1
|
Zhang P, Burel C, Plasson C, Kiefer-Meyer MC, Ovide C, Gügi B, Wan C, Teo G, Mak A, Song Z, Driouich A, Lerouge P, Bardor M. Characterization of a GDP-Fucose Transporter and a Fucosyltransferase Involved in the Fucosylation of Glycoproteins in the Diatom Phaeodactylum tricornutum. FRONTIERS IN PLANT SCIENCE 2019; 10:610. [PMID: 31164895 PMCID: PMC6536626 DOI: 10.3389/fpls.2019.00610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/25/2019] [Indexed: 05/21/2023]
Abstract
Although Phaeodactylum tricornutum is gaining importance in plant molecular farming for the production of high-value molecules such as monoclonal antibodies, little is currently known about key cell metabolism occurring in this diatom such as protein glycosylation. For example, incorporation of fucose residues in the glycans N-linked to protein in P. tricornutum is questionable. Indeed, such epitope has previously been found on N-glycans of endogenous glycoproteins in P. tricornutum. Meanwhile, the potential immunogenicity of the α(1,3)-fucose epitope present on plant-derived biopharmaceuticals is still a matter of debate. In this paper, we have studied molecular actors potentially involved in the fucosylation of the glycoproteins in P. tricornutum. Based on sequence similarities, we have identified a putative P. tricornutum GDP-L-fucose transporter and three fucosyltransferase (FuT) candidates. The putative P. tricornutum GDP-L-fucose transporter coding sequence was expressed in the Chinese Hamster Ovary (CHO)-gmt5 mutant lacking its endogenous GDP-L-fucose transporter activity. We show that the P. tricornutum transporter is able to rescue the fucosylation of proteins in this CHO-gmt5 mutant cell line, thus demonstrating the functional activity of the diatom transporter and its appropriate Golgi localization. In addition, we overexpressed one of the three FuT candidates, namely the FuT54599, in P. tricornutum and investigated its localization within Golgi stacks of the diatom. Our findings show that overexpression of the FuT54599 leads to a significant increase of the α(1,3)-fucosylation of the diatom endogenous glycoproteins.
Collapse
Affiliation(s)
- Peiqing Zhang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Carole Burel
- Laboratoire Glyco-MEV EA4358, UNIROUEN, Normandy University, Rouen, France
- Fédération de Recherche Normandie-Végétal – FED 4277, Rouen, France
| | - Carole Plasson
- Laboratoire Glyco-MEV EA4358, UNIROUEN, Normandy University, Rouen, France
- Fédération de Recherche Normandie-Végétal – FED 4277, Rouen, France
| | - Marie-Christine Kiefer-Meyer
- Laboratoire Glyco-MEV EA4358, UNIROUEN, Normandy University, Rouen, France
- Fédération de Recherche Normandie-Végétal – FED 4277, Rouen, France
| | - Clément Ovide
- Laboratoire Glyco-MEV EA4358, UNIROUEN, Normandy University, Rouen, France
- Fédération de Recherche Normandie-Végétal – FED 4277, Rouen, France
| | - Bruno Gügi
- Laboratoire Glyco-MEV EA4358, UNIROUEN, Normandy University, Rouen, France
- Fédération de Recherche Normandie-Végétal – FED 4277, Rouen, France
| | - Corrine Wan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Gavin Teo
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Amelia Mak
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Zhiwei Song
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Azeddine Driouich
- Laboratoire Glyco-MEV EA4358, UNIROUEN, Normandy University, Rouen, France
- Fédération de Recherche Normandie-Végétal – FED 4277, Rouen, France
| | - Patrice Lerouge
- Laboratoire Glyco-MEV EA4358, UNIROUEN, Normandy University, Rouen, France
- Fédération de Recherche Normandie-Végétal – FED 4277, Rouen, France
| | - Muriel Bardor
- Laboratoire Glyco-MEV EA4358, UNIROUEN, Normandy University, Rouen, France
- Fédération de Recherche Normandie-Végétal – FED 4277, Rouen, France
- Institut Universitaire de France (I.U.F.), Paris, France
| |
Collapse
|
2
|
Benedetti E, Pučić-Baković M, Keser T, Wahl A, Hassinen A, Yang JY, Liu L, Trbojević-Akmačić I, Razdorov G, Štambuk J, Klarić L, Ugrina I, Selman MHJ, Wuhrer M, Rudan I, Polasek O, Hayward C, Grallert H, Strauch K, Peters A, Meitinger T, Gieger C, Vilaj M, Boons GJ, Moremen KW, Ovchinnikova T, Bovin N, Kellokumpu S, Theis FJ, Lauc G, Krumsiek J. Network inference from glycoproteomics data reveals new reactions in the IgG glycosylation pathway. Nat Commun 2017; 8:1483. [PMID: 29133956 PMCID: PMC5684356 DOI: 10.1038/s41467-017-01525-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 09/25/2017] [Indexed: 12/19/2022] Open
Abstract
Immunoglobulin G (IgG) is a major effector molecule of the human immune response, and aberrations in IgG glycosylation are linked to various diseases. However, the molecular mechanisms underlying protein glycosylation are still poorly understood. We present a data-driven approach to infer reactions in the IgG glycosylation pathway using large-scale mass-spectrometry measurements. Gaussian graphical models are used to construct association networks from four cohorts. We find that glycan pairs with high partial correlations represent enzymatic reactions in the known glycosylation pathway, and then predict new biochemical reactions using a rule-based approach. Validation is performed using data from a GWAS and results from three in vitro experiments. We show that one predicted reaction is enzymatically feasible and that one rejected reaction does not occur in vitro. Moreover, in contrast to previous knowledge, enzymes involved in our predictions colocalize in the Golgi of two cell lines, further confirming the in silico predictions.
Collapse
Affiliation(s)
- Elisa Benedetti
- Institute of Computational Biology, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | | | - Toma Keser
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Annika Wahl
- Institute of Epidemiology 2, Research Unit Molecular Epidemiology, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Institute of Epidemiology 2, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Antti Hassinen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014 Oulu, Finland
| | - Jeong-Yeh Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
| | | | | | - Jerko Štambuk
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| | - Lucija Klarić
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, EH8 9AG Edinburgh, UK
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XU Edinburgh, UK
| | - Ivo Ugrina
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
- Faculty of Science, University of Split, 21000 Split, Croatia
- Intellomics Ltd., 10000 Zagreb, Croatia
| | | | - Manfred Wuhrer
- Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Igor Rudan
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, EH8 9AG Edinburgh, UK
| | - Ozren Polasek
- University of Split School of Medicine, 21000 Split, Croatia
- Gen-info Ltd., 10000 Zagreb, Croatia
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XU Edinburgh, UK
| | - Harald Grallert
- Institute of Epidemiology 2, Research Unit Molecular Epidemiology, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Institute of Epidemiology 2, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 40225 Düsseldorf, Germany
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians Universität, 81577 Munich, Germany
| | - Annette Peters
- Institute of Epidemiology 2, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Christian Gieger
- Institute of Epidemiology 2, Research Unit Molecular Epidemiology, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Institute of Epidemiology 2, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Marija Vilaj
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Kelley W. Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
| | - Tatiana Ovchinnikova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Nicolai Bovin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014 Oulu, Finland
| | - Fabian J. Theis
- Institute of Computational Biology, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Department of Mathematics, Technical University Munich, 85748 Garching bei München, Germany
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Jan Krumsiek
- Institute of Computational Biology, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 40225 Düsseldorf, Germany
| |
Collapse
|
3
|
Lipid transfer proteins and the tuning of compartmental identity in the Golgi apparatus. Chem Phys Lipids 2016; 200:42-61. [DOI: 10.1016/j.chemphyslip.2016.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 11/23/2022]
|
4
|
Mironov AA, Beznoussenko GV. The kiss-and-run model of intra-Golgi transport. Int J Mol Sci 2012; 13:6800-6819. [PMID: 22837664 PMCID: PMC3397496 DOI: 10.3390/ijms13066800] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 05/09/2012] [Accepted: 05/22/2012] [Indexed: 11/16/2022] Open
Abstract
The Golgi apparatus (GA) is the main station along the secretory pathway. Mechanisms of intra-Golgi transport remain unresolved. Three models compete with each other for the right to be defined as the paradigm. The vesicular model cannot explain the following: (1) lipid droplets and aggregates of procollagen that are larger than coatomer I (COPI)-dependent vesicles are transported across the GA; and (2) most anterograde cargoes are depleted in COPI vesicles. The compartment progression/maturation model has the following problems: (1) most Golgi-resident proteins are depleted in COPI vesicles; (2) there are no COPI vesicles for the recycling of the resident proteins in the trans-most-Golgi cisterna; and (3) different proteins have different rates of intra-Golgi transport. The diffusion model based on permanent inter-cisternal connections cannot explain the existence of lipid, ionic and protein gradients across the Golgi stacks. In contrast, the kiss-and-run model has the potential to explain most of the experimental observations. The kiss-and-run model can be symmetric when fusion and then fission occurs in the same place, and asymmetric when fusion takes place in one location, whereas fission takes place in another. The asymmetric kiss-and-run model resembles the carrier maturation mechanism, and it can be used to explain the transport of large cargo aggregates.
Collapse
Affiliation(s)
- Alexander A. Mironov
- IFOM Foundation, FIRC Institute of Molecular Oncology (IFOM-IEO Campus), Via Adamello 16, 20139, Milan, Italy
| | - Galina V. Beznoussenko
- IFOM Foundation, FIRC Institute of Molecular Oncology (IFOM-IEO Campus), Via Adamello 16, 20139, Milan, Italy
| |
Collapse
|
5
|
Nilsson T, Au CE, Bergeron JJM. Sorting out glycosylation enzymes in the Golgi apparatus. FEBS Lett 2009; 583:3764-9. [PMID: 19878678 DOI: 10.1016/j.febslet.2009.10.064] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 10/20/2009] [Indexed: 11/26/2022]
Abstract
The study of glycosylation and glycosylation enzymes has been instrumental for the advancement of Cell Biology. After Neutra and Leblond showed that the Golgi apparatus is the main site of glycosylation, elucidation of oligosaccharide structures by Baenziger and Kornfeld and subsequent mapping of glycosylation enzymes followed. This enabled development of anin vitrotransport assay by Rothman and co-workers using glycosylation to monitor intra Golgi transport which, complemented by yeast genetics by Schekman and co-workers, provided much of the fundamental insights and key components of the secretory pathway that we today take for granted. Glycobiology continues to play a key role in Cell Biology and here, we look at the use of glycosylation enzymes to elucidate intra Golgi transport.
Collapse
Affiliation(s)
- Tommy Nilsson
- The Research Institute of the McGill University Health Centre, Department of Medicine, McGill University, 687 Pine Avenue West, Montreal, Quebec, Canada H3A 1A1.
| | | | | |
Collapse
|
6
|
Dejgaard SY, Murshid A, Dee KM, Presley JF. Confocal microscopy-based linescan methodologies for intra-Golgi localization of proteins. J Histochem Cytochem 2007; 55:709-19. [PMID: 17341478 DOI: 10.1369/jhc.6a7090.2007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Localization of resident Golgi proteins to earlier (cis) or later (trans) Golgi compartments has traditionally required quantitative immunocytochemistry and electron microscopy, which are inaccessible to many researchers. For this reason, light microscopy has often been used, initially for localization of Golgi glycotransferases and, more recently, for other Golgi proteins (e.g., Arf1, GBF1, Rab6). Quantitation of light microscopic intra-Golgi localization can be problematic. We describe here a novel quantitative light microscopic methodology using linescans crossing the Golgi ribbon. Our method determines a localization for the unknown protein in a one-dimensional coordinate system in which 0.0 corresponds to localization of a cis marker and 1.0 to localization of a trans marker. We also describe a variant of this methodology in which Golgi morphology is simplified by nocodazole-induced dispersal into ministacks, allowing a fully automated analysis. In our assay, beta1,4-galactosyltransferase-YFP and Golgin97 localize similarly to trans markers, whereas p115, GBF1, and p58-YFP are similarly near other cis markers. The medial Golgi protein alpha1,3-1,6-mannosidase II gives an intermediate localization in this assay. These methodologies may prove useful in instances where electron microscopy is technically difficult as well as when rapid analysis of large numbers of samples is required.
Collapse
Affiliation(s)
- Selma Yilmaz Dejgaard
- Department of Anatomy & Cell Biology, 1/28 Strathcona Bldg., 3640 University, McGill University, Montreal, QC H3A 2B2
| | | | | | | |
Collapse
|
7
|
Yoshino A, Setty SRG, Poynton C, Whiteman EL, Saint-Pol A, Burd CG, Johannes L, Holzbaur EL, Koval M, McCaffery JM, Marks MS. tGolgin-1 (p230, golgin-245) modulates Shiga-toxin transport to the Golgi and Golgi motility towards the microtubule-organizing centre. J Cell Sci 2005; 118:2279-93. [PMID: 15870108 DOI: 10.1242/jcs.02358] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
tGolgin-1 (trans-Golgi p230, golgin-245) is a member of a family of large peripheral membrane proteins that associate with the trans-Golgi network (TGN) via a C-terminal GRIP domain. Some GRIP-domain proteins have been implicated in endosome-to-TGN transport but no function for tGolgin-1 has been described. Here, we show that tGolgin-1 production is required for efficient retrograde distribution of Shiga toxin from endosomes to the Golgi. Surprisingly, we also found an indirect requirement for tGolgin-1 in Golgi positioning. In HeLa cells depleted of tGolgin-1, the normally centralized Golgi and TGN membranes were displaced to the periphery, forming `mini stacks'. These stacks resembled those in cells with disrupted microtubules or dynein-dynactin motor, in that they localized to endoplasmic-reticulum exit sites, maintained their secretory capacity and cis-trans polarity, and were relatively immobile by video microscopy. The mini stacks formed concomitant with a failure of pre-Golgi elements to migrate along microtubules towards the microtubule-organizing centre. The requirement for tGolgin-1 in Golgi positioning did not appear to reflect direct binding of tGolgin-1 to motile pre-Golgi membranes, because distinct Golgi and tGolgin-1-containing TGN elements that formed after recovery of HeLa cells from brefeldin-A treatment moved independently toward the microtubule-organizing centre. These data demonstrate that tGolgin-1 functions in Golgi positioning indirectly, probably by regulating retrograde movement of cargo required for recruitment or activation of dynein-dynactin complexes on newly formed Golgi elements.
Collapse
Affiliation(s)
- Atsuko Yoshino
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6082, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Yoshino A, Bieler BM, Harper DC, Cowan DA, Sutterwala S, Gay DM, Cole NB, McCaffery JM, Marks MS. A role for GRIP domain proteins and/or their ligands in structure and function of the trans Golgi network. J Cell Sci 2003; 116:4441-54. [PMID: 13130094 DOI: 10.1242/jcs.00746] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
tGolgin-1 (golgin-245, trans golgi p230) and golgin-97 are members of a family of peripheral membrane proteins of unknown function that localize to the trans Golgi network (TGN) through a conserved C-terminal GRIP domain. We have probed for GRIP protein function by assessing the consequences of overexpressing isolated GRIP domains. By semi-quantitative immunofluorescence microscopy we found that high level expression of epitope-tagged, GRIP domain-containing fragments of tGolgin-1 or golgin-97 specifically altered the characteristic pericentriolar distribution of TGN integral membrane and coat components. Concomitantly, vesicular transport from the TGN to the plasma membrane and furin-dependent cleavage of substrate proteins in the TGN were inhibited. Mutagenesis of a conserved tyrosine in the tGolgin-1 GRIP domain abolished these effects. GRIP domain overexpression had little effect on the distribution of most Golgi stack resident proteins and no effect on markers of other organelles. Electron microscopy analyses of GRIP domain-overexpressing cells revealed distended perinuclear vacuoles and a proliferation of multivesicular late endosomes to which the TGN resident protein TGN46 was largely mislocalized. These studies, the first to address the function of GRIP domain-containing proteins in higher eukaryotes, suggest that some or all of these proteins and/or their ligands function in maintaining the integrity of the TGN by regulating resident protein localization.
Collapse
Affiliation(s)
- Atsuko Yoshino
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Glycosyltransferases involved in N- and O-glycan chain elongation and termination are localized in the Golgi apparatus. Early evidence in support of this rule was based on fractionation techniques and was corroborated by numerous immunocytochemical studies. Usually these studies were confined to cultured cell lines exhibiting little differentiation features, such as HeLa cells. However, localization studies conducted in primary cell cultures (e.g., human umbilical vein endothelial cells), cells obtained ex vivo (e.g., sperm cells), and tissue sections (e.g., intestinal, renal, or hepatic tissue) often reveal ectopic localizations of glycosyltransferases usually at post-Golgi sites, including the plasma membrane. Hence, extracellular cues resulting from specific adhesion sites may influence post-Golgi trafficking routes, which may be reflected by ectopic localization of Golgi enzymes.
Collapse
Affiliation(s)
- Eric G Berger
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
10
|
Fukuta K, Yokomatsu T, Abe R, Asanagi M, Makino T. Genetic engineering of CHO cells producing human interferon-gamma by transfection of sialyltransferases. Glycoconj J 2000; 17:895-904. [PMID: 11511814 DOI: 10.1023/a:1010977431061] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Natural human interferon-gamma (hIFN-gamma) contains mainly biantennary complex-type sugar chains. We previously remodeled the branch structures of N-glycans on hIFN-gamma in Chinese hamster ovary (CHO) cells by overexpressing UDP-N-acetylglucosamine: alpha1,6-D-mannoside beta1,6-N-acetylglucosaminyltransferase (GnT-V). Normal CHO cells primarily produced hIFN-gamma having biantennary sugar chains, whereas a CHO clone, designated IM4/Vh, transfected with GnT-V, primarily produced hIFN-gamma having GlcNAcbeta1-6 branched triantennary sugar chains when sialylation was incomplete and an increase in poly-N-acetyllactosamine (Galbeta1-4GlcNAcbeta1-3)n was observed. In the present study, we introduced mouse Galbeta1-3/4GlcNAc-R alpha2,3-sialyltransferase (ST3Gal IV) and/or rat Galbeta1-4GlcNAc-R alpha2,6-sialyltransferase (ST6Gal I) cDNAs into the IM4/Vh cells to increase the extent of sialylation and to examine the effect of sialyltransferase (ST) type on the linkage of sialic acid. Furthermore, we speculated that sialylation extent might affect the level of poly-N-acetyllactosamine. We isolated four clones expressing different levels of alpha2,3-ST and/or alpha2,6-ST. The extent of sialylation of hIFN-gamma from the IM4/Vh clone was 61.2%, which increased to about 80% in every ST transfectant. The increase occurred regardless of the type of overexpressed ST, and the proportion of alpha2,3- and alpha2,6-sialic acid corresponded to the activity ratio of alpha2,3-ST to alpha2,6-ST. Furthermore, the proportion of N-glycans containing poly-N-acetyllactosamine was significantly reduced (less than 10%) in the ST transfectants compared with the parental IM4/Vh clone (22.9%). These results indicated that genetic engineering of STs is highly effective for regulating the terminal structures of sugar chains on recombinant proteins in CHO cells.
Collapse
Affiliation(s)
- K Fukuta
- Life Science Laboratory, Mitsui Chemicals, Inc., 1144 Togo, Mobara, Chiba 297-0017, Japan.
| | | | | | | | | |
Collapse
|
11
|
Vanhove B, Goret F, Soulillou JP, Pourcel C. Porcine alpha1,3-galactosyltransferase: tissue-specific and regulated expression of splicing isoforms. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1356:1-11. [PMID: 9099986 DOI: 10.1016/s0167-4889(96)00151-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Expression of the Gal alpha1,3 Gal epitope on membrane glycolipids and glycoproteins is known to vary widely from one tissue to another. In the course of studying the mechanisms underlying this variability, we have isolated from pig cDNA four sequences corresponding to four isoforms of alpha1,3-galactosyltransferase (alpha1,3GT), the Golgi enzyme that links galactose in alpha1,3 on the galactose residue of N-acetyllactosamine. The isoforms differ from each other in the alternative presence of two nucleotide stretches of 36 and 63 base pairs in a segment encoding the stem region of the protein. Stable expression experiments show that all four isoenzymes can confer alpha-galactosyltransferase activity to HeLa cells, and that they are all located within the Golgi compartment, indicating that variations in length in the stem region do not affect enzyme activity or cellular localization. Analysis of RNA from different pig organs and cells shows quantitative differences between tissues in levels of alpha1,3GT, as well as qualitative differences, the four isoforms being unequally represented in different tissues.
Collapse
Affiliation(s)
- B Vanhove
- Institut National de la Santé et de la Recherche Médicale U437, Unité de Recherche sur l'Immunointervention dans les Allo et Xénotransplantations, Nantes, France.
| | | | | | | |
Collapse
|
12
|
Takehana K, Abe M, Yamaguchi M, Iwasa K, Hiraga T, Masty J, Miyata H, Yamada O. Ultracytochemistry of glycoconjugates in pig duodenal gland. Ann Anat 1994; 176:565-70. [PMID: 7530413 DOI: 10.1016/s0940-9602(11)80400-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
To elucidate the ultrastructure, glycoprotein profile and site of glycosylation of glandular cells in relation to the functional polarity of the organelles, swine duodenal tissue was embedded in glycol methacrylate and subsequently stained for periodic acid thiocarbohydrazide silver proteinate (PA-TCH-SP), high iron diamine (HID)-TCH-SP, low iron diamine (LID)-TCH-SP, ninhydrin T-TCH-SP and five peroxidase-labeled lectins. The secretory granules in the duodenal gland cells were electron lucent with a 200 nm to 500 nm electrondense core. Glycoconjugates were confined to the secretory granules and elements of the Golgi complex. Protein activity was located only in the electron dense core. Achivementestic staining pattern for Concanavalin A (Con A), peanut agglutinin (PNA), Ulex europaeus agglutinin-I (UEA-I), wheat germ agglutinin (WGA) and soybean agglutinin (SBA) was observed in stained secretory granules and the Golgi apparatus. A few cis cisternae were stained with SBA and UEA-I. Trans cisternae were stained with WGA and PNA. Con A reacted with seromucous granules and rough endoplasmic reticulum. These observational findings suggest that these are seromucous cells. The Golgi apparatus is the site of glycosylation and can be divided into two distinct compartments.
Collapse
Affiliation(s)
- K Takehana
- Department of Veterinary Anatomy, Rakuno Gakuen University, Hokkaido, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
2,6-branched mannose and the regulation of poly-N-acetyllactosamine biosynthesis in N-linked oligosaccharides of Chinese hamster ovary cells. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80643-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Berger EG, Grimm K, Bächi T, Bosshart H, Kleene R, Watzele M. Double immunofluorescent staining of alpha 2,6 sialyltransferase and beta 1,4 galactosyltransferase in monensin-treated cells: evidence for different Golgi compartments? J Cell Biochem 1993; 52:275-88. [PMID: 7690043 DOI: 10.1002/jcb.240520304] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Beta 1,4 galactosyl- and alpha 2,6 sialyltransferase (gal-T EC 2.4.1.22 and sialyl-T EC 2.4.99.1) sequentially elongate and terminate complex N-glycan chains of glycoproteins. Both enzymes reside in trans Golgi cisternae; their ultrastructural relationship, however, is unknown. To delineate their respective Golgi compartment(s) we conducted a double label immunofluorescent study by conventional and confocal laser scanning microscopy in HepG2, HeLa, and other cells in presence of Golgi-disturbing agents. Polyclonal, peptide-specific antibodies to human sialyl-T expressed as a beta-galactosidase-sialyl-T fusion protein in E. coli were developed and applied together with mABs to human milk gal-T. In untreated HepG2 and HeLa cells Golgi morphology identified by immunofluorescent labeling of sialyl-T and gal-T, respectively, was nearly identical. Treatment of cells with brefeldin A (BFA) led to rapid and coordinated disappearance of immunostaining of both enzymes; after BFA washout, vesicular structures reappeared which first stained for gal-T followed by sialyl-T; in the reassembled Golgi apparatus sialyl-T and gal-T were co-localized again. In contrast, monensin treatment produced a reversible swelling and scattering of gal-T positive Golgi elements while sialyl-T positive structures showed little change. Treatment with nocodazole led to dispersal of Golgi elements in which gal-T and sialyl-T remained co-localized. Treatment with chloroquine affected Golgi structures less than monensin and led to condensation of gal-T positive and to slight enlargement of sialyl-T positive structures. Sequential recovery from BFA of gal-T and sialyl-T and their segregation by monensin suggest that these enzymes are targeted to different Golgi subcompartments.
Collapse
Affiliation(s)
- E G Berger
- Institute of Physiology, University of Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
15
|
Matsuo S, Ichikawa H, Kurisu K, Wakisaka S, Kiyomiya K, Kurebe M. Changes of lectin staining pattern of the Golgi stack during differentiation of the ameloblast in developing rat molar tooth germs. Anat Rec (Hoboken) 1993; 236:355-65. [PMID: 8338238 DOI: 10.1002/ar.1092360209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Changes of lectin staining patterns in the Golgi stack during cell differentiation were examined in the ameloblasts of developing rat molar tooth germs, using HRP-labeled lectins: Canavalia ensiformis (Con A), Griffonia simplicifolia I (GS-I), Glycine max (SBA), Ulex europeus I (UEA-I), Triticum vulgaris (WGA), and Arachis hypogaea (PNA). The Golgi stacks of the inner enamel epithelial cells and the presecretory ameloblasts were stained with the lectins, although the staining strength and pattern varied among the stacks with each lectin. In some cases, the reaction products for the lectins were observed in most or all saccules of the Golgi stack. In the secretory ameloblasts, however, discrete staining patterns of the Golgi stack were found for each lectin. The reaction products deposited in definite saccules of the Golgi stack of the secretory ameloblast, especially for UEA-I and PNA which stained only the trans Golgi saccules of the stack. The reaction-positive saccules distributed more extensively in the Golgi stack of the inner enamel epithelial cell and the presecretory ameloblast than in the secretory ameloblast. These findings suggest that the Golgi stack is not fully compartmentalized in the inner enamel epithelial cell and the presecretory ameloblast. It is proposed that, in the differentiating ameloblast, various glycosyltransferases may coexist in most saccules of the Golgi stack.
Collapse
Affiliation(s)
- S Matsuo
- Department of Toxicology, School of Veterinary Medicine, University of Osaka Prefecture, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Matsuo S, Ichikawa H, Wakisaka S, Akai M. Changes of cytochemical properties in the Golgi apparatus during in vivo differentiation of the ameloblast in developing rat molar tooth germs. Anat Rec (Hoboken) 1992; 234:469-78. [PMID: 1456450 DOI: 10.1002/ar.1092340403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The cytochemical changes of the Golgi stacks occurring concomitantly with cell differentiation were examined in ameloblasts of developing rat molar tooth germs using osmium impregnation and cytochemistry with nicotinamide adenine dinucleotide phosphatase (NADPase), thiamine pyrophosphatase (TPPase), and acid phosphatase (Acpase). NADPase, TPPase, and Acpase activities were already present in the Golgi stacks of the inner enamel epithelial cells, the undifferentiated form of the ameloblast: NADPase activity existed in the medial Golgi cisternae, TPPase activity in the trans Golgi cisternae, and Acpase activity in almost all cisternae and strongly in the trans-most cisterna of the Golgi stack. At this stage, however, osmium deposits after impregnation were not observed in the cisterna of Golgi stacks but were present in some small vesicles. These vesicles were located throughout the cytoplasm. Osmiophilic cisternae in the Golgi stacks were apparent for the first time at the stage when the Golgi apparatus developed and migrated to the region distal to the nucleus with the progression of cell differentiation. These findings indicate that the cis subcompartment of the Golgi apparatus was incomplete in the inner enamel epithelial cells with regard to appearance of its cytochemical property, as compared with the medial and trans subcompartments. It is suggested that the cis compartment of the Golgi stack may be completed only in the last stage of the compartmentalized Golgi organization during differentiation of the ameloblast.
Collapse
Affiliation(s)
- S Matsuo
- First Department of Oral Anatomy, Osaka University Faculty of Dentistry, Japan
| | | | | | | |
Collapse
|
17
|
Bosshart H, Berger EG. Biosynthesis and intracellular transport of alpha-2,6-sialyltransferase in rat hepatoma cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 208:341-9. [PMID: 1521530 DOI: 10.1111/j.1432-1033.1992.tb17192.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We investigated biosynthesis, intracellular transport and release of beta-galactoside alpha-2,6-sialyltransferase in a dexamethasone-inducible rat hepatoma cell line. Confluent cells were induced by 10 microM dexamethasone for 24 h, and metabolically labelled with [35S]methionine/cysteine, followed by immunoprecipitation of sialyltransferase and electrophoretic/fluorographic analysis. The 35S-labelled enzyme was synthesized as a 46-kDa precursor, converted to an intermediate 47-kDa form after 1 h, and gradually to a mature form of 48 kDa within the following 3 h. By means of either tunicamycin inhibition of N-glycosylation or cleavage of N-glycans from isolated sialyltransferase using N-glycosidase F, the sizes of the precursor and the mature form were reduced to 41 kDa and 43 kDa, respectively. After a 4-h chase, treatment with endoglycosidase H revealed two distinct molecular forms of sialyltransferase, bearing either two N-acetyllactosamine-type or one oligomannose-type and one N-acetyllactosamine-type N-linked sugar chain. In addition, sialyltransferase became sensitive to neuraminidase digestion after a 4-h chase. The half-life of intracellular [35S]sialyltransferase was estimated at 3 h. A soluble form was detectable in the supernatant, 2 h after the pulse. Only 12% of the initially labelled sialyltransferase was found in the medium after 12 h, while 73% of the enzyme was degraded intracellularly. To characterize a possible intracellular degradation site, we studied intracellular transport in the presence of either secretion-blocking or acidotropic agents or protease inhibitors. Degradation was significantly delayed by all treatments. Our results show that sialyltransferase follows the secretory pathway as a membrane protein and is retained at a late Golgi stage. We suggest that the bulk of sialyltransferase in rat hepatoma cells is diverted to a post-Golgi degradation pathway. This route contrasts with the post-Golgi trafficking of beta-1,4-galactosyltransferase in HeLa cells, which is constitutively secreted [Strous, G. J. A. M. & Berger, E. G. (1982) J. Biol. Chem. 257, 7623-7628].
Collapse
Affiliation(s)
- H Bosshart
- Physiologisches Institut, Universität Zürich, Switzerland
| | | |
Collapse
|
18
|
Aoki D, Lee N, Yamaguchi N, Dubois C, Fukuda MN. Golgi retention of a trans-Golgi membrane protein, galactosyltransferase, requires cysteine and histidine residues within the membrane-anchoring domain. Proc Natl Acad Sci U S A 1992; 89:4319-23. [PMID: 1584766 PMCID: PMC49073 DOI: 10.1073/pnas.89.10.4319] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Galactosyltransferase (GT; UDPgalactose:beta-D-N-acetylglucosaminide beta-1,4-galactosyltransferase, EC 2.4.1.22) is a type II membrane-anchored protein composed of a short N-terminal cytoplasmic tail, a signal/membrane-anchoring domain, and a stem region followed by a large catalytic domain including the C terminus. To identify the peptide segment and key amino acid residues that are critical for Golgi localization of GT, the expression vector pGT-hCG was designed to encode the entire GT molecule fused to the C-terminal region of human chorionic gonadotropin alpha subunit (hCG alpha) as a reporter. COS-1 cells transfected with pGT-hCG expressed the chimera in the Golgi region, as detected by immunofluorescence microscopy using anti-hCG antibodies. Two deletion mutants, delta tail and delta stem, which are lacking most of the N-terminal cytoplasmic tail or 10 amino acids immediately after the membrane-anchoring domain, were localized in the Golgi. Replacement mutations of the membrane-anchoring domain of GT showed that the second quarter of the transmembrane domain or Cys29-Ala30-Leu31-His32-Leu33 is necessary for GT to be retained in the Golgi. Furthermore, the point mutants Cys29----Ser29 and His32----Leu32 were partially transported to the plasma membrane, whereas an Ala30-Leu31----Phe30-Gly31 mutant was localized in the Golgi. Finally, a double mutant, Cys29/His32----Ser29/Leu32, was found to be transported efficiently to the plasma membrane. The signal-anchoring domain of the transferrin receptor, a type II plasma membrane protein, was then replaced by portions of the GT transmembrane domain. Although the Cys-Xaa-Xaa-His sequence by itself cannot retain the transferrin receptor in the Golgi, the cytoplasmic half of the transmembrane domain of GT was partially capable of retaining the transferrin receptor in the Golgi. These results suggest that the cytoplasmic (or N-terminal) half of the transmembrane domain of GT contributes to the Golgi retention signal and that particularly Cys29 and His32 in this region are critical for GT to be retained in the Golgi.
Collapse
Affiliation(s)
- D Aoki
- La Jolla Cancer Research Foundation, CA 92037
| | | | | | | | | |
Collapse
|
19
|
Masibay AS, Boeggeman E, Qasba PK. Deletion analysis of the NH2-terminal region of beta-1,4-galactosyltransferase. Mol Biol Rep 1992; 16:99-104. [PMID: 1608403 DOI: 10.1007/bf00419755] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To determine the biological role, if any, of the NH2-terminal region of beta-1,4-galactosyltransferase (GT; EC 2.4.1.90), we constructed deletion mutants and expressed them in COS-7 cells. Each deletion construct was analyzed for enzymatic activity, protein production and mRNA transcription. All of the deletion mutants were transcribed to produce GT mRNA, but the GT protein was not detected in those constructs whose transmembrane (aa 14-42) domain was deleted. The results suggest that the transmembrane region is essential for the stability of the protein and perhaps contain sequences critical for the proper targeting of the molecule. The possible role of the NH2-terminal signal anchor domain in the in vivo regulation of GT is discussed.
Collapse
Affiliation(s)
- A S Masibay
- Laboratory of Mathematical Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | |
Collapse
|
20
|
Omura F, Otsu M, Kikuchi M. Accelerated secretion of human lysozyme with a disulfide bond mutation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 205:551-9. [PMID: 1572356 DOI: 10.1111/j.1432-1033.1992.tb16812.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The mutant human lysozyme, [Ala77, Ala95]lysozyme, in which the disulfide bond Cys77-Cys95 is eliminated, is known to exhibit increased secretion in yeast, compared to wild-type human lysozyme [Taniyama, Y., Yamamoto, Y., Nakao, M., Kikuchi, M. & Ikehara, M. (1988) Biochem. Biophys. Res. Commun. 152, 962-967]. To investigate this phenomenon, mammalian cells were used to analyze the secretion kinetics of [Ala77, Ala95]lysozyme and wild-type human lysozyme. The secretion rate of [Ala77, Ala95]lysozyme during the 150-min chase period was significantly accelerated [half-life (t1/2) = 29 min] compared to that of wild-type human lysozyme (t1/2 = 83 min), when expressed at the same levels within the cells. In contrast, after the 150-min chase, the rates of disappearance of both wild-type and mutant human lysozymes within the cells were similar, and considerably slower (t1/2 = 220 min), respectively. The remaining intracellular wild-type human lysozyme was localized mainly in the endoplasmic reticulum, whereas accelerated transport of the [Ala77, Ala95]lysozyme mutant protein from the endoplasmic reticulum to the Golgi apparatus was observed. Also in yeast cells, similar secretion kinetics and the differences in t1/2 for wild-type and mutant human lysozymes during the early chase period were observed. The two-phase kinetics of disappearance of intracellular human lysozymes suggest that only a proportion of the proteins becomes secretion competent soon after synthesis and is completely secreted during the early chase period, whereas others enter the distinct, slow pathways of intracellular transport and/or degradation. Increased secretion of [Ala77, Ala95]lysozyme is possibly due to enhanced competence for secretion acquired in the endoplasmic reticulum at the early stage of transport events, which is closely connected with the removal of a disulfide bond.
Collapse
Affiliation(s)
- F Omura
- Protein Engineering Research Institute, Osaka, Japan
| | | | | |
Collapse
|
21
|
Easton E, Bolscher J, van den Eijnden D. Enzymatic amplification involving glycosyltransferases forms the basis for the increased size of asparagine-linked glycans at the surface of NIH 3T3 cells expressing the N-ras proto-oncogene. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54689-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
22
|
Abstract
Antibodies raised against plasma prothrombin and the prothrombin propeptide were used to identify prothrombin precursors in rough and smooth microsomes and in the Golgi apparatus. The data demonstrate that the propeptide is part of the prothrombin molecule when undergoing a variety of modifications in the Golgi apparatus. It is shown that these modifications result in an increase in the apparent molecular mass of the prothrombin precursor from 78 kDa in early processing to 83 kDa in late processing. The 83 kDa prothrombin precursor was not recognized by the anti-propeptide antiserum and most likely represents the final product of the precursor in the secretory pathway. Evidence is presented that the propeptide is released from the parent molecule in the Golgi apparatus by a membrane-bound Ca(2+)-dependent serine proteinase(s) with characteristics similar to those of the proalbumin-to-albumin-converting enzyme. Vitamin K-dependent carboxylase activity was measured in membrane fragments obtained from the Golgi apparatus preparation. Sucrose-density-gradient centrifugation and the use of marker enzymes showed that carboxylase activity was highest in fractions enriched in cis-Golgi cisternae. Two different synthetic peptides were used as substrates for the carboxylase. These peptides were from the N-terminal and the C-terminal part of the gamma-carboxyglutamic acid (Gla) region of prothrombin. It is shown that the N-terminal and the C-terminal peptides were preferred as substrates for the carboxylase in the microsomal and the Golgi apparatus preparations respectively. It is also shown that the prothrombin precursor acquires negative charges in the Golgi apparatus that do not result from addition of sugars in late processing. These negative charges could be eliminated by thermal decarboxylation, suggesting that Gla residues may also be synthesized in late processing.
Collapse
Affiliation(s)
- C Stanton
- Department of Medicine, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, NC 27103
| | | | | |
Collapse
|
23
|
Ihida K, Tsuyama S, Kashio N, Murata F. Subcompartment sugar residues of gastric surface mucous cells studied with labeled lectins. HISTOCHEMISTRY 1991; 95:329-35. [PMID: 1708750 DOI: 10.1007/bf00266959] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We examined the intracellular localization of sugar residues of the rat gastric surface mucous cells in relation to the functional polarity of the cell organellae using preembedding method with several lectins. In the surface mucous cells, the nuclear envelope and rough endoplasmic reticulum (rER) and cis cisternae of the Golgi stacks were intensely stained with Maclura pomifera (MPA), which is specific to alpha-Gal and GalNAc residues. In the Golgi apparatus, one or two cis side cisternae were stained with MPA and Dolichos biflorus (DBA) which is specific to terminal alpha-N-acetylgalactosamine residues, while the intermediate lamellae were intensely labeled with Arachis hypogaea (PNA) which is specific to Gal beta 1,3 GalNAc. Cisternae of the trans Golgi region were also stained with MPA, Ricinus communis I (RCA I) which is specific to beta-Gal and Limax flavus (LFA) which is specific to alpha-NeuAc. Immature mucous granules which are contiguous with the trans Golgi lamellae were weakly stained with RCA I, while LFA stained both immature and mature granules. The differences between each lectin's reactivity in the rough endoplasmic reticulum, in each compartment of the Golgi lamellae and in the secretory granules suggest that there are compositional and structural differences between the glycoconjugates in the respective cell organellae, reflecting the various processes of glycosylation in the gastric surface mucous cells.
Collapse
Affiliation(s)
- K Ihida
- Department of Anatomy, Faculty of Medicine, Kagoshima University, Japan
| | | | | | | |
Collapse
|
24
|
Roth J. Localization of glycosylation sites in the Golgi apparatus using immunolabeling and cytochemistry. JOURNAL OF ELECTRON MICROSCOPY TECHNIQUE 1991; 17:121-31. [PMID: 1826523 DOI: 10.1002/jemt.1060170202] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review summarizes data on the distribution of certain glycosylation steps in the Golgi apparatus as revealed by immunolabeling and lectin techniques. The methodical basis for such investigations was provided by the introduction of the colloidal gold marker system for immunolabeling and the development of new means of tissue processing such as the low-temperature embedding technique using Lowicryl K4M. The application of these techniques together with highly specific antibodies has provided much of the basis for our current understanding of the Golgi apparatus in functional terms. Thus, in many cell types, three Golgi apparatus compartments can be distinguished, whereas in others no such functional subdivision is evident. Investigations on sialyltransferase distribution have also provided direct evidence that GERL is structurally and functionally part of the Golgi apparatus.
Collapse
Affiliation(s)
- J Roth
- Biocenter, University of Basel, Switzerland
| |
Collapse
|
25
|
Abstract
This chapter reviews the glycosylation reactions in the intestinal epithelium. The intestinal epithelium represents a good model system in which the glycosylation process can be studied. The intestinal epithelium is composed of two basic epithelial cell types: the absorptive enterocyte and the mucus-producing goblet cell. Gastrointestinal epithelial renewal ensues through the processes of cell proliferation, migration, and differentiation. This renewal occurs in discrete proliferative zones along the gastrointestinal tract. In the small intestine, this proliferative zone is restricted to the base of the crypts, whereas in the large intestine it is less restrictive, occurring in the basal two thirds of the crypt. A longitudinal section along the crypt-to-surface axis, cells in various degrees of differentiation is observed, providing a unique in vivo system in which to investigate differentiation-related glycosylation events. The glycoconjugate repertoire displayed by a given cell reflects its endogenous expression of glycosyltransferases. The role played by terminal oligosaccharide structures in cell–cell recognition phenomena and the expression of glycosyltransferases occupy a key position in the post-translational processing of glycoconjugates and thus influence cellular function.
Collapse
Affiliation(s)
- D J Taatjes
- Interdepartmental Electron Microscopy, Biocenter, University of Basel, Switzerland
| | | |
Collapse
|
26
|
Straus W, Keller JM. Competition between ligands of glycosyltransferases and horseradish peroxidase for binding sites on intracellular and plasma membranes of HeLa cells. Application of a micro-method for the semi-quantitation of surface-bound HRP. HISTOCHEMISTRY 1990; 94:509-16. [PMID: 2283314 DOI: 10.1007/bf00272615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A micro-method for the semi-quantitation of surface-bound horseradish peroxidase (HRP) was developed and was applied to study the competition between ligands of glycosyltransferases and HRP for binding sites on the surface of HeLa cells. Dried coverslip cultures of HeLa cells, fixed in methanol, were placed on 0.3 ml of the incubation medium on parafilm and were incubated for 45 min at 37 degrees C. The incubation medium contained HRP, lysozyme and Ca2+ in HEPES buffer, pH 7.2. After washing, the cells were incubated for 60 min at 37 degrees C in HEPES buffer containing 20 mM Ca2+. After this treatment, the plasma membranes showed a strong cytochemical reaction for HRP. Most of the HRP was released into buffer solution during a 5 h incubation at 37 degrees C in the absence of Ca2+, and was measured by spectrophotometry. The addition of 20 mM Ca2+ to the buffer solution prevented the release of most of the HRP from the plasma membranes thus showing that the binding of HRP required Ca2+. Ligands of glycosyltransferases were added to the incubation medium with HRP. The amount of HRP released from the cells decreased in relation to the competing potency and concentration of these ligands. The method was applied to estimate the concentration of some ligands of galactosyltransferase and sialyltransferase that caused a 50% decrease in the release of previously-bound HRP. CMP-neuraminic acid and gangliosides showed a higher competing potency to the surface binding of HRP than UDP-galactose and chitotriose. The spectrophotometric analysis was correlated (on duplicate samples) with cytochemical observations.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- W Straus
- Department of Biological Chemistry and Structure, University of Health Sciences, Chicago Medical School, IL 60064
| | | |
Collapse
|
27
|
Schäfer BW, Blakely BT, Darlington GJ, Blau HM. Effect of cell history on response to helix-loop-helix family of myogenic regulators. Nature 1990; 344:454-8. [PMID: 2157160 DOI: 10.1038/344454a0] [Citation(s) in RCA: 143] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In multinucleated heterokaryons formed from the fusion of differentiated muscle cells to either hepatocytes or fibroblasts, muscle-specific gene expression is activated, liver-specific gene expression is repressed, and there are changes in the location of the Golgi apparatus. An understanding of the regulatory mechanisms that underlie this plasticity is of particular interest given the stability of the differentiated state in vivo. We have now investigated whether MyoD or myogenin, regulators of muscle-specific gene expression that have a helix-loop-helix motif, can induce the phenotypic conversion observed in heterokaryons. When these regulators were stably or transiently introduced into fibroblasts or hepatocytes by microinjection, transfection or retroviral infection with complementary DNA in expression vectors, fibroblasts expressed muscle-specific genes, whereas hepatocytes did not. However, fusion of hepatocytes stably expressing MyoD to fibroblasts resulted in activation in the heterokaryon of muscle-specific genes of both cell types. These results imply that other regulators, present in fibroblasts but not in hepatocytes, are necessary for the activation of muscle-specific genes, and indicate that the differentiated state of a cell is dictated by its history and a dynamic interaction among the proteins that it contains.
Collapse
Affiliation(s)
- B W Schäfer
- Department of Pharmacology, Stanford University School of Medicine, California 94305-5332
| | | | | | | |
Collapse
|
28
|
|
29
|
Colley KJ, Lee EU, Adler B, Browne JK, Paulson JC. Conversion of a Golgi apparatus sialyltransferase to a secretory protein by replacement of the NH2-terminal signal anchor with a signal peptide. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)84611-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
30
|
Morales PG, Barriocanal JG, Sandoval IV. Reduced temperature does not prevent transport of lysosomal integral membrane proteins from endoplasmic reticulum and through the Golgi system to lysosomes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 183:407-12. [PMID: 2788083 DOI: 10.1111/j.1432-1033.1989.tb14942.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The effect of low temperature on the transport of three lysosomal integral membrane proteins (I, II and III) from endoplasmic reticulum to lysosomes has been studied in normal rat kidney cells. At 15 degrees C and 18 degrees C, though slowly, the proteins could leave the endoplasmic reticulum, move through the Golgi system from the cis to the trans side, and accumulate in lysosomes. Transport of these proteins at low temperature occurred slower than at 37 degrees C. Both at low temperature and 37 degrees C, the proteins were transported between the endoplasmic reticulum and Golgi (III greater than I and II) and from Golgi to lysosomes (II greater than III much greater than I) with different rates.
Collapse
Affiliation(s)
- P G Morales
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, Bethesda
| | | | | |
Collapse
|
31
|
Quatacker JR. Lectin-gold cytochemistry of the Golgi apparatus in rabbit luteal cells, with special emphasis on the formation of a lysosomal-type membrane. HISTOCHEMISTRY 1989; 90:399-404. [PMID: 2715051 DOI: 10.1007/bf00508319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In rabbit luteal cells embedded in glycolmethacrylate and stained with PTA at low pH highly glycosylated membrane patches can be observed after vesiculation of the trans-Golgi network. As these membranes could be prelysosomal, their sialic acid content was investigated by post-embedding labeling with Limax flavus agglutinin (LFA)/fetuin-Au. Additional labeling of the Golgi apparatus was performed with Wheat germ agglutinin (WGA)/ovomucoid Au, Ricinus communis agglutininI (RCAI)/Au and Helix pomatia agglutinin (HPA)/Au. The sections were then counterstained with PTA at low pH, which allows a clear distinction between the elements of the trans-Golgi network (G2-G1) and the saccules of the stack (g). With WGA, LFA and RCAI the trans-Golgi network was observed to be clearly more reactive than the stack. After vesiculation most intense labeling was found over the highly glycosylated vacuolar membranes derived from the G2-element. The limiting membrane of lysosomes, the MvB's and the plasma membrane also reacted strongly. Colloidal gold particles were also found over the membranes of the vacuoles derived from G1. The Golgi stack showed a lower reactivity and label for all three lectins could be found over three to four saccules of the stack (g3-g4). The matrix of the lysosomes was slightly labeled. Labeling with HPA was absent from the trans saccules and was consistently found in the cis and cis-most (g4-g5) saccules of the stack. Some cytoplasmic vesicles near the cell border were also labeled. With our procedure the Golgi apparatus can easily be detected and it is apparent that in rabbit luteal cells the highest lectin reactivity is found in the trans-Golgi network.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J R Quatacker
- N. Goormaghtigh Institute of Pathology, University Hospital, State University of Ghent, Belgium
| |
Collapse
|
32
|
Marchase RB, Kidd VJ, Rivera AA, Humphreys-Beher MG. Cell surface expression of 4 beta-galactosyltransferase accompanies rat parotid gland acinar cell transition to growth. J Cell Biochem 1988; 36:453-65. [PMID: 3132468 DOI: 10.1002/jcb.240360413] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Rat parotid gland acinar cells stimulated to divide by a chronic regimen of isoproterenol demonstrate a dramatic increase in the synthesis of the glycosyltransferase 4 beta-galactosyltransferase. A plasma membrane localization for much of the increase in 4 beta-galactosyltransferase was determined by density gradient membrane fractionation. Golgi-enriched fractions showed no increase in specific activity, while plasma membrane activity increased 40-fold. This selective increase at the cell surface was confirmed by immunofluorescence of intact, nonpermeabilized cells from treated glands, using a monospecific antibody prepared against the purified bovine milk transferase. In detergent-permeabilized cells staining of nontreated cells was seen only as groups of perinuclear vesicles, presumed to be Golgi apparatus. In isoproterenol-treated and permeabilized cells both presumptive Golgi and cell surface staining was apparent. Enzyme assays performed on intact cells established that the enzyme's active site was oriented to the exterior of the cells. The transferase could be detected as early as 3 hr after the primary challenge with isoproterenol. Pretreatment of rats with cycloheximide prevented its appearance.
Collapse
Affiliation(s)
- R B Marchase
- Department of Cell Biology, University of Alabama, Birmingham 35294
| | | | | | | |
Collapse
|
33
|
Miller SC, Pavlath GK, Blakely BT, Blau HM. Muscle cell components dictate hepatocyte gene expression and the distribution of the Golgi apparatus in heterokaryons. Genes Dev 1988; 2:330-40. [PMID: 3378703 DOI: 10.1101/gad.2.3.330] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Major changes in cytoarchitecture and gene expression were induced in short-term heterokaryons. When human hepatocytes were fused with mouse muscle cells, the hepatocyte Golgi apparatus changed from its usual polar location to a uniformly circumnuclear location typical of striated muscle. Human liver albumin ceased to be expressed, and expression of the human muscle cell-surface antigen 5.1H11 was induced without DNA replication or cell division. Coexpression of liver and muscle proteins was rarely observed. These novel findings provide insight into the regulation of gene expression and the targeting and localization of organelles with a central role in cell polarity, intracellular transport, and secretion.
Collapse
Affiliation(s)
- S C Miller
- Department of Pharmacology, Stanford University School of Medicine, California 94305-5332
| | | | | | | |
Collapse
|
34
|
Vorbrodt AW, Dobrogowska DH, Kim YS, Lossinsky AS, Wisniewski HM. Ultrastructural studies of glycoconjugates in brain micro-blood vessels and amyloid plaques of scrapie-infected mice. Acta Neuropathol 1988; 75:277-87. [PMID: 3348084 DOI: 10.1007/bf00690536] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Lectin or glycoprotein-gold complexes and samples of scrapie-infected mouse brain embedded in Lowicryl K4M were used for ultrastructural localization of glycoconjugates. The lectins tested recognize the following residues: beta-D-galactosyl [RCA, Ricinus communis agglutinin (aggl.) 120], N-acetyl and N-glycolyl neuraminic acid (LFA, Limax flavus aggl.), N-acetyl-D-glucosaminyl and sialyl (WGA, Wheat germ aggl.), N-acetyl-D-galactosaminyl (HPA, Helix pomatia aggl., and DBA, Dolichos biflorus aggl.), alpha-D-mannosyl/alpha-D-glucosyl (Con A, Concanavalin A), alpha-D-galactosyl and alpha-D-galactopyranoside (BSA, Bandeirea simplicifolia aggl., izolectin B4). Labeling of the majority of micro-blood vessels (MBVs) located outside the plaque area and in the remaining cerebral cortex was similar to that which has been previously observed in non-infected animals. Some MBVs, however, located inside the plaque area and surrounded directly by amyloid fibers showed attenuation of the endothelium, the surface of which was scarcely and irregularly decorated with RCA, LFA, WGA and Con A. These abnormalities in the composition of glycoconjugates can be associated with previously noted increased permeability of some MBVs in the brains of scrapie-infected mice. Some vessels in the plaque area were encapsulated by perivascular deposits of homogeneous or flocculogranular material containing several glycoconjugates. A very intimate structural relation between reactive (microglial-like) cells and amyloid fibers suggests the participation of these cells in elaboration of plaque material. Labeling of the cell surface and adjacent amyloid fibers with the same lectins (RCA, WGA, DBA, Con A) suggests the possibility that the glycosylation of these fibers occurs extracellularly. Only WGA and DBA were occasionally labeling some Golgi elements of the reactive cells.
Collapse
Affiliation(s)
- A W Vorbrodt
- New York State Office of Mental Retardation and Developmental Disabilities, Institute for Basic Research in Developmental Disabilities, Staten Island 10314
| | | | | | | | | |
Collapse
|
35
|
Affiliation(s)
- H Fujita
- Department of Anatomy, Osaka University Medical School, Japan
| |
Collapse
|
36
|
Primary structure of beta-galactoside alpha 2,6-sialyltransferase. Conversion of membrane-bound enzyme to soluble forms by cleavage of the NH2-terminal signal anchor. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)45441-5] [Citation(s) in RCA: 308] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
37
|
Ring P, Björkman U, Ekholm R. Localization of the incorporation of 3H-galactose and 3H-sialic acid into thyroglobulin in relation to the block of intracellular transport induced by monensin. Studies with isolated porcine thyroid follicles. Cell Tissue Res 1987; 250:149-56. [PMID: 3652157 DOI: 10.1007/bf00214666] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The Na+/K+ ionophore monensin is known to arrest the intracellular transport of newly synthesized proteins in the Golgi complex. In the present investigation the effect of monensin on the secretion of 3H-galactose-labeled and 3H-sialic acid-labeled thyroglobulin was studied in open thyroid follicles isolated from porcine thyroid tissue. Follicles were incubated with 3H-galactose at 20 degrees C for 1 h; at this temperature the labeled thyroglobulin remains in the labeling compartment (Ring et al. 1987a). The follicles were then chased at 37 degrees C for 1 h in the absence or presence of 1 microM monensin. Without monensin substantial amounts of labeled thyroglobulin were secreted into the medium, whereas in the presence of the ionophore secretion was inhibited by 80%. Since we have previously shown (Ring et al. 1987b) that monensin does not inhibit secretion of thyroglobulin present on the distal side of the monensin block we conclude that galactose is incorporated into thyroglobulin on the proximal side of this block. Secretion was also measured in follicles continuously incubated with 3H-galactose for 1 h at 37 degrees C in the absence or presence of monensin. In these experiments secretion of labeled thyroglobulin was inhibited by about 85% in the presence of monensin. Identically designed experiments with 3H-N-acetylmannosamine, a precursor of sialic acid, gave similar results, i.e., almost complete inhibition of secretion of labeled thyroglobulin in the presence of monensin. The agreement between the results of the galactose and sialic acid experiments indicates that sialic acid, like galactose, is incorporated into thyroglobulin on the proximal side of the monensin block.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P Ring
- Department of Anatomy, University of Göteborg, Sweden
| | | | | |
Collapse
|
38
|
Pavelka M, Ellinger A. The Golgi apparatus in the acinar cells of the developing embryonic pancreas: I. Morphology and enzyme cytochemistry. THE AMERICAN JOURNAL OF ANATOMY 1987; 178:215-23. [PMID: 3578085 DOI: 10.1002/aja.1001780302] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The Golgi apparatus of pancreatic acinar cells of rat embryos was studied during development from day 13 through day 20 of gestation. The morphological and enzyme cytochemical patterns varied characteristically in the course of cell differentiation. A pronounced system of "rigid lamellae" characterized the area near the trans face of the Golgi stacks in the protodifferentiated and early phases of the differentiated states; by contrast, "rigid lamellae" were sparse in the terminal period of gestation. Reaction product of acid phosphatase labeled the "rigid lamellae" in the protodifferentiated state, was extended across the majority of the stacked cisternae in the early differentiated state, but was restricted to the trans side again in the later periods of cell differentiation. The early phase of the differentiated state was characterized by the tight association of the endoplasmic reticulum and Golgi cisternae on the trans side; the close spatial relationship of the two compartments was lessened after production of secretion granules had started. The findings are in line with those of recent studies on the Golgi organization in some other types of cells in different functional states, and they present the embryonic pancreatic tissue as another model for demonstrating the high flexibility of the Golgi complex. In agreement with the patterns previously found in the absorptive cells of the small intestine, the present results show that the close associations of the endoplasmic reticulum and cisternae of the trans Golgi side predominate in the early stages of cell differentiation.
Collapse
|
39
|
Pavelka M, Ellinger A. The Golgi apparatus in the acinar cells of the developing embryonic pancreas: II. Localization of lectin-binding sites. THE AMERICAN JOURNAL OF ANATOMY 1987; 178:224-30. [PMID: 3578086 DOI: 10.1002/aja.1001780303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The reaction patterns of the Golgi apparatus following staining with the lectins concanavalin A (ConA), Ricinus communis I agglutinin (RCA I), and Helix pomatia lectin (HPA) were studied in the pancreas acinar cells of rat embryos in the course of cell differentiation from day 13 through day 20 of gestation. The binding reactions were localized by means of pre-embedment incubation of 10-microns-thick cryosections of pancreas tissue, prefixed in a mixture of 4% formaldehyde/0.5% glutaraldehyde, using horseradish peroxidase for electron microscope visualization. ConA, which preferentially binds to alpha-D-mannosyl residues, consistently stained the cisternae of the cis Golgi side. The majority of the stacks also showed ConA staining of medial cisternae. The reaction of the trans side was variable; in each stage of development, the cisternae of the trans Golgi side either were devoid of labeling or appeared intensely stained. The reactions obtained with RCA I, which recognizes terminal beta-D-galactosyl residues, changed in the course of cell differentiation; in the protodifferentiated and early differentiated states, the system of "rigid lamellae," located at the trans side of the Golgi stacks, was intensely labeled, but became unreactive after production of secretion granules had started, the reaction then being restricted to the stacked saccules. In regard to the Golgi stacks in each of the developmental stages, RCA I binding sites either were confined to the trans cisternae, or, in addition, were found distributed across elements of the medial and cis compartments.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
40
|
Biosynthesis, glycosylation, movement through the Golgi system, and transport to lysosomes by an N-linked carbohydrate-independent mechanism of three lysosomal integral membrane proteins. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)66630-x] [Citation(s) in RCA: 143] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
41
|
Abstract
Carbohydrate has been removed from a number of glycoproteins without major effect on the structure or enzyme activity of the protein. Thus carbohydrate has been suggested to underly a non-primary function for proteins, such as in relatively non-specific interactions with other carbohydrates or macromolecules, stabilization of protein conformation, or protection from proteolysis. This non-specific concept is consistent with both the general similarity in carbohydrate structure on very diverse glycoproteins and the frequent structural microheterogeneity of carbohydrate chains at given sites. The concept is supported in a general sense by the viability of cells whose glycosylation processes have been globally disrupted by mutation or pharmacological inhibitors. In contrast to the above observations, other studies have revealed the existence of specific, selective receptors for discrete oligosaccharide structures on glycoproteins which seem to be important for compartmentalization of the glycoprotein, or the positioning of cells on which the glycoprotein is concentrated. Sometimes multivalency in the carbohydrate-receptor interaction is crucial. There are additional possible roles for carbohydrate in the transduction of information upon binding to a receptor. The possibility of specific roles for carbohydrate is supported by the existence of numerous unique carbohydrate structures, many of which have been detected as glycoantigens by monoclonal antibodies, with unique distributions in developing and differentiated cells. This article attempts to summarize and rationalize the contradictory results. It appears that in general carbohydrate does in fact underlie only roles secondary to a protein's primary function. These secondary roles are simple non-specific ones of protection and stabilization, but often also satisfy the more sophisticated needs of spatial position control and compartmentalization in multicellular eukaryotic organisms. It is suggested that there are advantages, evolutionarily speaking, for the shared use of carbohydrate for non-specific roles and for specific roles primarily as luxury functions to be executed during the processes of cell differentiation and morphogenesis.
Collapse
|
42
|
Ronin C, Fenouillet E, Hovsepian S, Fayet G, Fournet B. Regulation of thyroglobulin glycosylation. A comparative study of the thyroglobulins from porcine thyroid glands and follicles in serum-free culture. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)38388-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|