1
|
Yaaran A, Erez E, Procko C, Moshelion M. Leaf hydraulic maze: Abscisic acid effects on bundle sheath, palisade, and spongy mesophyll conductance. PLANT PHYSIOLOGY 2023; 193:1349-1364. [PMID: 37390615 PMCID: PMC10517257 DOI: 10.1093/plphys/kiad372] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/17/2023] [Accepted: 06/02/2023] [Indexed: 07/02/2023]
Abstract
Leaf hydraulic conductance (Kleaf) facilitates the supply of water, enabling continual CO2 uptake while maintaining plant water status. We hypothesized that bundle sheath and mesophyll cells play key roles in regulating the radial flow of water out of the xylem by responding to abscisic acid (ABA). Thus, we generated transgenic Arabidopsis thaliana plants that are insensitive to ABA in their bundle sheath (BSabi) and mesophyll (MCabi) cells. We also introduced tissue-specific fluorescent markers to distinguish between cells of the palisade mesophyll, spongy mesophyll, and bundle sheath. Both BSabi and MCabi plants showed greater Kleaf and transpiration under optimal conditions. MCabi plants had larger stomatal apertures, higher stomatal index, and greater vascular diameter and biomass relative to the wild-type (WT) and BSabi plants. In response to xylem-fed ABA, both transgenic and WT plants reduced their Kleaf and transpiration. The membrane osmotic water permeability (Pf) of the WT's spongy mesophyll was higher than that of the WT's palisade mesophyll. While the palisade mesophyll maintained a low Pf in response to high ABA, the spongy mesophyll Pf was reduced. Compared to the WT, BSabi bundle sheath cells had a higher Pf, but MCabi spongy mesophyll had an unexpected lower Pf. These results suggest that tissue-specific regulation of Pf by ABA may be confounded by whole-leaf hydraulics and transpiration. ABA increased the symplastic permeability, but its contribution to Kleaf was negligible. We suggest that the bundle sheath spongy mesophyll pathway dynamically responds to the fluctuations in water availability, while the palisade mesophyll serves as a hydraulic buffer.
Collapse
Affiliation(s)
- Adi Yaaran
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Eyal Erez
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Carl Procko
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Menachem Moshelion
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
2
|
Cui Y, He M, Liu D, Liu J, Liu J, Yan D. Intercellular Communication during Stomatal Development with a Focus on the Role of Symplastic Connection. Int J Mol Sci 2023; 24:ijms24032593. [PMID: 36768915 PMCID: PMC9917297 DOI: 10.3390/ijms24032593] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Stomata are microscopic pores on the plant epidermis that serve as a major passage for the gas and water exchange between a plant and the atmosphere. The formation of stomata requires a series of cell division and cell-fate transitions and some key regulators including transcription factors and peptides. Monocots have different stomatal patterning and a specific subsidiary cell formation process compared with dicots. Cell-to-cell symplastic trafficking mediated by plasmodesmata (PD) allows molecules including proteins, RNAs and hormones to function in neighboring cells by moving through the channels. During stomatal developmental process, the intercellular communication between stomata complex and adjacent epidermal cells are finely controlled at different stages. Thus, the stomata cells are isolated or connected with others to facilitate their formation or movement. In the review, we summarize the main regulation mechanism underlying stomata development in both dicots and monocots and especially the specific regulation of subsidiary cell formation in monocots. We aim to highlight the important role of symplastic connection modulation during stomata development, including the status of PD presence at different cell-cell interfaces and the function of relevant mobile factors in both dicots and monocots.
Collapse
Affiliation(s)
- Yongqi Cui
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Meiqing He
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Datong Liu
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs/Lixiahe Institute of Agricultural Sciences of Jiangsu, Yangzhou 225007, China
| | - Jinxin Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Jie Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Dawei Yan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475001, China
- Correspondence:
| |
Collapse
|
3
|
Jones JJ, Huang S, Hedrich R, Geilfus CM, Roelfsema MRG. The green light gap: a window of opportunity for optogenetic control of stomatal movement. THE NEW PHYTOLOGIST 2022; 236:1237-1244. [PMID: 36052708 DOI: 10.1111/nph.18451] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Green plants are equipped with photoreceptors that are capable of sensing radiation in the ultraviolet-to-blue and the red-to-far-red parts of the light spectrum. However, plant cells are not particularly sensitive to green light (GL), and light which lies within this part of the spectrum does not efficiently trigger the opening of stomatal pores. Here, we discuss the current knowledge of stomatal responses to light, which are either provoked via photosynthetically active radiation or by specific blue light (BL) signaling pathways. The limited impact of GL on stomatal movements provides a unique option to use this light quality to control optogenetic tools. Recently, several of these tools have been optimized for use in plant biological research, either to control gene expression, or to provoke ion fluxes. Initial studies with the BL-activated potassium channel BLINK1 showed that this tool can speed up stomatal movements. Moreover, the GL-sensitive anion channel GtACR1 can induce stomatal closure, even at conditions that provoke stomatal opening in wild-type plants. Given that crop plants in controlled-environment agriculture and horticulture are often cultivated with artificial light sources (i.e. a combination of blue and red light from light-emitting diodes), GL signals can be used as a remote-control signal that controls stomatal transpiration and water consumption.
Collapse
Affiliation(s)
- Jeffrey J Jones
- Division of Controlled Environment Horticulture, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin, Berlin, 14195, Germany
| | - Shouguang Huang
- Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082, Würzburg, Germany
| | - Rainer Hedrich
- Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082, Würzburg, Germany
| | - Christoph-Martin Geilfus
- Division of Controlled Environment Horticulture, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin, Berlin, 14195, Germany
- Department of Soil Science and Plant Nutrition, Hochschule Geisenheim University, 65366, Geisenheim, Germany
| | - M Rob G Roelfsema
- Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082, Würzburg, Germany
| |
Collapse
|
4
|
Cai S, Huang Y, Chen F, Zhang X, Sessa E, Zhao C, Marchant DB, Xue D, Chen G, Dai F, Leebens‐Mack JH, Zhang G, Shabala S, Christie JM, Blatt MR, Nevo E, Soltis PS, Soltis DE, Franks PJ, Wu F, Chen Z. Evolution of rapid blue-light response linked to explosive diversification of ferns in angiosperm forests. THE NEW PHYTOLOGIST 2021; 230:1201-1213. [PMID: 33280113 PMCID: PMC8048903 DOI: 10.1111/nph.17135] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/21/2020] [Indexed: 05/23/2023]
Abstract
Ferns appear in the fossil record some 200 Myr before angiosperms. However, as angiosperm-dominated forest canopies emerged in the Cretaceous period there was an explosive diversification of modern (leptosporangiate) ferns, which thrived in low, blue-enhanced light beneath angiosperm canopies. A mechanistic explanation for this transformative event in the diversification of ferns has remained elusive. We used physiological assays, transcriptome analysis and evolutionary bioinformatics to investigate a potential connection between the evolution of enhanced stomatal sensitivity to blue light in modern ferns and the rise of angiosperm-dominated forests in the geological record. We demonstrate that members of the largest subclade of leptosporangiate ferns, Polypodiales, have significantly faster stomatal response to blue light than more ancient fern lineages and a representative angiosperm. We link this higher sensitivity to levels of differentially expressed genes in blue-light signaling, particularly in the cryptochrome (CRY) signaling pathway. Moreover, CRYs of the Polypodiales examined show gene duplication events between 212.9-196.9 and 164.4-151.8 Ma, when angiosperms were emerging, which are lacking in other major clades of extant land plants. These findings suggest that evolution of stomatal blue-light sensitivity helped modern ferns exploit the shady habitat beneath angiosperm forest canopies, fueling their Cretaceous hyperdiversification.
Collapse
Affiliation(s)
- Shengguan Cai
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
- School of ScienceWestern Sydney UniversityPenrithNSW2751Australia
| | - Yuqing Huang
- School of ScienceWestern Sydney UniversityPenrithNSW2751Australia
| | - Fei Chen
- School of ScienceWestern Sydney UniversityPenrithNSW2751Australia
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSW2751Australia
- College of Life and Environmental SciencesHangzhou Normal UniversityHangzhou310036China
| | - Xin Zhang
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
| | - Emily Sessa
- Department of BiologyUniversity of FloridaGainesvilleFL32611USA
| | - Chenchen Zhao
- School of ScienceWestern Sydney UniversityPenrithNSW2751Australia
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSW2751Australia
| | - D. Blaine Marchant
- Department of BiologyUniversity of FloridaGainesvilleFL32611USA
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFL32611USA
- Department of BiologyStanford UniversityStanfordCA94305USA
| | - Dawei Xue
- College of Life and Environmental SciencesHangzhou Normal UniversityHangzhou310036China
| | - Guang Chen
- Collaborative Innovation Centre for Grain IndustryCollege of AgricultureYangtze UniversityJingzhou434025China
| | - Fei Dai
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
| | | | - Guoping Zhang
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
| | - Sergey Shabala
- Tasmanian Institute of AgricultureUniversity of TasmaniaHobartTAS7004Australia
- International Research Centre for Environmental Membrane BiologyFoshan UniversityFoshan528041China
| | - John M. Christie
- Laboratory of Plant Physiology and BiophysicsUniversity of GlasgowGlasgowG12 8QQUK
| | - Michael R. Blatt
- Laboratory of Plant Physiology and BiophysicsUniversity of GlasgowGlasgowG12 8QQUK
| | - Eviatar Nevo
- Institute of EvolutionUniversity of HaifaMount CarmelHaifa34988384Israel
| | - Pamela S. Soltis
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFL32611USA
| | - Douglas E. Soltis
- Department of BiologyUniversity of FloridaGainesvilleFL32611USA
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFL32611USA
| | - Peter J. Franks
- School of Life and Environmental SciencesThe University of SydneySydneyNSW2006Australia
| | - Feibo Wu
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
| | - Zhong‐Hua Chen
- School of ScienceWestern Sydney UniversityPenrithNSW2751Australia
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSW2751Australia
| |
Collapse
|
5
|
Wei H, Liu C, Hu J, Jeong BR. Quality of Supplementary Morning Lighting (SML) During Propagation Period Affects Physiology, Stomatal Characteristics, and Growth of Strawberry Plants. PLANTS (BASEL, SWITZERLAND) 2020; 9:E638. [PMID: 32429476 PMCID: PMC7285151 DOI: 10.3390/plants9050638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 11/16/2022]
Abstract
Artificial light supplementation is widely used in modern agriculture. Due to their numerous advantages, light emitting diodes (LEDs) are widely used to effectively increase the yield or control the development of crops. In the present study, the effects of supplementary morning lighting (SML) with LEDs on the physiology and stomatal characteristics of strawberry plants were studied, with the aim of awakening the plant guard cells before sunrise and enabling strawberry plants to efficiently photosynthesize immediately after sunrise. Young daughter plants of 'Maehyang' and 'Seolhyang' strawberry cultivars that have just rooted were grown under LEDs with different wavelengths-white (W), red (R), mixed blue and red (BR, 1:1), and blue (B)-to investigate the effects of the SML on the physiology, stomatal characteristics, and growth. The SML was provided for 2 h at an intensity of 100 μmol·m-2·s-1 PPFD before sunrise every morning. A group without supplementary lighting was set as the control. The results showed that the different SML qualities have significantly affected the stomatal characteristics. The B SML promoted the stomatal opening more effectively compared to the other SMLs. The stomatal conductance and quantum yield (Fv/Fm) of leaves treated with the SMLs were higher than those of the control group. The B and BR SMLs most significantly affected the stomatal conductance and quantum yield (Fv/Fm). After 30 days of the SML treatments, it was observed that the B SML effectively improved the plant quality, chlorophyll content, and carbohydrate accumulation in the two strawberry cultivars. In general, a short-term exposure to blue light before sunrise can effectively improve the quality and promote the production of strawberry plants.
Collapse
Affiliation(s)
- Hao Wei
- Department of Horticulture, Division of Applied Life Science (BK21 Plus Program), Graduate School of Gyeongsang National University, Jinju 52828, Korea; (H.W.); (C.L.); (J.H.)
| | - Chen Liu
- Department of Horticulture, Division of Applied Life Science (BK21 Plus Program), Graduate School of Gyeongsang National University, Jinju 52828, Korea; (H.W.); (C.L.); (J.H.)
| | - Jiangtao Hu
- Department of Horticulture, Division of Applied Life Science (BK21 Plus Program), Graduate School of Gyeongsang National University, Jinju 52828, Korea; (H.W.); (C.L.); (J.H.)
| | - Byoung Ryong Jeong
- Department of Horticulture, Division of Applied Life Science (BK21 Plus Program), Graduate School of Gyeongsang National University, Jinju 52828, Korea; (H.W.); (C.L.); (J.H.)
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
6
|
Matthews JSA, Vialet-Chabrand S, Lawson T. Role of blue and red light in stomatal dynamic behaviour. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2253-2269. [PMID: 31872212 PMCID: PMC7134916 DOI: 10.1093/jxb/erz563] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/19/2019] [Indexed: 05/20/2023]
Abstract
Plants experience changes in light intensity and quality due to variations in solar angle and shading from clouds and overlapping leaves. Stomatal opening to increasing irradiance is often an order of magnitude slower than photosynthetic responses, which can result in CO2 diffusional limitations on leaf photosynthesis, as well as unnecessary water loss when stomata continue to open after photosynthesis has reached saturation. Stomatal opening to light is driven by two distinct pathways; the 'red' or photosynthetic response that occurs at high fluence rates and saturates with photosynthesis, and is thought to be the main mechanism that coordinates stomatal behaviour with photosynthesis; and the guard cell-specific 'blue' light response that saturates at low fluence rates, and is often considered independent of photosynthesis, and important for early morning stomatal opening. Here we review the literature on these complicated signal transduction pathways and osmoregulatory processes in guard cells that are influenced by the light environment. We discuss the possibility of tuning the sensitivity and magnitude of stomatal response to blue light which potentially represents a novel target to develop ideotypes with the 'ideal' balance between carbon gain, evaporative cooling, and maintenance of hydraulic status that is crucial for maximizing crop performance and productivity.
Collapse
Affiliation(s)
- Jack S A Matthews
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| | | | - Tracy Lawson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| |
Collapse
|
7
|
McClain AM, Sharkey TD. Building a better equation for electron transport estimated from Chl fluorescence: accounting for nonphotosynthetic light absorption. THE NEW PHYTOLOGIST 2020; 225:604-608. [PMID: 31605374 PMCID: PMC7660523 DOI: 10.1111/nph.16255] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/03/2019] [Indexed: 06/01/2023]
Affiliation(s)
- Alan M. McClain
- MSU-DOE Plant Research Laboratory, Michigan State University, 612 Wilson Rd, 210 Plant Biology Labs, East Lansing, MI 48824, USA
| | - Thomas D. Sharkey
- MSU-DOE Plant Research Laboratory, Michigan State University, 612 Wilson Rd, 210 Plant Biology Labs, East Lansing, MI 48824, USA
| |
Collapse
|
8
|
McKown AD, Klápště J, Guy RD, Corea ORA, Fritsche S, Ehlting J, El-Kassaby YA, Mansfield SD. A role for SPEECHLESS in the integration of leaf stomatal patterning with the growth vs disease trade-off in poplar. THE NEW PHYTOLOGIST 2019; 223:1888-1903. [PMID: 31081152 DOI: 10.1111/nph.15911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/29/2019] [Indexed: 05/08/2023]
Abstract
Occurrence of stomata on both leaf surfaces (amphistomaty) promotes higher stomatal conductance and photosynthesis while simultaneously increasing exposure to potential disease agents in black cottonwood (Populus trichocarpa). A genome-wide association study (GWAS) with 2.2M single nucleotide polymorphisms generated through whole-genome sequencing found 280 loci associated with variation in adaxial stomatal traits, implicating genes regulating stomatal development and behavior. Strikingly, numerous loci regulating plant growth and response to biotic and abiotic stresses were also identified. The most significant locus was a poplar homologue of SPEECHLESS (PtSPCH1). Individuals possessing PtSPCH1 alleles associated with greater adaxial stomatal density originated primarily from environments with shorter growing seasons (e.g. northern latitudes, high elevations) or with less precipitation. PtSPCH1 was expressed in developing leaves but not developing stem xylem. In developing leaves, RNA sequencing showed patterns of coordinated expression between PtSPCH1 and other GWAS-identified genes. The breadth of our GWAS results suggests that the evolution of amphistomaty is part of a larger, complex response in plants. Suites of genes underpin this response, retrieved through genetic association to adaxial stomata, and show coordinated expression during development. We propose that the occurrence of amphistomaty in P. trichocarpa involves PtSPCH1 and reflects selection for supporting rapid growth over investment in immunity.
Collapse
Affiliation(s)
- Athena D McKown
- Department of Forest and Conservation Sciences, Faculty of Forestry, Forest Sciences Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jaroslav Klápště
- Department of Forest and Conservation Sciences, Faculty of Forestry, Forest Sciences Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Genetics and Physiology of Forest Trees, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, 165 21, Czech Republic
- Scion (New Zealand Forest Research Institute Ltd), Whakarewarewa, Rotorua, 3046, New Zealand
| | - Robert D Guy
- Department of Forest and Conservation Sciences, Faculty of Forestry, Forest Sciences Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Oliver R A Corea
- Department of Biology and Centre for Forest Biology, University of Victoria, Victoria, BC, V8W 3N5, Canada
| | - Steffi Fritsche
- Scion (New Zealand Forest Research Institute Ltd), Whakarewarewa, Rotorua, 3046, New Zealand
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jürgen Ehlting
- Department of Biology and Centre for Forest Biology, University of Victoria, Victoria, BC, V8W 3N5, Canada
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, Forest Sciences Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Shawn D Mansfield
- Department of Wood Science, Faculty of Forestry, Forest Sciences Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
9
|
Jezek M, Hills A, Blatt MR, Lew VL. A constraint-relaxation-recovery mechanism for stomatal dynamics. PLANT, CELL & ENVIRONMENT 2019; 42:2399-2410. [PMID: 31032976 PMCID: PMC6771799 DOI: 10.1111/pce.13568] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 05/02/2023]
Abstract
Models of guard cell dynamics, built on the OnGuard platform, have provided quantitative insights into stomatal function, demonstrating substantial predictive power. However, the kinetics of stomatal opening predicted by OnGuard models were threefold to fivefold slower than observed in vivo. No manipulations of parameters within physiological ranges yielded model kinetics substantially closer to these data, thus highlighting a missing component in model construction. One well-documented process influencing stomata is the constraining effect of the surrounding epidermal cells on guard cell volume and stomatal aperture. Here, we introduce a mechanism to describe this effect in OnGuard2 constructed around solute release and a decline in turgor of the surrounding cells and its subsequent recovery during stomatal opening. The results show that this constraint-relaxation-recovery mechanism in OnGuard2 yields dynamics that are consistent with experimental observations in wild-type Arabidopsis, and it predicts the altered opening kinetics of ost2 H+ -ATPase and slac1 Cl- channel mutants. Thus, incorporating solute flux of the surrounding cells implicitly through their constraint on guard cell expansion provides a satisfactory representation of stomatal kinetics, and it predicts a substantial and dynamic role for solute flux across the apoplastic space between the guard cells and surrounding cells in accelerating stomatal kinetics.
Collapse
Affiliation(s)
- Mareike Jezek
- Laboratory of Plant Physiology and Biophysics, Bower BuildingUniversity of GlasgowGlasgowUK
| | - Adrian Hills
- Laboratory of Plant Physiology and Biophysics, Bower BuildingUniversity of GlasgowGlasgowUK
| | - Michael R. Blatt
- Laboratory of Plant Physiology and Biophysics, Bower BuildingUniversity of GlasgowGlasgowUK
| | | |
Collapse
|
10
|
Gotoh E, Oiwamoto K, Inoue SI, Shimazaki KI, Doi M. Stomatal response to blue light in crassulacean acid metabolism plants Kalanchoe pinnata and Kalanchoe daigremontiana. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1367-1374. [PMID: 30576518 PMCID: PMC6382328 DOI: 10.1093/jxb/ery450] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/02/2018] [Accepted: 12/14/2018] [Indexed: 05/23/2023]
Abstract
Blue light (BL) is a fundamental cue for stomatal opening in both C3 and C4 plants. However, it is unknown whether crassulacean acid metabolism (CAM) plants open their stomata in response to BL. We investigated stomatal BL responses in the obligate CAM plants Kalanchoe pinnata and Kalanchoe daigremontiana that characteristically open their stomata at night and close them for part of the day, as contrasted with C3 and C4 plants. Stomata opened in response to weak BL superimposed on background red light in both intact leaves and detached epidermal peels of K. pinnata and K. daigremontiana. BL-dependent stomatal opening was completely inhibited by tautomycin and vanadate, which repress type 1 protein phosphatase and plasma membrane H+-ATPase, respectively. The plasma membrane H+-ATPase activator fusicoccin induced stomatal opening in the dark. Both BL and fusicoccin induced phosphorylation of the guard cell plasma membrane H+-ATPase in K. pinnata. These results indicate that BL-dependent stomatal opening occurs in the obligate CAM plants K. pinnata and K. daigremontiana independently of photosynthetic CO2 assimilation mode.
Collapse
Affiliation(s)
- Eiji Gotoh
- Department of Forest Environmental Sciences, Faculty of Agriculture, Kyushu University, Motooka, Nishi-ku, Fukuoka, Japan
| | - Kohei Oiwamoto
- Department of Biology, Faculty of Science, Kyushu University, Motooka, Nishi-ku, Fukuoka, Japan
| | - Shin-ichiro Inoue
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Ken-ichiro Shimazaki
- Department of Biology, Faculty of Science, Kyushu University, Motooka, Nishi-ku, Fukuoka, Japan
| | - Michio Doi
- Faculty of Arts and Science, Kyushu University, Motooka, Nishi-ku, Fukuoka, Japan
| |
Collapse
|
11
|
Hiyama A, Takemiya A, Munemasa S, Okuma E, Sugiyama N, Tada Y, Murata Y, Shimazaki KI. Blue light and CO 2 signals converge to regulate light-induced stomatal opening. Nat Commun 2017; 8:1284. [PMID: 29101334 PMCID: PMC5670223 DOI: 10.1038/s41467-017-01237-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 08/31/2017] [Indexed: 01/08/2023] Open
Abstract
Stomata regulate gas exchange between plants and atmosphere by integrating opening and closing signals. Stomata open in response to low CO2 concentrations to maximize photosynthesis in the light; however, the mechanisms that coordinate photosynthesis and stomatal conductance have yet to be identified. Here we identify and characterize CBC1/2 (CONVERGENCE OF BLUE LIGHT (BL) AND CO2 1/2), two kinases that link BL, a major component of photosynthetically active radiation (PAR), and the signals from low concentrations of CO2 in guard cells. CBC1/CBC2 redundantly stimulate stomatal opening by inhibition of S-type anion channels in response to both BL and low concentrations of CO2. CBC1/CBC2 function in the signaling pathways of phototropins and HT1 (HIGH LEAF TEMPERATURE 1). CBC1/CBC2 interact with and are phosphorylated by HT1. We propose that CBCs regulate stomatal aperture by integrating signals from BL and CO2 and act as the convergence site for signals from BL and low CO2. Stomata open in response to low CO2 conditions in the light to maximise photosynthesis. Here, Hiyama et al. identify two kinases that promote stomatal opening by inhibiting S-type anion channels downstream of phototropin and HT1 thereby acting as a convergence point for blue light and CO2 signaling.
Collapse
Affiliation(s)
- Asami Hiyama
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Fukuoka, 819-0395, Japan
| | - Atsushi Takemiya
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Fukuoka, 819-0395, Japan.,Graduate School of Sciences and Technology for Innovation, 1677-1 Yoshida, Yamaguchi, 753-8512, Japan
| | - Shintaro Munemasa
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Eiji Okuma
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Naoyuki Sugiyama
- Department of Molecular & Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yasuomi Tada
- Center for Gene Research, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Ken-Ichiro Shimazaki
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Fukuoka, 819-0395, Japan.
| |
Collapse
|
12
|
Lanoue J, Leonardos ED, Ma X, Grodzinski B. The Effect of Spectral Quality on Daily Patterns of Gas Exchange, Biomass Gain, and Water-Use-Efficiency in Tomatoes and Lisianthus: An Assessment of Whole Plant Measurements. FRONTIERS IN PLANT SCIENCE 2017; 8:1076. [PMID: 28676816 PMCID: PMC5477295 DOI: 10.3389/fpls.2017.01076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 06/06/2017] [Indexed: 05/18/2023]
Abstract
Advancements in light-emitting diode (LED) technology have made them a viable alternative to current lighting systems for both sole and supplemental lighting requirements. Understanding how wavelength specific LED lighting can affect plants is thus an area of great interest. Much research is available on the wavelength specific responses of leaves from multiple crops when exposed to long-term wavelength specific lighting. However, leaf measurements do not always extrapolate linearly to the complexities which are found within a whole plant canopy, namely mutual shading and leaves of different ages. Taken together, both tomato (Solanum lycopersicum) leaves under short-term illumination and lisianthus (Eustoma grandiflorum) and tomato whole plant diurnal patterns of plants acclimated to specific lighting indicate wavelength specific responses of both H2O and CO2 gas exchanges involved in the major growth parameters of a plant. Tomato leaves grown under a white light source indicated an increase in transpiration rate and internal CO2 concentration and a subsequent decrease in water-use-efficiency (WUE) when exposed to a blue LED light source compared to a green LED light source. Interestingly, the maximum photosynthetic rate was observed to be similar. Using plants grown under wavelength specific supplemental lighting in a greenhouse, a decrease in whole plant WUE was seen in both crops under both red-blue (RB) and red-white (RW) LEDs when compared to a high pressure sodium (HPS) light. Whole plant WUE was decreased by 31% under the RB LED treatment for both crops compared to the HPS treatment. Tomato whole plant WUE was decreased by 25% and lisianthus whole plant WUE was decreased by 15% when compared to the HPS treatment when grown under RW LED. The understanding of the effects of wavelength specific lighting on both leaf and whole plant gas exchange has significant implications on basic academic research as well as commercial greenhouse production.
Collapse
Affiliation(s)
- Jason Lanoue
- Department of Plant Agriculture, University of GuelphGuelph, ON, Canada
| | | | | | | |
Collapse
|
13
|
Vialet-Chabrand SRM, Matthews JSA, McAusland L, Blatt MR, Griffiths H, Lawson T. Temporal Dynamics of Stomatal Behavior: Modeling and Implications for Photosynthesis and Water Use. PLANT PHYSIOLOGY 2017; 174:603-613. [PMID: 28363993 PMCID: PMC5462030 DOI: 10.1104/pp.17.00125] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/30/2017] [Indexed: 05/08/2023]
Abstract
An analysis of stomatal behavior reveals the importance of modeling slow stomatal responses and the impacts on photosynthesis under dynamic light environments.
Collapse
Affiliation(s)
- Silvere R M Vialet-Chabrand
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom (S.R.M.V.-C., J.S.A.M., T.L.)
- Division of Crop and Plant Science, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, United Kingdom (L.M.)
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom (M.R.B.); and
- Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (H.G.)
| | - Jack S A Matthews
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom (S.R.M.V.-C., J.S.A.M., T.L.)
- Division of Crop and Plant Science, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, United Kingdom (L.M.)
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom (M.R.B.); and
- Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (H.G.)
| | - Lorna McAusland
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom (S.R.M.V.-C., J.S.A.M., T.L.)
- Division of Crop and Plant Science, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, United Kingdom (L.M.)
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom (M.R.B.); and
- Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (H.G.)
| | - Michael R Blatt
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom (S.R.M.V.-C., J.S.A.M., T.L.)
- Division of Crop and Plant Science, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, United Kingdom (L.M.)
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom (M.R.B.); and
- Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (H.G.)
| | - Howard Griffiths
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom (S.R.M.V.-C., J.S.A.M., T.L.)
- Division of Crop and Plant Science, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, United Kingdom (L.M.)
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom (M.R.B.); and
- Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (H.G.)
| | - Tracy Lawson
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom (S.R.M.V.-C., J.S.A.M., T.L.);
- Division of Crop and Plant Science, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, United Kingdom (L.M.);
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom (M.R.B.); and
- Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (H.G.)
| |
Collapse
|
14
|
Doi M, Kitagawa Y, Shimazaki KI. Stomatal Blue Light Response Is Present in Early Vascular Plants. PLANT PHYSIOLOGY 2015; 169:1205-13. [PMID: 26307440 PMCID: PMC4587438 DOI: 10.1104/pp.15.00134] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 08/21/2015] [Indexed: 05/21/2023]
Abstract
Light is a major environmental factor required for stomatal opening. Blue light (BL) induces stomatal opening in higher plants as a signal under the photosynthetic active radiation. The stomatal BL response is not present in the fern species of Polypodiopsida. The acquisition of a stomatal BL response might provide competitive advantages in both the uptake of CO2 and prevention of water loss with the ability to rapidly open and close stomata. We surveyed the stomatal opening in response to strong red light (RL) and weak BL under the RL with gas exchange technique in a diverse selection of plant species from euphyllophytes, including spermatophytes and monilophytes, to lycophytes. We showed the presence of RL-induced stomatal opening in most of these species and found that the BL responses operated in all euphyllophytes except Polypodiopsida. We also confirmed that the stomatal opening in lycophytes, the early vascular plants, is driven by plasma membrane proton-translocating adenosine triphosphatase and K(+) accumulation in guard cells, which is the same mechanism operating in stomata of angiosperms. These results suggest that the early vascular plants respond to both RL and BL and actively regulate stomatal aperture. We also found three plant species that absolutely require BL for both stomatal opening and photosynthetic CO2 fixation, including a gymnosperm, C. revoluta, and the ferns Equisetum hyemale and Psilotum nudum.
Collapse
Affiliation(s)
- Michio Doi
- Faculty of Art and Science, Kyushu University, Fukuoka 819-0395, Japan (M.D.); andDepartment of Biology, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan (Y.K., K.S.)
| | - Yuki Kitagawa
- Faculty of Art and Science, Kyushu University, Fukuoka 819-0395, Japan (M.D.); andDepartment of Biology, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan (Y.K., K.S.)
| | - Ken-ichiro Shimazaki
- Faculty of Art and Science, Kyushu University, Fukuoka 819-0395, Japan (M.D.); andDepartment of Biology, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan (Y.K., K.S.)
| |
Collapse
|
15
|
Sun Z, Jin X, Albert R, Assmann SM. Multi-level modeling of light-induced stomatal opening offers new insights into its regulation by drought. PLoS Comput Biol 2014; 10:e1003930. [PMID: 25393147 PMCID: PMC4230748 DOI: 10.1371/journal.pcbi.1003930] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 09/19/2014] [Indexed: 12/17/2022] Open
Abstract
Plant guard cells gate CO2 uptake and transpirational water loss through stomatal pores. As a result of decades of experimental investigation, there is an abundance of information on the involvement of specific proteins and secondary messengers in the regulation of stomatal movements and on the pairwise relationships between guard cell components. We constructed a multi-level dynamic model of guard cell signal transduction during light-induced stomatal opening and of the effect of the plant hormone abscisic acid (ABA) on this process. The model integrates into a coherent network the direct and indirect biological evidence regarding the regulation of seventy components implicated in stomatal opening. Analysis of this signal transduction network identified robust cross-talk between blue light and ABA, in which [Ca2+]c plays a key role, and indicated an absence of cross-talk between red light and ABA. The dynamic model captured more than 10(31) distinct states for the system and yielded outcomes that were in qualitative agreement with a wide variety of previous experimental results. We obtained novel model predictions by simulating single component knockout phenotypes. We found that under white light or blue light, over 60%, and under red light, over 90% of all simulated knockouts had similar opening responses as wild type, showing that the system is robust against single node loss. The model revealed an open question concerning the effect of ABA on red light-induced stomatal opening. We experimentally showed that ABA is able to inhibit red light-induced stomatal opening, and our model offers possible hypotheses for the underlying mechanism, which point to potential future experiments. Our modelling methodology combines simplicity and flexibility with dynamic richness, making it well suited for a wide class of biological regulatory systems.
Collapse
Affiliation(s)
- Zhongyao Sun
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Xiaofen Jin
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Réka Albert
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sarah M. Assmann
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
16
|
Kollist H, Nuhkat M, Roelfsema MRG. Closing gaps: linking elements that control stomatal movement. THE NEW PHYTOLOGIST 2014; 203:44-62. [PMID: 24800691 DOI: 10.1111/nph.12832] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/27/2014] [Indexed: 05/18/2023]
Abstract
Stomata are an attractive experimental system in plant biology, because the responses of guard cells to environmental signals can be directly linked to changes in the aperture of stomatal pores. In this review, the mechanics of stomatal movement are discussed in relation to ion transport in guard cells. Emphasis is placed on the ion pumps, transporters, and channels in the plasma membrane, as well as in the vacuolar membrane. The biophysical properties of transport proteins for H(+), K(+), Ca(2+), and anions are discussed and related to their function in guard cells during stomatal movements. Guard cell signaling pathways for ABA, CO2, ozone, microbe-associated molecular patterns (MAMPs) and blue light are presented. Special attention is given to the regulation of the slow anion channel (SLAC) and SLAC homolog (SLAH)-type anion channels by the ABA signalosome. Over the last decade, several knowledge gaps in the regulation of ion transport in guard cells have been closed. The current state of knowledge is an excellent starting point for tackling important open questions concerning stress tolerance in plants.
Collapse
Affiliation(s)
- Hannes Kollist
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
| | | | | |
Collapse
|
17
|
Abstract
The plasma membrane H(+)-ATPase is the pump that provides the driving force for transport of numerous solutes in plant cells, and plays an essential role for the growth and maintenance of cell homeostasis. Recent investigations using guard cells with respect to blue-light-induced stomatal opening uncovered the regulatory mechanisms of the H(+)-ATPase, and revealed that the phosphorylation status of penultimate threonine in the C-terminus of H(+)-ATPase is key step for the activity regulation. The same regulatory mechanisms for the H(+)-ATPase were evidenced in hypocotyl elongation in response to ABA and auxin, suggesting that the phosphorylation of the penultimate threonine is a common regulatory mechanism for the H(+)-ATPase. We also present the data that the activity of the H(+)-ATPase limits the plant growth. Typical structure of the H(+)-ATPase in the C-terminus was acquired in the transition of plants from water to the terrestrial land.
Collapse
Affiliation(s)
- Yin Wang
- Institute for Advanced Research, Nagoya University, Nagoya, Japan; Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya, Japan
| | | | | |
Collapse
|
18
|
Fujita T, Noguchi K, Terashima I. Apoplastic mesophyll signals induce rapid stomatal responses to CO2 in Commelina communis. THE NEW PHYTOLOGIST 2013; 199:395-406. [PMID: 23560389 DOI: 10.1111/nph.12261] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/06/2013] [Indexed: 05/18/2023]
Abstract
Previous studies have suggested that the mesophyll contributes to stomatal CO(2) responses. The effects of changes in CO(2) concentration (100 or 700 ppm) on stomatal responses in red or white light were examined microscopically in a leaf segment, an epidermal strip and an epidermal strip placed on a mesophyll segment of Commelina communis, all mounted on a buffer-containing gel. In both red and white light, stomata of the leaf segment opened/closed rapidly at low/high CO(2). In red light, epidermal strip stomata barely responded to CO(2). In white light, they opened at low CO(2), but hardly closed at high CO(2). Stomata of the epidermal strip placed on the mesophyll responded in the same manner as those on the leaf segment. Insertion of a doughnut-shaped cellophane spacer (but not polyethylene spacer) between the epidermal strip and the mesophyll hardly altered these responses. Stomata in leaf segments treated with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), a photosynthesis inhibitor, did not open in red light, but opened/closed at low/high CO(2) in white light. These results indicate that the apoplast transfer of 'mesophyll signals' and the stomatal opening at low CO(2) are dependent on photosynthesis, whereas the stomatal closure at high CO(2) is independent of photosynthesis.
Collapse
Affiliation(s)
- Takashi Fujita
- Plant Sciences, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 1130033, Japan
| | - Ko Noguchi
- Plant Sciences, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 1130033, Japan
| | - Ichiro Terashima
- Plant Sciences, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 1130033, Japan
| |
Collapse
|
19
|
Kinoshita T, Hayashi Y. New Insights into the Regulation of Stomatal Opening by Blue Light and Plasma Membrane H+-ATPase. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 289:89-115. [DOI: 10.1016/b978-0-12-386039-2.00003-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
20
|
Fluhr R, Kuhlemeier C, Nagy F, Chua NH. Organ-specific and light-induced expression of plant genes. Science 2010; 232:1106-12. [PMID: 17754498 DOI: 10.1126/science.232.4754.1106] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Light plays a pivotal role in the development of plants. The photoregulation of plant genes involves recognition of light quality and quantity by phytochrome and other light receptors. Two gene families, rbcS and Cab, which code for abundant proteins active in photosynthesis, the small subunit of ribulose bisphosphate carboxylase and the chlorophyll a/b binding protein, show a 20-to 50-fold increase in transcript abundance in the light. Analyses in calli and transgenic plants of deletions of the rbcS gene and of chimeric constructions has allowed localization of two regions involved in light-induced transcription. One element is confined to a 33-base pair region surrounding the TATA box. In addition, an enhancer-like element contained within a 240-base pair fragment can confer phytochrome-induced transcription and organ specificity on nonregulated promoters.
Collapse
|
21
|
Barillot R, Frak E, Combes D, Durand JL, Escobar-Gutiérrez AJ. What determines the complex kinetics of stomatal conductance under blueless PAR in Festuca arundinacea? Subsequent effects on leaf transpiration. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2795-806. [PMID: 20444905 PMCID: PMC2882272 DOI: 10.1093/jxb/erq115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 03/24/2010] [Accepted: 03/31/2010] [Indexed: 05/28/2023]
Abstract
Light quality and, in particular, its content of blue light is involved in plant functioning and morphogenesis. Blue light variation frequently occurs within a stand as shaded zones are characterized by a simultaneous decrease of PAR and blue light levels which both affect plant functioning, for example, gas exchange. However, little is known about the effects of low blue light itself on gas exchange. The aims of the present study were (i) to characterize stomatal behaviour in Festuca arundinacea leaves through leaf gas exchange measurements in response to a sudden reduction in blue light, and (ii) to test the putative role of Ci on blue light gas exchange responses. An infrared gas analyser (IRGA) was used with light transmission filters to study stomatal conductance (gs), transpiration (Tr), assimilation (A), and intercellular concentration of CO(2) (Ci) responses to blueless PAR (1.80 mumol m(-2) s(-1)). The results were compared with those obtained under a neutral filter supplying a similar photosynthetic efficiency to the blueless PAR filter. It was shown that the reduction of blue light triggered a drastic and instantaneous decrease of gs by 43.2% and of Tr by 40.0%, but a gradual stomatal reopening began 20 min after the start of the low blue light treatment, thus leading to new steady-states. This new stomatal equilibrium was supposed to be related to Ci. The results were confirmed in more developed plants although they exhibited delayed and less marked responses. It is concluded that stomatal responses to blue light could play a key role in photomorphogenetic mechanisms through their effect on transpiration.
Collapse
Affiliation(s)
- Romain Barillot
- INRA, UR4 P3F, Equipe d'Ecophysiologie des plantes fourragères, BP 6, F-86600 Lusignan, France
- Laboratoire d'Ecophysiologie Végétale et Agroécologie, Ecole Supérieure d'Agriculture, 55 rue Rabelais, BP 30748, F-49007 Angers Cedex 01, France
| | - Ela Frak
- INRA, UR4 P3F, Equipe d'Ecophysiologie des plantes fourragères, BP 6, F-86600 Lusignan, France
| | - Didier Combes
- INRA, UR4 P3F, Equipe d'Ecophysiologie des plantes fourragères, BP 6, F-86600 Lusignan, France
| | - Jean-Louis Durand
- INRA, UR4 P3F, Equipe d'Ecophysiologie des plantes fourragères, BP 6, F-86600 Lusignan, France
| | | |
Collapse
|
22
|
Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2009; 96:30-7. [PMID: 19410482 DOI: 10.1016/j.jphotobiol.2009.03.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 03/30/2009] [Accepted: 03/30/2009] [Indexed: 11/20/2022]
Abstract
Light quality is thought to affect many plant physiological processes during growth and development, particularly photosynthesis. We examined how light quality influences plant photosynthesis by analyzing changes in photosynthetic parameters and expression levels of some photosynthesis related genes of cucumber (Cucumis sativus L. cv. Jinyou No. 1) plants. The plants were grown under different light qualities: purple (P), blue (B), green (G), yellow (Y), red (R) and white light (W) of the same photosynthetic photon flux density (PFD) about 350 micromol m(-2)s(-1) for 5 days. The results show that all plants grown under monochromatic light had reduced growth, CO(2) assimilation rate (Pn) and quantum yield of PSII electron transport (Phi(PSII)) as compared with plants grown under W, and these reductions were more significant in the plants under G, Y and R. The decrease in Phi(PSII) is mostly due to the reduction in photochemical quenching (qP). Interestingly, P- and B-grown plants had higher stomatal conductance (Gs), total and initial Rubisco activities and higher transcriptional levels of 10 genes which encode key enzymes in the Calvin cycle together with higher total soluble sugars, sucrose and starch contents as compared with W-grown plants, whereas in G-, Y-, and R-grown plants these parameters declined. Therefore, the reduction in Pn under P and B is likely the result of inactivation of photosystems, whilst under Y, G and R it is caused by, in addition to photosystem inactivation, the closure of stomata and the transcriptional down-regulation of genes for the Calvin cycle enzymes such as rbc L and rca. In conclusion, light quality alters plant photosynthesis by the effects on the activity of photosynthetic apparatus in leaves and the effects on the expression and/or activity of the Calvin cycle enzymes.
Collapse
|
23
|
Konrad KR, Hedrich R. The use of voltage-sensitive dyes to monitor signal-induced changes in membrane potential-ABA triggered membrane depolarization in guard cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:161-73. [PMID: 18363788 DOI: 10.1111/j.1365-313x.2008.03498.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The plant membrane potential reports on the activity of electrogenic plasma membrane transport processes. The membrane potential is widely used to report for early events associated with changes in light regime, hormone action or pathogen attacks. The membrane potentials of guard cells can be precisely measured with microelectrodes, but this technique is not well suited for rapid screens with large sample numbers. To provide the basis for large-scale membrane potential recordings, we took advantage of voltage-sensitive dyes. Using the fluorescent dyes bis-(1,3-dibutylbarbituric acid)-trimethine oxonol (DiBAC(4)(3)) and the FLIPR Membrane Potential Assay Kit (FMP) dye we followed changes in the membrane potential in guard cells and vacuoles. Based on the fluorescence of DiBAC(4)(3) a method was established for quantification of the membrane potential in guard cell protoplasts which should be considered as an excellent system for high-throughput screening of plant cells. In the absence of abscisic acid (ABA), one-third of the guard cell protoplast population spontaneously oscillated for periods of 5-6 min. Upon application of ABA the hyperpolarized fraction ( approximately 50%) of the guard cell protoplast population depolarized within a few minutes. Membrane potential oscillations were terminated by ABA. Oscillations and ABA responses were found in cell populations with active anion channels. Thus time- and voltage-dependent anion channels likely represent the ABA-sensitive conductance and part of the membrane potential oscillator. The suitability of membrane potential dyes was tested on vacuoles, too. Dye-based vacuolar membrane polarization was monitored upon ATP exposure. We conclude that voltage-sensitive dyes provide an excellent tool for the study of changes in the membrane potential in vacuole as well as guard cell populations.
Collapse
Affiliation(s)
- Kai R Konrad
- University of Würzburg, Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-von-Sachs Institute for Biosciences, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | | |
Collapse
|
24
|
Marten H, Hedrich R, Roelfsema MRG. Blue light inhibits guard cell plasma membrane anion channels in a phototropin-dependent manner. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:29-39. [PMID: 17319842 DOI: 10.1111/j.1365-313x.2006.03026.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Guard cells respond to light through two independent signalling pathways. The first pathway is initiated by photosynthetically active radiation and has been associated with changes in the intercellular CO(2) concentration, leading to inhibition of plasma membrane anion channels. The second response is blue-light-specific and so far has been restricted to the activation of plasma membrane H(+)-ATPases. In a search for interactions of both signalling pathways, guard cells of Vicia faba and Arabidopsis thaliana were studied in intact plants. Vicia faba guard cells recorded in CO(2)-free air responded to blue light with a transient outward plasma membrane current that had an average peak value of 17 pA. In line with previous reports, changes in the current-voltage relation of the plasma membrane indicate that this outward current is based on the activation of H(+)-ATPases. However, when V. faba guard cells were blue-light-stimulated in air with 700 microl l(-1) CO(2), the outward current increased to 56 pA. The increase in current was linked to inhibition of S-type anion channels. Blue light also inhibited plasma membrane anion channels in A. thaliana guard cells, but not in the phot1 phot2 double mutant. These results show that blue light inhibits plasma membrane anion channels through a pathway involving phototropins, in addition to the stimulation of guard cell plasma membrane H(+)-ATPases.
Collapse
Affiliation(s)
- Holger Marten
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, Würzburg University, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | | | | |
Collapse
|
25
|
Shimazaki KI, Doi M, Assmann SM, Kinoshita T. Light regulation of stomatal movement. ANNUAL REVIEW OF PLANT BIOLOGY 2007; 58:219-47. [PMID: 17209798 DOI: 10.1146/annurev.arplant.57.032905.105434] [Citation(s) in RCA: 462] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Stomatal pores, each surrounded by a pair of guard cells, regulate CO2 uptake and water loss from leaves. Stomatal opening is driven by the accumulation of K+ salts and sugars in guard cells, which is mediated by electrogenic proton pumps in the plasma membrane and/or metabolic activity. Opening responses are achieved by coordination of light signaling, light-energy conversion, membrane ion transport, and metabolic activity in guard cells. In this review, we focus on recent progress in blue- and red-light-dependent stomatal opening. Because the blue-light response of stomata appears to be strongly affected by red light, we discuss underlying mechanisms in the interaction between blue-light signaling and guard cell chloroplasts.
Collapse
Affiliation(s)
- Ken-ichiro Shimazaki
- Department of Biology, Faculty of Science, Kyushu University, Ropponmatsu, Fukuoka 810-8560, Japan.
| | | | | | | |
Collapse
|
26
|
Roelfsema MRG, Konrad KR, Marten H, Psaras GK, Hartung W, Hedrich R. Guard cells in albino leaf patches do not respond to photosynthetically active radiation, but are sensitive to blue light, CO2 and abscisic acid. PLANT, CELL & ENVIRONMENT 2006; 29:1595-605. [PMID: 16898020 DOI: 10.1111/j.1365-3040.2006.01536.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Stomatal openings can be stimulated by light through two signalling pathways. The first pathway is blue light specific and involves phototropins, while the second pathway mediates a response to photosynthetically active radiation (PAR). This second pathway was studied with the use of albino Vicia faba plants and variegated leaves of Chlorophytum comosum. Treatment of V. faba with norflurazon (Nf) inhibits the synthesis of carotenoids and leads to albino leaves with guard cells that lack functional green chloroplasts. Guard cells in albino leaf patches of C. comosum, however, do contain photosynthetically active chloroplasts. Stomata in albino leaf patches of both plants did not respond to red light, although blue light could still induce stomatal opening. This shows that the response to PAR is not functioning in albino leaf patches, even though guard cells of C. comosum harbour chloroplasts. Stomata of Nf-treated plants still responded to CO2 and abscisic acid (ABA). The size of Nf-treated guard cells was increased, but impalement studies with double-barrelled microelectrodes revealed no changes in ion-transport properties at the plasma membrane of guard cells. Blue light could hyperpolarize albino guard cells by triggering outward currents with peak values of 37 pA in albino plants and 51 pA in green control cells. Because of the inhibition of carotenoid biosynthesis, Nf-treated V. faba plants contained only 4% of the ABA content found in green control plants. The ABA dose dependence of anion channel activation in guard cells was shifted in these plants, causing a reduced response to 10 microM ABA. These data show that despite the dramatic changes in physiology caused by Nf, the gross responsiveness of guard cells to blue light, CO2 and ABA remains unaltered. Stomata in albino leaf patches, however, do not respond to PAR, but require photosynthetically active mesophyll cells for this response.
Collapse
Affiliation(s)
- M Rob G Roelfsema
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, Würzburg University, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Doi M, Wada M, Shimazaki KI. The Fern Adiantum capillus-veneris Lacks Stomatal Responses to Blue Light. ACTA ACUST UNITED AC 2006; 47:748-55. [PMID: 16621842 DOI: 10.1093/pcp/pcj048] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We investigated the responses of stomata to light in the fern Adiantum capillus-veneris, a typical species of Leptosporangiopsida. Stomata in the intact leaves of the sporophytes opened in response to red light, but they did not open when blue light was superimposed on the red light. The results were confirmed in the isolated Adiantum epidermis. The red light-induced stomatal response was not affected by the mutation of phy3, a chimeric protein of phytochrome and phototropin in this fern. The lack of a blue light-specific stomatal response was observed in three other fern species of Leptosporangiopsida, i.e. Pteris cretica, Asplenium scolopendrium and Nephrolepis auriculata. Fusicoccin, an activator of the plasma membrane H(+)-ATPase, induced both stomatal opening and H(+) release in the Adiantum epidermis. Adiantum phototropin genes AcPHOT1 and AcPHOT2 were expressed in the fern guard cells. The transformation of an Arabidopsis phot1 phot2 double mutant, which lost blue light-specific stomatal opening, with AcPHOT1 restored the stomatal response to blue light. Taken together, these results suggest that ferns of Leptosporangiopsida lack a blue light-specific stomatal response, although the functional phototropin and plasma membrane H(+)-ATPase are present in this species.
Collapse
Affiliation(s)
- Michio Doi
- Research and Development Center for Higher Education, Kyushu University, Ropponmatsu, Fukuoka, 810-8560 Japan
| | | | | |
Collapse
|
28
|
Talbott LD, Hammad JW, Harn LC, Nguyen VH, Patel J, Zeiger E. Reversal by Green Light of Blue Light-stimulated Stomatal Opening in Intact, Attached Leaves of Arabidopsis Operates Only in the Potassium-dependent, Morning Phase of Movement. ACTA ACUST UNITED AC 2006; 47:332-9. [PMID: 16418232 DOI: 10.1093/pcp/pci249] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Green light reversal of blue light-stimulated stomatal opening was discovered in isolated stomata. The present study shows that the response also occurs in stomata from intact leaves. Arabidopsis thaliana plants were grown in a growth chamber under blue, red and green light. Removal of the green light opened the stomata and restoration of green light closed them to baseline values under experimental conditions that rule out a mesophyll-mediated effect. Assessment of the response to green light over a daily time course showed that the stomatal sensitivity to green light was observed only in the morning, which coincided with the use of potassium as a guard cell osmoticum. Sensitivity to green light was absent during the afternoon phase of stomatal movement, which was previously shown to be dominated by sucrose osmoregulation in Vicia faba. Hence, the shift away from potassium-based osmoregulation in guard cells is further postulated to entail a shift from blue light to photosynthesis as the primary component of the stomatal response to light. Stomata from intact leaves of the zeaxanthin-less, npq1 mutant of Arabidopsis failed to respond to the removal or restoration of green light in the growth chamber, or to short, high fluence pulses of blue or green light. These data confirm previous studies showing that npq1 stomata are devoid of a specific blue light response. In contrast, stomata from intact leaves of phot1 phot2 double mutant plants had a reduced but readily detectable response to the removal of green light and to blue and green pulses.
Collapse
Affiliation(s)
- Lawrence D Talbott
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 90024, USA
| | | | | | | | | | | |
Collapse
|
29
|
Roelfsema MRG, Hedrich R. In the light of stomatal opening: new insights into 'the Watergate'. THE NEW PHYTOLOGIST 2005; 167:665-91. [PMID: 16101906 DOI: 10.1111/j.1469-8137.2005.01460.x] [Citation(s) in RCA: 307] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Stomata can be regarded as hydraulically driven valves in the leaf surface, which open to allow CO2 uptake and close to prevent excessive loss of water. Movement of these 'Watergates' is regulated by environmental conditions, such as light, CO2 and humidity. Guard cells can sense environmental conditions and function as motor cells within the stomatal complex. Stomatal movement results from the transport of K+ salts across the guard cell membranes. In this review, we discuss the biophysical principles and mechanisms of stomatal movement and relate these to ion transport at the plasma membrane and vacuolar membrane. Studies with isolated guard cells, combined with recordings on single guard cells in intact plants, revealed that light stimulates stomatal opening via blue light-specific and photosynthetic-active radiation-dependent pathways. In addition, guard cells sense changes in air humidity and the water status of distant tissues via the stress hormone abscisic acid (ABA). Guard cells thus provide an excellent system to study cross-talk, as multiple signaling pathways induce both short- and long-term responses in these sensory cells.
Collapse
Affiliation(s)
- M Rob G Roelfsema
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, Würzburg University, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | | |
Collapse
|
30
|
Kinoshita T, Emi T, Tominaga M, Sakamoto K, Shigenaga A, Doi M, Shimazaki KI. Blue-light- and phosphorylation-dependent binding of a 14-3-3 protein to phototropins in stomatal guard cells of broad bean. PLANT PHYSIOLOGY 2003; 133:1453-63. [PMID: 14605223 PMCID: PMC300702 DOI: 10.1104/pp.103.029629] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Phototropins are blue-light (BL) receptor serine (Ser)/threonine kinases, and contain two light, oxygen, and voltage (LOV) domains, and are members of the PAS domain superfamily. They mediate phototropism, chloroplast movement, leaf expansion, and stomatal opening of higher plants in response to BL. In stomatal guard cells, genetic analysis has revealed that phototropins mediate activation of the plasma membrane H+-ATPase by phosphorylation and drive stomatal opening. However, biochemical evidence for the involvement of phototropins in the BL response of stomata is lacking. Using guard cell protoplasts, we showed that broad bean (Vicia faba) phototropins (Vfphots) were phosphorylated by BL, and that this phosphorylation of Vfphots reached to the maximum level earlier than that of the H+-ATPase. Phosphorylation of both Vfphots and H+-ATPase showed similar sensitivity to BL and were similarly suppressed by protein kinase and flavoprotein inhibitors. We found that a 14-3-3 protein was bound to Vfphots upon phosphorylation, and this binding occurred earlier than the H+-ATPase phosphorylation. Vfphots (Vfphot1a and Vfphot1b) were expressed in Escherichia coli, and phosphorylation sites were determined to be Ser-358 for Vfphot1a and Ser-344 for Vfphot1b, which are localized between LOV1 and LOV2. We conclude that Vfphots act as BL receptors in guard cells and that phosphorylation of a Ser residue between LOV1 and LOV2 and subsequent 14-3-3 protein binding are likely to be key steps of BL response in stomata. The binding of a 14-3-3 protein to Vfphot was found in etiolated seedlings and leaves in response to BL, suggesting that this event was common to phototropin-mediated responses.
Collapse
Affiliation(s)
- Toshinori Kinoshita
- Department of Biology, Faculty of Science, Kyushu University, Ropponmatsu, Fukuoka, Japan 810-8560
| | | | | | | | | | | | | |
Collapse
|
31
|
Talbott LD, Nikolova G, Ortiz A, Shmayevich I, Zeiger E. Green light reversal of blue-light-stimulated stomatal opening is found in a diversity of plant species. AMERICAN JOURNAL OF BOTANY 2002; 89:366-368. [PMID: 21669746 DOI: 10.3732/ajb.89.2.366] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Reversal by green light of blue-light-stimulated stomatal opening was found across a number of plant species, including leguminous and nonleguminous dicots and grass and nongrass monocots. Simultaneous exposure to equal fluence rates of blue and green light resulted in ∼50% reversal of normal blue light opening. Complete reversal occurred when the fluence rate of green light was approximately twice that of blue light. These results suggest that blue-green reversibility of stomatal opening is a basic photobiological property of guard cells. The blue-green reversibility of stomatal opening has been hypothesized to ensue from the cycling of two interconvertible, isomeric forms of the blue-light photoreceptor, zeaxanthin. Testing of blue-green reversibility could provide a valuable diagnostic tool for zeaxanthin-mediated blue-light photoperception.
Collapse
Affiliation(s)
- Lawrence D Talbott
- Department of Organismic Biology, Ecology and Evolution, University of California, Los Angeles, 900 Veteran Ave., Los Angeles, California 90024 USA
| | | | | | | | | |
Collapse
|
32
|
Kinoshita T, Doi M, Suetsugu N, Kagawa T, Wada M, Shimazaki K. Phot1 and phot2 mediate blue light regulation of stomatal opening. Nature 2001; 414:656-60. [PMID: 11740564 DOI: 10.1038/414656a] [Citation(s) in RCA: 562] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The stomatal pores of higher plants allow for gaseous exchange into and out of leaves. Situated in the epidermis, they are surrounded by a pair of guard cells which control their opening in response to many environmental stimuli, including blue light. Opening of the pores is mediated by K(+) accumulation in guard cells through a K(+) channel and driven by an inside-negative electrical potential. Blue light causes phosphorylation and activation of the plasma membrane H(+)-ATPase that creates this potential. Thus far, no blue light receptor mediating stomatal opening has been identified, although the carotenoid, zeaxanthin, has been proposed. Arabidopsis mutants deficient in specific blue-light-mediated responses have identified four blue light receptors, cryptochrome 1 (cry1), cryptochrome 2 (cry2), phot1 and phot2. Here we show that in a double mutant of phot1 and phot2 stomata do not respond to blue light although single mutants are phenotypically normal. These results demonstrate that phot1 and phot2 act redundantly as blue light receptors mediating stomatal opening.
Collapse
Affiliation(s)
- T Kinoshita
- Department of Biology, Faculty of Science, Kyushu University, Ropponmatsu, Fukuoka 810-8560, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Dietrich P, Sanders D, Hedrich R. The role of ion channels in light-dependent stomatal opening. JOURNAL OF EXPERIMENTAL BOTANY 2001; 52:1959-67. [PMID: 11559731 DOI: 10.1093/jexbot/52.363.1959] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Stomatal opening represents a major determinant of plant productivity and stress management. Because plants lose water essentially through open stomata, volume control of the pore-forming guard cells represents a key step in the regulation of plant water status. These sensory cells are able to integrate various signals such as light, auxin, abscisic acid, and CO(2). Following signal perception, changes in membrane potential and activity of ion transporters finally lead to the accumulation of potassium salts and turgor pressure formation. This review analyses recent progress in molecular aspects of ion channel regulation and suggests how these developments impact on our understanding of light- and auxin-dependent stomatal action.
Collapse
Affiliation(s)
- P Dietrich
- Julius-von-Sachs-Institut für Biowissenschaften, Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | | | | |
Collapse
|
34
|
Tominaga M, Kinoshita T, Shimazaki K. Guard-cell chloroplasts provide ATP required for H(+) pumping in the plasma membrane and stomatal opening. PLANT & CELL PHYSIOLOGY 2001; 42:795-802. [PMID: 11522904 DOI: 10.1093/pcp/pce101] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
To elucidate the role of guard-cell chloroplasts (GCCs) in stomatal movement, we investigated the effects of oligomycin, an inhibitor of oxidative phosphorylation, and 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), an inhibitor of photosystem II, on fusicoccin (FC)-induced H(+) pumping and stomatal opening. FC was found to induce H(+ )pumping in guard-cell protoplasts (GCPs) from Vicia faba and stomatal opening in the epidermis of Commelina benghalensis; and, red light (RL) slightly stimulated these responses. Oligomycin strongly inhibited the pumping and stomatal opening in the dark. RL partially reversed the inhibitions, and DCMU decreased the effect of RL. FC activated the plasma membrane H(+)-ATPase (EC 3.6.1.35) in GCPs similarly irrespective of these treatments, indicating that the H(+)-ATPase activity was not the limiting step in H(+) pumping. Oligomycin significantly decreased the ATP content in GCPs in the dark. RL partially reversed this effect, and DCMU eliminated the effect of RL. A significant part of the ATP produced by photophosphorylation to H(+) pumping was indicated under RL. These results suggest that GCCs supply ATP to the cytosol under RL, and that the ATP is utilized by the plasma membrane H(+)-ATPase for H(+) pumping.
Collapse
Affiliation(s)
- M Tominaga
- Department of Biology, Faculty of Sciences, Kyushu University, Ropponmatsu, Fukuoka, 810-8560 Japan
| | | | | |
Collapse
|
35
|
Roelfsema MR, Steinmeyer R, Staal M, Hedrich R. Single guard cell recordings in intact plants: light-induced hyperpolarization of the plasma membrane. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 26:1-13. [PMID: 11359605 DOI: 10.1046/j.1365-313x.2001.01000.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Guard cells are electrically isolated from other plant cells and therefore offer the unique possibility to conduct current- and voltage-clamp recordings on single cells in an intact plant. Guard cells in their natural environment were impaled with double-barreled electrodes and found to exhibit three physiological states. A minority of cells were classified as far-depolarized cells. These cells exhibited positive membrane potentials and were dominated by the activity of voltage-dependent anion channels. All other cells displayed both outward and inward rectifying K+-channel activity. These cells were either depolarized or hyperpolarized, with average membrane potentials of -41 mV (SD 16) and -112 mV (SD 19), respectively. Depolarized guard cells extrude K+ through outward rectifying channels, while K+ is taken up via inward rectifying channels in hyperpolarized cells. Upon a light/dark transition, guard cells that were hyperpolarized in the light switched to the depolarized state. The depolarization was accompanied by a 35 pA decrease in pump current and an increase in the conductance of inward rectifying channels. Both an increase in pump current and a decrease in the conductance of the inward rectifier were triggered by blue light, while red light was ineffective. From these studies we conclude that light modulates plasma membrane transport through large membrane potential changes, reversing the K+-efflux via outward rectifying channels to a K+-influx via inward rectifying channels.
Collapse
Affiliation(s)
- M R Roelfsema
- Julius-von-Sachs-Institut fur Biowissenschaften, Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik, Universität Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | | | | | | |
Collapse
|
36
|
Taylor AR, Assmann SM. Apparent absence of a redox requirement for blue light activation of pump current in broad bean guard cells. PLANT PHYSIOLOGY 2001; 125:329-38. [PMID: 11154340 PMCID: PMC61013 DOI: 10.1104/pp.125.1.329] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In guard cells, membrane hyperpolarization in response to a blue light (BL) stimulus is achieved by the activation of a plasma membrane H(+)-ATPase. Using the patch clamp technique on broad bean (Vicia faba) guard cells we demonstrate that both steady-state- and BL-induced pump currents require ATP and are blocked by vanadate perfused into the guard cell during patch clamp recording. Background-pump current and BL-activated currents are voltage independent over a wide range of membrane potentials. During BL-activated responses significant hyperpolarization is achieved that is sufficient to promote K(+) uptake. BL activation of pump current becomes desensitized by three or four pulses of 30 s x 100 micromol m(-2) s(-1) BL. This desensitization is not a result of pump inhibition as maximal responses to fusicoccin are observed after full BL desensitization. BL treatments prior to whole cell recording show that BL desensitization is not due to washout of a secondary messenger by whole cell perfusion, but appears to be an important feature of the BL-stimulated pump response. We found no evidence for an electrogenic BL-stimulated redox chain in the plasma membrane of guard cells as no steady-state- or BL-activated currents are detected with NADH or NADPH added to the cytosol in the absence of ATP. Steady-state- nor BL-activated currents are affected by the inclusion along with ATP of 1 mM NADH in the pipette under saturating red light or by including NADPH in the pipette under darkness or saturating red light. These data suggest that reduced products of photosynthesis do not significantly modulate plasma membrane pump currents and are unlikely to be critical regulators in BL-stimulation of the plasma membrane H(+)-ATPase in guard cells.
Collapse
Affiliation(s)
- A R Taylor
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth PL1 2PB, United Kingdom.
| | | |
Collapse
|
37
|
Elzenga JT, Staal M, Prins HB. Modulation by phytochrome of the blue light-induced extracellular acidification by leaf epidermal cells of pea (Pisum sativum l.): a kinetic analysis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 22:377-89. [PMID: 10849354 DOI: 10.1046/j.1365-313x.2000.00748.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Blue light induces extracellular acidification, a prerequisite of cell expansion, in epidermis cells of young pea leaves, by stimulation of the proton pumping-ATPase activity in the plasma membrane. A transient acidification, reaching a maximum 2.5-5 min after the start of the pulse, could be induced by pulses as short as 30 msec. A pulse of more than 3000 micromol m-2 saturated this response. Responsiveness to a second light pulse was recovered with a time constant of about 7 min. The fluence rate-dependent lag time and sigmoidal increase of the acidification suggested the involvement of several reactions between light perception and activation of the ATPase. In wild-type pea plants, the fluence response relation for short light pulses was biphasic, with a component that saturates at low fluence and one that saturates at high fluence. The phytochrome-deficient mutant pcd2 showed a selective loss of the high-fluence component, suggesting that the high-fluence component is phytochrome-dependent and the low-fluence component is phytochrome-independent. Treatment with the calmodulin inhibitor W7 also led to the elimination of the phytochrome-dependent high-fluence component. Simple models adapted from the one used to simulate blue light-induced guard cell opening failed to explain one or more elements of the experimental data. The hypothesis that phytochrome and a blue light receptor interact in a short-term photoresponse is endorsed by model calculations based upon a three-step signal transduction cascade, of which one component can be modulated by phytochrome.
Collapse
Affiliation(s)
- J T Elzenga
- Laboratory of Plant Physiology, Department of Plant Biology, University of Groningen, PO Box 14, 9750 AA Haren, The Netherlands.
| | | | | |
Collapse
|
38
|
Abstract
In the past few years great progress has been made in identifying and characterizing plant photoreceptors active in the blue/UV-A regions of the spectrum. These photoreceptors include cryptochrome 1 and cryptochrome 2, which are similar in structure and chromophore composition to the prokaryotic DNA photolyases. However, they have a C-terminal extension that is not present in photolyases and lack photolyase activity. They are involved in regulation of cell elongation and in many other processes, including interfacing with circadian rhythms and activating gene transcription. Animal cryptochromes that play a photoreceptor role in circadian rhythms have also been characterized. Phototropin, the protein product of the NPH1 gene in Arabidopsis, likely serves as the photoreceptor for phototropism and appears to have no other role. A plasma membrane protein, it serves as photoreceptor, kinase, and substrate for light-activated phosphorylation. The carotenoid zeaxanthin may serve as the chromophore for a photoreceptor involved in blue-light-activated stomatal opening. The properties of these photoreceptors and some of the downstream events they are known to activate are discussed.
Collapse
Affiliation(s)
- W R Briggs
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, California 94305, USA.
| | | |
Collapse
|
39
|
Goh CH, Oku T, Shimazaki K. Properties of Proton Pumping in Response to Blue Light and Fusicoccin in Guard Cell Protoplasts Isolated from Adaxial Epidermis of Vicia Leaves. PLANT PHYSIOLOGY 1995; 109:187-194. [PMID: 12228589 PMCID: PMC157575 DOI: 10.1104/pp.109.1.187] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Guard cell protoplasts (GCPs) were isolated from the adaxial epidermis of Vicia leaves. The properties of isolated adaxial GCPs (ad GCPs) were compared with those of abaxial GCPs (ab GCPs) with respect to H+-pumping activity. A saturating pulse of blue light (200 [mu]mol m-2 s-1, 30 s) induced H+ pumping in both ad GCPs and ab GCPs under red light. The maximum rate of blue-light-dependent H+ pumping was slightly higher in ad GCPs than in ab GCPs, but the magnitude of H+ pumping in ad GCPs was 68% of that in ab GCPs. H+ pumping was responsive to the second pulse, and the rate and magnitude of the pumping increased with the time between two pulses. The periods required to achieve 50% of the maximum rate were 12 and 22 min for ad GCPs and ab GCPs, respectively. The rates of blue-light-dependent H+ pumping were saturable, with half-saturation at 630 [mu]mol m-2 (21 [mu]mol m-2 s-1, 30 s) for ad GCPs and 105 [mu]mol m-2 (3.5 [mu]mol m-2 s-1, 30s) for ab GCPs. In contrast, fusicoccin, an activator of the plasma membrane H+- ATPase, induced H+ pumping with a slightly higher rate in ad GCPs than in ab GCPs. Both types of protoplast swelled similarly in response to fusicoccin. These results suggest that ad GCPs have almost the same activity for H+ pumping as ab GCPs, whereas ad GCPs require a larger number of photons to activate the H+ pump than ab GCPs.
Collapse
Affiliation(s)
- C. H. Goh
- Biophysics Laboratory, Faculty of Agriculture, Kyushu University, Hakozaki, Fukuoka 812, Japan (C.-H.G., T.O.)
| | | | | |
Collapse
|
40
|
Zhu J, Zeiger R, Zeiger E. Structural and functional properties of the coleoptile chloroplast: Photosynthesis and photosensory transduction. PHOTOSYNTHESIS RESEARCH 1995; 44:207-219. [PMID: 24307039 DOI: 10.1007/bf00018310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/1994] [Accepted: 03/07/1995] [Indexed: 06/02/2023]
Abstract
Recent studies have shown that guard cell and coleoptile chloroplasts appear to be involved in blue light photoreception during blue light-dependent stomatal opening and phototropic bending. The guard cell chloroplast has been studied in detail but the coleoptile chloroplast is poorly understood. The present study was aimed at the characterization of the corn coleoptile chloroplast, and its comparison with mesophyll and guard cell chloroplasts. Coleoptile chloroplasts operated the xanthophyll cycle, and their zeaxanthin content tracked incident rates of solar radiation throughout the day. Zeaxanthin formation was very sensitive to low incident fluence rates, and saturated at around 800-1000 μmol m(-2) s(-1). Zeaxanthin formation in corn mesophyll chloroplasts was insensitive to low fluence rates and saturated at around 1800 μmol m(-2) s(-1). Quenching rates of chlorophyll a fluorescence transients from coleoptile chloroplasts induced by saturating fluence rates of actinic red light increased as a function of zeaxanthin content. This implies that zeaxanthin plays a photoprotective role in the coleoptile chloroplast. Addition of low fluence rates of blue light to saturating red light also increased quenching rates in a zeaxanthin-dependent fashion. This blue light response of the coleoptile chloroplast is analogous to that of the guard cell chloroplast, and implicates these organelles in the sensory transduction of blue light. On a chlorophyll basis, coleoptile chloroplasts had high rates of photosynthetic oxygen evolution and low rates of photosynthetic carbon fixation, as compared with mesophyll chloroplasts. In contrast with the uniform chloroplast distribution in the leaf, coleoptile chloroplasts were predominately found in the outer cell layers of the coleoptile cortex, and had large starch grains and a moderate amount of stacked grana and stroma lamellae. Several key properties of the coleoptile chloroplast were different from those of mesophyll chloroplasts and resembled those of guard cell chloroplasts. We propose that the common properties of guard cell and coleoptile chloroplasts define a functional pattern characteristic of chloroplasts specialized in photosensory transduction.
Collapse
Affiliation(s)
- J Zhu
- Department of Biology, University of California, 90024, Los Angeles, CA, USA
| | | | | |
Collapse
|
41
|
Cardon ZG, Berry JA, Woodrow IE. Dependence of the Extent and Direction of Average Stomatal Response in Zea mays L. and Phaseolus vulgaris L. on the Frequency of Fluctuations in Environmental Stimuli. PLANT PHYSIOLOGY 1994; 105:1007-1013. [PMID: 12232261 PMCID: PMC160752 DOI: 10.1104/pp.105.3.1007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Stomatal responses to fluctuating light and CO2 were investigated in Zea mays and Phaseolus vulgaris. Slow-moving stomata can affect carbon gain and water loss by plants during light flecks, under dynamic cloud cover, during alternating windy and calm air conditions (which influence CO2 concentrations and humidity immediately around leaves in plant canopies), at natural CO2 vents, or in growth chambers with imperfect CO2 control. It was found that the frequency of constant-amplitude fluctuations in light and CO2 dramatically affected the time-averaged stomatal conductance in both Zea and Phaseolus. During oscillations in light, average stomatal conductance was driven either above or below that observed at steady state at the average light level, depending on the frequency of the oscillations. Under oscillating CO2, the departure of average stomatal conductance away from that observed at steady state at the average CO2 level was also frequency dependent in both species. Upon cessation of oscillations and return of light or CO2 to the stable median level, stomatal conductance also returned to a steady state, matching that before oscillations were initiated. This work shows that fluctuations in light and CO2, and equally important, their frequency, can be critical in determining time-averaged stomatal conductance under unstable environmental conditions.
Collapse
Affiliation(s)
- Z. G. Cardon
- Department of Biological Sciences, Stanford University, Stanford, California 94305 (Z.G.C.)
| | | | | |
Collapse
|
42
|
Quiñlones MA, Zeiger E. A Putative Role of the Xanthophyll, Zeaxanthin, in Blue Light Photoreception of Corn Coleoptiles. Science 1994; 264:558-61. [PMID: 17732741 DOI: 10.1126/science.264.5158.558] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Both flavins and carotenoids have some of the attributes expected for a photoreceptor mediating blue light-induced phototropism in plants. Besides the classical photoreceptor candidate, beta-carotene, coleoptiles contain many other carotenoids, including the main components of the xanthophyll cycle, violaxanthin and zeaxanthin. Here, dark-grown coleoptiles accumulated violaxanthin, but lacked zeaxanthin. Coleoptiles devoid of zeaxanthin did not bend in response to a blue light pulse. Coleoptile tips converted violaxanthin into zeaxanthin in the light. Manipulation of coleoptile zeaxanthin content by red light, red light plus darkness, or incubation with the inhibitor of zeaxanthin formation, dithiothreitol, resulted in a blue light-induced bending that was proportional to zeaxanthin content. These data indicate that zeaxanthin may be a blue light photoreceptor in corn coleoptiles.
Collapse
|
43
|
Gorton HL, Williams WE, Assmann SM. Circadian Rhythms in Stomatal Responsiveness to Red and Blue Light. PLANT PHYSIOLOGY 1993; 103:399-406. [PMID: 12231947 PMCID: PMC158996 DOI: 10.1104/pp.103.2.399] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Stomata of many plants have circadian rhythms in responsiveness to environmental cues as well as circadian rhythms in aperture. Stomatal responses to red light and blue light are mediated by photosynthetic photoreceptors; responses to blue light are additionally controlled by a specific blue-light photoreceptor. This paper describes circadian rhythmic aspects of stomatal responsiveness to red and blue light in Vicia faba. Plants were exposed to a repeated light:dark regime of 1.5:2.5 h for a total of 48 h, and because the plants could not entrain to this short light:dark cycle, circadian rhythms were able to "free run" as if in continuous light. The rhythm in the stomatal conductance established during the 1.5-h light periods was caused both by a rhythm in sensitivity to light and by a rhythm in the stomatal conductance established during the preceding 2.5-h dark periods. Both rhythms peaked during the middle of the subjective day. Although the stomatal response to blue light is greater than the response to red light at all times of day, there was no discernible difference in period, phase, or amplitude of the rhythm in sensitivity to the two light qualities. We observed no circadian rhythmicity in net carbon assimilation with the 1.5:2.5 h light regime for either red or blue light. In continuous white light, small rhythmic changes in photosynthetic assimilation were observed, but at relatively high light levels, and these appeared to be attributable largely to changes in internal CO2 availability governed by stomatal conductance.
Collapse
Affiliation(s)
- H. L. Gorton
- Department of Biology, St. Mary's College of Maryland, St. Mary's City, Maryland 20686 (H.L.G., W.E.W.)
| | | | | |
Collapse
|
44
|
Srivastava A, Zeiger E. Fast Fluorescence Quenching from Isolated Guard Cell Chloroplasts of Vicia faba Is Induced by Blue Light and Not by Red Light. PLANT PHYSIOLOGY 1992; 100:1562-6. [PMID: 16653158 PMCID: PMC1075820 DOI: 10.1104/pp.100.3.1562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Chlorophyll a fluorescence transients from isolated Vicia faba guard cell chloroplasts were used to probe the response of these organelles to light quality. Guard cell chloroplasts were isolated from protoplasts by passing them through a 10-mum nylon net. Intact chloroplasts were purified on a Percoll gradient. Chlorophyll a fluorescence transients induced by actinic red or blue light were measured with a fluorometer equipped with a measuring beam. Actinic red light induced a monophasic quenching, and transients induced by blue light showed biphasic kinetics having a slow and a fast component. The difference between the red and blue light-induced transients could be observed over a range of fluence rates tested (200-800 mumol m(-2) s(-1)). The threshold fluence rate of blue light for the induction of the fast component of quenching was 200 mumol m(-2) s(-1), but in the presence of saturating red light, fluence rates as low as 25 mumol m(-2) s(-1) induced the fast quenching. These results indicate that guard cell chloroplasts have a specific response to blue light.
Collapse
Affiliation(s)
- A Srivastava
- Department of Biology, University of California, Los Angeles, California 90024
| | | |
Collapse
|
45
|
Effects of light quantity and quality during development on the morphology and stomatal physiology of Commelina communis. Oecologia 1992; 92:188-195. [PMID: 28313050 DOI: 10.1007/bf00317363] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/1992] [Accepted: 05/15/1992] [Indexed: 10/26/2022]
Abstract
The effects on plant growth and stomatal physiology of alterations in light quantity and quality during development were investigated in the C3 monocot, Commelina communis. Reduction in light intensity resulted in decreased branching and stem elongation, with effects more severe under "neutral shade" (R:FR≥1.0) than under "leaf shade" (R:FR≤0.4) conditions. Shade treatments had no effect on the leaf area or stomatal density of newly expanded leaves. Gas exchange measurements on leaves that had expanded under the different treatments indicated that a reduction in light intensity decreased the magnitude and slowed the kinetics of stomatal responses to pulses of blue light, particularly in plants from the neutral shade treatment. These results indicate that the specific stomatal response to blue light is plastic, and is modulated by the light environment prevailing during leaf development.
Collapse
|
46
|
|
47
|
Shimazaki K, Kinoshita T, Nishimura M. Involvement of Calmodulin and Calmodulin-Dependent Myosin Light Chain Kinase in Blue Light-Dependent H Pumping by Guard Cell Protoplasts from Vicia faba L. PLANT PHYSIOLOGY 1992; 99:1416-21. [PMID: 16669053 PMCID: PMC1080641 DOI: 10.1104/pp.99.4.1416] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Signal transduction processes involved in blue light-dependent proton pumping were investigated using guard cell protoplasts from Vicia faba.N-[2-(Methylamino)ethyl]-5-isoquinolinesulfonamide, an inhibitor of cyclic AMP- and cyclic GMP-dependent protein kinases, had no effect. 1-(5-Isoquinolinesulfonyl)-2-methylpiperazine (H-7) and calphostin C, inhibitors of protein kinase C, produced slight inhibition of the blue light-dependent proton pumping. 1-[N, O-Bis(5-isoquinolinesulfonyl)-N-methyl-l-tyrosyl] -4-phenylpiperazine, a specific inhibitor of Ca(2+)/calmodulin (CaM)-dependent protein kinase II, did not inhibit the proton pumping, but 1-(5-iodonaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine and 1-(5-chloro-naphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine (ML-9), inhibitors of Ca(2+)/CaM-dependent myosin light chain kinase, strongly suppressed the proton pumping. A CaM antagonist, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), inhibited blue light-dependent proton pumping, whereas its less active structural analog, N-(6-aminohexyl)-1-naphthalenesulfonamide (W-5), had little effect on the response. Other CaM antagonists, trifluoperazine, compound 48/80, prenylamine, and 3-(2-benzothiazolyl)-4,5-dimethoxy-N-[3-(4-phenyl-piperidinyl)- propylbenzenesulfonamide inhibited the proton pumping. In accord with these results, light-induced stomatal opening in the epidermis of Commelina benghalensis ssp. was inhibited by ML-9 and W-7, but not by H-7 and W-5. Thus, it is concluded that CaM and Ca(2+)/CaM-dependent myosin light chain kinase are the components of the signal transduction process in blue light-dependent proton pumping in guard cells.
Collapse
Affiliation(s)
- K Shimazaki
- Biological Laboratory, College of General Education, Kyushu University, Ropponmatsu, Fukuoka, 810 Japan
| | | | | |
Collapse
|
48
|
Blatt MR. Ion channel gating in plants: physiological implications and integration for stomatal function. J Membr Biol 1991; 124:95-112. [PMID: 1662287 DOI: 10.1007/bf01870455] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- M R Blatt
- Department of Biochemistry and Biological Sciences, University of London, Wye College, England
| |
Collapse
|
49
|
Mawson BT, Zeiger E. Blue light-modulation of chlorophyll a fluorescence transients in guard cell chloroplasts. PLANT PHYSIOLOGY 1991; 96:753-60. [PMID: 16668251 PMCID: PMC1080840 DOI: 10.1104/pp.96.3.753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Chlorophyll a fluorescence transients from mesophyll and single guard cell pairs of Vicia faba were measured by microspectrofluorometry. In both chloroplast types, fluorescence induction (O to P) was similar under actinic blue and green light. In slow transients from mesophyll cell chloroplasts, blue and green light induced identical, typical rapid quenching from P to S, and the M peak. In contrast, the P to S transient from guard cell (GC) chloroplasts irradiated with blue light showed a much slower quenching rate, and the P to T transition showed no M peak. Actinic green light induced mesophyll-like transients in GC chloroplasts, including rapid quenching from P to S and the M peak. Detection of these transients in single pairs of GC and isolated protoplasts ruled out mesophyll contamination as a signal source. Green light induced a rapid quenching and the M peak in GC chloroplasts from several species. The effect of CO(2) concentration on the fluorescence transients was investigated in the presence of HCO(3) (-) at pH 6.8 and 10.0. In transients induced by green light in both chloroplast types, a pH increase concomitant with a reduction in CO(2) concentration caused an increase in the initial rate of quenching and the elimination of the M peak. Actinic blue light induced mesophyll-like transients from GC chloroplasts in the presence of 10 micromolar KCN, a concentration at which the blue light-induced stomatal opening is inhibited. Addition of 100 to 200 micromolar phosphate also caused large increases in fluorescence quenching rates and a M peak. These results indicate that blue light modulates photosynthetic activity in GC chloroplasts. This blue light effect is not observed in the absence of transduction events connected with the blue light response and in the presence of high phosphate concentrations.
Collapse
Affiliation(s)
- B T Mawson
- Department of Biological Sciences, Stanford University, Stanford, California 94305
| | | |
Collapse
|
50
|
Marrs KA, Kaufman LS. Rapid transcriptional regulation of the Cab and pEA207 gene families in peas by blue light in the absence of cytoplasmic protein synthesis. PLANTA 1991; 183:327-333. [PMID: 24193741 DOI: 10.1007/bf00197729] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/1990] [Accepted: 10/19/1990] [Indexed: 06/02/2023]
Abstract
We have analyzed the fluence-response and time-course characteristics, and the requirements for protein synthesis, for the blue-light (BL) regulated transcription of the nuclear-coded Cab, pEA207, and pEA25 gene families in pea (Pisum sativum L.). Fluence-response curves indicate two BL responses: a blue low-fluence (BLF) response with a threshold at or below 10(-1) μmol·m(-2) of BL and a blue high-fluence (BHF) response with a threshold between 10(1) and 10(3) μmol·m(-2) of BL. Excitation of the photomorphogenic system responsible for the BLF response results in increased Cab, and decreased pEA25, transcription. Excitation of the photomorphogenic system responsible for the BHF response results in decreased pEA207 transcription and induction of turnover for Cab RNA and pEA207 RNA. Altered rates of transcription for the Cab and pEA207 gene families are apparent within 15 min of BL treatment and remain in effect for at least 24 h. The effect of BL on pEA25 transcription is not apparent until 3-5 h after the BL treatment. Cycloheximide, an inhibitor of cytoplasmic protein synthesis, has no effect on the altered rates of pEA207 and Cab transcription. We conclude from these results that the BLF response for Cab transcription and the BHF response for pEA207 transcription probably occurs without the expression of intervening regulatory genes coded within the nucleus or the translation of pre-existing transcripts derived from nuclear-coded genes.
Collapse
Affiliation(s)
- K A Marrs
- Laboratory for Molecular Biology, Department of Biological Sciences, University of Illinois at Chicago, P.O. Box 4348, 60680, Chicago, IL, USA
| | | |
Collapse
|