1
|
Wan CP, He FX, Zhang W, Xu Q, Zhu QL, Song CS. A Sec-Dependent Effector from " Candidatus Phytoplasma ziziphi" Suppresses Plant Immunity and Contributes to Pathogenicity. BIOLOGY 2025; 14:528. [PMID: 40427717 PMCID: PMC12108763 DOI: 10.3390/biology14050528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2025] [Revised: 05/02/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025]
Abstract
Jujube witches' broom (JWB) disease, caused by Candidatus Phytoplasma ziziphi (Ca. P. ziziphi), severely threatens the production of Chinese jujube (Ziziphus jujuba Mill.). Emerging evidence highlights the critical role of phytoplasma-secreted effectors in pathogenesis, though few have been functionally characterized. Here, we identified a Sec-dependent effector, JWB790, from Ca. P. ziziphi, which was shown to suppress plant immunity. Through transient expression assays in Nicotiana benthamiana, pathogen inoculation assays, the generation of transgenic Arabidopsis thaliana plants, and RNA-seq-based transcriptomic profiling, we systematically investigated the virulence function of JWB790. Our findings revealed that JWB790 is highly expressed in JWB-infected tissues. The transient expression of JWB790 in N. benthamiana suppressed BAX-induced cell death and H2O2 accumulation. Furthermore, the stable overexpression of JWB790 in A. thaliana compromised disease resistance, accompanied by reduced H2O2 accumulation and callose deposition triggered by flg22. Additionally, the RNA-seq analysis of JWB790 transgenic Arabidopsis plants indicated that the overexpression of JWB790 altered the expression of biotic stress-related genes. In summary, JWB790 is a virulence factor that suppresses plant immunity and promotes pathogen proliferation. These results advance our understanding of Ca. P. ziziphi pathogenesis.
Collapse
Affiliation(s)
- Cui-Ping Wan
- College of Agricultural and Biological Engineering, Heze University, Heze 274015, China; (W.Z.); (Q.X.); (Q.-L.Z.)
| | - Fu-Xin He
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Jinzhong 030600, China;
| | - Wei Zhang
- College of Agricultural and Biological Engineering, Heze University, Heze 274015, China; (W.Z.); (Q.X.); (Q.-L.Z.)
| | - Qian Xu
- College of Agricultural and Biological Engineering, Heze University, Heze 274015, China; (W.Z.); (Q.X.); (Q.-L.Z.)
| | - Qi-Liang Zhu
- College of Agricultural and Biological Engineering, Heze University, Heze 274015, China; (W.Z.); (Q.X.); (Q.-L.Z.)
| | - Chuan-Sheng Song
- College of Agricultural and Biological Engineering, Heze University, Heze 274015, China; (W.Z.); (Q.X.); (Q.-L.Z.)
| |
Collapse
|
2
|
Slivenecka E, Jurnecka D, Holubova J, Stanek O, Brazdilova L, Cizkova M, Bumba L. The Actinobacillus pleuropneumoniae apxIV operon encodes an antibacterial toxin-immunity pair. Microbiol Res 2025; 292:128043. [PMID: 39740637 DOI: 10.1016/j.micres.2024.128043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/02/2025]
Abstract
The ApxIVA protein belongs to a distinct class of a "clip and link" activity of Repeat-in-ToXin (RTX) exoproteins. Along with the three other pore-forming RTX toxins (ApxI, ApxII and ApxIII), ApxIVA serves as a major virulence factor of Actinobacillus pleuropneumoniae, the causative agent of porcine pneumonia. The gene encoding ApxIVA is located on a bicistronic operon downstream of the orf1 gene and is expressed exclusively under in vivo conditions. Both ApxIVA and ORF1 are essential for full virulence of A. pleuropneumoniae, but the molecular mechanisms by which they contribute to the pathogenicity are not yet understood. Here, we provide a comprehensive structural and functional analysis of ApxIVA and ORF1 proteins. Our findings reveal that the N-terminal segment of ApxIVA shares structural similarity with colicin M (ColM)-like bacteriocins and exhibits an antimicrobial activity. The ORF1 protein resembles the colicin M immunity protein (Cmi) and, like Cmi, is exported to the periplasm through its N-terminal signal peptide. Additionally, ORF1 can protect bacterial cells from the antimicrobial activity of ApxIVA, suggesting that ORF1 and ApxIVA function as an antibacterial toxin-immunity pair. Moreover, we demonstrate that fetal bovine serum could elicit ApxIVA and ORF1 production under in vitro conditions. These findings highlight the coordinated action of various RTX determinants, where the fine-tuned spatiotemporal production of ApxIVA may enhance the fitness of A. pleuropneumoniae, facilitating its invasion to a resident microbial community on the surface of airway mucosa.
Collapse
Affiliation(s)
- Eva Slivenecka
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| | - David Jurnecka
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| | - Jana Holubova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| | - Ondrej Stanek
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| | - Ludmila Brazdilova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| | - Monika Cizkova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| | - Ladislav Bumba
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic.
| |
Collapse
|
3
|
Pang J, Zhang L, Qi Q, Liu Z. Impact of a random TN5 mutation on endoglucanase secretion in ruminal cellulolytic Escherichia coli. Gene 2025; 933:148936. [PMID: 39260626 DOI: 10.1016/j.gene.2024.148936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/25/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
OBJECTIVE Most protein secretion systems are found in gram-negative bacteria, but the mechanism of endoglucanase (BcsZ) secretion in Escherichia coli (E. coli) remains unclear. METHODS In this study, we used JBZ-DH5α (which overexpresses BcsZ on the E. coli DH5α genome) as the initial strain. A mutant library was created by randomly inserting the TN5 transposon into the genome, and mutants with reduced transparent circles were identified on Congo red plates. The insertion sites of transposons in the genome were determined through whole-genome sequencing. RESULTS The results revealed that the genes rnc, lon, and suhB, which encode RNC-ribonuclease III (RNC), LON-protease (LON), and SuhB-inositol phosphatase (SuhB), respectively, were disrupted. BcsZ secretion decreased in E. coli DH5α when the lon, rnc, or suhB genes were deleted, but the overexpression of these genes restored their secretion levels. CONCLUSION These findings suggest that the lon, rnc, and suhB genes play a role in BcsZ secretion in E. coli, potentially enhancing our knowledge of BcsZ secretion and offering a strategy to increase protein secretion in E. coli as a cell factory.
Collapse
Affiliation(s)
- Jian Pang
- Center for Energy Conservation and Emission Reduction in Fermentation Industry in Inner Mongolia, Hohhot 010051, Inner Mongolia, China; Engineering Research Center of Inner Mongolia for Green Manufacturing in Bio-fermentation Industry, Hohhot 010051, Inner Mongolia, China; Specialized Technology Research and Pilot Public Service Platform for Biological Fermentation in Inner Mongolia, Hohhot 010051, Inner Mongolia, China; Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| | - Long Zhang
- Center for Energy Conservation and Emission Reduction in Fermentation Industry in Inner Mongolia, Hohhot 010051, Inner Mongolia, China; Engineering Research Center of Inner Mongolia for Green Manufacturing in Bio-fermentation Industry, Hohhot 010051, Inner Mongolia, China; Specialized Technology Research and Pilot Public Service Platform for Biological Fermentation in Inner Mongolia, Hohhot 010051, Inner Mongolia, China; College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, Inner Mongolia, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Zhanying Liu
- Center for Energy Conservation and Emission Reduction in Fermentation Industry in Inner Mongolia, Hohhot 010051, Inner Mongolia, China; Engineering Research Center of Inner Mongolia for Green Manufacturing in Bio-fermentation Industry, Hohhot 010051, Inner Mongolia, China; Specialized Technology Research and Pilot Public Service Platform for Biological Fermentation in Inner Mongolia, Hohhot 010051, Inner Mongolia, China; College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, Inner Mongolia, China.
| |
Collapse
|
4
|
Osgerby A, Overton TW. Approaches for high-throughput quantification of periplasmic recombinant proteins. N Biotechnol 2023; 77:149-160. [PMID: 37708933 DOI: 10.1016/j.nbt.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
The Gram-negative periplasm is a convenient location for the accumulation of many recombinant proteins including biopharmaceutical products. It is the site of disulphide bond formation, required by some proteins (such as antibody fragments) for correct folding and function. It also permits simpler protein release and downstream processing than cytoplasmic accumulation. As such, targeting of recombinant proteins to the E. coli periplasm is a key strategy in biologic manufacture. However, expression and translocation of each recombinant protein requires optimisation including selection of the best signal peptide and growth and production conditions. Traditional methods require separation and analysis of protein compositions of periplasmic and cytoplasmic fractions, a time- and labour-intensive method that is difficult to parallelise. Therefore, approaches for high throughput quantification of periplasmic protein accumulation offer advantages in rapid process development.
Collapse
Affiliation(s)
- Alexander Osgerby
- School of Chemical Engineering and Institute of Microbiology and Infection, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Tim W Overton
- School of Chemical Engineering and Institute of Microbiology and Infection, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
5
|
Tang M, Zhao D, Liu S, Zhang X, Yao Z, Chen H, Zhou C, Zhou T, Xu C. The Properties of Linezolid, Rifampicin, and Vancomycin, as Well as the Mechanism of Action of Pentamidine, Determine Their Synergy against Gram-Negative Bacteria. Int J Mol Sci 2023; 24:13812. [PMID: 37762115 PMCID: PMC10530309 DOI: 10.3390/ijms241813812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Combining pentamidine with Gram-positive-targeting antibiotics has been proven to be a promising strategy for treating infections from Gram-negative bacteria (GNB). However, which antibiotics pentamidine can and cannot synergize with and the reasons for the differences are unclear. This study aimed to identify the possible mechanisms for the differences in the synergy of pentamidine with rifampicin, linezolid, tetracycline, erythromycin, and vancomycin against GNB. Checkerboard assays were used to detect the synergy of pentamidine and the different antibiotics. To determine the mechanism of pentamidine, fluorescent labeling assays were used to measure membrane permeability, membrane potential, efflux pump activity, and reactive oxygen species (ROS); the LPS neutralization assay was used to evaluate the target site; and quantitative PCR was used to measure changes in efflux pump gene expression. Our results revealed that pentamidine strongly synergized with rifampicin, linezolid, and tetracycline and moderately synergized with erythromycin, but did not synergize with vancomycin against E. coli, K. pneumoniae, E. cloacae, and A. baumannii. Pentamidine increased the outer membrane permeability but did not demolish the outer and inner membranes, which exclusively permits the passage of hydrophobic, small-molecule antibiotics while hindering the entry of hydrophilic, large-molecule vancomycin. It dissipated the membrane proton motive force and inactivated the efflux pump, allowing the intracellular accumulation of antimicrobials that function as substrates of the efflux pump, such as linezolid. These processes resulted in metabolic perturbation and ROS production which ultimately was able to destroy the bacteria. These mechanisms of action of pentamidine on GNB indicate that it is prone to potentiating hydrophobic, small-molecule antibiotics, such as rifampicin, linezolid, and tetracycline, but not hydrophilic, large-molecule antibiotics like vancomycin against GNB. Collectively, our results highlight the importance of the physicochemical properties of antibiotics and the specific mechanisms of action of pentamidine for the synergy of pentamidine-antibiotic combinations. Pentamidine engages in various pathways in its interactions with GNB, but these mechanisms determine its specific synergistic effects with certain antibiotics against GNB. Pentamidine is a promising adjuvant, and we can optimize drug compatibility by considering its functional mechanisms.
Collapse
Affiliation(s)
- Miran Tang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; (M.T.); (S.L.); (X.Z.); (Z.Y.); (H.C.); (C.Z.)
| | - Deyi Zhao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325015, China;
| | - Sichen Liu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; (M.T.); (S.L.); (X.Z.); (Z.Y.); (H.C.); (C.Z.)
| | - Xiaotuan Zhang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; (M.T.); (S.L.); (X.Z.); (Z.Y.); (H.C.); (C.Z.)
| | - Zhuocheng Yao
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; (M.T.); (S.L.); (X.Z.); (Z.Y.); (H.C.); (C.Z.)
| | - Hule Chen
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; (M.T.); (S.L.); (X.Z.); (Z.Y.); (H.C.); (C.Z.)
| | - Cui Zhou
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; (M.T.); (S.L.); (X.Z.); (Z.Y.); (H.C.); (C.Z.)
| | - Tieli Zhou
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; (M.T.); (S.L.); (X.Z.); (Z.Y.); (H.C.); (C.Z.)
| | - Chunquan Xu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; (M.T.); (S.L.); (X.Z.); (Z.Y.); (H.C.); (C.Z.)
| |
Collapse
|
6
|
Comparative Analysis of NanoLuc Luciferase and Alkaline Phosphatase Luminescence Reporter Systems for Phage-Based Detection of Bacteria. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9090479. [PMID: 36135024 PMCID: PMC9495952 DOI: 10.3390/bioengineering9090479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 11/25/2022]
Abstract
Reporter phage assays are a promising alternative to culture-based assays for rapidly detecting viable bacteria. The reporter systems used in phage-based detection are typically enzymes and their corresponding substrates that provide a signal following infection and expression. While several reporter systems have been developed, comparing reporter systems based on reported bacteria detection limits from literature can be challenging due to factors other than the reporter system that influence detection capabilities. To advance the development of phage-based assays, a systematic comparison and understanding of the components are necessary. The objective of this study was to directly compare two common enzyme-mediated luminescence reporter systems, NanoLuc/Nano-Glo and alkaline phosphatase (ALP*)/DynaLight, for phage-based detection of bacteria. The detection limits of the purified enzymes were determined, as well as the expression levels and bacteria detection capabilities following engineering of the coding genes into T7 phage and infection of E. coli BL21. When comparing the sensitivity of the purified enzymes, NLuc/Nano-Glo enzyme/substrate system demonstrated a lower detection limit than ALP*/DynaLight. In addition, the expression of the NLuc reporter following phage infection of E. coli was greater than ALP*. The lower detection limit combined with the higher expression resulted in a greater than 100-fold increase in sensitivity for the NLuc/Nano-Glo® reporter system compared to ALP*/DynaLight when used for the detection of E. coli in a model system. These findings provide a comparative analysis of two common reporter systems used for phage-based detection of bacteria and a foundational understanding of these systems for engineering future reporter phage assays.
Collapse
|
7
|
Sugue MF, Burdur AN, Ringel MT, Dräger G, Brüser T. PvdM of fluorescent pseudomonads is required for the oxidation of ferribactin by PvdP in periplasmic pyoverdine maturation. J Biol Chem 2022; 298:102201. [PMID: 35764171 PMCID: PMC9305348 DOI: 10.1016/j.jbc.2022.102201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Fluorescent pseudomonads such as Pseudomonas aeruginosa or Pseudomonas fluorescens produce pyoverdine siderophores that ensure iron-supply in iron-limited environments. After its synthesis in the cytoplasm, the nonfluorescent pyoverdine precursor ferribactin is exported into the periplasm, where the enzymes PvdQ, PvdP, PvdO, PvdN, and PtaA are responsible for fluorophore maturation and tailoring steps. While the roles of all these enzymes are clear, little is known about the role of PvdM, a human renal dipeptidase–related protein that is predicted to be periplasmic and that is essential for pyoverdine biogenesis. Here, we reveal the subcellular localization and functional role of PvdM. Using the model organism P. fluorescens, we show that PvdM is anchored to the periplasmic side of the cytoplasmic membrane, where it is indispensable for the activity of the tyrosinase PvdP. While PvdM does not share the metallopeptidase function of renal dipeptidase, it still has the corresponding peptide-binding site. The substrate of PvdP, deacylated ferribactin, is secreted by a ΔpvdM mutant strain, indicating that PvdM prevents loss of this periplasmic biosynthesis intermediate into the medium by ensuring the efficient transfer of ferribactin to PvdP in vivo. We propose that PvdM belongs to a new dipeptidase-related protein subfamily with inactivated Zn2+ coordination sites, members of which are usually genetically linked to TonB-dependent uptake systems and often associated with periplasmic FAD-dependent oxidoreductases related to d-amino acid oxidases. We suggest that these proteins are necessary for selective binding, exposure, or transfer of specific d- and l-amino acid–containing peptides and other periplasmic biomolecules in manifold pathways.
Collapse
Affiliation(s)
| | - Ali Nazmi Burdur
- Institute of Microbiology, Leibniz University Hannover, Hannover, Germany
| | - Michael T Ringel
- Institute of Microbiology, Leibniz University Hannover, Hannover, Germany
| | - Gerald Dräger
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1 B, 30167 Hannover, Germany
| | - Thomas Brüser
- Institute of Microbiology, Leibniz University Hannover, Hannover, Germany.
| |
Collapse
|
8
|
Borges B, Gallo G, Coelho C, Negri N, Maiello F, Hardy L, Würtele M. Dynamic cross correlation analysis of Thermus thermophilus alkaline phosphatase and determinants of thermostability. Biochim Biophys Acta Gen Subj 2021; 1865:129895. [PMID: 33781823 DOI: 10.1016/j.bbagen.2021.129895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/18/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Understanding the determinants of protein thermostability is very important both from the theoretical and applied perspective. One emerging view in thermostable enzymes seems to indicate that a salt bridge/charged residue network plays a fundamental role in their thermostability. METHODS The structure of alkaline phosphatase (AP) from Thermus thermophilus HB8 was solved by X-ray crystallography at 2.1 Å resolution. The obtained structure was further analyzed by molecular dynamics studies at different temperatures (303 K, 333 K and 363 K) and compared to homologous proteins from the cold-adapted organisms Shewanella sp. and Vibrio strain G15-21. To analyze differences in measures of dynamic variation, several data reduction techniques like principal component analysis (PCA), residue interaction network (RIN) analysis and rotamer analysis were used. Using hierarchical clustering, the obtained results were combined to determine residues showing high degree dynamical variations due to temperature jumps. Furthermore, dynamic cross correlation (DCC) analysis was carried out to characterize networks of charged residues. RESULTS Top clustered residues showed a higher propensity for thermostabilizing mutations, indicating evolutionary pressure acting on thermophilic organisms. The description of rotamer distributions by Gini coefficients and Kullback-Leibler (KL) divergence both revealed significant correlations with temperature. DCC analysis revealed a significant trend to de-correlation of the movement of charged residues at higher temperatures. SIGNIFICANCE The de-correlation of charged residues detected in Thermus thermophilus AP, highlights the importance of dynamic electrostatic network interactions for the thermostability of this enzyme.
Collapse
Affiliation(s)
- Bruno Borges
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Gloria Gallo
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Camila Coelho
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Naiane Negri
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil; Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando Maiello
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Leon Hardy
- Department of Physics, University of South Florida, Tampa, United States
| | - Martin Würtele
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil.
| |
Collapse
|
9
|
Dai J, Dong A, Xiong G, Liu Y, Hossain MS, Liu S, Gao N, Li S, Wang J, Qiu D. Production of Highly Active Extracellular Amylase and Cellulase From Bacillus subtilis ZIM3 and a Recombinant Strain With a Potential Application in Tobacco Fermentation. Front Microbiol 2020; 11:1539. [PMID: 32793132 PMCID: PMC7385192 DOI: 10.3389/fmicb.2020.01539] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/12/2020] [Indexed: 11/25/2022] Open
Abstract
In this study, a series of bacteria capable of degrading starch and cellulose were isolated from the aging flue-cured tobacco leaves. Remarkably, there was a thermophilic bacterium, Bacillus subtilis ZIM3, that can simultaneously degrade both starch and cellulose at a wide range of temperature and pH values. Genome sequencing, comparative genomics analyses, and enzymatic activity assays showed that the ZIM3 strain expressed a variety of highly active plant biomass-degrading enzymes, such as the amylase AmyE1 and cellulase CelE1. The in vitro and PhoA-fusion assays indicated that these enzymes degrading complex plant biomass into fermentable sugars were secreted into ambient environment to function. Besides, the amylase and cellulase activities were further increased by three- to five-folds by using overexpression. Furthermore, a fermentation strategy was developed and the biodegradation efficiency of the starch and cellulose in the tobacco leaves were improved by 30–48%. These results reveal that B. subtilis ZIM3 and the recombinant strain exhibited high amylase and cellulase activities for efficient biodegradation of starch and cellulose in tobacco and could potentially be applied for industrial tobacco fermentation.
Collapse
Affiliation(s)
- Jingcheng Dai
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Aijun Dong
- Technology Research Center of China Tobacco Hubei Industry Co., Ltd., Wuhan, China
| | - Guoxi Xiong
- Technology Research Center of China Tobacco Hubei Industry Co., Ltd., Wuhan, China
| | - Yaqi Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Md Shahdat Hossain
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China.,National Institute of Biotechnology, Dhaka, Bangladesh
| | - Shuangyuan Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Na Gao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shuyang Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dongru Qiu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Liu X, Fan Y, Zhang C, Dai M, Wang X, Li W. Nuclear Import of a Secreted " Candidatus Liberibacter asiaticus" Protein is Temperature Dependent and Contributes to Pathogenicity in Nicotiana benthamiana. Front Microbiol 2019; 10:1684. [PMID: 31396191 PMCID: PMC6668550 DOI: 10.3389/fmicb.2019.01684] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/08/2019] [Indexed: 01/14/2023] Open
Abstract
“Candidatus Liberibacter asiaticus” (CLas), one of the causal agents of citrus Huanglongbing (HLB), secretes proteins with functions that are largely unknown. In this study, we demonstrated that CLIBASIA_00460, one of the CLas-encoded Sec-dependent presecretory proteins, might contribute to the phytopathogenicity of CLas. CLIBASIA_00460 was conserved in CLas strains and expressed at a significantly higher level in citrus than in Asian citrus psyllid. Agrobacteria-mediated transient expression in Nicotiana benthamiana epidermal cells showed that the mature CLIBASIA_00460 (m460) without the putative Sec-dependent signal peptide was localized in multiple cellular compartments including nucleus at 25°C, but that nuclear accumulation was greatly decreased as the temperature rose to 32°C. When overexpressed via a Potato virus X (PVX)-based expression vector in N. benthamiana, m460 induced no local symptoms, but tiny necrotic spots were scattered on the systemic leaves. However, NLS-m460, which contains the SV40 nuclear localization sequence (NLS) at the N-terminus to promote nuclear import of m460, caused chlorosis and necrosis in the local leaves and severe necrosis in the systemic leaves. Taken together, these data suggest that CLIBASIA_00460 represented a novel virulence factor of CLas, and that nuclear localization of this protein was temperature dependent and positively correlated with its pathogenicity in planta.
Collapse
Affiliation(s)
- Xuelu Liu
- Citrus Research Institute, Southwest University, Chongqing, China.,Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanyan Fan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Life Science, Shandong Normal University, Jinan, China
| | - Chao Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meixue Dai
- College of Life Science, Shandong Normal University, Jinan, China
| | - Xuefeng Wang
- Citrus Research Institute, Southwest University, Chongqing, China
| | - Weimin Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Groenewold MK, Hebecker S, Fritz C, Czolkoss S, Wiesselmann M, Heinz DW, Jahn D, Narberhaus F, Aktas M, Moser J. Virulence of Agrobacterium tumefaciens requires lipid homeostasis mediated by the lysyl-phosphatidylglycerol hydrolase AcvB. Mol Microbiol 2018; 111:269-286. [PMID: 30353924 DOI: 10.1111/mmi.14154] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2018] [Indexed: 12/24/2022]
Abstract
Agrobacterium tumefaciens transfers oncogenic T-DNA via the type IV secretion system (T4SS) into plants causing tumor formation. The acvB gene encodes a virulence factor of unknown function required for plant transformation. Here we specify AcvB as a periplasmic lysyl-phosphatidylglycerol (L-PG) hydrolase, which modulates L-PG homeostasis. Through functional characterization of recombinant AcvB variants, we showed that the C-terminal domain of AcvB (residues 232-456) is sufficient for full enzymatic activity and defined key residues for catalysis. Absence of the hydrolase resulted in ~10-fold increase in L-PG in Agrobacterium membranes and abolished T-DNA transfer and tumor formation. Overproduction of the L-PG synthase gene (lpiA) in wild-type A. tumefaciens resulted in a similar increase in the L-PG content (~7-fold) and a virulence defect even in the presence of intact AcvB. These results suggest that elevated L-PG amounts (either by overproduction of the synthase or absence of the hydrolase) are responsible for the virulence phenotype. Gradually increasing the L-PG content by complementation with different acvB variants revealed that cellular L-PG levels above 3% of total phospholipids interfere with T-DNA transfer. Cumulatively, this study identified AcvB as a novel virulence factor required for membrane lipid homeostasis and T-DNA transfer.
Collapse
Affiliation(s)
- Maike K Groenewold
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Stefanie Hebecker
- Institute for Microbiology, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Christiane Fritz
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Simon Czolkoss
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Milan Wiesselmann
- Institute for Microbiology, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Dirk W Heinz
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Dieter Jahn
- Institute for Microbiology, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Franz Narberhaus
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Meriyem Aktas
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Jürgen Moser
- Institute for Microbiology, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| |
Collapse
|
12
|
Blank M, Schweiger P. Surface display for metabolic engineering of industrially important acetic acid bacteria. PeerJ 2018; 6:e4626. [PMID: 29637028 PMCID: PMC5890722 DOI: 10.7717/peerj.4626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/26/2018] [Indexed: 11/20/2022] Open
Abstract
Acetic acid bacteria have unique metabolic characteristics that suit them for a variety of biotechnological applications. They possess an arsenal of membrane-bound dehydrogenases in the periplasmic space that are capable of regiospecific and enantioselective partial oxidations of sugars, alcohols, and polyols. The resulting products are deposited directly into the medium where they are easily recovered for use as pharmaceutical precursors, industrial chemicals, food additives, and consumer products. Expression of extracytoplasmic enzymes to augment the oxidative capabilities of acetic acid bacteria is desired but is challenging due to the already crowded inner membrane. To this end, an original surface display system was developed to express recombinant enzymes at the outer membrane of the model acetic acid bacterium Gluconobacter oxydans. Outer membrane porin F (OprF) was used to deliver alkaline phosphatase (PhoA) to the cell surface. Constitutive high-strength p264 and moderate-strength p452 promoters were used to direct expression of the surface display system. This system was demonstrated for biocatalysis in whole-cell assays with the p264 promoter having a twofold increase in PhoA activity compared to the p452 promoter. Proteolytic cleavage of PhoA from the cell surface confirmed proper delivery to the outer membrane. Furthermore, a linker library was constructed to optimize surface display. A rigid (EAAAK)1 linker led to the greatest improvement, increasing PhoA activity by 69%. This surface display system could be used both to extend the capabilities of acetic acid bacteria in current biotechnological processes, and to broaden the potential of these microbes in the production of value-added products.
Collapse
Affiliation(s)
- Marshal Blank
- Biology Department, Missouri State University, Springfield, MO, USA
| | - Paul Schweiger
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, WI, USA
| |
Collapse
|
13
|
Wurm DJ, Marschall L, Sagmeister P, Herwig C, Spadiut O. Simple monitoring of cell leakiness and viability in Escherichia coli bioprocesses-A case study. Eng Life Sci 2017; 17:598-604. [PMID: 32624805 DOI: 10.1002/elsc.201600204] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 09/16/2016] [Accepted: 12/07/2016] [Indexed: 11/10/2022] Open
Abstract
In a recently published study, we developed a simple methodology to monitor Escherichia coli cell integrity and lysis during bioreactor cultivations, where we intentionally triggered leakiness. In this follow-up study, we used this methodology, comprising the measurement of extracellular alkaline phosphatase to monitor leakiness and flow cytometry to follow viability, to investigate the effect of process parameters on a recombinant E. coli strain producing the highly valuable vascular endothelial growth factor A165 (VEGF-A165) in the periplasm. Since the amount of soluble product was very little (<500 μg/g dry cell weight), we directly linked the effect of the three process parameters temperature, specific uptake rate of the inducer arabinose and specific growth rate (μ) to cell integrity and viability. We found that a low temperature and a high μ were beneficial for cell integrity and that an elevated temperature resulted in reduced viability. We concluded that the recombinant E. coli cells producing VEGF-A165 in the periplasm should be cultivated at low temperature and high μ to reduce leakiness and guarantee high viability. Summarizing, in this follow-up study we demonstrate the usefulness of our simple methodology to monitor leakiness and viability of recombinant E. coli cells during bioreactor cultivations.
Collapse
Affiliation(s)
- David J Wurm
- Research Division Biochemical Engineering, Institute of Chemical Engineering Vienna University of Technology Vienna Austria
| | - Lukas Marschall
- Research Division Biochemical Engineering, Institute of Chemical Engineering Vienna University of Technology Vienna Austria
| | - Patrick Sagmeister
- Research Division Biochemical Engineering, Institute of Chemical Engineering Vienna University of Technology Vienna Austria
| | - Christoph Herwig
- Research Division Biochemical Engineering, Institute of Chemical Engineering Vienna University of Technology Vienna Austria.,Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses Institute of Chemical Engineering Vienna University of Technology Vienna Austria
| | - Oliver Spadiut
- Research Division Biochemical Engineering, Institute of Chemical Engineering Vienna University of Technology Vienna Austria.,Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses Institute of Chemical Engineering Vienna University of Technology Vienna Austria
| |
Collapse
|
14
|
Tysoe C, Williams LK, Keyzers R, Nguyen NT, Tarling C, Wicki J, Goddard-Borger E, Aguda AH, Perry S, Foster LJ, Andersen RJ, Brayer G, Withers SG. Potent Human α-Amylase Inhibition by the β-Defensin-like Protein Helianthamide. ACS CENTRAL SCIENCE 2016; 2:154-161. [PMID: 27066537 PMCID: PMC4819454 DOI: 10.1021/acscentsci.5b00399] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Indexed: 06/05/2023]
Abstract
Selective inhibitors of human pancreatic α-amylase (HPA) are an effective means of controlling blood sugar levels in the management of diabetes. A high-throughput screen of marine natural product extracts led to the identification of a potent (Ki = 10 pM) peptidic HPA inhibitor, helianthamide, from the Caribbean sea anemone Stichodactyla helianthus. Active helianthamide was produced in Escherichia coli via secretion as a barnase fusion protein. X-ray crystallographic analysis of the complex of helianthamide with porcine pancreatic α-amylase revealed that helianthamide adopts a β-defensin fold and binds into and across the amylase active site, utilizing a contiguous YIYH inhibitory motif. Helianthamide represents the first of a novel class of glycosidase inhibitors and provides an unusual example of functional malleability of the β-defensin fold, which is rarely seen outside of its traditional role in antimicrobial peptides.
Collapse
Affiliation(s)
- Christina Tysoe
- Centre
for High-Throughput Biology, Michael Smith
Laboratories, 185 East
Mall, Vancouver, British
Columbia V6T 1Z4, Canada
| | - Leslie K. Williams
- Department
of Biochemistry and Molecular Biology, University
of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Robert Keyzers
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
- Department
of Earth and Ocean Sciences, University
of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Nham T. Nguyen
- Department
of Biochemistry and Molecular Biology, University
of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Chris Tarling
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jacqueline Wicki
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Ethan
D. Goddard-Borger
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Adeleke H. Aguda
- Department
of Biochemistry and Molecular Biology, University
of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Suzanne Perry
- Centre
for High-Throughput Biology, Michael Smith
Laboratories, 185 East
Mall, Vancouver, British
Columbia V6T 1Z4, Canada
| | - Leonard J. Foster
- Centre
for High-Throughput Biology, Michael Smith
Laboratories, 185 East
Mall, Vancouver, British
Columbia V6T 1Z4, Canada
| | - Raymond J. Andersen
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
- Department
of Earth and Ocean Sciences, University
of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Gary
D. Brayer
- Department
of Biochemistry and Molecular Biology, University
of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Stephen G. Withers
- Centre
for High-Throughput Biology, Michael Smith
Laboratories, 185 East
Mall, Vancouver, British
Columbia V6T 1Z4, Canada
- Department
of Biochemistry and Molecular Biology, University
of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
15
|
Inhibition of Plasmodium berghei Development in Mosquitoes by Effector Proteins Secreted from Asaia sp. Bacteria Using a Novel Native Secretion Signal. PLoS One 2015; 10:e0143541. [PMID: 26636338 PMCID: PMC4670117 DOI: 10.1371/journal.pone.0143541] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/05/2015] [Indexed: 11/25/2022] Open
Abstract
Novel interventions are needed to prevent the transmission of the Plasmodium parasites that cause malaria. One possible method is to supply mosquitoes with antiplasmodial effector proteins from bacteria by paratransgenesis. Mosquitoes have a diverse complement of midgut microbiota including the Gram-negative bacteria Asaia bogorensis. This study presents the first use of Asaia sp. bacteria for paratransgenesis against P. berghei. We identified putative secreted proteins from A. bogorensis by a genetic screen using alkaline phosphatase gene fusions. Two were secreted efficiently: a siderophore receptor protein and a YVTN beta-propeller repeat protein. The siderophore receptor gene was fused with antiplasmodial effector genes including the scorpine antimicrobial peptide and an anti-Pbs21 scFv-Shiva1 immunotoxin. Asaia SF2.1 secreting these fusion proteins were fed to mosquitoes and challenged with Plasmodium berghei-infected blood. With each of these effector constructs, significant inhibition of parasite development was observed. These results provide a novel and promising intervention against malaria transmission.
Collapse
|
16
|
New Insight into Filamentous Hemagglutinin Secretion Reveals a Role for Full-Length FhaB in Bordetella Virulence. mBio 2015; 6:mBio.01189-15. [PMID: 26286694 PMCID: PMC4542190 DOI: 10.1128/mbio.01189-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Bordetella filamentous hemagglutinin (FHA), a primary component of acellular pertussis vaccines, contributes to virulence, but how it functions mechanistically is unclear. FHA is first synthesized as an ~370-kDa preproprotein called FhaB. Removal of an N-terminal signal peptide and a large C-terminal prodomain (PD) during secretion results in "mature" ~250-kDa FHA, which has been assumed to be the biologically active form of the protein. Deletion of two C-terminal subdomains of FhaB did not affect production of functional FHA, and the mutant strains were indistinguishable from wild-type bacteria for their ability to adhere to the lower respiratory tract and to suppress inflammation in the lungs of mice. However, the mutant strains, which produced altered FhaB molecules, were eliminated from the lower respiratory tract much faster than wild-type B. bronchiseptica, suggesting a defect in resistance to early immune-mediated clearance. Our results revealed, unexpectedly, that full-length FhaB plays a critical role in B. bronchiseptica persistence in the lower respiratory tract. IMPORTANCE The Bordetella filamentous hemagglutinin (FHA) is a primary component of the acellular pertussis vaccine and an important virulence factor. FHA is initially produced as a large protein that is processed during secretion to the bacterial surface. As with most processed proteins, the mature form of FHA has been assumed to be the functional form of the protein. However, our results indicate that the full-length form plays an essential role in virulence in vivo. Furthermore, we have found that FHA contains intramolecular regulators of processing and that this control of processing is integral to its virulence activities. This report highlights the advantage of studying protein maturation and function simultaneously, as a role for the full-length form of FHA was evident only from in vivo infection studies and not from in vitro studies on the production or maturation of FHA or even from in vitro virulence-associated activity assays.
Collapse
|
17
|
Dai J, Wei H, Tian C, Damron FH, Zhou J, Qiu D. An extracytoplasmic function sigma factor-dependent periplasmic glutathione peroxidase is involved in oxidative stress response of Shewanella oneidensis. BMC Microbiol 2015; 15:34. [PMID: 25887418 PMCID: PMC4336711 DOI: 10.1186/s12866-015-0357-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 01/20/2015] [Indexed: 11/30/2022] Open
Abstract
Background Bacteria use alternative sigma factors (σs) to regulate condition-specific gene expression for survival and Shewanella harbors multiple ECF (extracytoplasmic function) σ genes and cognate anti-sigma factor genes. Here we comparatively analyzed two of the rpoE-like operons in the strain MR-1: rpoE-rseA-rseB-rseC and rpoE2-chrR. Results RpoE was important for bacterial growth at low and high temperatures, in the minimal medium, and high salinity. The degP/htrA orthologue, required for growth of Escherichia coli and Pseudomonas aeruginosa at high temperature, is absent in Shewanella, while the degQ gene is RpoE-regulated and is required for bacterial growth at high temperature. RpoE2 was essential for the optimal growth in oxidative stress conditions because the rpoE2 mutant was sensitive to hydrogen peroxide and paraquat. The operon encoding a ferrochelatase paralogue (HemH2) and a periplasmic glutathione peroxidase (PgpD) was identified as RpoE2-dependent. PgpD exhibited higher activities and played a more important role in the oxidative stress responses than the cytoplasmic glutathione peroxidase CgpD under tested conditions. The rpoE2-chrR operon and the identified regulon genes, including pgpD and hemH2, are coincidently absent in several psychrophilic and/or deep-sea Shewanella strains. Conclusion In S. oneidensis MR-1, the RpoE-dependent degQ gene is required for optimal growth under high temperature. The rpoE2 and RpoE2-dependent pgpD gene encoding a periplasmic glutathione peroxidase are involved in oxidative stress responses. But rpoE2 is not required for bacterial growth at low temperature and it even affected bacterial growth under salt stress, indicating that there is a tradeoff between the salt resistance and RpoE2-mediated oxidative stress responses. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0357-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jingcheng Dai
- Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuchang District, Wuhan, 430072, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hehong Wei
- Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuchang District, Wuhan, 430072, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Chunyuan Tian
- School of Life Sciences and Technology, Hubei University of Engineering, 272 Jiaotong Avenue, Xiaogan, 432000, China.
| | - Fredrick Heath Damron
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, 22908, USA.
| | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Botany and Microbiology, The University of Oklahoma, Stephenson Research and Technology Center, 101 David L. Boren Blvd, Norman, OK 73019, USA.
| | - Dongru Qiu
- Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuchang District, Wuhan, 430072, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
18
|
Kosciow K, Zahid N, Schweiger P, Deppenmeier U. Production of a periplasmic trehalase in Gluconobacter oxydans and growth on trehalose. J Biotechnol 2014; 189:27-35. [PMID: 25179874 DOI: 10.1016/j.jbiotec.2014.08.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/19/2014] [Accepted: 08/21/2014] [Indexed: 11/19/2022]
Abstract
Gluconobacter strains are specialized in the incomplete oxidation of monosaccharides. In contrast, growth and product formation from disaccharides is either very low or impossible. A pathway that allows growth on trehalose was rationally designed to broaden the substrate range of Gluconobacter oxydans. Expression vectors containing different signal sequences and the gene encoding alkaline phosphatase, phoA, from Escherichia coli were constructed. The signal peptide that exhibited the strongest periplasmic PhoA activity was used to generate a G. oxydans strain able to utilize the model disaccharide trehalose as a carbon and energy source by expressing the periplasmic trehalase TreA from E. coli. The strain had a doubling time of 3.7h and reached a final optical density of 1.7 when trehalose was used as a growth substrate. In comparison, the wild-type harboring the empty vector and the strain expressing treA without a signal sequence grew slowly to a final OD of only 0.15. The trehalose concentration in treA expressing cultures decreased continuously during the exponential growth phase indicating that the substrate was hydrolyzed to glucose by TreA. In contrast to the wild-type growing on glucose, the treA expression strain mainly formed acetate and 5-ketogluconate as end products rather than gluconate.
Collapse
Affiliation(s)
- K Kosciow
- Institute of Microbiology and Biotechnology, University of Bonn, 168 Meckenheimer Allee, 53115 Bonn, Germany
| | - N Zahid
- Institute of Microbiology and Biotechnology, University of Bonn, 168 Meckenheimer Allee, 53115 Bonn, Germany
| | - P Schweiger
- Missouri State University, Biology Department, 901 S. National Avenue, Springfield, MO 65897, United States
| | - U Deppenmeier
- Institute of Microbiology and Biotechnology, University of Bonn, 168 Meckenheimer Allee, 53115 Bonn, Germany.
| |
Collapse
|
19
|
Construction and application of the vectors to identify genes encoding exported proteins of Escherichia coli. Mol Biol Rep 2013; 40:5907-12. [DOI: 10.1007/s11033-013-2697-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 09/14/2013] [Indexed: 11/28/2022]
|
20
|
Vinué L, McMurry LM, Levy SB. The 216-bp marB gene of the marRAB operon in Escherichia coli encodes a periplasmic protein which reduces the transcription rate of marA. FEMS Microbiol Lett 2013; 345:49-55. [PMID: 23710538 DOI: 10.1111/1574-6968.12182] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 05/21/2013] [Accepted: 05/21/2013] [Indexed: 01/14/2023] Open
Abstract
The marRAB operon is conserved in seven genera of enteric bacteria (Escherichia, Shigella, Klebsiella, Enterobacter, Salmonella, Cronobacter, and Citrobacter). MarA is a transcriptional regulator affecting many genes involved in resistance to stresses, and MarR is an autorepressor of the operon, but a role for the marB gene has been unclear. A recent work reported that deletion of marB causes resistance to certain stresses and increases the amount of marA transcript. We show here that the small (216 bp) marB gene encodes a protein, not an sRNA, because two different stop codons within the predicted open reading frame of marB prevented plasmid-borne marB from complementing ΔmarB::Kan. The ΔmarB::Kan mutation did not increase the stability of the marA transcript, suggesting that MarB does not destabilize the marA transcript but rather reduces its rate of transcription. Placing the putative signal sequence of MarB upstream of signal-sequence-less alkaline phosphatase guided the phosphatase to its normal periplasmic location. We conclude that MarB is a small periplasmic protein that represses the marRAB promoter by an indirect mechanism, possibly involving a signal to one of the cytoplasmic regulators of that promoter.
Collapse
Affiliation(s)
- Laura Vinué
- Center for Adaptation Genetics and Drug Resistance, Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | |
Collapse
|
21
|
Balzer S, Kucharova V, Megerle J, Lale R, Brautaset T, Valla S. A comparative analysis of the properties of regulated promoter systems commonly used for recombinant gene expression in Escherichia coli. Microb Cell Fact 2013; 12:26. [PMID: 23506076 PMCID: PMC3621392 DOI: 10.1186/1475-2859-12-26] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 03/01/2013] [Indexed: 11/20/2022] Open
Abstract
Background Production of recombinant proteins in bacteria for academic and commercial purposes is a well established field; however the outcomes of process developments for specific proteins are still often unpredictable. One reason is the limited understanding of the performance of expression cassettes relative to each other due to different genetic contexts. Here we report the results of a systematic study aiming at exclusively comparing commonly used regulator/promoter systems by standardizing the designs of the replicon backbones. Results The vectors used in this study are based on either the RK2- or the pMB1- origin of replication and contain the regulator/promoter regions of XylS/Pm (wild-type), XylS/Pm ML1-17 (a Pm variant), LacI/PT7lac, LacI/Ptrc and AraC/PBAD to control expression of different proteins with various origins. Generally and not unexpected high expression levels correlate with high replicon copy number and the LacI/PT7lac system generates more transcript than all the four other cassettes. However, this transcriptional feature does not always lead to a correspondingly more efficient protein production, particularly if protein functionality is considered. In most cases the XylS/Pm ML1-17 and LacI/PT7lac systems gave rise to the highest amounts of functional protein production, and the XylS/Pm ML1-17 is the most flexible in the sense that it does not require any specific features of the host. The AraC/PBAD system is very good with respect to tightness, and a commonly used bioinformatics prediction tool (RBS calculator) suggested that it has the most translation-efficient UTR. Expression was also studied by flow cytometry in individual cells, and the results indicate that cell to cell heterogeneity is very relevant for understanding protein production at the population level. Conclusions The choice of expression system needs to be evaluated for each specific case, but we believe that the standardized vectors developed for this study can be used to more easily identify the nature of case-specific bottlenecks. By then taking into account the relevant characteristics of each expression cassette it will be easier to make the best choice with respect to the goal of achieving high levels of protein expression in functional or non-functional form.
Collapse
Affiliation(s)
- Simone Balzer
- Department of Biotechnology, NTNU, Sem Sælands vei 6, Trondheim 7491, Norway
| | | | | | | | | | | |
Collapse
|
22
|
Combinatorial mutagenesis and selection of improved signal sequences and their application for high-level production of translocated heterologous proteins in Escherichia coli. Appl Environ Microbiol 2012; 79:559-68. [PMID: 23144128 DOI: 10.1128/aem.02407-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously designed the consensus signal peptide (CSP) and demonstrated that it can be used to strongly stimulate heterologous protein production in Escherichia coli. A comparative study using CSP and two bacterial signal sequences, pelB and ompA, showed that the effect of signal sequences on both expression level and translocation efficiency can be highly protein specific. We report here the generation of CSP mutant libraries by a combinatorial mutagenesis approach. Degenerated CSP oligonucleotides were cloned in frame with the 5' end of the bla gene, encoding the mature periplasmic β-lactamase released from its native signal sequence. This novel design allows for a direct selection of improved signal sequences that positively affect the expression level and/or translocation efficiency of β-lactamase, based on the ampicillin tolerance level of the E. coli host cells. By using this strategy, 61 different CSP mutants with up to 8-fold-increased ampicillin tolerance level and up to 5.5-fold-increased β-lactamase expression level were isolated and characterized genetically. A subset of the CSP mutants was then tested with the alternative reporter gene phoA, encoding periplasmic alkaline phosphatase (AP), resulting in an up to 8-fold-increased production level of active AP protein in E. coli. Moreover, it was demonstrated that the CSP mutants can improve the production of the medically important human interferon α2b under high-cell-density cultivations. Our results show that there is a clear potential for improving bacterial signal sequences by using combinatorial mutagenesis, and bioinformatics analyses indicated that the beneficial mutations could not be rationally predicted.
Collapse
|
23
|
Fakruddin M, Mohammad Mazumdar R, Bin Mannan KS, Chowdhury A, Hossain MN. Critical Factors Affecting the Success of Cloning, Expression, and Mass Production of Enzymes by Recombinant E. coli. ISRN BIOTECHNOLOGY 2012; 2013:590587. [PMID: 25969776 PMCID: PMC4403561 DOI: 10.5402/2013/590587] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 08/07/2012] [Indexed: 11/23/2022]
Abstract
E. coli is the most frequently used host for production of enzymes and other proteins by recombinant DNA technology. E. coli is preferable for its relative simplicity, inexpensive and fast high-density cultivation, well-known genetics, and large number of compatible molecular tools available. Despite all these advantages, expression and production of recombinant enzymes are not always successful and often result in insoluble and nonfunctional proteins. There are many factors that affect the success of cloning, expression, and mass production of enzymes by recombinant E. coli. In this paper, these critical factors and approaches to overcome these obstacles are summarized focusing controlled expression of target protein/enzyme in an unmodified form at industrial level.
Collapse
Affiliation(s)
- Md Fakruddin
- Industrial Microbiology Laboratory, Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | | | | | - Abhijit Chowdhury
- Industrial Microbiology Laboratory, Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Md Nur Hossain
- Industrial Microbiology Laboratory, Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| |
Collapse
|
24
|
Stead CM, Zhao J, Raetz CRH, Trent MS. Removal of the outer Kdo from Helicobacter pylori lipopolysaccharide and its impact on the bacterial surface. Mol Microbiol 2011; 78:837-52. [PMID: 20659292 DOI: 10.1111/j.1365-2958.2010.07304.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Helicobacter pylori produces a unique surface lipopolysaccharide (LPS) characterized by strikingly low endotoxicity that is thought to aid the organism in evading the host immune response. This reduction in endotoxicity is predicted to arise from the modification of the Kdo-lipid A domain of Helicobacter LPS by a series of membrane bound enzymes including a Kdo (3-deoxy-d-manno-octulosonic acid) hydrolase responsible for the modification of the core oligosaccharide. Here, we report that Kdo hydrolase activity is dependent upon a putative two-protein complex composed of proteins Hp0579 and Hp0580. Inactivation of Kdo hydrolase activity produced two phenotypes associated with cationic antimicrobial peptide resistance and O-antigen expression. Kdo hydrolase mutants were highly sensitive to polymyxin B, which could be attributed to a defect in downstream modifications to the lipid A 4'-phosphate group. Production of a fully extended O-antigen was also diminished in a Kdo hydrolase mutant, with a consequent increase in core-lipid A. Finally, expression of O-antigen Lewis X and Y epitopes, known to mimic glycoconjugates found on human tissues, was also affected. Taken together, we have demonstrated that loss of Kdo hydrolase activity affects all three domains of H. pylori LPS, thus highlighting its role in the maintenance of the bacterial surface.
Collapse
Affiliation(s)
- Christopher M Stead
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | |
Collapse
|
25
|
Carlyon RE, Ryther JL, VanYperen RD, Griffitts JS. FeuN, a novel modulator of two-component signalling identified in Sinorhizobium meliloti. Mol Microbiol 2010; 77:170-82. [PMID: 20487268 PMCID: PMC2919312 DOI: 10.1111/j.1365-2958.2010.07198.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sinorhizobium meliloti is a nitrogen-fixing bacterial symbiont of alfalfa and related legumes. Symbiotic infection by S. meliloti requires an osmosensory two-component system composed of the response regulator FeuP and the sensor kinase FeuQ. The FeuPQ pathway positively regulates transcription of multiple genes including ndvA, which encodes the cyclic glucan exporter. Here we show that proper regulation of this signalling pathway is essential for cell viability. Without the small 83 amino acid protein FeuN, S. meliloti cells are unable to grow, and this phenotype is dependent on the FeuPQ pathway. Using Escherichia coli as a heterologous system, we show that expression of feuP and feuQ leads to a dramatic increase in ndvA promoter activity, but that simultaneous expression of feuN abrogates this effect. Random mutagenesis of the feuPQ bicistron revealed a defined region of the FeuQ protein in and around its two predicted transmembrane domains that are required for FeuN-dependent signalling modulation. Marker enzyme fusion experiments indicate that most of the FeuN polypeptide is localized to the periplasm. Our data support a model in which FeuN interacts directly with FeuQ to attenuate phosphorylation of FeuP, and that without this activity, hyperactive signalling through FeuPQ results in cessation of growth or death.
Collapse
Affiliation(s)
- Rebecca E. Carlyon
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - Joanna L. Ryther
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - Ryan D. VanYperen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - Joel S. Griffitts
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| |
Collapse
|
26
|
Agrobacterium tumefaciens type IV secretion protein VirB3 is an inner membrane protein and requires VirB4, VirB7, and VirB8 for stabilization. J Bacteriol 2010; 192:2830-8. [PMID: 20348257 DOI: 10.1128/jb.01331-09] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Agrobacterium tumefaciens VirB proteins assemble a type IV secretion apparatus and a T-pilus for secretion of DNA and proteins into plant cells. The pilin-like protein VirB3, a membrane protein of unknown topology, is required for the assembly of the T-pilus and for T-DNA secretion. Using PhoA and green fluorescent protein (GFP) as periplasmic and cytoplasmic reporters, respectively, we demonstrate that VirB3 contains two membrane-spanning domains and that both the N and C termini of the protein reside in the cytoplasm. Fusion proteins with GFP at the N or C terminus of VirB3 were fluorescent and, like VirB3, localized to a cell pole. Biochemical fractionation studies demonstrated that VirB3 proteins encoded by three Ti plasmids, the octopine Ti plasmid pTiA6NC, the supervirulent plasmid pTiBo542, and the nopaline Ti plasmid pTiC58, are inner membrane proteins and that VirB4 has no effect on membrane localization of pTiA6NC-encoded VirB3 (pTiA6NC VirB3). The pTiA6NC and pTiBo542 VirB2 pilins, like VirB3, localized to the inner membrane. The pTiC58 VirB4 protein was earlier found to be essential for stabilization of VirB3. Stabilization of pTiA6NC VirB3 requires not only VirB4 but also two additional VirB proteins, VirB7 and VirB8. A binary interaction between VirB3 and VirB4/VirB7/VirB8 is not sufficient for VirB3 stabilization. We hypothesize that bacteria use selective proteolysis as a mechanism to prevent assembly of unproductive precursor complexes under conditions that do not favor assembly of large macromolecular structures.
Collapse
|
27
|
Efficient production of extracellular proteins with Escherichia coli by means of optimized coexpression of bacteriocin release proteins. J Biotechnol 2010; 145:350-8. [DOI: 10.1016/j.jbiotec.2009.11.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 11/08/2009] [Accepted: 11/24/2009] [Indexed: 11/19/2022]
|
28
|
Medrano MS, Policastro PF, Schwan TG, Coburn J. Interaction of Borrelia burgdorferi Hbb with the p66 promoter. Nucleic Acids Res 2009; 38:414-27. [PMID: 19910373 PMCID: PMC2811001 DOI: 10.1093/nar/gkp1027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Borrelia burgdorferi, an agent of Lyme disease, encodes the β3-chain integrin ligand P66. P66 is expressed by B. burgdorferi in the mammal, in laboratory media, and as the bacteria are acquired or transmitted by the tick, but is not expressed by the bacterium in unfed ticks. Attempts to reveal factors influencing expression revealed that P66 was expressed in all in vitro conditions investigated. Candidate regulators identified in a search of the B. burgdorferi genome for homologs to other bacterial transcription factors were cloned and introduced into E. coli carrying a p66 promoter-signal sequence-phoA (alkaline phosphatase, or AP) fusion. Three candidate transcription factors—two that decreased AP activity (Hbb and BB0527), and one that increased AP activity (BBA23)—were identified. BBA23 and BB0527 did not bind to the p66 promoter at physiologically relevant concentrations. In contrast, several promoter fragments, including p66, were bound by Hbb (BB0232), with slightly different affinities. Consistent with results from other laboratories, Hbb appears to recognize multiple DNA sequences. Changes in the expression of p66 and bb0232 in the tick at various points with respect to feeding on mice, along with the results of the reporter experiment in the surrogate host E. coli, are consistent with Hbb/BB0232 being involved in regulating p66 expression.
Collapse
Affiliation(s)
- Melisa S Medrano
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | |
Collapse
|
29
|
Sommer B, Friehs K, Flaschel E, Reck M, Stahl F, Scheper T. Extracellular production and affinity purification of recombinant proteins with Escherichia coli using the versatility of the maltose binding protein. J Biotechnol 2009; 140:194-202. [DOI: 10.1016/j.jbiotec.2009.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 12/22/2008] [Accepted: 01/06/2009] [Indexed: 10/21/2022]
|
30
|
Regulation of fatty acid metabolism by FadR is essential for Vibrio vulnificus to cause infection of mice. J Bacteriol 2008; 190:7633-44. [PMID: 18835990 DOI: 10.1128/jb.01016-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The opportunistic bacterial pathogen Vibrio vulnificus causes severe wound infection and fatal septicemia. We used alkaline phosphatase insertion mutagenesis in a clinical isolate of V. vulnificus to find genes necessary for virulence, and we identified fadR, which encodes a regulator of fatty acid metabolism. The fadR::mini-Tn5Km2phoA mutant was highly attenuated in a subcutaneously inoculated iron dextran-treated mouse model of V. vulnificus disease, was hypersensitive to the fatty acid synthase inhibitor cerulenin, showed aberrant expression of fatty acid biosynthetic (fab) genes and fatty acid oxidative (fad) genes, produced smaller colonies on agar media, and grew slower in rich broth than did the wild-type parent. Deletion of fadR essentially recapitulated the phenotypes of the insertion mutant, and the DeltafadR mutation was complemented in trans with the wild-type gene. Further characterization of the DeltafadR mutant showed that it was not generally hypersensitive to envelope stresses but had decreased motility and showed an altered membrane lipid profile compared to that of the wild type. Supplementation of broth with the unsaturated fatty acid oleate restored wild-type growth in vitro, and infection with oleate in the inoculum increased the ability of the DeltafadR mutant to infect mice. We conclude that fadR and regulation of fatty acid metabolism are essential for V. vulnificus to be able to cause disease in mammalian hosts.
Collapse
|
31
|
Ronald LS, Yakovenko O, Yazvenko N, Chattopadhyay S, Aprikian P, Thomas WE, Sokurenko EV. Adaptive mutations in the signal peptide of the type 1 fimbrial adhesin of uropathogenic Escherichia coli. Proc Natl Acad Sci U S A 2008; 105:10937-42. [PMID: 18664574 PMCID: PMC2504816 DOI: 10.1073/pnas.0803158105] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Indexed: 01/01/2023] Open
Abstract
Signal peptides (SPs) are critical for protein transport across cellular membranes, have a highly conserved structure, and are cleaved from the mature protein upon translocation. Here, we report that naturally occurring mutations in the SP of the adhesive, tip-associated subunit of type 1 fimbriae (FimH) are positively selected in uropathogenic Escherichia coli. On the one hand, these mutations have a detrimental effect, with reduced FimH transport across the inner membrane, fewer FimH and fimbriae expressed on the bacterial surface, and decreased bacterial adhesion under flow conditions. On the other hand, the fimbriae expressed by the mutants are significantly longer on average, with many fimbriae able to stretch to >20 microm in length. More surprisingly, the SP mutant bacteria display an increased ability to resist detachment from the surface upon a switch from high to low flow. This functional effect of longer fimbriae highlights the importance of the nonadhesive fimbrial rod for adhesive function. Also, whereas bacterial adhesion to bladder epithelial cells was preserved in most mutants, binding to and killing by human neutrophils was decreased, providing an additional reason the SP mutations are relatively common among uropathogenic strains. Thus, this study demonstrates how mutations in an SP, while decreasing transport function and not affecting the final structure of the translocated protein, can lead to functional gains of the extracellular organelles that incorporate the protein and overall adaptive changes in the organism's fitness.
Collapse
Affiliation(s)
| | - Olga Yakovenko
- Departments of Microbiology and
- Bioengineering, University of Washington, Seattle, WA 98195
| | | | | | | | | | | |
Collapse
|
32
|
González-Techera A, Umpiérrez-Failache M, Cardozo S, Obal G, Pritsch O, Last JA, Gee SJ, Hammock BD, González-Sapienza G. High-throughput method for ranking the affinity of peptide ligands selected from phage display libraries. Bioconjug Chem 2008; 19:993-1000. [PMID: 18393454 PMCID: PMC2863005 DOI: 10.1021/bc700279y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The use of phage display peptide libraries allows rapid isolation of peptide ligands for any target selector molecule. However, due to differences in peptide expression and the heterogeneity of the phage preparations, there is no easy way to compare the binding properties of the selected clones, which operates as a major "bottleneck" of the technology. Here, we present the development of a new type of library that allows rapid comparison of the relative affinity of the selected peptides in a high-throughput screening format. As a model system, a phage display peptide library constructed on a phagemid vector that contains the bacterial alkaline phosphatase gene (BAP) was selected with an antiherbicide antibody. Due to the intrinsic switching capacity of the library, the selected peptides were transferred "en masse" from the phage coat protein to BAP. This was coupled to an optimized affinity ELISA where normalized amounts of the peptide-BAP fusion allow direct comparison of the binding properties of hundreds of peptide ligands. The system was validated by plasmon surface resonance experiments using synthetic peptides, showing that the method discriminates among the affinities of the peptides within 3 orders of magnitude. In addition, the peptide-BAP protein can find direct application as a tracer reagent.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - G. González-Sapienza
- Corresponding author. Av. A. Navarro 3051, piso 2, 11600 Montevideo, Uruguay; ; tel (5982) 4874334
| |
Collapse
|
33
|
Alyamani EJ, Brandt P, Pena JA, Major AM, Fox JG, Suerbaum S, Versalovic J. Helicobacter hepaticus catalase shares surface-predicted epitopes with mammalian catalases. MICROBIOLOGY-SGM 2007; 153:1006-1016. [PMID: 17379710 DOI: 10.1099/mic.0.29184-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Helicobacter hepaticus colonizes the murine intestine and has been associated with hepatic inflammation and neoplasia in susceptible mouse strains. In this study, the catalase of an enterohepatic Helicobacter was characterized for the first time. H. hepaticus catalase is a highly conserved enzyme that may be important for bacterial survival in the mammalian intestine. Recombinant H. hepaticus catalase was expressed in Escherichia coli in order to verify its enzymic activity in vitro. H. hepaticus catalase comprises 478 amino acids with a highly conserved haem-ligand domain. Three conserved motifs (R-F-Y-D, RERIPER and VVHAKG) in the haem-ligand domain and three surface-predicted motifs were identified in H. hepaticus catalase and are shared among bacterial and mammalian catalases. H. hepaticus catalase is present in the cytoplasmic and periplasmic compartments. Mice infected with H. hepaticus demonstrated immune responses to murine and H. hepaticus catalase, suggesting that Helicobacter catalase contains conserved structural motifs and may contribute to autoimmune responses. Antibodies to H. hepaticus catalase recognized murine hepatocyte catalase in hepatic tissue from infected mice. Antibodies from sera of H. hepaticus-infected mice reacted with peptides comprising two conserved surface-predicted motifs in H. hepaticus catalase. Catalases are highly conserved enzymes in bacteria and mammals that may contribute to autoimmune responses in animals infected with catalase-producing pathogens.
Collapse
Affiliation(s)
- Essam J Alyamani
- Department of Pathology, Texas Children's Hospital, Houston, TX 77030, USA
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 01225, USA
| | | | - Jeremy A Pena
- Department of Pathology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Angela M Major
- Department of Pathology, Texas Children's Hospital, Houston, TX 77030, USA
| | - James G Fox
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sebastian Suerbaum
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - James Versalovic
- Department of Pathology, Texas Children's Hospital, Houston, TX 77030, USA
- Departments of Pathology, Molecular Virology & Microbiology, and Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
34
|
Lee SJ, Kim BD, Rose JKC. Identification of eukaryotic secreted and cell surface proteins using the yeast secretion trap screen. Nat Protoc 2007; 1:2439-47. [PMID: 17406489 DOI: 10.1038/nprot.2006.373] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Secreted and cell surface proteins play essential roles in numerous essential biological processes in eukaryotic organisms, but are often more difficult to isolate and identify than proteins that are localized in intracellular compartments. However, several high-throughput 'gene-trap' techniques have been developed to characterize these 'secretomes', including the yeast secretion trap (YST) screen. This method involves fusing cDNA libraries from the tissue or cell type of interest to a yeast (Saccharomyces cerevisiae) invertase reporter gene, transforming the resulting fusion library into an invertase-deficient yeast strain and plating the transformants on a medium containing sucrose as the sole carbon source. A yeast cell with a transgene encoding a secreted or cell surface protein can synthesize a secreted invertase fusion protein that can rescue the mutant, and the plasmid DNA can then be sequenced to identify the gene that encodes it. We describe a recently improved version of this screen, which allows the identification of genes encoding secreted proteins in 1-2 months.
Collapse
Affiliation(s)
- Sang-Jik Lee
- Department of Plant Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
35
|
Sikora AE, Lybarger SR, Sandkvist M. Compromised outer membrane integrity in Vibrio cholerae Type II secretion mutants. J Bacteriol 2007; 189:8484-95. [PMID: 17890307 PMCID: PMC2168955 DOI: 10.1128/jb.00583-07] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The type II secretion (T2S) system of Vibrio cholerae is a multiprotein complex that spans the cell envelope and secretes proteins important for pathogenesis as well as survival in different environments. Here we report that, in addition to the loss of extracellular secretion, removal or inhibition of expression of the T2S genes, epsC-N, results in growth defects and a broad range of alterations in the outer membrane that interfere with its barrier function. Specifically, the sensitivity to membrane-perturbing agents such as bile salts and the antimicrobial peptide polymyxin B is increased, and periplasmic constituents leak out into the culture medium. As a consequence, the sigma(E) stress response is induced. Furthermore, due to the defects caused by inactivation of the T2S system, the Deltaeps deletion mutant of V. cholerae strain N16961 is incapable of surviving the passage through the infant mouse gastrointestinal tract. The growth defect and leaky outer membrane phenotypes are suppressed when the culture medium is supplemented with 5% glucose or sucrose, although the eps mutants remain sensitive to membrane-damaging agents. This suggests that the sugars do not restore the integrity of the outer membrane in the eps mutant strains per se but may provide osmoprotective functions.
Collapse
Affiliation(s)
- Aleksandra E Sikora
- University of Michigan Medical School, Department of Microbiology and Immunology, 1150 West Medical Center Drive, 6741 Medical Science Building II, Ann Arbor, MI 48109-0620, USA
| | | | | |
Collapse
|
36
|
Zayas CL, Claas K, Escalante-Semerena JC. The CbiB protein of Salmonella enterica is an integral membrane protein involved in the last step of the de novo corrin ring biosynthetic pathway. J Bacteriol 2007; 189:7697-708. [PMID: 17827296 PMCID: PMC2168724 DOI: 10.1128/jb.01090-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report results of studies of the conversion of adenosylcobyric acid (AdoCby) to adenosylcobinamide-phosphate, the last step of the de novo corrin ring biosynthetic branch of the adenosylcobalamin (coenzyme B12) pathway of Salmonella enterica serovar Typhimurium LT2. Previous reports have implicated the CbiB protein in this step of the pathway. Hydropathy analysis predicted that CbiB would be an integral membrane protein. We used a computer-generated topology model of the primary sequence of CbiB to guide the construction of CbiB-LacZ and CbiB-PhoA protein fusions, which were used to explore the general topology of CbiB in the cell membrane. A refined model of CbiB as an integral membrane protein is presented. In vivo analyses of the effect of single-amino-acid changes showed that periplasm- and cytosol-exposed residues are critical for CbiB function. Results of in vivo studies also show that ethanolamine-phosphate (EA-P) is a substrate of CbiB, but l-Thr-P is not, and that CbiB likely activates AdoCby by phosphorylation. The latter observation leads us to suggest that CbiB is a synthetase not a synthase enzyme. Results from mass spectrometry and bioassay experiments indicate that serovar Typhimurium synthesizes norcobalamin (cobalamin lacking the methyl group at C176) when EA-P is the substrate of CbiB.
Collapse
Affiliation(s)
- Carmen L Zayas
- Department of Bacteriology, University of Wisconsin-Madison, WI 53706, USA
| | | | | |
Collapse
|
37
|
Khushoo A, Pal Y, Singh BN, Mukherjee KJ. Extracellular expression and single step purification of recombinant Escherichia coli L-asparaginase II. Protein Expr Purif 2005; 38:29-36. [PMID: 15477079 DOI: 10.1016/j.pep.2004.07.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Revised: 07/14/2004] [Indexed: 11/27/2022]
Abstract
L-Asparaginase (isozyme II) from Escherichia coli is an important therapeutic enzyme used in the treatment of leukemia. Extracellular expression of recombinant asparaginase was obtained by fusing the gene coding for asparaginase to an efficient pelB leader sequence and an N-terminal 6x histidine tag cloned under the T7lac promoter. Media composition and the induction strategy had a major influence on the specificity and efficiency of secretion of recombinant asparaginase. Induction of the cells with 0.1 mM IPTG at late log phase of growth in TB media resulted in fourfold higher extracellular activity in comparison to growing the cells in LB media followed by induction during the mid log phase. Using an optimized expression strategy a yield of 20,950 UI/L of recombinant asparaginase was obtained from the extracellular medium. The recombinant protein was purified from the culture supernatant in a single step using Ni-NTA affinity chromatography which gave an overall yield of 95 mg/L of purified protein, with a recovery of 86%. This is approximately 8-fold higher to the previously reported data in literature. The fluorescence spectra, analytical size exclusion chromatography, and the specific activity of the purified protein were observed to be similar to the native protein which demonstrated that the protein had folded properly and was present in its active tetramer form in the culture supernatant.
Collapse
Affiliation(s)
- Amardeep Khushoo
- Centre for Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | |
Collapse
|
38
|
Kara P, Erdem A, Girousi S, Ozsoz M. Electrochemical detection of enzyme labeled DNA based on disposable pencil graphite electrode. J Pharm Biomed Anal 2005; 38:191-5. [PMID: 15907640 DOI: 10.1016/j.jpba.2004.12.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 12/09/2004] [Accepted: 12/11/2004] [Indexed: 11/29/2022]
Abstract
Electrochemical biosensor for the detection of DNA hybridization using the reduction signal of alpha-naphthol is described. A pencil graphite electrode was used as a working electrode. Capture probes were covalently attached on to the pencil graphite electrode surface (PGE) at the 5' end amino group by using N-(dimethylamino)propyl-N'-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysulfosuccinimide (NHS) as a coupling agent on to PGE. After capture probe immobilization on to PGE surface; probe was hybridized with complementary biotinylated oligonucleotide. Alkaline phosphatase labeled with extravidin (Ex-AP) binds to biotinylated hybrid via biotin-avidin interaction. alpha-Naphthyl phosphate (alpha-NAP) was added and the reaction between alkaline phosphatase (AP) and alpha-NAP was occurred consequently as a substrate of AP, alpha-NAP reduction signal was obtained from this reaction, at -0.100 V by using differential pulse voltammetry (DPV). Other experimental parameters were studied such as; optimizations of hybridization time, and the concentrations of capture probe, biotinylated oligonucleotide and enzyme.
Collapse
Affiliation(s)
- Pinar Kara
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, 35100 Bornova-Izmir, Turkey
| | | | | | | |
Collapse
|
39
|
|
40
|
Sandee D, Tungpradabkul S, Kurokawa Y, Fukui K, Takagi M. Combination of Dsb coexpression and an addition of sorbitol markedly enhanced soluble expression of single-chain Fv inEscherichia coli. Biotechnol Bioeng 2005; 91:418-24. [PMID: 15937881 DOI: 10.1002/bit.20524] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Many eukaryotic proteins have been produced successfully in Escherichia coli. However, not every gene can be expressed efficiently in this organism. Most proteins, especially those with multiple disulfide bonds, have been shown to form insoluble protein or inclusion body in E. coli. An inactive form of protein would require an in vitro refolding step to regain biological functions. In this study, we described the system for soluble expression of a single-chain variable fragment (scFv) against hepatocellular carcinoma (Hep27scFv) by coexpressing Dsb protein and enhancing with medium additives. The results revealed that overexpression of DsbABCD protein showed marked effect on the soluble production of Hep27scFv, presumably facilitating correct folding. The optimal condition for soluble scFv expression could be obtained by adding 0.5M sorbitol to the culture medium. The competitive enzyme-linked immunosorbent assay (ELISA) indicated that soluble scFv expressed by our method retains binding activity toward the same epitope on a hepatocellular carcinoma cell line (HCC-S102) recognized by intact antibody (Ab) (Hep27 Mab). Here, we report an effective method for soluble expression of scFv in E. coli by the Dsb coexpression system with the addition of sorbitol medium additive. This method might be applicable for high-yield soluble expression of proteins with multiple disulfide bonds.
Collapse
Affiliation(s)
- Duanpen Sandee
- Department of Biotechnology, Graduate school of Engineering, Osaka University, Suita, Osaka, Japan
| | | | | | | | | |
Collapse
|
41
|
Gilmore RD, Bacon RM, Sviat SL, Petersen JM, Bearden SW. Identification of Francisella tularensis genes encoding exported membrane-associated proteins using TnphoA mutagenesis of a genomic library. Microb Pathog 2004; 37:205-13. [PMID: 15458781 DOI: 10.1016/j.micpath.2004.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 07/07/2004] [Accepted: 07/22/2004] [Indexed: 11/27/2022]
Abstract
Francisella tularensis, the causative agent of tularemia, is a highly infectious pathogen of humans and animals, yet little is known about the surface proteins of this organism that mediate mechanisms of pathogenicity. lambdaTnphoA was used to generate random alkaline phosphatase gene fusions in a F. tularensis subsp. tularensis (strain Schu S4) genomic library to identify genes encoding exported extracytoplasmic proteins. Eleven genes encoding membrane-associated proteins were identified by this method and their respective signal peptides were characterized. Three of the genes encoded conserved 'housekeeping' enzymes, while the other eight genes were unique to F. tularensis, encoding proteins with molecular masses ranging from 11 to 78kDa as deduced from the amino acid sequences. Two genes putatively encoded lipoproteins based on the presence of characteristic signal peptidase II cleavage sites. Four selected proteins were found associated with outer membranes from Schu S4 and LVS strains by Western blotting. Indirect immunofluorescence of strain Schu S4 cells also showed evidence of protein localization to the outer membrane. Protein database searches produced significant alignments with proteins from other bacteria involved in carbohydrate transport, lipid metabolism, and cell envelope biogenesis, thereby providing clues for putative functions. These findings demonstrated that TnphoA mutagenesis can be used in conjunction with F. tularensis genome sequence data to provide a foundation for studies to identify and define cellular surface protein virulence factors of this pathogen.
Collapse
Affiliation(s)
- Robert D Gilmore
- Bacterial Zoonoses Branch, Division of Vector-Borne Infectious Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, P.O. Box 2087, Rampart Road, Foothills Campus, Fort Collins, CO 80522, USA.
| | | | | | | | | |
Collapse
|
42
|
Lee H, Hsu FF, Turk J, Groisman EA. The PmrA-regulated pmrC gene mediates phosphoethanolamine modification of lipid A and polymyxin resistance in Salmonella enterica. J Bacteriol 2004; 186:4124-33. [PMID: 15205413 PMCID: PMC421605 DOI: 10.1128/jb.186.13.4124-4133.2004] [Citation(s) in RCA: 261] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The PmrA/PmrB regulatory system of Salmonella enterica controls the modification of lipid A with aminoarabinose and phosphoethanolamine. The aminoarabinose modification is required for resistance to the antibiotic polymyxin B, as mutations of the PmrA-activated pbg operon or ugd gene result in strains that lack aminoarabinose in their lipid A molecules and are more susceptible to polymyxin B. Additional PmrA-regulated genes appear to participate in polymyxin B resistance, as pbgP and ugd mutants are not as sensitive to polymyxin B as a pmrA mutant. Moreover, the role that the phosphoethanolamine modification of lipid A plays in the resistance to polymyxin B has remained unknown. Here we address both of these questions by establishing that the PmrA-activated pmrC gene encodes an inner membrane protein that is required for the incorporation of phosphoethanolamine into lipid A and for polymyxin B resistance. The PmrC protein consists of an N-terminal region with five transmembrane domains followed by a large periplasmic region harboring the putative enzymatic domain. A pbgP pmrC double mutant resembled a pmrA mutant both in its lipid A profile and in its susceptibility to polymyxin B, indicating that the PmrA-dependent modification of lipid A with aminoarabinose and phosphoethanolamine is responsible for PmrA-regulated polymyxin B resistance.
Collapse
Affiliation(s)
- Hyunwoo Lee
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
43
|
Maggio-Hall LA, Claas KR, Escalante-Semerena JC. The last step in coenzyme B(12) synthesis is localized to the cell membrane in bacteria and archaea. MICROBIOLOGY-SGM 2004; 150:1385-1395. [PMID: 15133100 DOI: 10.1099/mic.0.26952-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Salmonella enterica, the last step of the synthesis of adenosylcobamide is catalysed by the cobalamin synthase enzyme encoded by the cobS gene of this bacterium. Overexpression of the S. enterica cobS gene in Escherichia coli elicited the accumulation of the phage shock protein PspA, a protein whose expression has been linked to membrane stress. Resolution of inner and outer membranes of S. enterica by isopycnic density ultracentrifugation showed CobS activity associated with the inner membrane, a result that was confirmed using antibodies against CobS. Computer analysis of the predicted amino acid sequence of CobS suggested it was an integral membrane protein. Results of experiments performed with strains carrying plasmids encoding CobS-alkaline phosphatase or CobS-beta-galactosidase protein fusions were consistent with the membrane localization of the CobS protein. Modifications to the predicted model were made based on data obtained from experiments using protein fusions. The function encoded by the cobS orthologue in the methanogenic archaeon Methanobacterium thermoautotrophicum strain deltaH compensated for the lack of CobS during cobalamin synthesis in cobS strains of S. enterica. Cobalamin synthase activity was also detected in a membrane preparation of M. thermoautotrophicum. It was concluded that the assembly of the nucleotide loop of adenosylcobamides in archaea and bacteria is a membrane-associated process. Possible reasons for the association of adenosylcobamide biosynthetic enzymes with the cell membrane are discussed.
Collapse
Affiliation(s)
- Lori A Maggio-Hall
- Department of Bacteriology, University of Wisconsin-Madison, 1710 University Avenue, Madison, WI 53726-4087, USA
| | - Kathy R Claas
- Department of Bacteriology, University of Wisconsin-Madison, 1710 University Avenue, Madison, WI 53726-4087, USA
| | - Jorge C Escalante-Semerena
- Department of Bacteriology, University of Wisconsin-Madison, 1710 University Avenue, Madison, WI 53726-4087, USA
| |
Collapse
|
44
|
MacConaill LE, Fitzgerald GF, Van Sinderen D. Investigation of protein export in Bifidobacterium breve UCC2003. Appl Environ Microbiol 2004; 69:6994-7001. [PMID: 14660341 PMCID: PMC309956 DOI: 10.1128/aem.69.12.6994-7001.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The molecular interactions between the bifidobacterial cell and its natural environment, namely, the gastrointestinal tract of its host, are particularly important in understanding the presumed positive effects of Bifidobacterium on the health status of the host. In this study an export-specific reporter system, designed for use in gram-positive organisms and based on the use of the staphylococcal nuclease (Nuc) as a reporter, was employed to identify exported proteins in Bifidobacterium breve UCC2003. A B. breve genomic library of translational fusions to the Nuc-encoding gene devoid of its own export signal was established in the shuttle vector pFUN (I. Poquet, S. D. Ehrlich, and A. Gruss, J. Bacteriol. 180:1904-1912, 1998) and screened for bifidobacterial export signals. Sequence analysis of the fusion proteins obtained that displayed a nuclease-producing phenotype in both Lactococcus lactis and B. breve predicted the presence of a classical signal peptide and/or single or multiple transmembrane domains, thus indicating that some of the export signals in B. breve are comparable to those used in L. lactis. Cell fractionation studies, zymograms, nuclease assays, and Western blotting were employed to confirm the function of the predicted signals and to determine the location and activity of the exported fusion proteins in B. breve and/or L. lactis.
Collapse
Affiliation(s)
- Laura E MacConaill
- Alimentary Pharmabiotic Centre, National University of Ireland, Cork, Cork, Ireland
| | | | | |
Collapse
|
45
|
Tan R, Jiang X, Jackson A, Jin P, Yang J, Lee E, Duggan B, Stuve LL, Fu GK. E. coli selection of human genes encoding secreted and membrane proteins based on cDNA fusions to a leaderless beta-lactamase reporter. Genome Res 2003; 13:1938-43. [PMID: 12869575 PMCID: PMC403786 DOI: 10.1101/gr.1000903] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although several signal peptide-trapping methods have been devised and used to detect signal sequences, none have relied on using E.coli to identify eukaryotic proteins with signal peptides. Here, we describe a system for selecting human secreted and membrane proteins in E. coli followed by the direct validation of secretion in human cells. The method is based on cDNA fusions to a leaderless beta-lactamase reporter gene to isolate clones encoding signal peptides of human genes. We found that beta-lactamase fusion proteins carrying a eukaryotic signal peptide at its N-terminus were able to direct their export into the periplasm in E. coli to confer survival upon challenge with carbenicillin. When libraries constructed from 5' end-enriched cDNAs fused to beta-lactamase were screened in E.coli, approximately 0.5%-1% of the cDNAs are selected, and over half of the surviving clones were found to encode for secreted fusion proteins when tested in human cells. These clones were sequenced and shown to represent human genes encoding signal peptides of secreted and membrane proteins. We conclude that this is an efficient and effective strategy to easily enrich cDNA libraries for the identification of novel genes likely to encode secreted enzymes, growth factors, and receptors.
Collapse
Affiliation(s)
- Ruoying Tan
- Incyte Corporation, Palo Alto, California 94304, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hughes MJG, Wilson R, Moore JC, Lane JD, Dobson RJ, Muckett P, Younes Z, Pribul P, Topping A, Feldman RG, Santangelo JD. Novel protein vaccine candidates against Group B streptococcal infection identified using alkaline phosphatase fusions. FEMS Microbiol Lett 2003; 222:263-71. [PMID: 12770717 DOI: 10.1016/s0378-1097(03)00310-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Using an alkaline phosphatase-based genetic screening method, we identified a number of proteins that are potentially located on the outer surface of Group B streptococcus (Streptococcus agalactiae). In an enzyme-linked immunosorbent assay, antisera raised against two of the proteins, the streptococcal yutD homologue and a subunit of an ABC transporter, recognised clinically important serotypes of Group B streptococcus. In a neonatal rat model, purified IgG from the sera conferred significant levels of protection against a lethal challenge infection. The proteins identified show potential as protein subunit candidates for vaccines against Group B streptococcal disease in neonates.
Collapse
Affiliation(s)
- Martin J G Hughes
- Microscience Ltd., 545 Eskdale Road, Winnersh Triangle, Berks RG41 5TU, Wokingham, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Uzzau S, Bossi L, Figueroa-Bossi N. Differential accumulation of Salmonella[Cu, Zn] superoxide dismutases SodCI and SodCII in intracellular bacteria: correlation with their relative contribution to pathogenicity. Mol Microbiol 2002; 46:147-56. [PMID: 12366838 DOI: 10.1046/j.1365-2958.2002.03145.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Most Salmonella enterica strains have two peri-plasmic [Cu, Zn] superoxide dismutases, SodCI and SodCII, encoded by prophage and chromosomal genes respectively. Both enzymes are thought to play a role in Salmonella pathogenicity by intercepting reactive oxygen species produced by the host's innate immune response. To examine the apparent redundancy, we have compared the levels of epitope-tagged SodCI and SodCII proteins in bacteria growing in vitro, as well as inside tissue culture cells and in mouse tissues. Concomitantly, we have measured the abilities of mutants of either or both sodC genes to proliferate in infected mice in competition assays. Our results show a striking variation in the relative abundance of the two proteins in different environments. In vitro, both proteins accumulate when bacteria enter stationary phase; however, the increase is much sharper and conspicuous for SodCII than for SodCI. In contrast, SodCI vastly predominates in intracellular bacteria where SodCII levels are negligible. In agreement with these findings, most, if not all, of the contribution of [Cu, Zn] superoxide dismutase activity to murine salmonellosis can be ascribed to the SodCI protein. Overall the results of this work suggest that the duplicate sodC genes of Salmonella have evolved to respond to different sets of conditions encountered by bacteria inside the host and in the environment.
Collapse
Affiliation(s)
- Sergio Uzzau
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100, Italy
| | | | | |
Collapse
|
48
|
Zhang L, Gray L, Novick RP, Ji G. Transmembrane topology of AgrB, the protein involved in the post-translational modification of AgrD in Staphylococcus aureus. J Biol Chem 2002; 277:34736-42. [PMID: 12122003 DOI: 10.1074/jbc.m205367200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The accessory gene regulator (agr) of Staphylococcus aureus is the central regulatory system that controls the gene expression for a large set of virulence factors. This global regulatory locus consists of two transcripts: RNAII and RNAIII. RNAII encodes four genes (agrA, B, C, and D) whose gene products assemble a quorum sensing system. RNAIII is the effector of the Agr response. Both the agrB and agrD genes are essential for the production of the autoinducing peptide, which functions as a signal for the quorum sensing system. In this study, we demonstrated the transmembrane nature of AgrB protein in S. aureus. A transmembrane topology model of AgrB was proposed based on AgrB-PhoA fusion analyses in Escherichia coli. Two hydrophilic regions with several highly conserved positively charged amino acid residues among various AgrBs were found to be located in the cytoplasmic membrane as suggested by PhoA-AgrB fusion studies. However, this finding is inconsistent with the putative transmembrane profile of AgrB by computer analysis. Furthermore, we detected an intermediate peptide of processed AgrD from S. aureus cells expressing AgrB and a 6 histidine-tagged AgrD. These results provide direct evidence that AgrB is involved in the proteolytic processing of AgrD. We speculate that AgrB is a novel protein with proteolytic enzyme activity and a transporter facilitating the export of the processed AgrD peptide.
Collapse
Affiliation(s)
- Linsheng Zhang
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | | | | | | |
Collapse
|
49
|
Ogunniyi AD, Kotlarski I, Morona R, Manning PA. Epitope analysis of the FanC subunit protein of the K99 (F5) fimbriae of enterotoxigenic Escherichia coli using a recombinant fusion technique. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2002; 34:23-31. [PMID: 12208603 DOI: 10.1111/j.1574-695x.2002.tb00599.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have used a recombinant approach to characterise the B- and T-cell epitopes of FanC, the major subunit polypeptide of K99 (F5) fimbriae of enterotoxigenic Escherichia coli strains. This involved the fusion of FanC and its carboxy-terminal truncated derivatives to a reporter, the E. coli alkaline phosphatase (PhoA), generating stable, recombinant fusions. The B-cell epitopes of FanC were characterised by Western blotting of FanC::PhoA fusion proteins with a polyclonal mouse antiserum directed against K99 fimbrial antigen, and with a panel of monoclonal antibodies generated to the K99 antigen. An attempt to characterise the T-cell epitopes of the fimbrial subunit was made by standard in vitro T-cell proliferation assay. Our results suggest that the B-cell epitopes of FanC are likely to be continuous, with a potentially immunodominant epitope at the carboxy-terminus. However, T-cell proliferation assays with the FanC::PhoA fusion proteins did not indicate any immunodominant T-cell epitope(s). We hypothesise that fusion of FanC peptides to PhoA had resulted in altered folding of the peptides for antibody and T-cell recognition, highlighting the potential problems and drawbacks of the recombinant fusion technique in defining the epitopes of certain proteins.
Collapse
Affiliation(s)
- Abiodun D Ogunniyi
- Department of Molecular Biosciences, Adelaide University, Adelaide, SA 5005, Australia.
| | | | | | | |
Collapse
|
50
|
Nørholm MH, Dandanell G. Specificity and topology of the Escherichia coli xanthosine permease, a representative of the NHS subfamily of the major facilitator superfamily. J Bacteriol 2001; 183:4900-4. [PMID: 11466294 PMCID: PMC99545 DOI: 10.1128/jb.183.16.4900-4904.2001] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The specificity of XapB permease was compared with that of the known nucleoside transporters NupG and NupC. XapB-mediated xanthosine uptake is abolished by 2,4-dinitrophenol and exhibits saturation kinetics with an apparent K(m) of 136 microM. A 12-transmembrane-segment model was confirmed by translational fusions to alkaline phosphatase and the alpha fragment of beta-galactosidase.
Collapse
Affiliation(s)
- M H Nørholm
- Department of Biological Chemistry, Institute of Molecular Biology, University of Copenhagen, 1307 Copenhagen K, Denmark
| | | |
Collapse
|