1
|
Jorge DCP, Martinez-Garcia R. Demographic effects of aggregation in the presence of a component Allee effect. J R Soc Interface 2024; 21:20240042. [PMID: 38916901 DOI: 10.1098/rsif.2024.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 03/12/2024] [Indexed: 06/26/2024] Open
Abstract
The component Allee effect (AE) is the positive correlation between an organism's fitness component and population density. Depending on the population spatial structure, which determines the interactions between organisms, a component AE might lead to positive density dependence in the population per-capita growth rate and establish a demographic AE. However, existing spatial models impose a fixed population spatial structure, which limits the understanding of how a component AE and spatial dynamics jointly determine the existence of demographic AEs. We introduce a spatially explicit theoretical framework where spatial structure and population dynamics are emergent properties of the individual-level demographic and movement rates. This framework predicts various spatial patterns depending on its specific parametrization, including evenly spaced aggregates of organisms, which determine the demographic-level by-products of the component AE. We find that aggregation increases population abundance and allows population survival in harsher environments and at lower global population densities when compared with uniformly distributed organisms. Moreover, aggregation can prevent the component AE from manifesting at the population level or restrict it to the level of each independent aggregate. These results provide a mechanistic understanding of how component AEs might operate for different spatial structures and manifest at larger scales.
Collapse
Affiliation(s)
- Daniel C P Jorge
- ICTP South American Institute for Fundamental Research & Instituto de Física Teórica, Universidade Estadual Paulista-UNESP, Rua Dr. Bento Teobaldo Ferraz 271, Bloco 2-Barra Funda , São Paulo, SP 01140-070, Brazil
- Department of Ecology and Evolutionary Biology, Princeton University , Princeton, NJ 08544, USA
| | - Ricardo Martinez-Garcia
- ICTP South American Institute for Fundamental Research & Instituto de Física Teórica, Universidade Estadual Paulista-UNESP, Rua Dr. Bento Teobaldo Ferraz 271, Bloco 2-Barra Funda , São Paulo, SP 01140-070, Brazil
- Center for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden Rossendorf (HZDR) , Görlitz 02826, Germany
| |
Collapse
|
2
|
Shankey NT, Cohen RE. Neural control of reproduction in reptiles. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:307-321. [PMID: 38247297 DOI: 10.1002/jez.2783] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024]
Abstract
Reptiles display considerable diversity in reproductive behavior, making them great models to study the neuroendocrine control of reproductive behavior. Many reptile species are seasonally breeding, such that they become reproductively active during their breeding season and regress to a nonreproductive state during their nonbreeding season, with this transition often prompted by environmental cues. In this review, we will focus on summarizing the neural and neuroendocrine mechanisms controlling reproductive behavior. Three major areas of the brain are involved in reproductive behavior: the preoptic area (POA), amygdala, and ventromedial hypothalamus (VMH). The POA and VMH are sexually dimorphic areas, regulating behaviors in males and females respectively, and all three areas display seasonal plasticity. Lesions to these areas disrupt the onset and maintenance of reproductive behaviors, but the exact roles of these regions vary between sexes and species. Different hormones influence these regions to elicit seasonal transitions. Circulating testosterone (T) and estradiol (E2) peak during the breeding season and their influence on reproduction is well-documented across vertebrates. The conversion of T into E2 and 5α-dihydrotestosterone can also affect behavior. Melatonin and corticosterone have generally inhibitory effects on reproductive behavior, while serotonin and other neurohormones seem to stimulate it. In general, there is relatively little information on the neuroendocrine control of reproduction in reptiles compared to other vertebrate groups. This review highlights areas that should be considered for future areas of research.
Collapse
Affiliation(s)
- Nicholas T Shankey
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, Minnesota, USA
| | - Rachel E Cohen
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, Minnesota, USA
| |
Collapse
|
3
|
Yamagishi G, Miyagawa S. Neuroendocrinology of Reproduction and Social Behaviors in Reptiles: Advances Made in the Last Decade. Zoolog Sci 2024; 41:87-96. [PMID: 38587521 DOI: 10.2108/zs230060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/03/2023] [Indexed: 04/09/2024]
Abstract
Among amniotes, reptiles are ectothermic and are clearly distinguished from mammals and birds. Reptiles show great diversity not only in species numbers, but also in ecological and physiological features. Although their physiological diversity is an interesting research topic, less effort has been made compared to that for mammals and birds, in part due to lack of established experimental models and techniques. However, progress, especially in the field of neuroendocrinology, has been steadily made. With this process, basic data on selected reptilian species have been collected. This review article presents the progress made in the last decade, which includes 1) behavioral regulation by sex steroid hormones, 2) regulation of seasonal reproduction by melatonin and GnRH, and 3) regulation of social interaction by arginine vasotocin. Through these research topics, we provide insights into the physiology of reptiles and the latest findings in the field of amniote neuroendocrinology.
Collapse
Affiliation(s)
- Genki Yamagishi
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585, Japan,
| | - Shinichi Miyagawa
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585, Japan,
| |
Collapse
|
4
|
McLaughlin JF, Aguilar C, Bernstein JM, Navia-Gine WG, Cueto-Aparicio LE, Alarcon AC, Alarcon BD, Collier R, Takyar A, Vong SJ, López-Chong OG, Driver R, Loaiza JR, De León LF, Saltonstall K, Lipshutz SE, Arcila D, Brock KM, Miller MJ. Comparative phylogeography reveals widespread cryptic diversity driven by ecology in Panamanian birds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023. [PMID: 36993716 DOI: 10.1101/2023.01.26.525769] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
UNLABELLED Widespread species often harbor unrecognized genetic diversity, and investigating the factors associated with such cryptic variation can help us better understand the forces driving diversification. Here, we identify potential cryptic species based on a comprehensive dataset of COI mitochondrial DNA barcodes from 2,333 individual Panamanian birds across 429 species, representing 391 (59%) of the 659 resident landbird species of the country, as well as opportunistically sampled waterbirds. We complement this dataset with additional publicly available mitochondrial loci, such as ND2 and cytochrome b, obtained from whole mitochondrial genomes from 20 taxa. Using barcode identification numbers (BINs), we find putative cryptic species in 19% of landbird species, highlighting hidden diversity in the relatively well-described avifauna of Panama. Whereas some of these mitochondrial divergence events corresponded with recognized geographic features that likely isolated populations, such as the Cordillera Central highlands, the majority (74%) of lowland splits were between eastern and western populations. The timing of these splits are not temporally coincident across taxa, suggesting that historical events, such as the formation of the Isthmus of Panama and Pleistocene climatic cycles, were not the primary drivers of cryptic diversification. Rather, we observed that forest species, understory species, insectivores, and strongly territorial species-all traits associated with lower dispersal ability-were all more likely to have multiple BINs in Panama, suggesting strong ecological associations with cryptic divergence. Additionally, hand-wing index, a proxy for dispersal capability, was significantly lower in species with multiple BINs, indicating that dispersal ability plays an important role in generating diversity in Neotropical birds. Together, these results underscore the need for evolutionary studies of tropical bird communities to consider ecological factors along with geographic explanations, and that even in areas with well-known avifauna, avian diversity may be substantially underestimated. LAY SUMMARY - What factors are common among bird species with cryptic diversity in Panama? What role do geography, ecology, phylogeographic history, and other factors play in generating bird diversity?- 19% of widely-sampled bird species form two or more distinct DNA barcode clades, suggesting widespread unrecognized diversity.- Traits associated with reduced dispersal ability, such as use of forest understory, high territoriality, low hand-wing index, and insectivory, were more common in taxa with cryptic diversity. Filogeografía comparada revela amplia diversidad críptica causada por la ecología en las aves de Panamá. RESUMEN Especies extendidas frecuentemente tiene diversidad genética no reconocida, y investigando los factores asociados con esta variación críptica puede ayudarnos a entender las fuerzas que impulsan la diversificación. Aquí, identificamos especies crípticas potenciales basadas en un conjunto de datos de códigos de barras de ADN mitocondrial de 2,333 individuos de aves de Panama en 429 especies, representando 391 (59%) de las 659 especies de aves terrestres residentes del país, además de algunas aves acuáticas muestreada de manera oportunista. Adicionalmente, complementamos estos datos con secuencias mitocondriales disponibles públicamente de otros loci, tal como ND2 o citocroma b, obtenidos de los genomas mitocondriales completos de 20 taxones. Utilizando los números de identificación de código de barras (en ingles: BINs), un sistema taxonómico numérico que proporcina una estimación imparcial de la diversidad potencial a nivel de especie, encontramos especies crípticas putativas en 19% de las especies de aves terrestres, lo que destaca la diversidad oculta en la avifauna bien descrita de Panamá. Aunque algunos de estos eventos de divergencia conciden con características geográficas que probablemente aislaron las poblaciones, la mayoría (74%) de la divergencia en las tierras bajas se encuentra entre las poblaciones orientales y occidentales. El tiempo de esta divergencia no coincidió entre los taxones, sugiriendo que eventos históricos tales como la formación del Istmo de Panamá y los ciclos climáticos del pleistoceno, no fueron los principales impulsores de la especiación. En cambio, observamos asociaciones fuertes entre las características ecológicas y la divergencia mitocondriale: las especies del bosque, sotobosque, con una dieta insectívora, y con territorialidad fuerte mostraton múltiple BINs probables. Adicionalmente, el índice mano-ala, que está asociado a la capacidad de dispersión, fue significativamente menor en las especies con BINs multiples, sugiriendo que la capacidad de dispersión tiene un rol importamente en la generación de la diversidad de las aves neotropicales. Estos resultos demonstran la necesidad de que estudios evolutivos de las comunidades de aves tropicales consideren los factores ecológicos en conjunto con las explicaciones geográficos. Palabras clave: biodiversidad tropical, biogeografía, códigos de barras, dispersión, especies crípticas.
Collapse
|
5
|
Folwell M, Sanders K, Crowe-Riddell J. The Squamate Clitoris: A Review and Directions for Future Research. Integr Comp Biol 2022; 62:icac056. [PMID: 35662336 DOI: 10.1093/icb/icac056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The clitoris is a part of the genitalia of female amniotes that typically functions to stimulate sensory arousal. It usually consists of a small organ that is dimorphic and homologous to the penis. The developing amniote embryo forms a genital tubule, then sex hormones initiate a developmental cascade to form either a penis or clitoris. In squamates (lizards and snakes) the genital tubule develops into a paired hemiphallus structure called the "hemiclitores" in the female and the "hemipenes" in the male. The complex evolution of squamate hemipenes has been extensively researched since early discoveries in the 1800's, and this has uncovered huge diversity in hemipenis size, shape, and ornamentation (e.g., protrusions of spines, hooks, chalices, cups). In contrast, the squamate hemiclitoris has been conspicuously under investigated, and the studies that describe this anatomy are fraught with inconsistences. This paper aims to clarify the current state of knowledge of the squamate hemiclitoris, providing a foundation for further research on its morphology and functional role. We show that while several studies have described the gross anatomy of hemiclitores in lizards, comparative information is entirely lacking for snakes. Several papers cite earlier authors as having reported discoveries of the snake hemiclitores in vipers and colubrid snakes. However, our examination of this reveals only erroneous reports of hemiclitores in snakes and shows that these stem from misinterpretations of the true anatomy or species involved. An especially problematic source of confusion is the presence of intersex individuals in some snake populations; these form reproductively functional ovaries and a single hemipenis, with the latter sometimes mistaken for a hemiclitoris (the intersex hemipenis is usually smaller and less spinous than the male hemipenis). Further research is recommended to identify the defining anatomical features of the squamate hemiclitores. Such studies will form a vital basis of future comparative analyses of variation in female genitalia in squamates and other amniotes.
Collapse
Affiliation(s)
- Megan Folwell
- The University of Adelaide, Faculty of Biological Science
| | - Kate Sanders
- University of Adelaide, Faculty of Biological Science
| | | |
Collapse
|
6
|
Farmer NA, Doerr JC. Limiting factors for queen conch (Lobatus gigas) reproduction: A simulation-based evaluation. PLoS One 2022; 17:e0251219. [PMID: 35263325 PMCID: PMC8906866 DOI: 10.1371/journal.pone.0251219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 02/21/2022] [Indexed: 11/18/2022] Open
Abstract
Queen conch are among the most economically, socially, and culturally important fishery resources in the Caribbean. Despite a multitude of fisheries management measures enacted across the region, populations are depleted and failing to recover. It is believed that queen conch are highly susceptible to depensatory processes, impacting reproductive success and contributing to the lack of recovery. We developed a model of reproductive dynamics to evaluate how variations in biological factors such as population density, movement speeds, rest periods between mating events, scent tracking, visual perception of conspecifics, sexual facilitation, and barriers to movement affect reproductive success and overall reproductive output. We compared simulation results to empirical observations of mating and spawning frequencies from conch populations in the central Bahamas and Florida Keys. Our results confirm that low probability of mate finding associated with decreased population density is the primary driver behind observed breeding behavior in the field, but is insufficient to explain observed trends. Specifically, sexual facilitation coupled with differences in movement speeds and ability to perceive conspecifics may explain the observed lack of mating at low densities and differences between mating frequencies in the central Bahamas and Florida Keys, respectively. Our simulations suggest that effective management strategies for queen conch should aim to protect high-density reproductive aggregations and critical breeding habitats.
Collapse
Affiliation(s)
- Nicholas A. Farmer
- NOAA Fisheries Southeast Regional Office, St. Petersburg, Florida, United States of America
| | - Jennifer C. Doerr
- NOAA Fisheries Southeast Fisheries Science Center, Galveston, Texas, United States of America
| |
Collapse
|
7
|
O’Connell LA, Crews D. Evolutionary insights into sexual behavior from whiptail lizards. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:88-98. [PMID: 33929097 PMCID: PMC8556411 DOI: 10.1002/jez.2467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 01/03/2023]
Abstract
Is the brain bipotential or is sex-typical behavior determined during development? Thirty years of research in whiptail lizards transformed the field of behavioral neuroscience to show the brain is indeed bipotential, producing behaviors along a spectrum of male-typical and female-typical behavior via a parliamentary system of neural networks and not a predetermined program of constrained behavioral output. The unusual clade of whiptail lizards gave these insights as there are several parthenogenetic all-female species that display both male-typical and female-typical sexual behavior. These descendant species exist alongside their ancestors, allowing a unique perspective into how brain-behavior relationships evolve. In this review, we celebrate the over 40-year career of David Crews, beginning with the story of how he established whiptails as a model system through serendipitous behavioral observations and ending with advice to young scientists formulating their own questions. In between these personal notes, we discuss the discoveries that integrated hormones, neural activity, and gene expression to provide transformative insights into how brains function and reshaped our understanding of sexuality.
Collapse
Affiliation(s)
| | - David Crews
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
8
|
Laskowski KL, Doran C, Bierbach D, Krause J, Wolf M. Naturally clonal vertebrates are an untapped resource in ecology and evolution research. Nat Ecol Evol 2019; 3:161-169. [PMID: 30692622 DOI: 10.1038/s41559-018-0775-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/29/2018] [Indexed: 11/09/2022]
Abstract
Science requires replication. The development of many cloned or isogenic model organisms is a testament to this. But researchers are reluctant to use these traditional animal model systems for certain questions in evolution or ecology research, because of concerns over relevance or inbreeding. It has largely been overlooked that there are a substantial number of vertebrate species that reproduce clonally in nature. Here we highlight how use of these naturally evolved, phenotypically complex animals can push the boundaries of traditional experimental design and contribute to answering fundamental questions in the fields of ecology and evolution.
Collapse
Affiliation(s)
- Kate L Laskowski
- Department of Biology & Ecology of Fishes, Leibniz-Institute of Freshwater Ecology & Inland Fisheries, Berlin, Germany.
| | - Carolina Doran
- Department of Biology & Ecology of Fishes, Leibniz-Institute of Freshwater Ecology & Inland Fisheries, Berlin, Germany
| | - David Bierbach
- Department of Biology & Ecology of Fishes, Leibniz-Institute of Freshwater Ecology & Inland Fisheries, Berlin, Germany
| | - Jens Krause
- Department of Biology & Ecology of Fishes, Leibniz-Institute of Freshwater Ecology & Inland Fisheries, Berlin, Germany.,Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Max Wolf
- Department of Biology & Ecology of Fishes, Leibniz-Institute of Freshwater Ecology & Inland Fisheries, Berlin, Germany
| |
Collapse
|
9
|
Gore AC, Holley AM, Crews D. Mate choice, sexual selection, and endocrine-disrupting chemicals. Horm Behav 2018; 101:3-12. [PMID: 28888817 PMCID: PMC5845777 DOI: 10.1016/j.yhbeh.2017.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/26/2017] [Accepted: 09/05/2017] [Indexed: 12/30/2022]
Abstract
Humans have disproportionately affected the habitat and survival of species through environmental contamination. Important among these anthropogenic influences is the proliferation of organic chemicals, some of which perturb hormone systems, the latter referred to as endocrine-disrupting chemicals (EDCs). EDCs are widespread in the environment and affect all levels of reproduction, including development of reproductive organs, hormone release and regulation through the life cycle, the development of secondary sexual characteristics, and the maturation and maintenance of adult physiology and behavior. However, what is not well-known is how the confluence of EDC actions on the manifestation of morphological and behavioral sexual traits influences mate choice, a process that requires the reciprocal evaluation of and/or acceptance of a sexual partner. Moreover, the outcomes of EDC-induced perturbations are likely to influence sexual selection; yet this has rarely been directly tested. Here, we provide background on the development and manifestation of sexual traits, reproductive competence, and the neurobiology of sexual behavior, and evidence for their perturbation by EDCs. Selection acts on individuals, with the consequences manifest in populations, and we discuss the implications for EDC contamination of these processes, and the future of species.
Collapse
Affiliation(s)
- Andrea C Gore
- Division of Pharmacology and Toxicology, College of Pharmacy, USA.
| | - Amanda M Holley
- Division of Pharmacology and Toxicology, College of Pharmacy, USA; Department of Integrative Biology, College of Natural Sciences, USA
| | - David Crews
- Department of Integrative Biology, College of Natural Sciences, USA.
| |
Collapse
|
10
|
Carretero MA, García-Muñoz E, Argaña E, Freitas S, Corti C, Arakelyan M, Sillero N. Parthenogenetic Darevskia lizards mate frequently if they have the chance: a quantitative analysis of copulation marks in a sympatric zone. J NAT HIST 2018. [DOI: 10.1080/00222933.2018.1435832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Miguel A. Carretero
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Vila do Conde, Portugal
| | - Enrique García-Muñoz
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Vila do Conde, Portugal
- CESAM, Centro de Estudos de Ambiente o do Mar, Universidade de Aveiro, Aveiro, Portugal
- Departamento de Biología Animal, Biología Vegetal y Ecología, University of Jaén Campus de Las Lagunillas, Jaén, Spain
| | - Elena Argaña
- CICGE Centro de Investigação em Ciências Geo-Espaciais, Faculdade de Ciências da Universidade do Porto (FCUP), Vila Nova de Gaia, Portuga
| | - Susana Freitas
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Vila do Conde, Portugal
- Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, UK
| | - Claudia Corti
- Museo di Storia Naturale dell’Università di Firenze, Sezione di Zoologia “La Specola”, Firenze, Italy
| | | | - Neftalí Sillero
- CICGE Centro de Investigação em Ciências Geo-Espaciais, Faculdade de Ciências da Universidade do Porto (FCUP), Vila Nova de Gaia, Portuga
| |
Collapse
|
11
|
MacGregor HEA, While GM, Uller T. Comparison of reproductive investment in native and non-native populations of common wall lizards reveals sex differences in adaptive potential. OIKOS 2017. [DOI: 10.1111/oik.03984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hannah E. A. MacGregor
- Edward Grey Inst.; Dept of Zoology, Univ. of Oxford; Oxford, OX1 3PS UK
- School of Biological Sciences, Univ. of Tasmania, Hobart, 7001; Tasmania Australia
| | - Geoffrey M. While
- Edward Grey Inst.; Dept of Zoology, Univ. of Oxford; Oxford, OX1 3PS UK
- School of Biological Sciences, Univ. of Tasmania, Hobart, 7001; Tasmania Australia
| | - Tobias Uller
- Edward Grey Inst.; Dept of Zoology, Univ. of Oxford; Oxford, OX1 3PS UK
- Dept of Biology; Lund Univ.; Lund Sweden
| |
Collapse
|
12
|
While GM, Uller T. Female reproductive investment in response to male phenotype in wall lizards and its implications for introgression. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
13
|
Rosenfeld CS, Denslow ND, Orlando EF, Gutierrez-Villagomez JM, Trudeau VL. Neuroendocrine disruption of organizational and activational hormone programming in poikilothermic vertebrates. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2017; 20:276-304. [PMID: 28895797 PMCID: PMC6174081 DOI: 10.1080/10937404.2017.1370083] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In vertebrates, sexual differentiation of the reproductive system and brain is tightly orchestrated by organizational and activational effects of endogenous hormones. In mammals and birds, the organizational period is typified by a surge of sex hormones during differentiation of specific neural circuits; whereas activational effects are dependent upon later increases in these same hormones at sexual maturation. Depending on the reproductive organ or brain region, initial programming events may be modulated by androgens or require conversion of androgens to estrogens. The prevailing notion based upon findings in mammalian models is that male brain is sculpted to undergo masculinization and defeminization. In absence of these responses, the female brain develops. While timing of organizational and activational events vary across taxa, there are shared features. Further, exposure of different animal models to environmental chemicals such as xenoestrogens such as bisphenol A-BPA and ethinylestradiol-EE2, gestagens, and thyroid hormone disruptors, broadly classified as neuroendocrine disrupting chemicals (NED), during these critical periods may result in similar alterations in brain structure, function, and consequently, behaviors. Organizational effects of neuroendocrine systems in mammals and birds appear to be permanent, whereas teleost fish neuroendocrine systems exhibit plasticity. While there are fewer NED studies in amphibians and reptiles, data suggest that NED disrupt normal organizational-activational effects of endogenous hormones, although it remains to be determined if these disturbances are reversible. The aim of this review is to examine how various environmental chemicals may interrupt normal organizational and activational events in poikilothermic vertebrates. By altering such processes, these chemicals may affect reproductive health of an animal and result in compromised populations and ecosystem-level effects.
Collapse
Affiliation(s)
- Cheryl S. Rosenfeld
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Thompson Center for Autism and Neurobehavioral Disorders, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Nancy D. Denslow
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA
| | - Edward F. Orlando
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | | | - Vance L. Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
14
|
Parthenogenesis and Human Assisted Reproduction. Stem Cells Int 2015; 2016:1970843. [PMID: 26635881 PMCID: PMC4655294 DOI: 10.1155/2016/1970843] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/20/2015] [Accepted: 06/24/2015] [Indexed: 11/17/2022] Open
Abstract
Parthenogenetic activation of human oocytes obtained from infertility treatments has gained new interest in recent years as an alternative approach to create embryos with no reproductive purpose for research in areas such as assisted reproduction technologies itself, somatic cell, and nuclear transfer experiments and for derivation of clinical grade pluripotent embryonic stem cells for regenerative medicine. Different activating methods have been tested on human and nonhuman oocytes, with varying degrees of success in terms of parthenote generation rates, embryo development stem cell derivation rates. Success in achieving a standardized artificial activation methodology for human oocytes and the subsequent potential therapeutic gain obtained from these embryos depends mainly on the availability of gametes donated from infertility treatments. This review will focus on the creation of parthenotes from clinically unusable oocytes for derivation and establishment of human parthenogenetic stem cell lines and their potential applications in regenerative medicine.
Collapse
|
15
|
Le Souëf AT, Barry M, Brunton DH, Jakob-Hoff R, Jackson B. Ovariectomy as treatment for ovarian bacterial granulomas in a Duvaucel's gecko (Hoplodactylus duvaucelii). N Z Vet J 2015; 63:340-4. [PMID: 26085121 DOI: 10.1080/00480169.2015.1063468] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
CASE HISTORY An adult female Duvaucel's gecko (Hoplodactylus duvaucelii) from a threatened species breeding programme presented due to a prolonged gestation period and distended abdomen. CLINICAL AND PATHOLOGICAL FINDINGS The gecko was in lean body condition with an irregularly shaped, firm mass in the coelomic cavity. Radiographically there was a diffuse radio-opacity within the coelomic cavity with cranial displacement of the right lung field. Ultrasonography revealed a round homogenous abdominal mass of medium echogenicity with an echogenic capsule. Haematology showed a leucocytosis with a moderate left shift in heterophils and toxic changes. Bilateral ovariectomy was performed to remove two ovarian granulomas and Salmonella enterica subspecies houtenae (IV) was cultured from the ovarian tissue. The gecko recovered well from the surgery, regained weight and remained in good health 3 years following the surgery. DIAGNOSIS Pre-ovulatory stasis and ovarian granulomas associated with infection with Salmonella enterica subsp. houtenae. CLINICAL RELEVANCE The surgery described in this case resulted in recovery of the gecko, which despite its loss of reproductive capability is of value as an education animal. This is the first report of pre-ovulatory stasis and ovarian granulomas associated with infection with Salmonella enterica in a Duvaucel's gecko and is also the first reported case of pre-ovulatory stasis in a viviparous lizard species. The case adds to knowledge regarding potential reproductive pathology in lizards, which is particularly important information for managers of captive lizard breeding programmes.
Collapse
Affiliation(s)
- A T Le Souëf
- a New Zealand Centre for Conservation Medicine , Auckland Zoo, Motions Road, Western Springs Auckland 1022 , New Zealand
| | | | | | | | | |
Collapse
|
16
|
Kawazu I, Suzuki M, Maeda K, Kino M, Koyago M, Moriyoshi M, Nakada K, Sawamukai Y. Ovulation Induction with Follicle-Stimulating Hormone Administration in Hawksbill TurtlesEretmochelys imbricata. CURRENT HERPETOLOGY 2014. [DOI: 10.5358/hsj.33.88] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Daughtry B, Mitalipov S. Concise review: parthenote stem cells for regenerative medicine: genetic, epigenetic, and developmental features. Stem Cells Transl Med 2014; 3:290-8. [PMID: 24443005 DOI: 10.5966/sctm.2013-0127] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Embryonic stem cells (ESCs) have the potential to provide unlimited cells and tissues for regenerative medicine. ESCs derived from fertilized embryos, however, will most likely be rejected by a patient's immune system unless appropriately immunomatched. Pluripotent stem cells (PSCs) genetically identical to a patient can now be established by reprogramming of somatic cells. However, practical applications of PSCs for personalized therapies are projected to be unfeasible because of the enormous cost and time required to produce clinical-grade cells for each patient. ESCs derived from parthenogenetic embryos (pESCs) that are homozygous for human leukocyte antigens may serve as an attractive alternative for immunomatched therapies for a large population of patients. In this study, we describe the biology and genetic nature of mammalian parthenogenesis and review potential advantages and limitations of pESCs for cell-based therapies.
Collapse
Affiliation(s)
- Brittany Daughtry
- Departments of Cell and Developmental Biology and Molecular and Medical Genetics, and Program in Molecular and Cellular Biosciences, School of Medicine, and Divisions of Reproductive and Developmental Sciences, Oregon National Primate Research Center, and Reproductive Endocrinology, Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon, USA
| | | |
Collapse
|
18
|
Joint Space Use in a Parthenogenetic Armenian Rock Lizard (Darevskia armeniaca) Suggests Weak Competition among Monoclonal Females. J HERPETOL 2013. [DOI: 10.1670/11-242] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
|
20
|
Abstract
Sex is one of the greatest puzzles in evolutionary biology. A true meiotic process occurs only in eukaryotes, while in bacteria, gene transcription is fragmentary, so asexual reproduction in this case really means clonal reproduction. Sex could stem from a signal that leads to increased reproductive output of all interacting individuals and could be understood as a secondary consequence of primitive metabolic reactions. Meiotic sex evolved in proto-eukaryotes to solve a problem that bacteria did not have, namely a large amount of DNA material, occurring in an archaic step of proto-cell formation and genetic exchanges. Rather than providing selective advantages through reproduction, sex could be thought of as a series of separate events which combines step-by-step some very weak benefits of recombination, meiosis, gametogenesis and syngamy.
Collapse
Affiliation(s)
- T Lodé
- Université de Rennes 1, Campus de Beaulieu, Rennes, France.
| |
Collapse
|
21
|
Bleu J, Le Galliard JF, Meylan S, Massot M, Fitze PS. Mating does not influence reproductive investment, in a viviparous lizard. ACTA ACUST UNITED AC 2011; 315:458-64. [PMID: 21732546 DOI: 10.1002/jez.693] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/19/2011] [Accepted: 05/23/2011] [Indexed: 11/06/2022]
Abstract
Mating is crucial for females that reproduce exclusively sexually and should influence their investment into reproduction. Although reproductive adjustments in response to mate quality have been tested in a wide range of species, the effect of exposure to males and mating per se has seldom been studied. Compensatory mechanisms against the absence of mating may evolve more frequently in viviparous females, which pay higher direct costs of reproduction, due to gestation, than oviparous females. To test the existence of such mechanisms in a viviparous species, we experimentally manipulated the mating opportunity of viviparous female lizard, Lacerta (Zootoca) vivipara. We assessed the effect of mating on ovulation, postpartum body condition and parturition date, as well as on changes in locomotor performances and body temperatures during the breeding cycle. Female lizards ovulated spontaneously and mating had no influence on litter size, locomotor impairment or on selected body temperature. However, offspring production induced a more pronounced locomotor impairment and physical burden than the production of undeveloped eggs. Postpartum body condition and parturition dates were not different among females. This result suggests that gestation length is not determined by an embryonic signal. In the common lizard, viviparity is not associated with facultative ovulation and a control of litter size after ovulation, in response to the absence of mating.
Collapse
Affiliation(s)
- Josefa Bleu
- CNRS, UPMC, ENS-UMR 7625, Laboratoire Ecologie et Evolution, Paris, France.
| | | | | | | | | |
Collapse
|
22
|
Manire CA, Byrd L, Therrien CL, Martin K. Mating-induced ovulation in loggerhead sea turtles, Caretta caretta. Zoo Biol 2011; 27:213-25. [PMID: 19360619 DOI: 10.1002/zoo.20171] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mating-induced ovulation is common in mammals, but has been rarely described in other taxa. Observations of several mature female loggerhead sea turtles, Caretta caretta, held in captivity seemed to indicate that ovulation did not occur in the absence of a male. This study was designed to determine whether this was an effect of captivity or an effect of the absence of a male. Two mature female loggerheads were followed over six annual reproductive cycles. Ultrasound exams were performed approximately every 2 weeks to follow the development of follicles in the ovaries. During the first two seasons, no male was present, in the next two seasons, a mature male was present without mating, and in the final two seasons a mature male was present, mating with one or both females. When no male was present or when present without mating, ovarian follicles developed to full size, but ovulation did not occur and the follicles gradually began to decrease in diameter and undergo changes evident on ultrasound. In the fifth season, only one of the females mated, dropping two eggs after 7 days, and continued to oviposit throughout the following months (total 275 eggs). The unmated female did not ovulate, showing the same pattern as earlier seasons. In the final season, both females mated and ovulated, dropping eggs for the next four months (total 539 eggs). The following year, no males were present and neither female ovulated. This study provides clear evidence that ovulation in loggerhead sea turtles is induced by mating.
Collapse
Affiliation(s)
- Charles A Manire
- Mote Marine Laboratory and Aquarium, 1600 Ken Thompson, Parkway, Sarasota, FL 34236, USA.
| | | | | | | |
Collapse
|
23
|
O'Connell LA, Matthews BJ, Crews D. Neuronal nitric oxide synthase as a substrate for the evolution of pseudosexual behaviour in a parthenogenetic whiptail lizard. J Neuroendocrinol 2011; 23:244-53. [PMID: 21126273 PMCID: PMC4509676 DOI: 10.1111/j.1365-2826.2010.02099.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The evolution of neuroendocrine mechanisms governing sex-typical behaviour is poorly understood. An outstanding animal model is the whiptail lizard (Cnemidophorus) because both the ancestral and descendent species still exist. The ancestral little striped whiptail, Cnemidophorus inornatus, consists of males and females, which exhibit sex-specific mating behaviours. The descendent desert grassland whiptail, Cnemidophorus uniparens, consists only of females that alternately exhibit both female-like and male-like pseudosexual behaviour. Castrated male C. inornatus will mount a conspecific in response to exogenous androgen, although some are also sensitive to progesterone. This polymorphism in progesterone sensitivity in the ancestral species may have been involved in evolution of progesterone-mediated male-typical behaviour in the descendant unisexual lizards. We tested whether progesterone activates a typically androgenic signalling pathway by investigating hormonal regulation of neuronal nitric oxide synthase (nNOS) using in situ hybridisation and NADPH diaphorase histochemistry, a stain for nNOS protein. NADPH diaphorase is widely distributed throughout the brain of both species, although only in the periventricular nucleus of the preoptic area (pvPOA) are there differences between mounting and non-mounting individuals. The number of cells expressing nNOS mRNA and NADPH diaphorase is higher in the pvPOA of individuals that mount in response to progesterone or androgen. Furthermore, the nNOS promoter has both androgen and progesterone response elements, and NADPH diaphorase colocalises with the progesterone receptor in the pvPOA. These data suggest that a polymorphism in progesterone sensitivity in the sexual ancestor reflects a differential regulation of nNOS and may account for the male-typical behaviour in unisexual whiptail lizards.
Collapse
Affiliation(s)
- Lauren A. O'Connell
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78705, USA
- Section of Integrative Biology, University of Texas at Austin, Austin, TX 78705, USA
| | - Bryan J. Matthews
- Section of Integrative Biology, University of Texas at Austin, Austin, TX 78705, USA
| | - David Crews
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78705, USA
- Section of Integrative Biology, University of Texas at Austin, Austin, TX 78705, USA
- All correspondence and requests for reprints should to addressed to: David Crews Section of Integrative Biology University of Texas at Austin, Austin, TX 78712 Phone: 512-471-1113
| |
Collapse
|
24
|
Mee JA, Otto SP. Variation in the strength of male mate choice allows long-term coexistence of sperm-dependent asexuals and their sexual hosts. Evolution 2010; 64:2808-19. [PMID: 20550576 DOI: 10.1111/j.1558-5646.2010.01047.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In several asexual taxa, reproduction requires mating with related sexual species to stimulate egg development, even though genetic material is not incorporated from the sexuals (gynogenesis). In cases in which gynogens do not invest in male function, they can potentially have a twofold competitive advantage over sexuals because the asexuals avoid the cost of producing males. If unmitigated, however, the competitive success of the asexuals would ultimately lead to their own demise, following the extinction of the sexual species that stimulate egg development. We have studied a model of mate choice among sexual individuals and asexual gynogens, where males of the sexual species preferentially mate with sexual females over gynogenetic females, to determine if such mating preferences can stably maintain both gynogenetic and sexual individuals within a community. Our model shows that stable coexistence of gynogens and their sexual hosts can occur when there is variation among males in the degree of preference for mating with sexual females and when pickier males pay a higher cost of preference.
Collapse
Affiliation(s)
- Jonathan A Mee
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.
| | | |
Collapse
|
25
|
Brown SG, Sakai TJY. Social Experience and Egg Development in the Parthenogenic Gecko, Lepidodactylus lugubris. Ethology 2010. [DOI: 10.1111/j.1439-0310.1988.tb00720.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Brown SG, O'Brien J. Pseudosexual and dominance behaviour: their relationship to fecundity in the unisexual gecko,
Lepidodactylus lugubris. J Zool (1987) 2009. [DOI: 10.1111/j.1469-7998.1993.tb05353.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Susan G. Brown
- College of Arts and Sciences, Social Sciences Division, University of Hawaii at Hilo, Hilo Hawaii, 96720‐4091, USA
| | - J. O'Brien
- College of Arts and Sciences, Social Sciences Division, University of Hawaii at Hilo, Hilo Hawaii, 96720‐4091, USA
| |
Collapse
|
27
|
Gascoigne J, Berec L, Gregory S, Courchamp F. Dangerously few liaisons: a review of mate-finding Allee effects. POPUL ECOL 2009. [DOI: 10.1007/s10144-009-0146-4] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Dias BG, Chin SG, Crews D. Steroidogenic enzyme gene expression in the brain of the parthenogenetic whiptail lizard, Cnemidophorus uniparens. Brain Res 2008; 1253:129-38. [PMID: 19084508 DOI: 10.1016/j.brainres.2008.11.071] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 11/11/2008] [Accepted: 11/11/2008] [Indexed: 10/21/2022]
Abstract
The steroidogenic enzyme CYP17 is responsible for catalyzing the production of androgenic precursors, while CYP19 converts testosterone to estradiol. De novo neurosteroidogenesis in specific brain regions influences steroid hormone dependent behaviors. In the all-female lizard species Cnemidophorus uniparens, individuals alternately display both male-like mounting and female-like receptivity. Mounting is associated with high circulating concentrations of progesterone following ovulation (PostOv), while receptivity is correlated with estrogen preceding it (PreOv). At a neuroanatomical level, the preoptic area (POA) and ventromedial nucleus of the hypothalamus (VMN) are the foci of the male-typical mounting and female-typical receptivity, respectively. In this study, we indirectly test the hypothesis that the whiptail lizard brain is capable of de novo neurosteroidogenesis by cloning fragments of the genes encoding two steroidogenic enzymes, CYP17 and CYP19, and examining their expression patterns in the C. uniparens brain. Our data indicate that these genes are expressed in the C. uniparens brain, and more importantly in the POA and VMN. Using radioactive in situ hybridization, we measured higher CYP17 mRNA levels in the POA of PostOv lizards compared to receptive PreOv animals; CYP19 mRNA levels in the VMN did not change across the ovarian cycle. To our knowledge, these are the first data suggesting that the reptilian brain is capable of de novo steroidogenesis. This study also supports the idea that non-gonadal sources of steroid hormones locally produced in behaviorally relevant brain loci are central to the mediation of behavioral output.
Collapse
Affiliation(s)
- Brian George Dias
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
29
|
Dias BG, Crews D. Regulation of pseudosexual behavior in the parthenogenetic whiptail lizard, Cnemidophorus uniparens. Endocrinology 2008; 149:4622-31. [PMID: 18483155 PMCID: PMC2553382 DOI: 10.1210/en.2008-0214] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neuroendocrine mechanisms underlying complementary behaviors like male-typical mounting and female-typical receptivity are most often studied independently in males and females, respectively. Cnemidophorus uniparens is a unisexual lizard species consisting only of females that alternately express male- and female-like pseudosexual behavior across the ovarian cycle. Intact, postovulatory (PostOv), and ovariectomized (OVX), androgen-implanted animals [OVX plus testosterone (T)] exhibit male-like mounting, but not receptivity, whereas intact, preovulatory (PreOv), and OVX lizards injected with estradiol [OVX plus estrogen (E)] express receptivity, but not mounting. We tested whether the serotonergic system in the preoptic area (POA) and ventromedial nucleus of the hypothalamus (VMN) gates the reciprocal inhibition characterizing this alternating expression of mounting and receptivity. Serotonergic signaling at the POA appears to be key to gating male-like behavior. Postovulatory and OVX plus T animals have lower intracellular serotonin (5-HT) levels, and greater abundance of inhibitory 5-HT1A receptor mRNA in the POA compared with both PreOv and OVX plus E lizards. Moreover, injecting 5-HT into the POA of OVX plus T animals suppresses mounting, whereas injection into VMN of OVX plus E lizards suppresses receptivity. Although 5-HT levels in the VMN do not differ across the ovarian cycle or between hormonally manipulated animals, PreOv and OVX plus E lizards have a lower abundance of 5-HT2A mRNA in the VMN. Stimulating 5-HT1A receptors using systemic drug administration inhibits mounting, whereas activating 5-HT2A receptors facilitates receptivity. This study illuminates how male- and female-typical sexual behaviors share common neural circuits, and that 5-HT regulates these naturally complementary, and mutually exclusive, behaviors.
Collapse
MESH Headings
- 8-Hydroxy-2-(di-n-propylamino)tetralin/pharmacology
- Amphetamines/pharmacology
- Animals
- Cloning, Molecular
- Female
- Injections, Intraventricular
- Lizards/genetics
- Lizards/metabolism
- Lizards/physiology
- Male
- Ovariectomy
- Parthenogenesis/drug effects
- Parthenogenesis/genetics
- Parthenogenesis/physiology
- Preoptic Area/metabolism
- Receptor, Serotonin, 5-HT1A/genetics
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT2A/genetics
- Receptor, Serotonin, 5-HT2A/metabolism
- Receptor, Serotonin, 5-HT2C/genetics
- Receptor, Serotonin, 5-HT2C/metabolism
- Serotonin/administration & dosage
- Serotonin/metabolism
- Serotonin 5-HT1 Receptor Agonists
- Serotonin 5-HT2 Receptor Agonists
- Serotonin Receptor Agonists/pharmacology
- Sexual Behavior, Animal/drug effects
- Sexual Behavior, Animal/physiology
- Ventromedial Hypothalamic Nucleus/metabolism
Collapse
Affiliation(s)
- Brian George Dias
- Institute for Neuroscience, University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|
30
|
Kelso EC, Martins EP. Effects of two courtship display components on female reproductive behaviour and physiology in the sagebrush lizard. Anim Behav 2008. [DOI: 10.1016/j.anbehav.2007.07.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Mating affects reproductive investment into eggs, but not the timing of oogenesis in the flesh fly Sarcophaga crassipalpis. J Comp Physiol B 2007; 178:225-33. [PMID: 17957374 DOI: 10.1007/s00360-007-0216-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 09/28/2007] [Accepted: 10/06/2007] [Indexed: 02/07/2023]
Abstract
We examined the effects of mating on reproductive investment and the timing of oogenesis in the flesh fly Sarcophaga crassipalpis by exposing females to males or not. All females exposed to males were mated within a few days and we found that mating affected reproductive investment. Virgin females not exposed to males produced a large clutch of eggs ( approximately 91), but females exposed to males and mated produced 10% more. There was no effect of mating on egg length or mass. There was also no effect of mating on the timing of oogenesis. Females in both treatments provisioned their eggs at the same rate with yolk first becoming visible in the oocytes on day three of adulthood and complete provisioning of eggs occurring by the seventh day of adulthood. We examined the biochemical basis of egg provisioning by identifying the yolk proteins and quantifying their blood titer during the oogenic period in both, females exposed to males and mated and those not exposed to males. There was no difference in the timing of the first appearance, peak titer, or disappearance of yolk proteins in the blood between the two treatments. However, consistent with our observation of greater egg production in mated females, these females contained a greater peak yolk protein titer.
Collapse
|
32
|
Berec L, Angulo E, Courchamp F. Multiple Allee effects and population management. Trends Ecol Evol 2006; 22:185-91. [PMID: 17175060 DOI: 10.1016/j.tree.2006.12.002] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 11/13/2006] [Accepted: 12/04/2006] [Indexed: 10/23/2022]
Abstract
Allee effects, strongly related to the extinction vulnerability of populations and gradually becoming acknowledged by both theoretically oriented and applied ecologists, have already been shown to have important roles in the dynamics of many populations. Although not yet widely recognized, two or more Allee effects can occur simultaneously in the same population. Here, we review the evidence for multiple Allee effects and show that their interactions can take several forms, many of which are far from inconsequential. We suggest that more research is needed to assess the prevalence and interactions of multiple Allee effects, as failing to take them into account could have adverse consequences for the management of threatened or exploited populations.
Collapse
Affiliation(s)
- Ludek Berec
- Department of Theoretical Ecology, Institute of Entomology, Biology Centre ASCR, Branisovská 31, 37005 Ceské Budejovice, Czech Republic.
| | | | | |
Collapse
|
33
|
Affiliation(s)
- Ingo Schlupp
- Department of Zoology, University of Oklahoma, Norman, Oklahoma 73019;
| |
Collapse
|
34
|
NEIMAN M, LIVELY CM. Male New Zealand Mud Snails (Potamopyrgus antipodarum) Persist in Copulating with Asexual and Parasitically Castrated Females. AMERICAN MIDLAND NATURALIST 2005. [DOI: 10.1674/0003-0031(2005)154[0088:mnzmsp]2.0.co;2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Neiman M. Physiological dependence on copulation in parthenogenetic females can reduce the cost of sex. Anim Behav 2004. [DOI: 10.1016/j.anbehav.2003.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Woolley SC, Crews D. Species differences in the regulation of tyrosine hydroxylase inCnemidophorus whiptail lizards. ACTA ACUST UNITED AC 2004; 60:360-8. [PMID: 15281073 DOI: 10.1002/neu.20044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Evolution of behavioral phenotype involves changes in the underlying neural substrates. Cnemidophorus whiptail lizards enable the study of behavioral and neural evolution because ancestral species involved in producing unisexual, hybrid species still exist. Catecholaminergic systems modulate the expression of social behaviors in a number of vertebrates, including whiptails, and therefore we investigated how changes in catecholamine production correlated with evolutionary changes in behavioral phenotype by measuring the size and number of catecholamine producing (tyrosine hydroxylase-immunoreactive, or TH-ir) cells across the reproductive cycle in females from two related whiptail species. Cnemidophorusuniparens is a triploid, parthenogenetic species that arose from hybridization events involving the diploid, sexual species C. inornatus. Prior to ovulation, females from both species display femalelike receptive behaviors. However, after ovulation, only parthenogenetic individuals display malelike mounting behavior. In all nuclei measured, we found larger TH-ir cells in the parthenogen, a difference consistent with species differences in ploidy. In contrast, species differences in the number of TH-ir cells were nucleus specific. In the preoptic area and anterior hypothalamus, parthenogens had fewer TH-ir cells than females of the sexual species. Reproductive state only affected TH-ir cell number in the substantia nigra pars compacta (SNpc), and C. uniparens individuals had more TH-ir cells after ovulation than when previtellogenic. Thus, species differences over the reproductive cycle in the SNpc are correlated with species differences in behavior, and it appears that the process of speciation may have produced a novel neural and behavioral phenotype in the parthenogen.
Collapse
Affiliation(s)
- Sarah C Woolley
- Section of Integrative Biology, Patterson 141, 2400 Speedway, University of Texas at Austin, Austin, Texas 78712, USA.
| | | |
Collapse
|
37
|
Woolley SC, Sakata JT, Crews D. Tracing the Evolution of Brain and Behavior Using Two Related Species of Whiptail Lizards: Cnemidophorus uniparens and Cnemidophorus inornatus. ILAR J 2004; 45:46-53. [PMID: 14752207 DOI: 10.1093/ilar.45.1.46] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cnemidophorus whiptail lizards offer a unique opportunity to study behavioral and neural evolution because unlike most genera, ancestral and descendant species are still extant, and comparisons between species provide a window into correlated changes in biological organization through speciation. This review focuses on the all-female or parthenogenetic species Cnemidophorus uniparens (descendant species), which evolved through several hybridization events involving the sexually reproducing species Cnemidophorus inornatus (ancestral species). Data compiled over more than 2 decades include behavioral, endocrine, and neural differences between these two related species of whiptail lizards. For example, unlike females of the ancestral species, individuals of the descendant species display male-like mounting behavior (pseudocopulatory behavior) after ovulation. Pseudocopulatory behavior in the parthenogen is triggered by the progesterone surge after ovulation, and the behavioral capacity to respond to progesterone appears to be an ancestral trait that was inherited from C. inornatus males through the hybridization events. Interestingly, the regulation of sex steroid hormone receptor mRNA in brain areas critical for the expression of sociosexual behaviors differs between females of the two species and suggests that evolutionary changes in the regulation of gene expression could be a proximate mechanism that underlies the evolution of a novel social behavior in the parthenogen. Finally, because the sexual species is diploid, whereas the parthenogen is triploid, differences between the species could directly assess the effect of ploidy. The behavioral and neuroendocrinological data are pertinent for considering this possibility.
Collapse
Affiliation(s)
- S C Woolley
- Keck Center for Integrative Neuroscience, University of California at San Francisco, CA, USA
| | | | | |
Collapse
|
38
|
Moore PJ, Moore AJ. Developmental flexibility and the effect of social environment on fertility and fecundity in parthenogenetic reproduction. Evol Dev 2003; 5:163-8. [PMID: 12622733 DOI: 10.1046/j.1525-142x.2003.03024.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
One specialized environment that can influence development arises in the context of social interactions, including the environment contributed by a sexual partner during sexual reproduction. It is often difficult, however, to separate out the effect of mating (fertilization) from the effect of social environment. In the study reported here we examine the effect of social environment mediated by a pheromonal signal on the fertility and fecundity of the facultatively parthenogenetic cockroach Nauphoeta cinerea. By examining parthenogenetically reproducing females, we isolate the effects of social environment in the absence of mating or fertilization. Females exposed to male odors are more likely to produce parthenogenetic offspring. Further, increased exposure to the male pheromone increases the number of offspring produced. Variation in timing of reproduction is also dependent on the male. Thus, social environments are a mechanism by which males contribute to the development of their offspring, resulting in variation in development. This study illustrates the potential evolutionary importance of social environments in development, because a requirement for male-contributed environments may be a constraint to evolving asexual reproduction from a sexually reproducing species.
Collapse
Affiliation(s)
- Patricia J Moore
- School of Biological Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.
| | | |
Collapse
|
39
|
Shanbhag BA, Radder RS, Saidapur SK. Members of opposite sex mutually regulate gonadal recrudescence in the lizard Calotes versicolor Agamidae). J Biosci 2002; 27:529-37. [PMID: 12381878 DOI: 10.1007/bf02705051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Adult males and females of the seasonally breeding lizard Calotes versicolor were subjected to various social situations under semi-natural conditions to explain the role of socio-sexual factors in gonadal recrudescence. They were grouped as: (i) males and females, (ii) males and females separated by a wire mesh, (iii) same sex groups of males or females, (iv) castrated males with intact females and (v) ovariectomized (OvX) females with intact males from postbreeding to breeding phase. Specimens collected from the wild during breeding season served as the control group. Plasma sex steroid levels (testosterone in male and 17b-estradiol in female), spermatogenetic activity and vitellogenesis were the criteria to judge gonadal recrudescence. In intact males and females that were kept together, gonadal recrudescence and plasma sex steroids levels were comparable to those in wild-caught individuals. Gonadal recrudescence was at its least in all male and all female groups, and plasma sex steroids were at basal levels. Association with OvX females initiated testicular recrudescence but spermatogenetic activity progressed only up to the spermatid stage while males separated from females by wire mesh showed spermatogenetic activity for a shorter period. Females grouped with castrated males and those separated from males by wire mesh produced vitellogenic follicles. However, the total number and diameter of vitellogenic follicles, and plasma estradiol levels were lower than in the females grouped with intact males. The findings indicate that association with members of the opposite sex with progressively rising titers of sex steroids is crucial in both initiating and sustaining gonadal recrudescence in the lizard. Thus, members of the opposite sex mutually regulate gonadal recrudescence in the C. versicolor.
Collapse
Affiliation(s)
- B A Shanbhag
- Department of Zoology, Karnatak University, Dharwad 580 003, India.
| | | | | |
Collapse
|
40
|
MacDougall-Shackleton SA, MacDougall-Shackleton EA, Hahn TP. Physiological and behavioural responses of female mountain white-crowned sparrows to natal- and foreign-dialect songs. CAN J ZOOL 2001. [DOI: 10.1139/z00-207] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of this study was to determine the effect of early song learning on physiological and behavioural responses to song in adulthood in female mountain white-crowned sparrows (Zonotrichia leucophrys oriantha). Juvenile females were captured before they had dispersed from their natal region. In experiment 1, natal-dialect song, foreign-dialect song, and heterospecific song were played back to the birds during photostimulation when they were 1 year old and physiological responses were measured. The physiological responses (luteinizing hormone and ovarian growth) did not indicate that natal-dialect song was more stimulating than foreign-dialect song. In experiment 2, behavioural responses (solicitation displays) to the same songs were measured when the birds were 2 years old. The birds showed a clear preference for natal-dialect song, exhibiting more displays to natal-dialect song than to foreign-dialect or heterospecific song. This effect was attenuated in birds that had heard heterospecific or foreign-dialect song when they were 1 year old. These results indicate a dissociation between behavioural preferences and longer-term physiological responses to song. Although there was a behavioural preference for natal-dialect song, this did not translate into enhanced physiological response as measured here. Moreover, natal dialect song preferences may be attenuated by adult experience.
Collapse
|
41
|
Abstract
GnRH is the key neuropeptide controlling reproductive function in all vertebrate species. Two different neuroendocrine mechanisms have evolved among female mammals to regulate the mediobasal hypothalamic (MBH) release of GnRH leading to the preovulatory secretion of LH by the anterior pituitary gland. In females of spontaneously ovulating species, including rats, mice, guinea pigs, sheep, monkeys, and women, ovarian steroids secreted by maturing ovarian follicles induce a pulsatile pattern of GnRH release in the median eminence that, in turn, stimulates a preovulatory LH surge. In females of induced ovulating species, including rabbits, ferrets, cats, and camels, the preovulatory release of GnRH, and the resultant preovulatory LH surge, is induced by the receipt of genital somatosensory stimuli during mating. Induced ovulators generally do not show "spontaneous" steroid-induced LH surges during their reproductive cycles, suggesting that the positive feedback actions of steroid hormones on GnRH release are reduced or absent in these species. By contrast, mating-induced preovulatory surges occasionally occur in some spontaneously ovulating species. Most research in the field of GnRH neurobiology has been performed using spontaneous ovulators including rat, guinea pig, sheep, and rhesus monkey. This review summarizes the literature concerning the neuroendocrine mechanisms controlling GnRH biosynthesis and release in females of several induced ovulating species, and whenever possible it contrasts the results with those obtained for spontaneously ovulating species. It also considers the adaptive, evolutionary benefits and disadvantages of each type of ovulatory control mechanism. In females of induced ovulating species estradiol acts in the brain to induce aspects of proceptive and receptive sexual behavior. The primary mechanism involved in the preovulatory release of GnRH among induced ovulators involves the activation of midbrain and brainstem noradrenergic neurons in response to genital-somatosensory signals generated by receipt of an intromission from a male during mating. These noradrenergic neurons project to the MBH and, when activated, promote the release of GnRH from nerve terminals in the median eminence. In contrast to spontaneous ovulators, there is little evidence that endogenous opioid peptides normally inhibit MBH GnRH release among induced ovulators. Instead, the neural signals that induce a preovulatory LH surge in these species seem to be primarily excitatory. A complete understanding of the neuroendocrine control of ovulation will only be achieved in the future by comparative studies of several animal model systems in which mating-induced as well as spontaneous, hormonally stimulated activation of GnRH neurons drives the preovulatory LH surge.
Collapse
Affiliation(s)
- J Bakker
- Department of Biology, Boston University, 5 Cummington Street, Boston, Massachusetts, 02215, USA
| | | |
Collapse
|
42
|
Hartman V, Crews D. Sociosexual stimuli affect ER- and PR-mRNA abundance in the hypothalamus of all-female whiptail lizards. Brain Res 1996; 741:344-7. [PMID: 9001740 DOI: 10.1016/s0006-8993(96)01087-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Hormone-dependent sociosexual behaviors of the displaying individual regulate the abundance of estrogen receptor- and progesterone receptor-mRNA in sex steroid hormone-concentrating brain areas of the partner. This effect of behavior on gene expression in the brain is independent of the gonads.
Collapse
Affiliation(s)
- V Hartman
- Department of Zoology, University of Texas at Austin 78712, USA
| | | |
Collapse
|
43
|
Young LJ, Nag PK, Crews D. Species differences in estrogen receptor and progesterone receptor-mRNA expression in the brain of sexual and unisexual whiptail lizards. J Neuroendocrinol 1995; 7:567-76. [PMID: 7496397 DOI: 10.1111/j.1365-2826.1995.tb00793.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Circulating concentrations of gonadal steroid hormones and reproductive behavior in female vertebrates vary as a function of ovarian state. Steroids secreted by the ovary, specifically estrogen and progesterone, influence the expression of behaviors associated with reproduction by intracellular sex steroid receptors located in specific regions of the brain. Using in situ hybridization, we analyzed estrogen receptor and progesterone receptor messenger RNA expression in several brain regions of ovariectomized, vitellogenic, and postovulatory individuals from two species of whiptail lizards (Cnemidophorus uniparens and C. inornatus). Although these species are genetically very similar, they differ in two aspects of their reproductive biology: (i) the unisexual C. uniparens alternate between expressing female-typical and male-like pseudosexual behaviors while female C. inornatus normally express only female receptive behavior, and (ii) circulating estradiol concentrations in reproductively active female C. uniparens are approximately five-fold lower than in reproductively active female C. inornatus. We found that the regulation of sex steroid receptor gene expression was region specific, with receptor-mRNA expression being increased, unchanged, or decreased during vitellogenesis depending on the area. Furthermore, several species differences in the amount of sex steroid receptor-mRNA were found that may be relevant to the species differences in circulating estrogen concentrations and sexual behavior.
Collapse
Affiliation(s)
- L J Young
- Department of Zoology, University of Texas at Austin 78712, USA
| | | | | |
Collapse
|
44
|
Crews D. Psychobiology of reptilian reproduction. THE JOURNAL OF EXPERIMENTAL ZOOLOGY. SUPPLEMENT : PUBLISHED UNDER AUSPICES OF THE AMERICAN SOCIETY OF ZOOLOGISTS AND THE DIVISION OF COMPARATIVE PHYSIOLOGY AND BIOCHEMISTRY 1990; 4:164-6. [PMID: 1974784 DOI: 10.1002/jez.1402560433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The key to understanding species variation in neuroendocrine controlling mechanisms lies in understanding the constraints that have given rise to diverse reproductive patterns. Recent research clearly shows that species evolving under different constraints exhibit different patterns of reproduction and have fundamentally different neuroendocrine mechanisms controlling reproduction. Diversity can be exploited profitably by those interested in the fundamental nature of biobehavioral mechanisms. The comparative approach also promises to increase our understanding of broader intellectual and theoretical issues in behavioral endocrinology.
Collapse
Affiliation(s)
- D Crews
- Department of Zoology, University of Texas, Austin 78712
| |
Collapse
|
45
|
|