants. To better understand viroid-plant interactions, we employed microarray analysis to observe the changes of gene expression in “Rutgers” tomato leaves in response to the mild (M) and severe (S23) variants of potato spindle tuber viroid (PSTVd). The changes were analyzed over a time course of viroid infection development: (i) the pre-symptomatic stage; (ii) early symptoms; (iii) full spectrum of symptoms and (iv) the so-called ‘recovery’ stage, when stem regrowth was observed in severely affected plants. Gene expression profiles differed depending on stage of infection and variant. In S23-infected plants, the expression of over 3000 genes was affected, while M-infected plants showed 3-fold fewer differentially expressed genes, only 20% of which were specific to the M variant. The differentially expressed genes included many genes related to stress; defense; hormone metabolism and signaling; photosynthesis and chloroplasts; cell wall; RNA regulation, processing and binding; protein metabolism and modification and others. The expression levels of several genes were confirmed by nCounter analysis.
Collapse
Affiliation(s)
- Aneta Więsyk
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; (A.W.); (R.I.-N.); (A.F.)
| | - Roksana Iwanicka-Nowicka
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; (A.W.); (R.I.-N.); (A.F.)
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Anna Fogtman
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; (A.W.); (R.I.-N.); (A.F.)
| | - Włodzimierz Zagórski-Ostoja
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; (A.W.); (R.I.-N.); (A.F.)
| | - Anna Góra-Sochacka
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; (A.W.); (R.I.-N.); (A.F.)
- Correspondence: ; Tel.: +48-22-592-34-08; Fax: +48-22-592-21-90
| |
Collapse
|
33
|
Allelic RNA Motifs in Regulating Systemic Trafficking of Potato Spindle Tuber Viroid. Viruses 2018; 10:v10040160. [PMID: 29601476 PMCID: PMC5923454 DOI: 10.3390/v10040160] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 01/07/2023] Open
Abstract
Intercellular RNA trafficking has been shown as a widely-existing phenomenon that has significant functions in many aspects of biology. Viroids, circular noncoding RNAs that cause plant diseases, have been a model to dissect the role of RNA structural motifs in regulating intercellular RNA trafficking in plants. Recent studies on potato spindle tuber viroid (PSTVd) showed that the RNA motif loop 19 is important for PSTVd to spread from palisade to spongy mesophyll in infected leaves. Here, we performed saturated mutational analysis to uncover all possible functional variants of loop 19 and exploit this data to pinpoint to a three-dimensional structural model of this motif. Interestingly, we found that two distinct structural motifs can replace loop 19 and retain the systemic trafficking capacity. One of the alternative structures rapidly emerged from the inoculation using a loop 19 abolished mutant that is not capable of systemic trafficking. Our observation indicates the flexibility of multiple structural arrangements interchangeably exerting similar function at a particular RNA locus. Taken together, this study deepens the understanding of RNA structural motifs-regulated viroid RNA trafficking, which has broad implications for studying RNA intercellular trafficking as well.
Collapse
|
34
|
Processing of Potato Spindle Tuber Viroid RNAs in Yeast, a Nonconventional Host. J Virol 2017; 91:JVI.01078-17. [PMID: 28978701 DOI: 10.1128/jvi.01078-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/23/2017] [Indexed: 11/20/2022] Open
Abstract
Potato spindle tuber viroid (PSTVd) is a circular, single-stranded, noncoding RNA plant pathogen that is a useful model for studying the processing of noncoding RNA in eukaryotes. Infective PSTVd circles are replicated via an asymmetric rolling circle mechanism to form linear multimeric RNAs. An endonuclease cleaves these into monomers, and a ligase seals these into mature circles. All eukaryotes may have such enzymes for processing noncoding RNA. As a test, we investigated the processing of three PSTVd RNA constructs in the yeast Saccharomyces cerevisiae Of these, only one form, a construct that adopts a previously described tetraloop-containing conformation (TL), produces circles. TL has 16 nucleotides of the 3' end duplicated at the 5' end and a 3' end produced by self-cleavage of a delta ribozyme. The other two constructs, an exact monomer flanked by ribozymes and a trihelix-forming RNA with requisite 5' and 3' duplications, do not produce circles. The TL circles contain nonnative nucleotides resulting from the 3' end created by the ribozyme and the 5' end created from an endolytic cleavage by yeast at a site distinct from where potato enzymes cut these RNAs. RNAs from all three transcripts are cleaved in places not on path for circle formation, likely representing RNA decay. We propose that these constructs fold into distinct RNA structures that interact differently with host cell RNA metabolism enzymes, resulting in various susceptibilities to degradation versus processing. We conclude that PSTVd RNA is opportunistic and may use different processing pathways in different hosts.IMPORTANCE In higher eukaryotes, the majority of transcribed RNAs do not encode proteins. These noncoding RNAs are responsible for mRNA regulation, control of the expression of regulatory microRNAs, sensing of changes in the environment by use of riboswitches (RNAs that change shape in response to environmental signals), catalysis, and more roles that are still being uncovered. Some of these functions may be remnants from the RNA world and, as such, would be part of the evolutionary past of all forms of modern life. Viroids are noncoding RNAs that can cause disease in plants. Since they encode no proteins, they depend on their own RNA and on host proteins for replication and pathogenicity. It is likely that viroids hijack critical host RNA pathways for processing the host's own noncoding RNA. These pathways are still unknown. Elucidating these pathways should reveal new biological functions of noncoding RNA.
Collapse
|
35
|
Nabeshima T, Doi M, Hosokawa M. Comparative Analysis of Chrysanthemum Stunt Viroid Accumulation and Movement in Two Chrysanthemum ( Chrysanthemum morifolium) Cultivars with Differential Susceptibility to the Viroid Infection. FRONTIERS IN PLANT SCIENCE 2017; 8:1940. [PMID: 29250083 PMCID: PMC5715398 DOI: 10.3389/fpls.2017.01940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/27/2017] [Indexed: 06/07/2023]
Abstract
Chrysanthemum stunt viroid (CSVd) was inoculated into two chrysanthemum (Chrysanthemum morifolium) cultivars, the CSVd-susceptible cultivar Piato and the CSVd-resistant cultivar Mari Kazaguruma. For CSVd inoculation, grafting and Agrobacterium-mediated inoculation were used. In grafting experiments, CSVd was detectable in Mari Kazaguruma after grafting onto infected Piato, but after removal of infected rootstocks, CSVd could not be detected in the uppermost leaves. In agroinfection experiments, CSVd systemic infection was observed in Piato but not in Mari Kazaguruma. However, agro-inoculated leaves of Mari Kazaguruma accumulated circular CSVd RNA to levels equivalent to those in Piato at 7 days post-inoculation. In situ detection of CSVd in inoculated leaves revealed that CSVd was absent in phloem of Mari Kazaguruma, while CSVd strongly localized to this site in Piato. We hypothesize that CSVd resistance in Mari Kazaguruma relates not to CSVd replication but to CSVd movement in leaves.
Collapse
|
36
|
López-Carrasco A, Ballesteros C, Sentandreu V, Delgado S, Gago-Zachert S, Flores R, Sanjuán R. Different rates of spontaneous mutation of chloroplastic and nuclear viroids as determined by high-fidelity ultra-deep sequencing. PLoS Pathog 2017; 13:e1006547. [PMID: 28910391 PMCID: PMC5614642 DOI: 10.1371/journal.ppat.1006547] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 09/26/2017] [Accepted: 07/22/2017] [Indexed: 01/19/2023] Open
Abstract
Mutation rates vary by orders of magnitude across biological systems, being higher for simpler genomes. The simplest known genomes correspond to viroids, subviral plant replicons constituted by circular non-coding RNAs of few hundred bases. Previous work has revealed an extremely high mutation rate for chrysanthemum chlorotic mottle viroid, a chloroplast-replicating viroid. However, whether this is a general feature of viroids remains unclear. Here, we have used high-fidelity ultra-deep sequencing to determine the mutation rate in a common host (eggplant) of two viroids, each representative of one family: the chloroplastic eggplant latent viroid (ELVd, Avsunviroidae) and the nuclear potato spindle tuber viroid (PSTVd, Pospiviroidae). This revealed higher mutation frequencies in ELVd than in PSTVd, as well as marked differences in the types of mutations produced. Rates of spontaneous mutation, quantified in vivo using the lethal mutation method, ranged from 1/1000 to 1/800 for ELVd and from 1/7000 to 1/3800 for PSTVd depending on sequencing run. These results suggest that extremely high mutability is a common feature of chloroplastic viroids, whereas the mutation rates of PSTVd and potentially other nuclear viroids appear significantly lower and closer to those of some RNA viruses. Spontaneous mutations are the ultimate source of genetic variation and their characterization provides fundamental information about evolutionary processes. The highest mutation rate so far described corresponds to a hammerhead viroid infecting plant chloroplasts. Viroids are plant-exclusive parasites constituted by 250–400 nt-long, non-protein-coding RNAs, and are divided into two families with distinct mechanisms of replication and localization: chloroplastic (Avsunviroidae), and nuclear (Pospiviroidae). Here, we have used high-fidelity ultra-deep sequencing to compare side by side the mutation rates of one representative member of each viroid family in the same host. We found that the mutation rate of the nuclear viroid was several fold lower than that of the chloroplastic viroid.
Collapse
Affiliation(s)
- Amparo López-Carrasco
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, València, Spain
| | - Cristina Ballesteros
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, València, Spain
| | | | - Sonia Delgado
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, València, Spain
| | - Selma Gago-Zachert
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, València, Spain
- Department of Molecular Signal Processing, Leibniz Institute for Plant Biochemistry, Halle (Saale), Germany
| | - Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, València, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, València, Spain
- Departamento de Genética, Universitat de València, València, Spain
- * E-mail:
| |
Collapse
|
37
|
López-Carrasco A, Flores R. Dissecting the secondary structure of the circular RNA of a nuclear viroid in vivo: A "naked" rod-like conformation similar but not identical to that observed in vitro. RNA Biol 2017; 14:1046-1054. [PMID: 27574720 PMCID: PMC5680722 DOI: 10.1080/15476286.2016.1223005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 02/04/2023] Open
Abstract
With a minimal (250-400 nt), non-protein-coding, circular RNA genome, viroids rely on sequence/structural motifs for replication and colonization of their host plants. These motifs are embedded in a compact secondary structure whose elucidation is crucial to understand how they function. Viroid RNA structure has been tackled in silico with algorithms searching for the conformation of minimal free energy, and in vitro by probing in solution with RNases, dimethyl sulphate and bisulphite, and with selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE), which interrogates the RNA backbone at single-nucleotide resolution. However, in vivo approaches at that resolution have not been assayed. Here, after confirming by 3 termodynamics-based predictions and by in vitro SHAPE that the secondary structure adopted by the infectious monomeric circular (+) RNA of potato spindle tuber viroid (PSTVd) is a rod-like conformation with double-stranded segments flanked by loops, we have probed it in vivo with a SHAPE modification. We provide direct evidence that a similar, but not identical, rod-like conformation exists in PSTVd-infected leaves of Nicotiana benthamiana, verifying the long-standing view that this RNA accumulates in planta as a "naked" form rather than tightly associated with protecting host proteins. However, certain nucleotides of the central conserved region, including some of the loop E involved in key functions such as replication, are more SHAPE-reactive in vitro than in vivo. This difference is most likely due to interactions with proteins mediating some of these functions, or to structural changes promoted by other factors of the in vivo habitat.
Collapse
Affiliation(s)
- Amparo López-Carrasco
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| |
Collapse
|
38
|
Viability and genetic stability of potato spindle tuber viroid mutants with indels in specific loops of the rod-like secondary structure. Virus Res 2017; 240:94-100. [PMID: 28778395 DOI: 10.1016/j.virusres.2017.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 01/17/2023]
Abstract
Maintenance of the rod-like structure of potato spindle tuber viroid (PSTVd), which contains over 20 loops and bulges between double-stranded helices, is important for viroid biology. To study tolerance to modifications of the stem-loop structures and PSTVd capacity for mutation repair, we have created 6 mutants carrying 3-4 nucleotides deletions or insertions at three unique restriction sites, EagI, StyI and AvaII. Differences in the infectivity of these in vitro generated PSTVd mutants can result from where the mutations map, as well as from the extent to which the secondary structure of the molecule is affected. Deletion or insertion of 4 nucleotides at the EagI and StyI sites led to loss of infectivity. However, mutants with deletion (PSTVd-Ava-del) or insertion (PSTVd-Ava-in) of 3 nucleotides (221GAC223), at the AvaII site (loop 20) were viable but not genetically stable. In all analyzed plants, reversion to the wild type PSTVd-S23 sequence was observed for the PSTVd-Ava-in mutant a few weeks after agroinfiltration. Analysis of PSTVd-Ava-del progeny allowed the identification of 10 new sequence variants carrying various modifications, some of them having retained the original three nucleotide deletion at the AvaII site. Interestingly, other variants gained three nucleotides in the deletion site but did not revert to the original wild type sequence. The genetic stability of the progeny PSTVd-Ava-del sequence variants was evaluated in tomato leaves (early infection) and in both leaves and roots (late infection), respectively.
Collapse
|
39
|
Identification of a viroid-like RNA in a lychee Transcriptome Shotgun Assembly. Virus Res 2017; 240:1-7. [DOI: 10.1016/j.virusres.2017.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/03/2017] [Accepted: 07/03/2017] [Indexed: 11/20/2022]
|
40
|
Carbonell A, Daròs J. Artificial microRNAs and synthetic trans-acting small interfering RNAs interfere with viroid infection. MOLECULAR PLANT PATHOLOGY 2017; 18:746-753. [PMID: 28026103 PMCID: PMC6638287 DOI: 10.1111/mpp.12529] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/14/2016] [Accepted: 12/17/2016] [Indexed: 05/18/2023]
Abstract
Artificial microRNAs (amiRNAs) and synthetic trans-acting small interfering RNAs (syn-tasiRNAs) are two classes of artificial small RNAs (sRNAs) engineered to silence endogenous transcripts as well as viral RNAs in plants. Here, we explore the possibility of using amiRNAs and syn-tasiRNAs to specifically interfere with infections by viroids, small (250-400-nucleotide) non-coding circular RNAs with compact secondary structure infecting a wide range of plant species. The combined use of recent high-throughput methods for artificial sRNA construct generation and the Potato spindle tuber viroid (PSTVd)-Nicotiana benthamiana pathosystem allowed for the simple and time-effective screening of multiple artificial sRNAs targeting sites distributed along PSTVd RNAs of (+) or (-) polarity. The majority of amiRNAs were highly active in agroinfiltrated leaves when co-expressed with an infectious PSTVd transcript, as were syn-tasiRNAs derived from a construct including the five most effective amiRNA sequences. A comparative analysis showed that the effects of the most effective amiRNA and of the syn-tasiRNAs were similar in agroinfiltrated leaves, as well as in upper non-agroinfiltrated leaves in which PSTVd accumulation was significantly delayed. These results suggest that amiRNAs and syn-tasiRNAs can be used effectively to control viroid infections in plants.
Collapse
Affiliation(s)
- Alberto Carbonell
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas‐Universidad Politécnica de Valencia)Valencia46022Spain
| | - José‐Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas‐Universidad Politécnica de Valencia)Valencia46022Spain
| |
Collapse
|
41
|
Matoušek J, Siglová K, Jakše J, Radišek S, Brass JRJ, Tsushima T, Guček T, Duraisamy GS, Sano T, Steger G. Propagation and some physiological effects of Citrus bark cracking viroid and Apple fruit crinkle viroid in multiple infected hop (Humulus lupulus L.). JOURNAL OF PLANT PHYSIOLOGY 2017; 213:166-177. [PMID: 28395198 DOI: 10.1016/j.jplph.2017.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 06/07/2023]
Abstract
The hop metabolome important for the brewing industry and for medical purposes is endangered worldwide due to multiple viroid infections affecting hop physiology. Combinatorial biolistic hop inoculation with Citrus bark cracking viroid (CBCVd), Apple fruit crinkle viroid (AFCVd), Hop latent viroid, and Hop stunt viroid (HSVd) showed a low CBCVd compatibility with HSVd, while all other viroid combinations were highly compatible. Unlike to other viroids, single CBCVd propagation showed a significant excess of (-) over (+) strands in hop, tomato, and Nicotiana benthamiana, but not in citruses. Inoculation of hop with all viroids led to multiple infections with unstable viroid levels in individual plants in the pre- and post-dormancy periods, and to high plant mortality and morphological disorders. Hop isolates of CBCVd and AFCVd were highly stable, only minor quasispecies were detected. CBCVd caused a strong suppression of some crucial mRNAs related to the hop prenylflavonoid biosynthesis pathway, while AFCVd-caused effects were moderate. According to mRNA degradome analysis, this suppression was not caused by a direct viroid-specific small RNA-mediated degradation. CBCVd infection led to a strong induction of two hop transcription factors from WRKY family and to a disbalance of WRKY/WDR1 complexes important for activation of lupulin genes.
Collapse
Affiliation(s)
- J Matoušek
- Biology Centre ASCR v.v.i, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice 370 05, Czech Republic
| | - K Siglová
- Biology Centre ASCR v.v.i, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice 370 05, Czech Republic; University of South Bohemia, Faculty of Science, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - J Jakše
- University of Ljubljana, Biotechnical Faculty, Department of Agronomy, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - S Radišek
- Slovenian Institute of Hop Research and Brewing, Cesta Žalskega tabora 2, SI-3310 Žalec, Slovenia
| | - Joseph R J Brass
- Institute of Physical Biology, Heinrich-Heine-Universität Düsseldorf, D-40204 Düsseldorf, Germany
| | - T Tsushima
- Faculty of Agriculture and Life Science, Hirosaki University, Bubkyo-cho, Hirosaki 036-8561, Japan
| | - T Guček
- Slovenian Institute of Hop Research and Brewing, Cesta Žalskega tabora 2, SI-3310 Žalec, Slovenia
| | - G S Duraisamy
- Biology Centre ASCR v.v.i, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice 370 05, Czech Republic
| | - T Sano
- Faculty of Agriculture and Life Science, Hirosaki University, Bubkyo-cho, Hirosaki 036-8561, Japan
| | - G Steger
- Institute of Physical Biology, Heinrich-Heine-Universität Düsseldorf, D-40204 Düsseldorf, Germany.
| |
Collapse
|
42
|
Modelling the three-dimensional structure of the right-terminal domain of pospiviroids. Sci Rep 2017; 7:711. [PMID: 28386073 PMCID: PMC5429643 DOI: 10.1038/s41598-017-00764-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/13/2017] [Indexed: 12/20/2022] Open
Abstract
Viroids, the smallest know plant pathogens, consist solely of a circular, single-stranded, non-coding RNA. Thus for all of their biological functions, like replication, processing, and transport, they have to present sequence or structural features to exploit host proteins. Viroid binding protein 1 (Virp1) is indispensable for replication of pospiviroids, the largest genus of viroids, in a host plant as well as in protoplasts. Virp1 is known to bind at two sites in the terminal right (TR) domain of pospiviroids; each site consists of a purine- (R-) and a pyrimidine- (Y-)rich motif that are partially base-paired to each other. Here we model the important structural features of the domain and show that it contains an internal loop of two Y · Y cis Watson-Crick/Watson-Crick (cWW) pairs, an asymmetric internal loop including a cWW and a trans Watson/Hoogsteen pair, and a thermodynamically quite stable hairpin loop with several stacking interactions. These features are discussed in connection to the known biological functions of the TR domain.
Collapse
|
43
|
Li R, Padmanabhan C, Ling KS. A single base pair in the right terminal domain of tomato planta macho viroid is a virulence determinant factor on tomato. Virology 2016; 500:238-246. [PMID: 27838481 DOI: 10.1016/j.virol.2016.10.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/17/2016] [Accepted: 10/20/2016] [Indexed: 10/20/2022]
Abstract
Tomato planta macho viroid (TPMVd), including isolates previously designated as Mexican papita viroid (MPVd), causes serious disease on tomatoes in North America. Two predominant variants, sharing 93.8% sequence identity, incited distinct severe (MPVd-S) or mild (MPVd-M) symptoms on tomato. To identify virulence determinant factor, a series of chimeric infectious clones were generated using synthetic DNA approach to progressively replace each structural domain between the two variants. In bioassays on tomato 'Rutgers', three chimeras containing Terminal Left and Pathogenicity (MPVd-H1), Central (MPVd-H2), or Variable (MPVd-H3) of MPVd-S, incited mild to intermediate symptoms. However, a chimera containing Terminal Right (TR) of MPVd-S (MPVd-H4) incited severe symptoms. Only one base-pair mutation in the TR domain between MPVd-M (176U:A185) and MPVd-S (174G:C183) was identified. A reciprocal mutant (MPVd-H5) rendered the chimeric viroid mild on tomato. This single base-pair in the TR domain was determined as the virulence determinant factor for TPMVd.
Collapse
Affiliation(s)
- Rugang Li
- U.S. Department of Agriculture - Agricultural Research Service, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, USA; Agdia Inc., 52642 County Road 1, Elkhart, IN 46514, USA.
| | - Chellappan Padmanabhan
- U.S. Department of Agriculture - Agricultural Research Service, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, USA.
| | - Kai-Shu Ling
- U.S. Department of Agriculture - Agricultural Research Service, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, USA.
| |
Collapse
|
44
|
Katsarou K, Wu Y, Zhang R, Bonar N, Morris J, Hedley PE, Bryan GJ, Kalantidis K, Hornyik C. Insight on Genes Affecting Tuber Development in Potato upon Potato spindle tuber viroid (PSTVd) Infection. PLoS One 2016; 11:e0150711. [PMID: 26937634 PMCID: PMC4777548 DOI: 10.1371/journal.pone.0150711] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/18/2016] [Indexed: 01/12/2023] Open
Abstract
Potato (Solanum tuberosum L) is a natural host of Potato spindle tuber viroid (PSTVd) which can cause characteristic symptoms on developing plants including stunting phenotype and distortion of leaves and tubers. PSTVd is the type species of the family Pospiviroidae, and can replicate in the nucleus and move systemically throughout the plant. It is not well understood how the viroid can affect host genes for successful invasion and which genes show altered expression levels upon infection. Our primary focus in this study is the identification of genes which can affect tuber formation since viroid infection can strongly influence tuber development and especially tuber shape. In this study, we used a large-scale method to identify differentially expressed genes in potato. We have identified defence, stress and sugar metabolism related genes having altered expression levels upon infection. Additionally, hormone pathway related genes showed significant up- or down-regulation. DWARF1/DIMINUTO, Gibberellin 7-oxidase and BEL5 transcripts were identified and validated showing differential expression in viroid infected tissues. Our study suggests that gibberellin and brassinosteroid pathways have a possible role in tuber development upon PSTVd infection.
Collapse
Affiliation(s)
- Konstantina Katsarou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| | - Yun Wu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Runxuan Zhang
- Information and Computational Sciences, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Nicola Bonar
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Jenny Morris
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Pete E. Hedley
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Glenn J. Bryan
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Kriton Kalantidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- * E-mail: (KK); (CH)
| | - Csaba Hornyik
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
- * E-mail: (KK); (CH)
| |
Collapse
|
45
|
Abstract
Mature viroids consist of a noncoding, covalently closed circular RNA that is able to autonomously infect respective host plants. Thus, they must utilize proteins of the host for most biological functions such as replication, processing, transport, and pathogenesis. Therefore, viroids can be regarded as minimal parasites of the host machinery. They have to present to the host machinery the appropriate signals based on either their sequence or their structure. Here, we summarize such sequence and structural features critical for the biological functions of viroids.
Collapse
Affiliation(s)
- Gerhard Steger
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
| | - Jean-Pierre Perreault
- Département de biochimie, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliqueé sur le cancer, Université de Sherbrooke, Québec, Canada.
| |
Collapse
|
46
|
Tsushima D, Tsushima T, Sano T. Molecular dissection of a dahlia isolate of potato spindle tuber viroid inciting a mild symptoms in tomato. Virus Res 2015; 214:11-8. [PMID: 26732488 DOI: 10.1016/j.virusres.2015.12.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 12/19/2015] [Accepted: 12/21/2015] [Indexed: 12/30/2022]
Abstract
The dahlia isolate of potato spindle tuber viroid (PSTVd) accumulates slowly and induces mild disease symptoms in tomato (Solanum lycopersicum, cv. Rutgers) plants in contrast to the intermediate isolate (PSTVd-I). The dahlia isolate (PSTVd-D) differs from PSTVd-I in eight locations: 42 and 43 in the terminal left (TL); 64/65, 311, and 312/313 in the pathogenicity (P); 118 and 126 in the variable (V); and 201 in the terminal right (TR) domains. To investigate the molecular determinants in the PSTVd-D genome responsible for the attenuation of symptom severity and lower replication/accumulation in tomato plants, a series of mutants between PSTVd-D and PSTVd-I were constructed by focusing first on the mutations in the TL and P domains in the left-hand half of the molecule. Then, more detailed analysis was performed on the three mutations at positions 118, 126, and 201 in the V and TR domains. One of these mutations is located around the boundary of the right border of the RY-motif, a predicted recognition site of Virp1, a viroid-binding protein. Of 14 mutants (seven based on PSTVd-D and the other seven based on PSTVd-I) examined, 11 propagated stably and three lost infectivity. Mutations in the TL and P domains (42U, 43C, 310U/C, and U or UU insertion to 311/312 in PSTVd mild types) majorly influenced the expression of mild-like symptoms. In contrast, when each of the mutations at 118, 126, and 201 in the V and TR domains were exchanged independently, they minimally influenced systemic accumulation and symptom expression. Mutants based on PSTVd-D with PSTVd-I-type mutations at nucleotide positions 118, 126, and/or 201 showed mild symptoms similar to PSTVd-D, but their systemic accumulation was a little faster than PSTVd-D. In contrast, mutants based on PSTVd-I with PSTVd-D-type mutations at 118, 126, and/or 201 nucleotide positions showed severe symptoms similar to PSTVd-I, and the systemic accumulation was similar to or a little slower than PSTVd-I. The nucleotide at position 201 could be changed to U, G, or A, but C was not acceptable for replication. Because introduction of C at the position 201 can change the loop structure at the right boundary of the RY-motif's consensus sequence, the loop structure may influence recognition by Virp1.
Collapse
Affiliation(s)
- Daiki Tsushima
- Department of Bio-resources, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan; Union Graduate school of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Taro Tsushima
- Department of Bio-resources, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | - Teruo Sano
- Department of Bio-resources, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan.
| |
Collapse
|
47
|
RNAi mediated inhibition of viroid infection in transgenic plants expressing viroid-specific small RNAs derived from various functional domains. Sci Rep 2015; 5:17949. [PMID: 26656294 PMCID: PMC4677296 DOI: 10.1038/srep17949] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 11/09/2015] [Indexed: 12/25/2022] Open
Abstract
Previous attempts to develop RNAi-mediated viroid-resistant transgenic plants using nearly full-length Potato spindle tuber viroid (PSTVd) hairpin RNA (hpRNA) were successful; however unusual phenotypes resembling viroid infection occurred. Therefore, in the present work, transgenic Nicotiana benthamiana lines expressing both partial and truncated versions of PSTVd hpRNA were developed. Specifically, seven partial or truncated versions of PSTVd sequences were selected according to the hotspots of both PSTVd-sRNAs and functional domains of the PSTVd. A total of 21 transgenic lines Nicotiana benthamiana were developed under the control of either the CaMV-35S or the CoYMV promoters. All of the transgenic lines established here were monitored for the induction of phenotypic changes, for PSTVd-sRNA expression and for the resistance against PSTVd infection. Additionally, this study demonstrates the use of inverted repeat construct sequences as short as 26- to -49 nucleotides for both the efficient expression of the PSTVd-sRNA and the inhibition of PSTVd infection.
Collapse
|
48
|
Gago-Zachert S. Viroids, infectious long non-coding RNAs with autonomous replication. Virus Res 2015; 212:12-24. [PMID: 26319312 DOI: 10.1016/j.virusres.2015.08.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/20/2015] [Accepted: 08/22/2015] [Indexed: 10/23/2022]
Abstract
Transcriptome deep-sequencing studies performed during the last years confirmed that the vast majority of the RNAs transcribed in higher organisms correspond to several types of non-coding RNAs including long non-coding RNAs (lncRNAs). The study of lncRNAs and the identification of their functions, is still an emerging field in plants but the characterization of some of them indicate that they play an important role in crucial regulatory processes like flowering regulation, and responses to abiotic stress and plant hormones. A second group of lncRNAs present in plants is formed by viroids, exogenous infectious subviral plant pathogens well known since many years. Viroids are composed of circular RNA genomes without protein-coding capacity and subvert enzymatic activities of their hosts to complete its own biological cycle. Different aspects of viroid biology and viroid-host interactions have been elucidated in the last years and some of them are the main topic of this review together with the analysis of the state-of-the-art about the growing field of endogenous lncRNAs in plants.
Collapse
Affiliation(s)
- Selma Gago-Zachert
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany.
| |
Collapse
|
49
|
Adkar-Purushothama CR, Brosseau C, Giguère T, Sano T, Moffett P, Perreault JP. Small RNA Derived from the Virulence Modulating Region of the Potato spindle tuber viroid Silences callose synthase Genes of Tomato Plants. THE PLANT CELL 2015; 27:2178-94. [PMID: 26290537 PMCID: PMC4568511 DOI: 10.1105/tpc.15.00523] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/23/2015] [Accepted: 07/31/2015] [Indexed: 05/20/2023]
Abstract
The tomato (Solanum lycopersicum) callose synthase genes CalS11-like and CalS12-like encode proteins that are essential for the formation of callose, a major component of pollen mother cell walls; these enzymes also function in callose formation during pathogen infection. This article describes the targeting of these callose synthase mRNAs by a small RNA derived from the virulence modulating region of two Potato spindle tuber viroid variants. More specifically, viroid infection of tomato plants resulted in the suppression of the target mRNAs up to 1.5-fold, depending on the viroid variant used and the gene targeted. The targeting of these mRNAs by RNA silencing was validated by artificial microRNA experiments in a transient expression system and by RNA ligase-mediated rapid amplification of cDNA ends. Viroid mutants incapable of targeting callose synthase mRNAs failed to induce typical infection phenotypes, whereas a chimeric viroid obtained by swapping the virulence modulating regions of a mild and a severe variant of Potato spindle tuber viroid greatly affected the accumulation of viroids and the severity of disease symptoms. These data provide evidence of the silencing of multiple genes by a single small RNA derived from a viroid.
Collapse
Affiliation(s)
- Charith Raj Adkar-Purushothama
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de Médecine des Sciences de la Santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada
| | - Chantal Brosseau
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Quebec J1K 2R1, Canada
| | - Tamara Giguère
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de Médecine des Sciences de la Santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada
| | - Teruo Sano
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | - Peter Moffett
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Quebec J1K 2R1, Canada
| | - Jean-Pierre Perreault
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de Médecine des Sciences de la Santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada
| |
Collapse
|
50
|
Verhoeven J, Roenhorst J, Hooftman M, Meekes E, Flores R, Serra P. A pospiviroid from symptomless portulaca plants closely related to iresine viroid 1. Virus Res 2015; 205:22-6. [DOI: 10.1016/j.virusres.2015.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/06/2015] [Accepted: 05/07/2015] [Indexed: 11/30/2022]
|