1
|
Kutsukake M, Kuwabara N, Miyate Y, Kudo K, Goto S, Taira E, Tachikawa E. Relationship between Ca 2+ and cAMP as second messengers in ACTH-induced cortisol production in bovine adrenal fasciculata cells. Endocr J 2023; 70:1123-1130. [PMID: 37793884 DOI: 10.1507/endocrj.ej23-0253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/06/2023] Open
Abstract
In adrenal fasciculata cells stimulated by ACTH, Ca2+ and cAMP play indispensable roles as second messengers in cortisol production. However, whether their second messengers cooperatively or independently participate in steroid production remains unclear. We focused on the roles of Ca2+ and cAMP in cortisol production in bovine adrenal fasciculata cells stimulated by ACTH for a relatively short period (1 h). Incubation of the cells with 100 pM ACTH in Ca2+-containing (normal) medium for 1 h increased cortisol production without affecting cAMP content. In contrast, treatment of the cells with the peptide at a higher concentration (1 nM) significantly augmented both cortisol production and cAMP content. However, ACTH did not increase either of them in the Ca2+-free medium. ACTH rapidly increased the intracellular free Ca2+ concentration ([Ca2+]i) in the normal medium, but did not influence [Ca2+]i in the Ca2+-free medium, indicating that ACTH caused Ca2+ influx into the cells. ACTH-induced Ca2+ influx and cortisol production were suppressed by a voltage-sensitive L-type Ca2+ channel blocker but not by a T-type, N-type, or P-type Ca2+ channel blocker. In contrast, dibutyryl cAMP, a cell-permeable cAMP analog, greatly enhanced cortisol production in the normal or Ca2+-free medium and slowly caused Ca2+ influx into the cells. These results strongly suggest that Ca2+, as a second messenger, is more critical than cAMP for cortisol production. However, both second messengers jointly participate in the production in adrenal fasciculata cells stimulated by ACTH.
Collapse
Affiliation(s)
- Masahiko Kutsukake
- Unaduki Pharmacy, Toyama 938-0862, Japan
- Department of Endocrine & Neural Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Naoko Kuwabara
- Department of Endocrine & Neural Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
- Department of Bio-analytical Chemistry, Faculty of Pharmacy, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan
| | - Yoshikazu Miyate
- Department of Pharmacology, School of Medicine, Iwate Medical University, Iwate 028-3694, Japan
| | - Kenzo Kudo
- Division of Clinical Pharmaceutics and Pharmacy Practice, Department of Clinical Pharmacy, School of Pharmacy, Iwate Medical University, Iwate 028-3694, Japan
| | - Shoko Goto
- Takizawa Laboratory Administration Section, Radioactive Waste Management Division, Japan Radioisotope Association, Iwate 020-0603, Japan
| | - Eiichi Taira
- Department of Pharmacology, School of Medicine, Iwate Medical University, Iwate 028-3694, Japan
| | - Eiichi Tachikawa
- Department of Endocrine & Neural Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
- Division of Clinical Pharmaceutics and Pharmacy Practice, Department of Clinical Pharmacy, School of Pharmacy, Iwate Medical University, Iwate 028-3694, Japan
| |
Collapse
|
2
|
Smith LIF, Zhao Z, Walker J, Lightman S, Spiga F. Activation and expression of endogenous CREB-regulated transcription coactivators (CRTC) 1, 2 and 3 in the rat adrenal gland. J Neuroendocrinol 2021; 33:e12920. [PMID: 33314405 PMCID: PMC7900988 DOI: 10.1111/jne.12920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/14/2020] [Accepted: 11/12/2020] [Indexed: 12/30/2022]
Abstract
The activation and nuclear translocation of cAMP-response element binding protein (CREB)-regulated transcription coactivator (CRTC)2 occurs in the rat adrenal gland, in response to adrenocorticotrophic hormone (ACTH) and stressors, and has been implicated in the transcriptional regulation of steroidogenic acute regulatory protein (StAR). We have recently demonstrated the activation of CRTC isoforms, CRTC1 and CRTC3, in adrenocortical cell lines. In the present study, we aimed to determine the activation and expression of the three CRTC isoforms in vivo in relation to Star transcription, under basal conditions and following a robust endotoxic stress challenge. Rat adrenal glands and blood plasma were collected following i.v. administration of either an ultradian-sized pulse of ACTH or administration of lipopolysaccharide, as well as under unstressed conditions across the 24-hour period. Plasma ACTH and corticosterone (CORT) were measured and the adrenal glands were processed for measurement of protein by western immunoblotting, RNA by a quantitative reverse transcriptase-polymerase chain reaction and association of CRTC2 and CRTC3 with the Star promoter by chromatin immunoprecipitation. An increase in nuclear localisation of CRTC2 and CRTC3 followed increases in both ultradian and endotoxic stress-induced plasma ACTH, and this was associated with increased CREB phosphorylation and corresponding increases in Star transcription. Both CRTC2 and CRTC3 were shown to associate with the Star promoter, with the dynamics of CRTC3 binding corresponding to that of nuclear changes in protein levels. CRTC isoforms show little variation in ultradian expression or variation across 24 hours, although evidence of long-term down-regulation following endotoxic stress was found. We conclude that co-transcription factors CRTC2 and, more clearly, CRTC3 appear to act alongside phosphorylated CREB in the generation of ultradian pulses of Star transcription, essential for the maintenance of basal StAR expression. Similarly, our findings suggest CRTC2 and CRTC3 mediate Star transcriptional initiation following an endotoxic stressor; however, other transcription factors are likely to be responsible for the long-term up-regulation of adrenal Star transcription.
Collapse
Affiliation(s)
- Lorna I. F. Smith
- Bristol Medical School: Translational Health SciencesUniversity of BristolBristolUK
| | - Zidong Zhao
- Bristol Medical School: Translational Health SciencesUniversity of BristolBristolUK
| | - Jamie Walker
- Bristol Medical School: Translational Health SciencesUniversity of BristolBristolUK
- College of Engineering, Mathematics and Physical SciencesUniversity of ExeterExeterUK
- EPSRC Centre for Predictive Modelling in HealthcareUniversity of ExeterExeterUK
| | - Stafford Lightman
- Bristol Medical School: Translational Health SciencesUniversity of BristolBristolUK
| | - Francesca Spiga
- Bristol Medical School: Translational Health SciencesUniversity of BristolBristolUK
| |
Collapse
|
3
|
Abstract
The adrenal gland is a source of sex steroid precursors, and its activity is particularly relevant during fetal development and adrenarche. Following puberty, the synthesis of androgens by the adrenal gland has been considered of little physiologic importance. Dehydroepiandrosterone (DHEA) and its sulfate, DHEAS, are the major adrenal androgen precursors, but they are biologically inactive. The second most abundant unconjugated androgen produced by the human adrenals is 11β-hydroxyandrostenedione (11OHA4). 11-Ketotestosterone, a downstream metabolite of 11OHA4 (which is mostly produced in peripheral tissues), and its 5α-reduced product, 11-ketodihydrotestosterone, are bioactive androgens, with potencies equivalent to those of testosterone and dihydrotestosterone. These adrenal-derived androgens all share an oxygen atom on carbon 11, so we have collectively termed them 11-oxyandrogens. Over the past decade, these androgens have emerged as major components of several disorders of androgen excess, such as congenital adrenal hyperplasia, premature adrenarche and polycystic ovary syndrome, as well as in androgen-dependent tumours, such as castration-resistant prostate cancer. Moreover, in contrast to the more extensively studied, traditional androgens, circulating concentrations of 11-oxyandrogens do not demonstrate an age-dependent decline. This Review focuses on the rapidly expanding knowledge regarding the implications of 11-oxyandrogens in human physiology and disease.
Collapse
Affiliation(s)
- Adina F Turcu
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA.
| | - Juilee Rege
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Richard J Auchus
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - William E Rainey
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Rosenfield RL, Ehrmann DA. The Pathogenesis of Polycystic Ovary Syndrome (PCOS): The Hypothesis of PCOS as Functional Ovarian Hyperandrogenism Revisited. Endocr Rev 2016; 37:467-520. [PMID: 27459230 PMCID: PMC5045492 DOI: 10.1210/er.2015-1104] [Citation(s) in RCA: 734] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 07/20/2016] [Indexed: 02/06/2023]
Abstract
Polycystic ovary syndrome (PCOS) was hypothesized to result from functional ovarian hyperandrogenism (FOH) due to dysregulation of androgen secretion in 1989-1995. Subsequent studies have supported and amplified this hypothesis. When defined as otherwise unexplained hyperandrogenic oligoanovulation, two-thirds of PCOS cases have functionally typical FOH, characterized by 17-hydroxyprogesterone hyperresponsiveness to gonadotropin stimulation. Two-thirds of the remaining PCOS have FOH detectable by testosterone elevation after suppression of adrenal androgen production. About 3% of PCOS have a related isolated functional adrenal hyperandrogenism. The remaining PCOS cases are mild and lack evidence of steroid secretory abnormalities; most of these are obese, which we postulate to account for their atypical PCOS. Approximately half of normal women with polycystic ovarian morphology (PCOM) have subclinical FOH-related steroidogenic defects. Theca cells from polycystic ovaries of classic PCOS patients in long-term culture have an intrinsic steroidogenic dysregulation that can account for the steroidogenic abnormalities typical of FOH. These cells overexpress most steroidogenic enzymes, particularly cytochrome P450c17. Overexpression of a protein identified by genome-wide association screening, differentially expressed in normal and neoplastic development 1A.V2, in normal theca cells has reproduced this PCOS phenotype in vitro. A metabolic syndrome of obesity-related and/or intrinsic insulin resistance occurs in about half of PCOS patients, and the compensatory hyperinsulinism has tissue-selective effects, which include aggravation of hyperandrogenism. PCOS seems to arise as a complex trait that results from the interaction of diverse genetic and environmental factors. Heritable factors include PCOM, hyperandrogenemia, insulin resistance, and insulin secretory defects. Environmental factors include prenatal androgen exposure and poor fetal growth, whereas acquired obesity is a major postnatal factor. The variety of pathways involved and lack of a common thread attests to the multifactorial nature and heterogeneity of the syndrome. Further research into the fundamental basis of the disorder will be necessary to optimally correct androgen levels, ovulation, and metabolic homeostasis.
Collapse
Affiliation(s)
- Robert L Rosenfield
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago Pritzker School of Medicine, Chicago, Illinois 60637
| | - David A Ehrmann
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago Pritzker School of Medicine, Chicago, Illinois 60637
| |
Collapse
|
5
|
Sabunciyan S, Maher B, Bahn S, Dickerson F, Yolken RH. Association of DNA Methylation with Acute Mania and Inflammatory Markers. PLoS One 2015; 10:e0132001. [PMID: 26147665 PMCID: PMC4492496 DOI: 10.1371/journal.pone.0132001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/09/2015] [Indexed: 11/18/2022] Open
Abstract
In order to determine whether epigenetic changes specific to the manic mood state can be detected in peripheral blood samples we assayed DNA methylation levels genome-wide in serum samples obtained from 20 patients hospitalized for mania and 20 unaffected controls using the Illumina 450K methylation arrays. We identified a methylation locus in the CYP11A1 gene, which is regulated by corticotropin, that is hypo-methylated in individuals hospitalized for mania compared with unaffected controls. DNA methylation levels at this locus appear to be state related as levels in follow-up samples collected from mania patients six months after hospitalization were similar to those observed in controls. In addition, we found that methylation levels at the CYP11A1 locus were significantly correlated with three inflammatory markers in serum in acute mania cases but not in unaffected controls. We conclude that mania is associated with alterations in levels of DNA methylation and inflammatory markers. Since epigenetic markers are potentially malleable, a better understanding of the role of epigenetics may lead to new methods for the prevention and treatment of mood disorders.
Collapse
Affiliation(s)
- Sarven Sabunciyan
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, United States of America
- * E-mail: (SS); (RHY)
| | - Brion Maher
- Department of Mental Health, Johns Hopkins School of Public Health, Baltimore, MD, United States of America
| | - Sabine Bahn
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Faith Dickerson
- Sheppard Pratt Health System, Baltimore, MD, United States of America
| | - Robert H. Yolken
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, United States of America
- * E-mail: (SS); (RHY)
| |
Collapse
|
6
|
Enyeart JJ, Enyeart JA. Adrenal fasciculata cells express T-type and rapidly and slowly activating L-type Ca2+ channels that regulate cortisol secretion. Am J Physiol Cell Physiol 2015; 308:C899-918. [PMID: 25788571 DOI: 10.1152/ajpcell.00002.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/17/2015] [Indexed: 11/22/2022]
Abstract
In whole cell patch-clamp recordings, we characterized the L-type Ca(2+) currents in bovine adrenal zona fasciculata (AZF) cells and explored their role, along with the role of T-type channels, in ACTH- and angiotensin II (ANG II)-stimulated cortisol secretion. Two distinct dihydropyridine-sensitive L-type currents were identified, both of which were activated at relatively hyperpolarized potentials. One activated with rapid kinetics and, in conjunction with Northern blotting and PCR, was determined to be Cav1.3. The other, expressed in approximately one-half of AZF cells, activated with extremely slow voltage-dependent kinetics and combined properties not previously reported for an L-type Ca(2+) channel. The T-type Ca(2+) channel antagonist 3,5-dichloro-N-[1-(2,2-dimethyl-tetrahydro-pyran-4-ylmethyl)-4-fluoro-piperidin-4-ylmethyl]-benzamide (TTA-P2) inhibited Cav3.2 current in these cells, as well as ACTH- and ANG II-stimulated cortisol secretion, at concentrations that did not affect L-type currents. In contrast, nifedipine specifically inhibited L-type currents and cortisol secretion, but less effectively than TTA-P2. Diphenylbutylpiperidine Ca(2+) antagonists, including pimozide, penfluridol, and fluspirilene, and the dihydropyridine niguldipine blocked Cav3.2 and L-type currents and inhibited ACTH-stimulated cortisol secretion with similar potency. This study shows that bovine AZF cells express three Ca(2+) channels, the voltage-dependent gating and kinetics of which could orchestrate complex mechanisms linking peptide hormone receptors to cortisol secretion through action potentials or sustained depolarization. The function of the novel, slowly activating L-type channel is of particular interest in this respect. Regardless, the well-correlated selective inhibition of T- and L-type currents and ACTH- and ANG II-stimulated cortisol secretion by TTA-P2 and nifedipine establish the critical importance of these channels in AZF cell physiology.
Collapse
Affiliation(s)
- John J Enyeart
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Judith A Enyeart
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
7
|
Turcu A, Smith JM, Auchus R, Rainey WE. Adrenal androgens and androgen precursors-definition, synthesis, regulation and physiologic actions. Compr Physiol 2014; 4:1369-81. [PMID: 25428847 PMCID: PMC4437668 DOI: 10.1002/cphy.c140006] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The human adrenal produces more 19 carbon (C19) steroids, by mass, than either glucocorticoids or mineralocorticoids. However, the mechanisms regulating adrenal C19 steroid biosynthesis continue to represent one of the most intriguing mysteries of endocrine physiology. This review will discuss the C19 steroids synthesized by the human adrenal and the features within the adrenal that allow production of these steroids. Finally, we consider the effects of these steroids in normal physiology and disorders of adrenal C19 steroid excess.
Collapse
Affiliation(s)
- Adina Turcu
- Department of Internal Medicine, Division of Metabolism Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan; Department of Pediatrics, Division of Pediatric Endocrinology, University of Texas Southwestern Medical Center, Texas; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | | | | | | |
Collapse
|
8
|
Yang X, Feng A, Liu F, Li Q, Zhang J, Yang C, An Y. CYP17A1 T-34C polymorphism is not associated with endometrial cancer risk. Tumour Biol 2013; 34:2583-7. [PMID: 23609033 DOI: 10.1007/s13277-013-0805-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 04/10/2013] [Indexed: 01/31/2023] Open
Abstract
The association between CYP17A1 T-34C polymorphism and endometrial cancer risk has been inconsistent and underpowered. To clarify the effect of CYP17A1 T-34C polymorphism on the risk of endometrial cancer, a meta-analysis of all available studies relating CYP17A1 T-34C polymorphism to the risk of endometrial cancer was conducted. The authors searched PubMed, EMBASE, Scopus, and VisionCite databases updated on March 2013. Data were extracted by two independent authors and pooled odds ratio (OR) with 95 % confidence interval (CI) was calculated. Finally, seven studies with 1,570 endometrial cancer cases and 2,474 controls were included in the meta-analysis. There was no statistically significant association between CYP17A1 T-34C polymorphism and endometrial cancer under heterogeneous codominant model (OR = 0.91, 95 %CI = 0.68-1.21). Although CYP17A1 T-34C polymorphism was marginally associated with endometrial cancer risk under homogeneous codominant model (OR = 0.69, 95 %CI = 0.49-0.99), the significant association was not stable after sensitivity analysis. We concluded that CYP17A1 T-34C polymorphism might not be one risk factor in the carcinogenesis of endometrial cancer. Further large and well-designed studies are needed to confirm this association.
Collapse
Affiliation(s)
- Xueying Yang
- Department of Gynaecology and Obstetrics, The Fourth People's Hospital of Jinan, Jinan, 250000, China
| | | | | | | | | | | | | |
Collapse
|
9
|
Acute effects of hexabromocyclododecane on Leydig cell cyclic nucleotide signaling and steroidogenesis in vitro. Toxicol Lett 2013; 218:81-90. [PMID: 23347875 DOI: 10.1016/j.toxlet.2013.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 01/08/2013] [Accepted: 01/12/2013] [Indexed: 11/22/2022]
Abstract
Hexabromocyclododecane (HBCDD), an additive brominated flame retardant routinely added to various consumer products, was reported to have toxic effects upon biota, including endocrine disruption. In this study, the potential toxicity of HBCDD was tested in peripubertal rat Leydig cells in vitro during 6h exposure. HBCDD inhibited human chorionic gonadotropin- and forskolin-supported cAMP accumulation and steroidogenesis. It also inhibited basal cAMP production, but elevated basal steroidogenesis. The expression of several cAMP-dependent genes, including steroidogenic acute regulatory protein, cholesterol side chain cleavage enzyme, and 3β-hydroxysteroid dehydrogenase, was also inhibited by HBCDD treatment. Nevertheless, this was not accompanied by a decrease in steroidogenic acute regulatory protein expression, as documented by western blot analysis, and activity of steroidogenic enzymes, as documented by unaffected steroidogenesis in the presence of permeable 22(R)-hydroxycholesterol. However, HBCDD caused significant decrease in mitochondrial membrane potential in untreated and human chorionic gonadotropin-treated cells. This indicates that HBCDD acute toxicity in Leydig cells reflects changes in mitochondrial membrane potential-dependent cAMP production and basal and cAMP-regulated cholesterol transport. This in turn facilitates basal but inhibits cAMP-dependent steroidogenesis. Acute effects of HBCDD treatment on transcription are also indicative of its sustained effects on Leydig cell function.
Collapse
|
10
|
Enyeart JA, Liu H, Enyeart JJ. 8-Phenylthio-adenines stimulate the expression of steroid hydroxylases, Cav3.2 Ca²⁺ channels, and cortisol synthesis by a cAMP-independent mechanism. Am J Physiol Endocrinol Metab 2011; 301:E941-54. [PMID: 21810929 PMCID: PMC3213996 DOI: 10.1152/ajpendo.00282.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The regulation of cortisol synthesis and the expression of genes coding for steroidogenic proteins by 8-substituted cAMP and 8-substituted adenine derivatives were studied in bovine adrenal zona fasciculata (AZF) cells. At concentrations of 10-50 μM, 8-(4-chlorophenylthio)-cAMP (8CPT-cAMP), but not the poorly hydrolyzable Sp-8CPT-cAMP, stimulated large increases in cortisol synthesis and CYP17 mRNA expression. Of the three Epac (exchange protein activated by cAMP)-specific cAMP analogs, 8CPT-2'-OMe-cAMP, but not 8HPT-2'-OMe-cAMP or 8MeOPT-2'-OMe-cAMP, induced mRNAs for CYP17 and CYP11a1 steroid hydroxylases and stimulated cortisol synthesis. 8-Substituted adenine derivatives (10-200 μM), including 8PT-adenine, 8MeOPT-adenine, and 8CPT-adenine, stimulated similar large, concentration-dependent, and reversible increases in cortisol synthesis and steroid hydroxylase gene expression, whereas 8Br-adenine was ineffective. The phenylthio-adenine derivatives produced additive effects on cortisol synthesis when applied to AZF cells in combination with 8Br-cAMP. In contrast, no additivity was observed for these three compounds when used in combination with ACTH. 8PT-adenine did not activate PKA or inhibit DNA synthesis by AZF cells. 8PT-adenine-stimulated cortisol secretion and CYP17 steroid hydroxylase mRNA expression were potently inhibited by diphenyl-butylpiperidine T-type Ca(2+) antagonists. In AZF cells, 8PT-adenine and 8MeOPT-adenine induced the expression of both CACNA1H mRNA and associated Ca(v)3.2 Ca(2+) current. These results indicate that 8-chloro (but not 8-hydroxy- or 8-methoxy-)-phenylthio-cAMP analogs are converted to an active metabolite, 8CPT-adenine, that induces the expression of genes coding for steroidogenic proteins in bovine AZF cells. Other PT-adenine analogs also potently stimulate cortisol synthesis through the same unidentified signaling pathway that requires the expression of functional Ca(v)3.2 Ca(2+) channels. These phenylthio-adenine compounds and ACTH may stimulate cortisol synthesis through the same cAMP-independent mechanism.
Collapse
Affiliation(s)
- Judith A Enyeart
- Department of Neuroscience, The Ohio State University College of Medicine and Public Health, Columbus, Ohio 43210-1269, USA
| | | | | |
Collapse
|
11
|
Abstract
Hypertension affects about 10 - 25% of the population and is an important risk factor for cardiovascular and renal disease. The renin-angiotensin system is frequently implicated in the pathophysiology of hypertension, be it primary or secondary. The prevalence of primary aldosteronism increases with the severity of hypertension, from 2% in patients with grade 1 hypertension to 20% among resistant hypertensives. Mineralcorticoid hypertension includes a spectrum of disorders ranging from renin-producing pathologies (renin-secreting tumors, malignant hypertension, coarctation of aorta), aldosterone-producing pathologies (primary aldosteronism - Conns syndrome, familial hyperaldosteronism 1, 2, and 3), non-aldosterone mineralocorticoid producing pathologies (apparent mineralocorticoid excess syndrome, Liddle syndrome, deoxycorticosterone-secreting tumors, ectopic adrenocorticotropic hormones (ACTH) syndrome, congenitalvadrenal hyperplasia), and drugs with mineraocorticoid activity (locorice, carbenoxole therapy) to glucocorticoid receptor resistance syndromes. Clinical presentation includes hypertension with varying severity, hypokalemia, and alkalosis. Ratio of plasma aldosterone concentraion to plasma renin activity remains the best screening tool. Bilateral adrenal venous sampling is the best diagnostic test coupled with a CT scan. Treatment is either surgical (adrenelectomy) for unilateral adrenal disease versus medical therapy for idiopathic, ambiguous, or bilateral disease. Medical therapy focuses on blood pressure control and correction of hypokalemia using a combination of anti-hypertensives (calcium channel blockers, angiotensin converting enzyme inhibitors, or angiotensin receptor blockers) and potassium-raising therapies (mineralcorticoid receptor antagonist or potassium sparing diuretics). Direct aldosterone synthetase antagonists represent a promising future therapy.
Collapse
Affiliation(s)
- Vishal Gupta
- Department of Endocrinology, Jaslok Hospital and Research Center, 15 – Deshmukh Marg, Mumbai, India
| |
Collapse
|
12
|
Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev 2011; 32:81-151. [PMID: 21051590 PMCID: PMC3365799 DOI: 10.1210/er.2010-0013] [Citation(s) in RCA: 1460] [Impact Index Per Article: 112.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 08/20/2010] [Indexed: 02/08/2023]
Abstract
Steroidogenesis entails processes by which cholesterol is converted to biologically active steroid hormones. Whereas most endocrine texts discuss adrenal, ovarian, testicular, placental, and other steroidogenic processes in a gland-specific fashion, steroidogenesis is better understood as a single process that is repeated in each gland with cell-type-specific variations on a single theme. Thus, understanding steroidogenesis is rooted in an understanding of the biochemistry of the various steroidogenic enzymes and cofactors and the genes that encode them. The first and rate-limiting step in steroidogenesis is the conversion of cholesterol to pregnenolone by a single enzyme, P450scc (CYP11A1), but this enzymatically complex step is subject to multiple regulatory mechanisms, yielding finely tuned quantitative regulation. Qualitative regulation determining the type of steroid to be produced is mediated by many enzymes and cofactors. Steroidogenic enzymes fall into two groups: cytochrome P450 enzymes and hydroxysteroid dehydrogenases. A cytochrome P450 may be either type 1 (in mitochondria) or type 2 (in endoplasmic reticulum), and a hydroxysteroid dehydrogenase may belong to either the aldo-keto reductase or short-chain dehydrogenase/reductase families. The activities of these enzymes are modulated by posttranslational modifications and by cofactors, especially electron-donating redox partners. The elucidation of the precise roles of these various enzymes and cofactors has been greatly facilitated by identifying the genetic bases of rare disorders of steroidogenesis. Some enzymes not principally involved in steroidogenesis may also catalyze extraglandular steroidogenesis, modulating the phenotype expected to result from some mutations. Understanding steroidogenesis is of fundamental importance to understanding disorders of sexual differentiation, reproduction, fertility, hypertension, obesity, and physiological homeostasis.
Collapse
Affiliation(s)
- Walter L Miller
- Distinguished Professor of Pediatrics, University of California San Francisco, San Francisco, California 94143-0978, USA.
| | | |
Collapse
|
13
|
Chen Y, Saini S, Zaman MS, Hirata H, Shahryari V, Deng G, Dahiya R. Cytochrome P450 17 (CYP17) is involved in endometrial cancinogenesis through apoptosis and invasion pathways. Mol Carcinog 2011; 50:16-23. [PMID: 20886547 DOI: 10.1002/mc.20680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cytochrome P450 17 (CYP17) encodes cytochrome P450c17α, an enzyme with 17α-hydroxylase and 17, 20-lyase activities involved in estradiol biosynthesis. Here we examine the role of CYP17 gene in endometrial carcinogenesis. Immunohistochemistry staining of endometrial carcinoma and corresponding uninvolved tissues showed that CYP17 is upregulated in endometrial cancers (15 of 24, 62.5%). To understand the functional significance of this upregulation, we silenced CYP17 gene by introduction of siRNA into endometrial cancer cell line KLE followed by functional studies. Further, to understand the molecular basis of the role of CYP17, we profiled the expression of key pathway-specific genes and identified several components of the apoptosis and invasion pathways that are potentially regulated by CYP17. Silencing of CYP17 caused decreased cell proliferation and induced apoptosis. Significantly, CYP17 depletion leads to downregulation of anti-apoptotic genes B cell lymphoma 2 (Bcl-2) and telomerase reverse transcriptase (TERT), indicating induced apoptosis. Also, attenuation of CYP17 decreased the cellular invasion ability and regulated expression of several invasion pathway components such as melanoma cell adhesion molecule (MCAM), matrix metallopeptidase 2 and 9 (MMP-2 and MMP-9), and tissue inhibitor of metalloproteinase 3 (TIMP3). In conclusion, this is the first report documenting that upregulation of CYP17 in endometrial cancers play a crucial role in endometrial carcinogenesis by targeting multiple components of apoptosis and invasion pathways. Further studies are required to understand the detailed mechanisms underlying CYP17-mediated regulation of these components.
Collapse
Affiliation(s)
- Yi Chen
- Department of Urology, Veterans Affairs Medical Center, University of California-San Francisco, San Francisco, California 94121, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Ullrich M, Bundschu K, Benz PM, Abesser M, Freudinger R, Fischer T, Ullrich J, Renné T, Walter U, Schuh K. Identification of SPRED2 (sprouty-related protein with EVH1 domain 2) as a negative regulator of the hypothalamic-pituitary-adrenal axis. J Biol Chem 2011; 286:9477-88. [PMID: 21199868 DOI: 10.1074/jbc.m110.171306] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sprouty-related proteins with EVH1 (enabled/vasodilator-stimulated phosphoprotein homology 1) domain (SPREDs) are inhibitors of MAPK signaling. To elucidate SPRED2 in vivo function, we characterized body homeostasis in SPRED2(-/-) mice. They showed a doubled daily water uptake, induced by elevated serum osmolality, originating from increased blood salt load. Accordingly, serum aldosterone was doubled, accompanied by augmented adrenal aldosterone synthase (AS) expression. Surprisingly, serum vasopressin (AVP) was unaltered, and, as evidenced by halved angiotensin II (Ang II) levels, the renin angiotensin system (RAS) was down-regulated. Adrenocorticotropic hormone (ACTH) was significantly elevated in SPRED2(-/-) mice, together with its secretagogue corticotropin-releasing hormone (CRH) and its downstream target corticosterone. ERK phosphorylation in brains was augmented, and hypothalamic CRH mRNA levels were elevated, both contributing to the increased CRH release. Our data were supported by CRH promoter reporter assays in hypothalamic mHypoE-44 cells, revealing a SPRED-dependent inhibition of Ets (ERK/E-twenty-six)-dependent transcription. Furthermore, SPRED suppressed CRH production in these cells. In conclusion, our study suggests that SPRED2 deficiency leads to an increased MAPK signaling, which results in an augmented CRH promoter activity. The subsequent CRH overproduction causes an up-regulation of downstream hypothalamic-pituitary-adrenal (HPA) hormone secretion. This constitutes a possible trigger for the observed compulsive grooming in SPRED2(-/-) mice and may, together with hyperplasia of aldosterone-producing cells, contribute to the hyperaldosteronism and homeostatic imbalances.
Collapse
Affiliation(s)
- Melanie Ullrich
- Institute of Physiology I, University of Wuerzburg, Roentgenring 9, 97070 Wuerzburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hall PF. Actions of Corticotropin on the Adrenal Cortex: Biochemistry and Cell Biology. Compr Physiol 2011. [DOI: 10.1002/cphy.cp070404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Liu H, Enyeart JA, Enyeart JJ. ACTH induces Cav3.2 current and mRNA by cAMP-dependent and cAMP-independent mechanisms. J Biol Chem 2010; 285:20040-50. [PMID: 20424171 DOI: 10.1074/jbc.m110.104190] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Bovine adrenal zona fasciculata (AZF) cells express Ca(v)3.2 T-type Ca(2+) channels that function pivotally in adrenocorticotropic hormone (ACTH)-stimulated cortisol secretion. The regulation of Ca(v)3.2 expression in AZF cells by ACTH, cAMP analogs, and their metabolites was studied using Northern blot and patch clamp recording. Exposing AZF cells to ACTH for 3-6 days markedly enhanced the expression of Ca(v)3.2 current. The increase in Ca(v)3.2 current was preceded by an increase in corresponding CACNA1H mRNA. O-Nitrophenyl,sulfenyl-adrenocorticotropin, which produces a minimal increase in cAMP, also enhanced Ca(v)3.2 current. cAMP analogs, including 8-bromoadenosine cAMP (600 mum) and 6-benzoyladenosine cAMP (300 mum) induced CACNA1H mRNA, but not Ca(v)3.2 current. In contrast, 8-(4-chlorophenylthio) (8CPT)-cAMP (10-50 mum) enhanced CACNA1H mRNA and Ca(v)3.2 current, whereas nonhydrolyzable Sp-8CPT-cAMP failed to increase either Ca(v)3.2 current or mRNA. Metabolites of 8CPT-cAMP, including 8CPT-adenosine and 8CPT-adenine, increased Ca(v)3.2 current and mRNA with a potency and effectiveness similar to the parent compound. The Epac activator 8CPT-2'-O-methyl-cAMP and its metabolites 8CPT-2'-OMe-5'-AMP and 8CPT-2'-O-methyl-adenosine increased CACNA1H mRNA and Ca(v)3.2 current; Sp-8CPT-2'-O-methyl-cAMP increased neither Ca(v)3.2 current nor mRNA. These results reveal an interesting dichotomy between ACTH and cAMP with regard to regulation of CACNA1H mRNA and Ca(2+) current. Specifically, ACTH induces expression of CACNA1H mRNA and Ca(v)3.2 current in AZF cells by mechanisms that depend at most only partly on cAMP. In contrast, cAMP enhances expression of CACNA1H mRNA but not the corresponding Ca(2+) current. Surprisingly, chlorophenylthio-cAMP analogs stimulate the expression of Ca(v)3.2 current indirectly through metabolites. ACTH and the metabolites may induce Ca(v)3.2 expression by the same, unidentified mechanism.
Collapse
Affiliation(s)
- Haiyan Liu
- Department of Neuroscience, The Ohio State University, College of Medicine and Public Health, Columbus, Ohio 43210-1239, USA
| | | | | |
Collapse
|
17
|
Enyeart JA, Liu H, Enyeart JJ. cAMP analogs and their metabolites enhance TREK-1 mRNA and K+ current expression in adrenocortical cells. Mol Pharmacol 2009; 77:469-82. [PMID: 20028740 DOI: 10.1124/mol.109.061861] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
bTREK-1 K(+) channels set the resting membrane potential of bovine adrenal zona fasciculata (AZF) cells and function pivotally in the physiology of cortisol secretion. Adrenocorticotropic hormone controls the function and expression of bTREK-1 channels through signaling mechanisms that may involve cAMP and downstream effectors including protein kinase A (PKA) and exchange protein 2 directly activated by cAMP (Epac2). Using patch-clamp and Northern blot analysis, we explored the regulation of bTREK-1 mRNA and K(+) current expression by cAMP analogs and several of their putative metabolites in bovine AZF cells. At concentrations sufficient to activate both PKA and Epac2, 8-bromoadenosine-cAMP enhanced the expression of both bTREK-1 mRNA and K(+) current. N(6)-Benzoyladenosine-cAMP, which activates PKA but not Epac, also enhanced the expression of bTREK-1 mRNA and K(+) current measured at times from 24 to 96 h. An Epac-selective cAMP analog, 8-(4-chlorophenylthio)-2'-O-methyl-cAMP (8CPT-2'-OMe-cAMP), potently stimulated bTREK-1 mRNA and K(+) current expression, whereas the nonhydrolyzable Epac activator 8-(4-chlorophenylthio)-2'-O-methyl-cAMP, Sp-isomer was ineffective. Metabolites of 8CPT-2'-OMe-cAMP, including 8-(4-chlorophenylthio)-2'-O-methyladenosine-5'-O-monophosphate and 8CPT-2'-OMe-adenosine, promoted the expression of bTREK-1 transcripts and ion current with a temporal pattern, potency, and effectiveness resembling that of the parent compound. Likewise, at low concentrations, 8-(4-chlorophenylthio)-cAMP (8CPT-cAMP; 30 microM) but not its nonhydrolyzable analog 8-(4-chlorophenylthio)-cAMP, Sp-isomer, enhanced the expression of bTREK-1 mRNA and current. 8CPT-cAMP metabolites, including 8CPT-adenosine and 8CPT-adenine, also increased bTREK-1 expression. These results indicate that cAMP increases the expression of bTREK-1 mRNA and K(+) current through a cAMP-dependent but Epac2-independent mechanism. They further demonstrate that one or more metabolites of 8-(4-chlorophenylthio)-cAMP analogs potently stimulate bTREK-1 expression by activation of a novel cAMP-independent mechanism. These findings raise significant questions regarding the specificity of 8-(4-chlorophenylthio)-cAMP analogs as cAMP mimetics.
Collapse
Affiliation(s)
- Judith A Enyeart
- Department of Neuroscience, The Ohio State University, College of Medicine and Public Health, 5196 Graves Hall, 333 West 10th Avenue, Columbus, OH 43210-1239, USA.
| | | | | |
Collapse
|
18
|
Abstract
The main cause of Addison's disease is an autoimmune organ-specific destruction of the cells in the adrenal cortex by an autoreactive process of activated immune cells directed against the steroid-synthesising enzyme 21-hydroxylase. The diagnosis of Addison's disease is suspected in a patient presenting with symptoms of fatigue, bodyweight loss, anorexia, salt craving, and signs of low blood pressure and hyperpigmentation of the skin. Laboratory findings include electrolyte disturbances, and typically an elevated serum potassium level and sometimes a low serum sodium level is found together with low plasma levels of basal and corticotropin-stimulated hydrocortisone (cortisol). An aetiological diagnosis can rapidly be made using commercially available assays demonstrating the presence of autoantibodies directed against 21-hydroxylase. Determination of 21-hydroxylase autoantibodies also permits early diagnosis before a complete adrenocortical destruction has occurred. Thus, a window of opportunity for an early immunomodulatory intervention therapy may exist. Patients presenting with an acute adrenocortical crisis should be treated with 100mg of hydrocortisone and saline intravenously without awaiting laboratory results. Maintenance therapy includes substitution of glucocorticoid and mineralocorticoid steroids, using divided and lower total dosages of glucocorticoids than previously used.
Collapse
Affiliation(s)
- O Winqvist
- Department of Internal Medicine, University Hospital, Uppsala University, Uppsala, Sweden.
| | | | | |
Collapse
|
19
|
Enyeart JA, Enyeart JJ. Metabolites of an Epac-selective cAMP analog induce cortisol synthesis by adrenocortical cells through a cAMP-independent pathway. PLoS One 2009; 4:e6088. [PMID: 19564912 PMCID: PMC2698983 DOI: 10.1371/journal.pone.0006088] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 05/28/2009] [Indexed: 11/18/2022] Open
Abstract
Adrenal zona fasciculata (AZF) cells express a cAMP-activated guanine nucleotide exchange protein (Epac2) that may function in ACTH-stimulated cortisol synthesis. Experiments were done to determine whether cAMP analogs that selectively activate Epacs could induce cortisol synthesis and the expression of genes coding for steroidogenic proteins in bovine AZF cells. Treatment of AZF cells with the Epac-selective cAMP analog (ESCA) 8CPT-2'-OMe-cAMP induced large (>100 fold), concentration-dependent, delayed increases in cortisol synthesis and the expression of mRNAs coding for the steroid hydroxylases CYP11a1, CYP17, CYP21, and the steroid acute regulatory protein (StAR). However, a non-hydrolyzable analog of this ESCA, Sp-8CPT-2'-OMe-cAMP, failed to stimulate cortisol production even at concentrations that activated Rap1, a downstream effector of Epac2. Accordingly, putative metabolites of 8CPT-2'-OMe-cAMP, including 8CPT-2'-OMe-5'AMP, 8CPT-2'-OMe-adenosine, and 8CPT-adenine all induced cortisol synthesis and steroid hydroxylase mRNA expression with a temporal pattern, potency, and effectiveness similar to the parent compound. At concentrations that markedly stimulated cortisol production, none of these metabolites significantly activated cAMP-dependent protein kinase (PKA). These results show that one or more metabolites of the ESCA 8CPT-2'-OMe-cAMP induce cortico-steroidogenesis by activating a panel of genes that code for steroidogenic proteins. The remarkable increases in cortisol synthesis observed in this study appear to be mediated by a novel cAMP-, Epac- and PKA-independent signaling pathway.
Collapse
Affiliation(s)
- Judith A. Enyeart
- Department of Neuroscience, The Ohio State University, College of Medicine and Public Health, Columbus, Ohio, United States of America
| | - John J. Enyeart
- Department of Neuroscience, The Ohio State University, College of Medicine and Public Health, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
20
|
Karpac J, Czyzewska K, Kern A, Brush RS, Anderson RE, Hochgeschwender U. Failure of adrenal corticosterone production in POMC-deficient mice results from lack of integrated effects of POMC peptides on multiple factors. Am J Physiol Endocrinol Metab 2008; 295:E446-55. [PMID: 18559987 DOI: 10.1152/ajpendo.00762.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Production of corticosteroids from the adrenal gland is a multistep process in which corticosterone is enzymatically processed from its precursor cholesterol. The main hormone regulating the production of corticosterone is the proopiomelanocortin (POMC)-derived adrenocorticotropic hormone (ACTH). Adrenals of POMC-deficient (POMC(-/-)) mice do not produce corticosterone either at basal levels or in response to acute stimulation with ACTH. However, pharmacological amounts of ACTH delivered continuously elicit corticosterone production over time. To define the relative effects of ACTH on individual factors involved in corticosterone production, parameters of adrenal cholesterol metabolism and steroidogenesis were examined in POMC(-/-) mice compared with wild-type and ACTH-treated mutant mice. POMC(-/-) adrenals lack cholesterol esters (CE); adrenal CE is restored with ACTH treatment. However, discontinuation of ACTH treatment stops corticosterone production despite the presence of adrenal CE. Failure of corticosterone production by POMC(-/-) adrenals occurs despite the constitutive presence of transcripts of genes required for cholesterol metabolism and steroidogenesis. Levels of key proteins involved in selective cholesterol uptake and steroidogenesis were attenuated; ACTH treatment increased these protein levels, most significantly those of the receptor responsible for selective uptake of CE, scavenger receptor class B, type I (SR-BI). Our studies reveal that failure of corticosterone production of POMC(-/-) adrenal glands and its pharmacological reconstitution by ACTH are not mediated by any one individual protein, but rather as an integrated effect on multiple factors from import of the substrate cholesterol to its conversion to corticosterone.
Collapse
Affiliation(s)
- Jason Karpac
- Department of Neurobiology, Duke University Medical Center, 421 Research Drive, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
21
|
Enyeart JA, Liu H, Enyeart JJ. Curcumin inhibits bTREK-1 K+ channels and stimulates cortisol secretion from adrenocortical cells. Biochem Biophys Res Commun 2008; 370:623-8. [PMID: 18406348 DOI: 10.1016/j.bbrc.2008.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 04/02/2008] [Indexed: 11/18/2022]
Abstract
Bovine adrenal zona fasciculata (AZF) cells express bTREK-1 K(+) channels that set the resting membrane potential. Inhibition of these channels by adrenocorticotropic hormone (ACTH) is coupled to membrane depolarization and cortisol secretion. Curcumin, a phytochemical with medicinal properties extracted from the spice turmeric, was found to modulate both bTREK-1 K(+) currents and cortisol secretion from AZF cells. In whole-cell patch clamp experiments, curcumin inhibited bTREK-1 with an IC(50) of 0.93muM by a mechanism that was voltage-independent. bTREK-1 inhibition by curcumin occurred through interaction with an external binding site and was independent of ATP hydrolysis. Curcumin produced a concentration-dependent increase in cortisol secretion that persisted for up to 24h. At a maximally effective concentration of 50muM, curcumin increased secretion as much as 10-fold. These results demonstrate that curcumin potently inhibits bTREK-1 K(+) channels and stimulates cortisol secretion from bovine AZF cells. The inhibition of bTREK-1 by curcumin may be linked to cortisol secretion through membrane depolarization. Since TREK-1 is widely expressed in a variety of cells, it is likely that some of the biological actions of curcumin, including its therapeutic effects, may be mediated through inhibition of these K(+) channels.
Collapse
Affiliation(s)
- Judith A Enyeart
- Department of Neuroscience, The Ohio State University, College of Medicine and Public Health, 5196 Graves Hall, 333 W.10th Avenue, Columbus, OH 43210-1239, USA.
| | | | | |
Collapse
|
22
|
Sewer MB, Li D, Dammer EB, Jagarlapudi S, Lucki N. Multiple Signaling Pathways Coordinate CYP17 Gene Expression in the Human Adrenal Cortex. Acta Chim Slov 2008; 55:53-57. [PMID: 20098627 PMCID: PMC2809372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023] Open
Abstract
Optimal levels of steroid hormone biosynthesis are assured by the integration of several regulatory mechanisms, including substrate delivery, enzymatic activity, and gene transcription. In the human adrenal cortex, optimal glucocorticoid secretion is achieved by the actions of adrenocorticotropin (ACTH), which exerts transcriptional pressure on all genes involved in steroidogenesis. One of these genes is CYP17, which encodes P450 17alpha-hydroxylase-17,20 lyase, a key enzyme in the production of cortisol and adrenal androgens. Levels of CYP17 transcription are regulated by multiple regulatory mechanisms that act to respond to various signaling cues. These cues are coordinated in a developmental, species-, and tissue-specific manner, with an additional time/circadian-dependent level of regulation. This brief review will highlight some of the signal transduction cascades and transcription factors that have been shown to modulate CYP17 gene expression in the adrenal cortex.
Collapse
|
23
|
Barzon L, Maffei P, Sonino N, Pilon C, Baldazzi L, Balsamo A, Del Maschio O, Masi G, Trevisan M, Pacenti M, Fallo F. The role of 21-hydroxylase in the pathogenesis of adrenal masses: review of the literature and focus on our own experience. J Endocrinol Invest 2007; 30:615-23. [PMID: 17848847 DOI: 10.1007/bf03346358] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
An exaggerated response of 17- hydroxyprogesterone (17-OHP) to exogenous ACTH stimulation has been found in 30 to 70% of patients with incidentally discovered adrenal tumors, supporting the concept that congenital 21- hydroxylase deficiency may be a predisposing factor for adrenocortical tumorigenesis. Decreased expression of 21-hydroxylase gene has been observed in sporadic non-functioning adrenocortical adenomas and adrenocortical carcinomas, in agreement with the reduced steroidogenic activity found in these types of tumors. Screening studies for the presence of mutations in CYP21A2 gene, encoding 21-hydroxylase, in patients with sporadic adrenocortical tumors yielded discordant results. Overall, a higher frequency of germline 21-hydroxylase mutation carriers has been found among patients with adrenal tumors, including incidentalomas, than in the general population. However, the presence of mutations did not correlate with endocrine test results and tumor mass features, suggesting that 21-hydroxylase deficiency does not represent a relevant mechanism in adrenal tumorigenesis. Mechanisms leading to reduced 21-hydroxylase expression and activity are still unknown.
Collapse
Affiliation(s)
- L Barzon
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padua, Padua, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Goto M. Pituitary-adrenal axis during human development. Clin Pediatr Endocrinol 2007; 16:37-44. [PMID: 24790343 PMCID: PMC4004870 DOI: 10.1297/cpe.16.37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Accepted: 03/05/2007] [Indexed: 11/12/2022] Open
Abstract
Investigation of early human fetal tissue has helped us elucidate the onset of the
activation of the pituitary-adrenal axis during human development. Adrenal steroidogenesis
and ACTH secretion from the pituitary starts at 7–8 weeks postconception, providing the
rationale for prenatal treatment using dexamethasone offered to fetuses at risk of
21-hydroxylase deficiency (21-OHD). Fluctuation of 3beta-hydroxysteroid dehydrogenase
(HSD3B2) in human fetal adrenal has several significant meanings. Its activity during
early gestation is essential for inhibiting androgen production in the adrenal and
safeguarding normal female sexual development. The enzyme may be reduced during
mid-gestation in order to maintain pregnancy and to prevent preterm labor. Its
reappearance in late gestation is also crucial for fetal maturation and parturition at
term. Late-onset circulation failure observed in extremely low birth weight newborns may
be associated with the paucity of HSD3B2 in their adrenals. In fetuses with 21-OHD, a
proportion of increased 17alpha-hydroxyprogesterone may be converted to
dihydrotestosterone through the backdoor pathway and contribute to the virilization of
female fetuses.
Collapse
Affiliation(s)
- Masahiro Goto
- Department of Pediatrics, Tokyo Metropolitan Hachioji Children's Hospital, Tokyo, Japan ; Human Genetics Division, University of Southampton, United Kingdom
| |
Collapse
|
25
|
Miller WL. StAR Search—What We Know about How the Steroidogenic Acute Regulatory Protein Mediates Mitochondrial Cholesterol Import. Mol Endocrinol 2007; 21:589-601. [PMID: 16973755 DOI: 10.1210/me.2006-0303] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cholesterol is the starting point for biosynthesis of steroids, oxysterols and bile acids, and is also an essential component of cellular membranes. The mechanisms directing the intracellular trafficking of this insoluble molecule have received attention through the discovery of the steroidogenic acute regulatory protein (StAR) and related proteins containing StAR-related lipid transfer domains. Much of our understanding of the physiology of StAR derives from studies of congenital lipoid adrenal hyperplasia, which is caused by StAR mutations. Multiple lines of evidence show that StAR moves cholesterol from the outer to inner mitochondrial membrane, but acts exclusively on the outer membrane. The precise mechanism by which StAR's action on the outer mitochondrial membrane stimulates the flow of cholesterol to the inner membrane remains unclear. When StAR interacts with protonated phospholipid head groups on the outer mitochondrial membrane, it undergoes a conformational change (molten globule transition) that opens and closes StAR's cholesterol-binding pocket; this conformational change is required for cholesterol binding, which is required for StAR activity. The action of StAR probably requires interaction with the peripheral benzodiazepine receptor.
Collapse
Affiliation(s)
- Walter L Miller
- Department of Pediatrics, Box 0978, University of California, San Francisco, San Francisco, California 94143-0978, USA.
| |
Collapse
|
26
|
Schimmer BP, Cordova M, Cheng H, Tsao A, Goryachev AB, Schimmer AD, Morris Q. Global profiles of gene expression induced by adrenocorticotropin in Y1 mouse adrenal cells. Endocrinology 2006; 147:2357-67. [PMID: 16484322 DOI: 10.1210/en.2005-1526] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
ACTH regulates the steroidogenic capacity, size, and structural integrity of the adrenal cortex through a series of actions involving changes in gene expression; however, only a limited number of ACTH-regulated genes have been identified, and these only partly account for the global effects of ACTH on the adrenal cortex. In this study, a National Institute on Aging 15K mouse cDNA microarray was used to identify genome-wide changes in gene expression after treatment of Y1 mouse adrenocortical cells with ACTH. ACTH affected the levels of 1275 annotated transcripts, of which 46% were up-regulated. The up-regulated transcripts were enriched for functions associated with steroid biosynthesis and metabolism; the down- regulated transcripts were enriched for functions associated with cell proliferation, nuclear transport and RNA processing, including alternative splicing. A total of 133 different transcripts, i.e. only 10% of the ACTH-affected transcripts, were represented in the categories above; most of these had not been described as ACTH-regulated previously. The contributions of protein kinase A and protein kinase C to these genome-wide effects of ACTH were evaluated in microarray experiments after treatment of Y1 cells and derivative protein kinase A-defective mutants with pharmacological probes of each pathway. Protein kinase A-dependent signaling accounted for 56% of the ACTH effect; protein kinase C-dependent signaling accounted for an additional 6%. These results indicate that ACTH affects the expression profile of Y1 adrenal cells principally through cAMP- and protein kinase A- dependent signaling. The large number of transcripts affected by ACTH anticipates a broader range of actions than previously appreciated.
Collapse
Affiliation(s)
- Bernard P Schimmer
- Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
27
|
Romero DG, Plonczynski M, Vergara GR, Gomez-Sanchez EP, Gomez-Sanchez CE. Angiotensin II early regulated genes in H295R human adrenocortical cells. Physiol Genomics 2004; 19:106-16. [PMID: 15375197 DOI: 10.1152/physiolgenomics.00097.2004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Evidence for the dysregulation of aldosterone synthesis in cardiovascular pathophysiology has renewed interest in the control of its production. Cellular mechanisms by which angiotensin II (ANG II) stimulates aldosterone synthesis in the adrenal zona glomerulosa are incompletely understood. To elucidate the mechanism of intracellular signaling by ANG II stimulation in the adrenal, we have studied immediate-early regulated genes in human adrenal H295R cells using cDNA microarrays. H295R cells were stimulated with ANG II for 3 h. Gene expression was analyzed by microarray technology and validated by real-time RT-PCR. Eleven genes were found to be upregulated by ANG II. These encode the proteins for ferredoxin, Nor1, Nurr1, c6orf37, CAT-1, A20, MBLL, M-Ras, RhoB, GADD45α, and a novel protein designated FLJ45273 . Maximum expression levels for all genes occurred 3–6 h after ANG II stimulation. This increase was dose dependent and preceded maximal aldosterone production. Other aldosterone secretagogues, K+and endothelin-1 (ET-1), also induced the expression of these genes with variable efficiency depending on the gene and with lower potency than ANG II. ACTH had negligible effect on gene expression except for the CAT-1 and Nurr1 genes. These ANG II-stimulated genes are involved in several cellular functions and are good candidate effectors and regulators of ANG II-mediated effects in adrenal zona glomerulosa.
Collapse
Affiliation(s)
- Damian G Romero
- Endocrine Section and Research Service, G. V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, Mississippi 39216, USA
| | | | | | | | | |
Collapse
|
28
|
|
29
|
Enyeart JA, Danthi S, Enyeart JJ. Corticotropin induces the expression of TREK-1 mRNA and K+ current in adrenocortical cells. Mol Pharmacol 2003; 64:132-42. [PMID: 12815169 DOI: 10.1124/mol.64.1.132] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bovine adrenal zona fasciculata (AZF) cells express a two-pore/four-transmembrane segment bTREK-1 K+ channel that sets the resting potential and couples hormonal signals to depolarization-dependent Ca2+ entry and cortisol secretion. It was discovered that corticotropin (1-2000 pM) enhances the expression of bTREK-1 mRNA and membrane current in cultured AZF cells. Forskolin and 8-pcpt-cAMP mimicked corticotropin induction of bTREK-1 mRNA, but angiotensin II (AII) was ineffective. The induction of bTREK-1 mRNA by corticotropin was partially blocked by the A-kinase antagonist H-89. 8-(4-Chloro-phenylthio)-2-O-methyladenosine-3'-5'-cyclic monophosphate, a cAMP analog that activates cAMP-regulated guanine nucleotide exchange factors (Epac), failed to increase bTREK-1 mRNA. Corticotropin-stimulated increases in bTREK-1 mRNA were eliminated by inhibitors of protein synthesis or gene transcription. bTREK-1 current disappeared after 24 h in serum-supplemented medium, but in the presence of corticotropin, bTREK-1 expression was maintained for at least 48 h. The enhancement of bTREK-1 mRNA and ionic current contrasts with the corticotropin-induced down-regulation of the Kv1.4 voltage-gated K+ current and associated mRNA in AZF cells. These results demonstrate that corticotropin rapidly and potently induces the expression of bTREK-1 in AZF cells at the pretranslational level by a cAMP-dependent mechanism that is partially dependent on A-kinase but independent of Epac and Ca2+. They further indicate that prolonged stimulation of AZF cells by corticotropin, as occurs during long-term stress or disease, may produce pronounced changes in the expression of genes encoding ion channels, thereby reshaping the electrical properties of these cells to enhance or limit cortisol secretion.
Collapse
Affiliation(s)
- Judith A Enyeart
- Department of Neuroscience, The Ohio State University, College of Medicine, Columbus, OH, USA.
| | | | | |
Collapse
|
30
|
Sewer MB, Waterman MR. ACTH modulation of transcription factors responsible for steroid hydroxylase gene expression in the adrenal cortex. Microsc Res Tech 2003; 61:300-7. [PMID: 12768545 DOI: 10.1002/jemt.10339] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Steroid hormone biosynthesis in the adrenal cortex and gonads involves the coordinated transcription of the genes encoding the steroid hydroxylases, 3beta-hydroxysteroid dehydrogenase (3betaHSD), the steroidogenic acute regulatory protein (StAR), and adrenodoxin (Adx). Transcriptional regulation of steroidogenic genes is multifactorial, entailing developmental, tissue-specific, constitutive, and cAMP-dependent mechanisms. Optimal steroidogenic capacity is achieved by the actions of ACTH which exerts transcriptional pressure on all steroidogenic genes. The actions of ACTH in the adrenal cortex have been studied in great detail and is mediated by cAMP and protein kinase A (PKA) via two temporally distinct pathways. The acute response leads to mobilization of cholesterol, the initial substrate for all steroidogenic pathways, from cellular stores to the inner mitochondrial membrane where cholesterol sidechain cleavage cytochrome P450 (P45011A1) resides. The slower, chronic response of ACTH in the adrenal cortex directs transcription of the genes encoding the steroidogenic enzymes. Although steroidogenic gene transcription in response to ACTH is cAMP-dependent, the consensus cAMP response pathway (CRE/CREB) is not involved. Instead, each steroidogenic gene utilizes unique cAMP-responsive sequences (CRS) found in the promoters of each gene, which bind a diverse array of transcription factors. Moreover, once specific transcription factors are bound to the promoters of the steroidogenic genes, increased gene expression requires posttranslational modification (phosphorylation/dephosphorylation) of the transcription factors and binding of coactivator proteins. This review provides a general view (with emphasis on the human) of the important factors involved in regulating steroidogenic gene expression and ultimately steroid hormone biosynthesis.
Collapse
Affiliation(s)
- Marion B Sewer
- Department of Biochemistry and Center in Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA.
| | | |
Collapse
|
31
|
Sewer MB, Waterman MR. CAMP-dependent protein kinase enhances CYP17 transcription via MKP-1 activation in H295R human adrenocortical cells. J Biol Chem 2003; 278:8106-11. [PMID: 12506119 DOI: 10.1074/jbc.m210264200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Steroid hormone biosynthesis in the adrenal cortex is controlled by adrenocorticotropin (ACTH), which increases intracellular cAMP, resulting in the activation of cAMP-dependent protein kinase(PKA) and subsequent increase in steroidogenic gene transcription. We have found that a dual-specificity phosphatase is essential for conveying ACTH/cAMP-stimulated transcription of several steroidogenic genes in the human adrenal cortex. In the present study, the role of mitogen-activated protein kinase phosphatase-1 (MKP-1), a nuclear dual-specificity phosphatase, in the transcriptional activation of human CYP17 (hCYP17) in H295R human adrenocortical cells is established. Stimulation of H295R cells with dibutyryl-cAMP (Bt(2)cAMP) induces MKP-1 mRNA and protein expression within 30 min of exposure. In transient-transfection studies, transcriptional activity of an hCYP17 promoter-reporter construct was increased by Bt(2)cAMP and by overexpression of PKA or MKP-1. Furthermore, PKA phosphorylated an MKP-1-glutathione S-transferase fusion protein in in vitro assays and Bt(2)cAMP increased (32)P associated with MKP-1 that was immunoprecipitated from H295R cells. Finally, silencing MKP-1 expression using antisense oligonucleotides attenuated cAMP-stimulated hCYP17 expression, whereas silencing of ERK1/2 increased hCYP17 expression. These findings demonstrate integral roles for MKP-1 and ERK1/2 via regulation of the phosphorylation state of steroidogenic factor-1 (SF-1) in mediating ACTH/cAMP-dependent transcription of hCYP17, thereby maintaining the balance between transcriptional activation and repression.
Collapse
Affiliation(s)
- Marion B Sewer
- School of Biology, Georgia Institute of Technology, Atlanta 30332-0230, USA.
| | | |
Collapse
|
32
|
Chinn AM, Ciais D, Bailly S, Chambaz E, LaMarre J, Feige JJ. Identification of two novel ACTH-responsive genes encoding manganese-dependent superoxide dismutase (SOD2) and the zinc finger protein TIS11b [tetradecanoyl phorbol acetate (TPA)-inducible sequence 11b]. Mol Endocrinol 2002; 16:1417-27. [PMID: 12040026 DOI: 10.1210/mend.16.6.0844] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
ACTH is the major trophic factor regulating and maintaining adrenocortical function, affecting such diverse processes as steroidogenesis, cell proliferation, cell migration, and cell survival. We used differential display RT-PCR to identify genes that are rapidly induced by ACTH in the bovine adrenal cortex. Of 42 PCR products differentially amplified from primary cultures of bovine adrenocortical cells treated with 10 nM ACTH, six identified mRNAs that were confirmed by Northern blot analysis to be induced by ACTH. Four of these amplicons encoded noninformative repetitive sequences. Of the other two sequenced amplicons, one encoded a partial sequence for mitochondrial manganese-dependent superoxide dismutase (SOD2), an enzyme that is likely to protect adrenocortical cells from the cytotoxic effects of radical oxygen species generated during steroid biosynthesis. The second was identified as TIS11b (phorbol-12-myristate-13-acetate-inducible sequence 11b)/ERF-1/cMG, a member of the CCCH double-zinc finger protein family. SOD2 induction by ACTH was independent of extracellular steroid concentration or oxidative stress. SOD2 and TIS11b mRNA expressions were rapidly induced by ACTH, reaching a maximal level after 8 h and 3 h of treatment, respectively. These ACTH effects were mimicked by forskolin but appeared independent of cortisol secretion. Upon ACTH treatment, induction of TIS11b expression closely followed the previously characterized peak of vascular endothelial growth factor (VEGF) expression. Transfection of a TIS11b expression plasmid into 3T3 fibroblasts induced a decrease in the expression of a reporter gene placed upstream of the VEGF 3'-untranslated region, indicating that TIS11b may be an important regulator of VEGF expression through interaction with its 3'-untranslated region.
Collapse
Affiliation(s)
- Anna M Chinn
- INSERM EMI 01-05, Department of Molecular and Structural Biology, Commissariat à l'Energie Atomique, Grenoble, France F-38054
| | | | | | | | | | | |
Collapse
|
33
|
Gilbert LI, Rybczynski R, Warren JT. Control and biochemical nature of the ecdysteroidogenic pathway. ANNUAL REVIEW OF ENTOMOLOGY 2002; 47:883-916. [PMID: 11729094 DOI: 10.1146/annurev.ento.47.091201.145302] [Citation(s) in RCA: 336] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Molting is elicited by a critical titer of ecdysteroids that includes the principal molting hormone, 20-hydroxyecdysone (20E), and ecdysone (E), which is the precursor of 20E but also has morphogenetic roles of its own. The prothoracic glands are the predominate source of ecdysteroids, and the rate of synthesis of these polyhydroxylated sterols is critical for molting and metamorphosis. This review concerns three aspects of ecdysteroidogenesis: (a) how the brain neuropeptide prothoracicotropic hormone (PTTH) initiates a transductory cascade in cells of the prothoracic gland, which results in an increased rate of ecdysteroid biosynthesis (upregulation); (b) how the concentrations of 20E in the hemolymph feed back on the prothoracic gland to decrease rates of ecdysteroidogenesis (downregulation); and (c) how the prothoracic gland cells convert cholesterol to the precursor of E and then 20E, a series of reactions only now being understood because of the use of a combination of classical biochemistry and molecular genetics.
Collapse
Affiliation(s)
- Lawrence I Gilbert
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA.
| | | | | |
Collapse
|
34
|
Sewer MB, Waterman MR. Insights into the transcriptional regulation of steroidogenic enzymes and StAR. Rev Endocr Metab Disord 2001; 2:269-74. [PMID: 11705132 DOI: 10.1023/a:1011516532335] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- M B Sewer
- Vanderbilt University School of Medicine, Department of Biochemistry, 607 Light Hall, Nashville, Tennessee 37232-0146, USA
| | | |
Collapse
|
35
|
Abstract
The CYP11A1 gene encodes cytochrome P450scc, the enzyme catalyzing the first step of steroid biosynthesis in the adrenal and gonad. We generated transgenic mice containing 2.3 kb of the 5'-flanking region of CYP11A1 driving LacZ reporter gene expression, in order to study hormonal control of CYP11A1 gene expression in different tissues. This 2.3 kb fragment contains information for hormonal control; by ACTH and hCG which increased reporter gene expression, in the adrenal and testis of transgenic mice respectively, while dexamethasone administration decreased reporter activity in the adrenal. The 5'-fragment of CYP11A1 has appreciable promoter activities in mouse adrenal Y1 cells but not in non-steroidogenic COS-1 cells, showing cell-type specificity. Transcription factor SF-1 activates the 2.3 kb promoter, which can be potentiated by cotransfection with c-Jun in steroidogenic JEG3 cells but not in COS-1 cells. We conclude that the 2.3 kb region of CYP11A1 contains elements controlling hormonal-dependent, cell-type-specific expression. In addition, c-Jun and SF-1 could act synergistically to activate CYP11A1 gene expression.
Collapse
Affiliation(s)
- Y Huang
- Institute of Molecular Biology, 48, Academia Sinica, Nankang, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
36
|
Abstract
The mechanism by which cortisol is produced in adrenal Cushing's syndrome, when ACTH is suppressed, was previously unknown and was referred to as being "autonomous." More recently, several investigators have shown that some cortisol and other steroid-producing adrenal tumors or hyperplasias are under the control of ectopic (or aberrant, illicit, inappropriate) membrane hormone receptors. These include ectopic receptors for gastric inhibitory polypeptide (GIP), beta-adrenergic agonists, or LH/hCG; a similar outcome can result from altered activity of eutopic receptors, such as those for vasopressin (V1-AVPR), serotonin (5-HT4), or possibly leptin. The presence of aberrant receptors places adrenal cells under stimulation by a trophic factor not negatively regulated by glucocorticoids, leading to increased steroidogenesis and possibly to the proliferative phenotype. The molecular mechanisms responsible for the abnormal expression and function of membrane hormone receptors are still largely unknown. Identification of the presence of these illicit receptors can eventually lead to new pharmacological therapies as alternatives to adrenalectomy, now demonstrated by the long-term control of ectopic P-AR- and LH/hCGR-dependent Cushing's syndrome by propanolol and leuprolide acetate. Further studies will potentially identify a larger diversity of hormone receptors capable of coupling to G proteins, adenylyl cyclase, and steroidogenesis in functional adrenal tumors and probably in other endocrine and nonendocrine tumors.
Collapse
Affiliation(s)
- A Lacroix
- Department of Medicine, Research Center, H tel du Centre Hospitalier de l'Université de Montréal, Quebec, Canada.
| | | | | | | |
Collapse
|
37
|
Hu MC, Chiang EF, Tong SK, Lai W, Hsu NC, Wang LC, Chung BC. Regulation of steroidogenesis in transgenic mice and zebrafish. Mol Cell Endocrinol 2001; 171:9-14. [PMID: 11165005 DOI: 10.1016/s0303-7207(00)00385-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Steroid hormones are important physiological regulators in the body. Steroid hormones are mainly synthesized in the adrenal and gonads. Their synthesis is stimulated by pituitary hormones through cAMP as an intracellular mediator. The first and rate-limiting step for steroid biosynthesis is catalyzed by CYP11A1. Important regulatory elements for the control of the CYP11A1 gene expression have been characterized both in vitro and in vivo. The SF-1-binding sites are cis-acting elements controlling the basal and cAMP-stimulated gene expression. Our transgenic mouse studies showed that the 2.3kb promoter contains information controlling developmentally regulated gene expression. Finally, we present our results on the cloning of steroidogenic genes in zebrafish, a new model organism for genetic studies.
Collapse
Affiliation(s)
- M C Hu
- Institute of Molecular Biology, 48 Academia Sinica, Nankang, 115, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
38
|
Ganguly A. Aldosterone. Compr Physiol 2000. [DOI: 10.1002/cphy.cp070305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Abstract
More than 90% of cases of congenital adrenal hyperplasia (CAH, the inherited inability to synthesize cortisol) are caused by 21-hydroxylase deficiency. Females with severe, classic 21-hydroxylase deficiency are exposed to excess androgens prenatally and are born with virilized external genitalia. Most patients cannot synthesize sufficient aldosterone to maintain sodium balance and may develop potentially fatal "salt wasting" crises if not treated. The disease is caused by mutations in the CYP21 gene encoding the steroid 21-hydroxylase enzyme. More than 90% of these mutations result from intergenic recombinations between CYP21 and the closely linked CYP21P pseudogene. Approximately 20% are gene deletions due to unequal crossing over during meiosis, whereas the remainder are gene conversions--transfers to CYP21 of deleterious mutations normally present in CYP21P. The degree to which each mutation compromises enzymatic activity is strongly correlated with the clinical severity of the disease in patients carrying it. Prenatal diagnosis by direct mutation detection permits prenatal treatment of affected females to minimize genital virilization. Neonatal screening by hormonal methods identifies affected children before salt wasting crises develop, reducing mortality from this condition. Glucocorticoid and mineralocorticoid replacement are the mainstays of treatment, but more rational dosing and additional therapies are being developed.
Collapse
Affiliation(s)
- P C White
- Division of Pediatric Endocrinology, University of Texas Southwestern Medical Center, Dallas 75390-9063, USA.
| | | |
Collapse
|
40
|
Yeh JR, Hsu LC, Chung BC. Sp1-like proteins function in the transcription of human ferredoxin genes. J Biomed Sci 2000; 7:144-51. [PMID: 10754389 DOI: 10.1007/bf02256621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We characterized a regulatory element located in the -76 to -62 region of the human ferredoxin gene. This region bound to Sp1-like proteins with low affinity, as shown using electrophoretic mobility shift, competition, antibody binding, and Southwestern experiments. The similarity of the regulatory element to Sp1 extends beyond its DNA-binding domain, as cloned Sp1 functioned equally well when fused to a peptide that bound to an irrelevant site. The function of these Sp1-binding sites is mediated through the cAMP-dependent protein kinase (PKA) signaling pathway, because reporter genes downstream of the Sp1-binding sites were not activated in a PKA-deficient cell line. Transfection of the catalytic subunit of PKA restored activated transcription. Similar Sp1-binding sites identified in the CYP11A1 and CYP21 genes also controlled cAMP-dependent transcription of the reporter gene. Our finding of the function of Sp1-like proteins in steroidogenic gene transcription adds one more role Sp1 plays in controlling physiological events.
Collapse
Affiliation(s)
- J R Yeh
- Institute of Molecular Biology, Academia Sinica, Nankang, Taiwan, Republic of China
| | | | | |
Collapse
|
41
|
Watzka M, Bidlingmaier F, Schramm J, Klingmüller D, Stoffel-Wagner B. Sex- and age-specific differences in human brain CYP11A1 mRNA expression. J Neuroendocrinol 1999; 11:901-5. [PMID: 10583724 DOI: 10.1046/j.1365-2826.1999.00407.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
While the presence of CYP11A1 (P450SCC, cholesterol side-chain cleavage enzyme) has been well established in the brain of rodents, limited information is available on CYP11A1 expression in human brain. In both species, little is known regarding postnatal changes or sex specific differences in cerebral CYP11A1 expression. In the present study, we used a sensitive competitive reverse transcriptase polymerase chain reaction (RT-PCR) assay to quantify the amount of CYP11A1 mRNA in a large number of human brain tissue specimens obtained at neurosurgery. CYP11A1 mRNA is expressed approximately 200 times lower in the temporal lobe, frontal lobe and hippocampus than in adrenal tissue, known for high CYP11A1 mRNA expression. During childhood CYP11A1 mRNA concentrations in the temporal lobe increase markedly and reach adult levels at puberty. CYP11A1 mRNA is significantly higher in the temporal and frontal lobe cortex of women than in that of men. Our data demonstrate for the first time an age and sex dependent expression of CYP11A1 mRNA in the human brain.
Collapse
Affiliation(s)
- M Watzka
- Institut für Klinische Biochemie, Universität Bonn, Bonn, Germany.
| | | | | | | | | |
Collapse
|
42
|
Liu Z, Simpson ER. Molecular mechanism for cooperation between Sp1 and steroidogenic factor-1 (SF-1) to regulate bovine CYP11A gene expression. Mol Cell Endocrinol 1999; 153:183-96. [PMID: 10459866 DOI: 10.1016/s0303-7207(99)00036-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bovine cholesterol side-chain cleavage cytochrome P450 (P450scc; product of the CYP11A gene) gene expression is regulated by gonadotropins via cAMP in the ovary, and by ACTH via cAMP in adrenal cortical cells. Previously, we characterized response elements located at -57/-32 and at -111/-101 bp in the 5'-flanking region of the bovine CYP11A gene required for cAMP-stimulated transcription in both mouse Y-1 adrenal tumor cells and bovine ovarian cells in primary culture, which bind SF-1 (or Ad4-BP) and Sp1, respectively. The role of these transcription factors in CYP11A transcription was further confirmed by deletion and mutation analyses. In addition, results obtained employing a double mutation of the Sp1- and SF-1-binding sites and a mammalian two-hybrid system indicate that Sp1 and SF-1 function cooperatively in the transactivation of the bovine CYP11A promoter in both bovine luteal cells and Y-1 cells. Here we report that SF-1 and Sp1 are able to associate with one another in vitro and in vivo. The NH2-terminal region of SF-1, especially the DNA-binding domain, is the binding site for Sp1. In addition, as CBP is a common coactivator required for the transcriptional activity of numerous transcription factors including nuclear receptors, we investigated whether CBP functions as a cofactor for the regulation of bovine CYP11A promoter activity. We show here that CBP enhanced the PKA-induced CYP11A promoter activity, while a double mutation of both Sp1 and SF-1 sites within the CYP11A promoter region abolished CBP-induced activity. Furthermore, CBP stimulated Sp1-dependent transactivation, and a CBP/Sp1 complex in vivo was demonstrated by a co-immunoprecipitation assay. Also, CBP potentiated the transcriptional activity of GAL4-SF-1 in the presence of PKA. Thus, the cooperation between SF-1 and Sp1, required for the regulation of bovine CYP11A gene expression, is mediated by a direct protein-protein interaction and/or the common coactivator CBP.
Collapse
Affiliation(s)
- Z Liu
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, and the Department of Obstetrics/Gynecology, The University of Texas Southwestern Medical Center, Dallas, USA
| | | |
Collapse
|
43
|
Abstract
Androgens are secreted by both the ovaries and adrenal glands in response to their respective trophic hormones LH and ACTH. Androgens in women are not specifically under negative feedback control by these pituitary hormones because they are by-products of estradiol and cortisol secretion. Rather, androgen secretion seems to be regulated mostly by intraglandular mechanisms. Functional ovarian hyperandrogenism is found in about 70% of patients with PCOS. It is characterized by excessive secretion of 17-hydroxyprogesterone in response to GnRH agonist or hCG stimulation. Failure of dexamethasone to suppress plasma free testosterone normally in the presence of normal adrenocortical suppression is also typical. Functional adrenal hyperandrogenism is found in about half of patients with PCOS. It is most often characterized by moderately increased secretion of the 17-ketosteroid DHEA in response to ACTH. The most likely cause of the excessive androgen secretion by both glands seems to be abnormal regulation (dysregulation) of the 17-hydroxylase and 17,20-lyase activities of P-450c17, the rate-limiting step in androgen biosynthesis. There are also subtle generalized disturbances of steroid metabolism, including tendencies toward excessive estrogen and cortisol secretion. The cause of dysregulation of steroidogenesis is unknown. The hyperinsulinemia that is compensatory for resistance to the glucose-metabolic effect of insulin seems to have a role in many cases. In most cases, intrinsic intraovarian or intra-adrenal autocrine or paracrine regulatory mechanisms are most likely malfunctioning.
Collapse
Affiliation(s)
- R L Rosenfield
- Department of Pediatrics, Pritzker School of Medicine, University of Chicago, Illinois
| |
Collapse
|
44
|
Kagawa N, Bischof LJ, Cheng PY, Anwar A, Waterman MR. Biochemical diversity of peptide-hormone-dependent regulation of steroidogenic P450s. Drug Metab Rev 1999; 31:333-42. [PMID: 10335438 DOI: 10.1081/dmr-100101921] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- N Kagawa
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | | | | | |
Collapse
|
45
|
Martin G, Pilon A, Albert C, Vallé M, Hum DW, Fruchart JC, Najib J, Clavey V, Staels B. Comparison of expression and regulation of the high-density lipoprotein receptor SR-BI and the low-density lipoprotein receptor in human adrenocortical carcinoma NCI-H295 cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 261:481-91. [PMID: 10215860 DOI: 10.1046/j.1432-1327.1999.00296.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In rodents, cholesterol for adrenal steroidogenesis is derived mainly from high-density lipoproteins (HDL) via the HDL receptor, scavenger receptor-BI (SR-BI). In humans cholesterol for steroidogenesis is considered to be derived from the low-density lipoprotein (LDL) receptor pathway, and the contribution of SR-BI to that is unknown. In the present study SR-BI expression and regulation by steroidogenic stimuli was analysed in human adrenocortical cells and compared with LDL receptor expression. In addition, the functional contribution of both receptors for cholesteryl ester delivery to human adrenocortical cells was compared. Northern blot and reverse transcription-PCR amplification and sequence analysis demonstrated the presence of SR-BI mRNA in foetal and adult human adrenal cortex. Furthermore, SR-BI mRNA was expressed to similar levels in human primary adrenocortical and adrenocortical carcinoma NCI-H295 cells, indicating its presence in the steroid-producing cells. Treatment of NCI-H295 cells with 8Br-cAMP, a stimulator of glucocorticoid synthesis via the protein kinase A second messenger signal transduction pathway, resulted in an increase of both SR-BI and LDL receptor mRNA levels in a time- and dose-dependent manner. The induction of SR-BI and LDL receptor by cAMP was independent of ongoing protein synthesis and occurred at the transcriptional level. Ligand blot experiments indicated that a protein of similar size to SR-BI is the major HDL-binding protein in NCI-H295 cells. Western blot analysis demonstrated that cAMP treatment increased the levels of LDL receptor and, to a lesser extent, SR-BI protein in NCI-H295 cells. Binding and uptake of cholesterol was quantitatively smaller from HDL than from LDL, both in basal as well as in cAMP-stimulated cells. Scatchard analysis under basal conditions indicated that NCI-H295 cells express twice as many specific binding sites for LDL than for HDL. Dissociation constant values (Kd; in nm) were approximately five times higher for HDL than for LDL, indicating a lower affinity of HDL compared with LDL. The combined effects of these two parameters and the low cholesteryl ester content of HDL subfraction 3 (HDL3) contributes to a lower cholesteryl ester uptake from HDL than from LDL by the NCI-H295 cells. In conclusion, both the SR-BI and LDL receptor genes are expressed in the human adrenal cortex and coordinately regulated by activators of glucocorticoid synthesis. In contrast to rodents, in human adrenocortical cells the HDL pathway of cholesterol delivery appears to be of lesser importance than the LDL pathway. Nevertheless, the SR-BI pathway may become of major importance in conditions of functional defects in the LDL receptor pathway.
Collapse
MESH Headings
- 8-Bromo Cyclic Adenosine Monophosphate/pharmacology
- Adrenal Cortex/metabolism
- Adrenocortical Carcinoma
- Binding Sites
- CD36 Antigens/genetics
- Cholesterol/pharmacology
- Cholesterol Esters/pharmacology
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Cycloheximide/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/genetics
- Humans
- Kinetics
- Lipoproteins, HDL/metabolism
- Lipoproteins, LDL/metabolism
- Membrane Proteins
- Protein Binding/genetics
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Receptors, Immunologic
- Receptors, LDL/genetics
- Receptors, Lipoprotein
- Receptors, Scavenger
- Scavenger Receptors, Class B
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- G Martin
- U.325 INSERM, Département d'Athérosclérose, Institut Pasteur de Lille, Faculté de Pharmacie, Université Lille II, France
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Nagamani M, Urban RJ. Increased expression of messenger ribonucleic acid encoding cytochrome P450 cholesterol side-chain cleavage and P450 17alpha-hydroxylase enzymes in ovarian hyperthecosis. Fertil Steril 1999; 71:328-33. [PMID: 9988407 DOI: 10.1016/s0015-0282(98)00464-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To investigate whether the increased ovarian androgen synthesis in hyperthecosis is due to increased expression of the steroidogenic enzymes essential for androgen synthesis. DESIGN Controlled study to investigate concentration of steroidogenic enzymes in the ovarian stroma of women with hyperthecosis of the ovaries. SETTING Academic research environment. PATIENT(S) Three women with ovarian hyperthecosis and eight with normal ovulatory cycles. INTERVENTION(S) Ovarian stromal tissues were obtained from women with hyperthecosis and women with normal ovaries. Diagnosis of hyperthecosis was confirmed by histologic examination of the ovaries. Steroid levels were measured in the ovarian vein serum of one patient with hyperthecosis. MAIN OUTCOME MEASURE(S) Tissues were frozen immediately in liquid nitrogen and kept frozen until RNA was extracted. Total RNA was examined by Northern blot analysis using 32P-labeled complementary DNA (cDNA) probes encoding human P450scc and P450(17alpha) enzymes. RESULT(S) P450scc and P450(17alpha) messenger RNAs (mRNAs) were detected in the normal ovarian stroma and stromal hyperthecosis. Compared with normal ovarian stroma, P450scc mRNA was increased twofold and P450(17alpha) mRNA was increased threefold in stromal hyperthecosis. CONCLUSION(S) [1] Ovarian stroma is probably the site of androgen production in ovarian hyperthecosis. [2] Increased stromal androgen synthesis in hyperthecosis could be due to increased expression of the enzymes P450scc and P450(17alpha) in the ovarian stroma. [3] Markedly increased concentrations of 17alpha-hydroxyprogesterone in the ovarian vein serum indicate possible dysregulation of P450(17alpha) in ovarian hyperthecosis.
Collapse
Affiliation(s)
- M Nagamani
- Division of Reproductive Endocrinology, University of Texas Medical Branch at Galveston, 77555-0587, USA.
| | | |
Collapse
|
47
|
Hall PF. The Roles of Cytochromes P‐450 in the Regulation of Steroidogenesis. Compr Physiol 1998. [DOI: 10.1002/cphy.cp070116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Abstract
The hyperandrogenism of polycystic ovary syndrome (PCOS) appears to be due to dysregulation of steroidogenesis within the ovaries and adrenal glands. P450c17 is the key enzyme that regulates androgen synthesis. It is the only enzyme known to have the capacity to convert C21-precursors to the androgen pre-hormones, the 17-ketosteroids. It is a single enzyme with two activities, 17-hydroxylase and 17,20-lyase. Thus, its regulation is a significant factor in the expression of hyperandrogenism. Androgen secretion is LH-dependent in the ovary and ACTH-dependent in the adrenal glands. The androgenic response to each of these tropic hormones seems to be modulated by intra-ovarian or intra-adrenal autocrine and paracrine mechanisms. This modulation serves to regulate steroid hormone secretion in tissue-specific ways. Insulin, IGFs and inhibin are among the many growth factors capable of augmenting the response to LH and ACTH. The insulin/IGF system stimulates P450c17 mRNA expression and activities in the ovaries and adrenal glands. An integrating link between insulin resistance and hyperandrogenemia may be serine phosphorylation, which inhibits activity of the insulin receptor and promotes the 17,20-lyase activity of P450c17. However, it must be kept in mind that there is some evidence for the existence of P450c17-independent pathways of androgen biosynthesis.
Collapse
Affiliation(s)
- K N Qin
- The University of Chicago, Pritzker School of Medicine, The University of Chicago Children's Hospital, IL 60637-1470, USA
| | | |
Collapse
|
49
|
Bischof LJ, Kagawa N, Waterman MR. The bovine CYP17 promoter contains a transcriptional regulatory element cooperatively bound by tale homeodomain proteins. Endocr Res 1998; 24:489-95. [PMID: 9888529 DOI: 10.3109/07435809809032637] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Bovine CYP17 is regulated at the transcriptional level by ACTH acting through the second messenger cAMP in adrenal fasciculata and reticularis cells. Promoter analysis has previously identified two regions, proximal and distal, within the CYP17 promoter important in the cAMP dependent transcriptional regulation of this gene. The proximal (-80 to -40) cAMP responsive sequence (CRS2) has been identified as a binding site for Steroidogenic Factor-1 (SF-1)/Ad4BP. The distal region (-243 to -100) is also important for the cAMP transcriptional response as revealed by deletion analysis. Within this distal region from -243 to -225, an independent cAMP responsive sequence referred to as CRS1 has been described. The transcription factors binding CRS1 have been identified as homeodomain transcription factors belonging to an atypical class of homeodomain proteins referred to as TALE. Two families of homeodomain proteins which bind CRS1 are the Pbx and Meis1 families. Proteins from neither of these families can bind CRS1 individually; however, members of the Pbx family interact with members of the Meis1 family to cooperatively bind this element. CRS1 was the first identified cis-acting target element for members of both the Pbx and Meis1 family. Unlike SF-1, these proteins are not expressed in a steroidogenic tissue-specific manner but rather, appear ubiquitous. A current model for the function of these proteins in CYP17 regulation is that they may enhance the cAMP response through the downstream SF-1 binding site.
Collapse
Affiliation(s)
- L J Bischof
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | | | | |
Collapse
|
50
|
Bischof LJ, Kagawa N, Moskow JJ, Takahashi Y, Iwamatsu A, Buchberg AM, Waterman MR. Members of the meis1 and pbx homeodomain protein families cooperatively bind a cAMP-responsive sequence (CRS1) from bovine CYP17. J Biol Chem 1998; 273:7941-8. [PMID: 9525891 DOI: 10.1074/jbc.273.14.7941] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian Pbx homeodomain proteins provide specificity and increased DNA binding affinity to other homeodomain proteins. A cAMP-responsive sequence (CRS1) from bovine CYP17 has previously been shown to be a binding site for Pbx1. A member of a second mammalian homeodomain family, Meis1, is now also demonstrated to be a CRS1-binding protein upon purification using CRS1 affinity chromatography. CRS1 binding complexes from Y1 adrenal cell nuclear extract contain both Pbx1 and Meis1. This is the first transcriptional regulatory element reported as a binding site for members of the Meis1 homeodomain family. Pbx1 and Meis1 bind cooperatively to CRS1, whereas neither protein can bind this element alone. Mutagenesis of the CRS1 element indicates a binding site for Meis1 adjacent to the Pbx site. All previously identified Pbx binding partners have Pbx interacting motifs that contain a tryptophan residue amino-terminal to the homeodomain that is required for cooperative binding to DNA with Pbx. Members of the Meis1 family contain one tryptophan residue amino-terminal to the homeodomain, but site-directed mutagenesis indicates that this residue is not required for cooperative CRS1 binding with Pbx. Thus, the Pbx-Meis1 interaction is unique among Pbx complexes. Meis1 also cooperatively binds CRS1 with the Pbx homologs extradenticle from Drosophila melanogaster and ceh-20 from Caenorhabditis elegans, indicating that this interaction is evolutionarily conserved. Thus, CYP17 CRS1 is a transcriptional regulatory element containing both Pbx and Meis1 binding sites, which permit these two homeodomain proteins to bind and potentially regulate cAMP-dependent transcription through this sequence.
Collapse
Affiliation(s)
- L J Bischof
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA.
| | | | | | | | | | | | | |
Collapse
|