1
|
Wei W, Smrcka AV. Internalized β2-Adrenergic Receptors Oppose PLC-Dependent Hypertrophic Signaling. Circ Res 2024; 135:e24-e38. [PMID: 38813686 PMCID: PMC11223973 DOI: 10.1161/circresaha.123.323201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Chronically elevated neurohumoral drive, and particularly elevated adrenergic tone leading to β-adrenergic receptor (β-AR) overstimulation in cardiac myocytes, is a key mechanism involved in the progression of heart failure. β1-AR (β1-adrenergic receptor) and β2-ARs (β2-adrenergic receptor) are the 2 major subtypes of β-ARs present in the human heart; however, they elicit different or even opposite effects on cardiac function and hypertrophy. For example, chronic activation of β1-ARs drives detrimental cardiac remodeling while β2-AR signaling is protective. The underlying molecular mechanisms for cardiac protection through β2-ARs remain unclear. METHODS β2-AR signaling mechanisms were studied in isolated neonatal rat ventricular myocytes and adult mouse ventricular myocytes using live cell imaging and Western blotting methods. Isolated myocytes and mice were used to examine the roles of β2-AR signaling mechanisms in the regulation of cardiac hypertrophy. RESULTS Here, we show that β2-AR activation protects against hypertrophy through inhibition of phospholipaseCε signaling at the Golgi apparatus. The mechanism for β2-AR-mediated phospholipase C inhibition requires internalization of β2-AR, activation of Gi and Gβγ subunit signaling at endosome and ERK (extracellular regulated kinase) activation. This pathway inhibits both angiotensin II and Golgi-β1-AR-mediated stimulation of phosphoinositide hydrolysis at the Golgi apparatus ultimately resulting in decreased PKD (protein kinase D) and histone deacetylase 5 phosphorylation and protection against cardiac hypertrophy. CONCLUSIONS This reveals a mechanism for β2-AR antagonism of the phospholipase Cε pathway that may contribute to the known protective effects of β2-AR signaling on the development of heart failure.
Collapse
Affiliation(s)
- Wenhui Wei
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, United States
| | - Alan V. Smrcka
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, United States
| |
Collapse
|
2
|
Liu S, Anderson PJ, Rajagopal S, Lefkowitz RJ, Rockman HA. G Protein-Coupled Receptors: A Century of Research and Discovery. Circ Res 2024; 135:174-197. [PMID: 38900852 PMCID: PMC11192237 DOI: 10.1161/circresaha.124.323067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
GPCRs (G protein-coupled receptors), also known as 7 transmembrane domain receptors, are the largest receptor family in the human genome, with ≈800 members. GPCRs regulate nearly every aspect of human physiology and disease, thus serving as important drug targets in cardiovascular disease. Sharing a conserved structure comprised of 7 transmembrane α-helices, GPCRs couple to heterotrimeric G-proteins, GPCR kinases, and β-arrestins, promoting downstream signaling through second messengers and other intracellular signaling pathways. GPCR drug development has led to important cardiovascular therapies, such as antagonists of β-adrenergic and angiotensin II receptors for heart failure and hypertension, and agonists of the glucagon-like peptide-1 receptor for reducing adverse cardiovascular events and other emerging indications. There continues to be a major interest in GPCR drug development in cardiovascular and cardiometabolic disease, driven by advances in GPCR mechanistic studies and structure-based drug design. This review recounts the rich history of GPCR research, including the current state of clinically used GPCR drugs, and highlights newly discovered aspects of GPCR biology and promising directions for future investigation. As additional mechanisms for regulating GPCR signaling are uncovered, new strategies for targeting these ubiquitous receptors hold tremendous promise for the field of cardiovascular medicine.
Collapse
Affiliation(s)
- Samuel Liu
- Department of Medicine, Duke University Medical
Center
| | - Preston J. Anderson
- Cell and Molecular Biology (CMB), Duke University, Durham,
NC, 27710, USA
- Duke Medical Scientist Training Program, Duke University,
Durham, NC, 27710, USA
| | - Sudarshan Rajagopal
- Department of Medicine, Duke University Medical
Center
- Cell and Molecular Biology (CMB), Duke University, Durham,
NC, 27710, USA
- Deparment of Biochemistry Duke University, Durham, NC,
27710, USA
| | - Robert J. Lefkowitz
- Department of Medicine, Duke University Medical
Center
- Deparment of Biochemistry Duke University, Durham, NC,
27710, USA
- Howard Hughes Medical Institute, Duke University Medical
Center, Durham, North Carolina 27710, USA
| | - Howard A. Rockman
- Department of Medicine, Duke University Medical
Center
- Cell and Molecular Biology (CMB), Duke University, Durham,
NC, 27710, USA
| |
Collapse
|
3
|
Corbi G, Comegna M, Vinciguerra C, Capasso A, Onorato L, Salucci AM, Rapacciuolo A, Cannavo A. Age and sex mediated effects of estrogen and Β3-adrenergic receptor on cardiovascular pathophysiology. Exp Gerontol 2024; 190:112420. [PMID: 38588751 DOI: 10.1016/j.exger.2024.112420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Sex differences are consistently identified in determining the prevalence, manifestation, and response to therapies in several systemic disorders, including those affecting the cardiovascular (CV), skeletal muscle, and nervous system. Interestingly, such differences are often more noticeable as we age. For example, premenopausal women experience a lower risk of CV disease than men of the same age. While at an advanced age, with menopause, the risk of cardiovascular diseases and adverse outcomes increases exponentially in women, exceeding that of men. However, this effect appears to be reversed in diseases such as pulmonary hypertension, where women are up to seven times more likely than men to develop an idiopathic form of the disease with symptoms developing ten years earlier than their male counterparts. Explaining this is a complex question. However, several factors and mechanisms have been identified in recent decades, including a role for sex hormones, particularly estrogens and their related receptors. Furthermore, an emerging role in these sex differences has also been suggested for β-adrenergic receptors (βARs), which are essential regulators of mammalian physiology. It has in fact been shown that βARs interact with estrogen receptors (ER), providing further demonstration of their involvement in determining sexual differences. Based on these premises, this review article focused on the β3AR subtype, which shows important activities in adipose tissue but with new and interesting roles in regulating the function of cardiomyocytes and vascular cells. In detail, we examined how β3AR and ER signaling are intertwined and whether there would be sex- and age-dependent specific effects of these receptor systems.
Collapse
Affiliation(s)
- Graziamaria Corbi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Marika Comegna
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy; CEINGE-Advanced Biotechnologies - Franco Salvatore, Naples, Italy
| | - Caterina Vinciguerra
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Alessio Capasso
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Luigi Onorato
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Antonio Rapacciuolo
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Alessandro Cannavo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
4
|
Maaliki D, Jaffa AA, Nasser S, Sahebkar A, Eid AH. Adrenoceptor Desensitization: Current Understanding of Mechanisms. Pharmacol Rev 2024; 76:358-387. [PMID: 38697858 DOI: 10.1124/pharmrev.123.000831] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 05/05/2024] Open
Abstract
G-protein coupled receptors (GPCRs) transduce a wide range of extracellular signals. They are key players in the majority of biologic functions including vision, olfaction, chemotaxis, and immunity. However, as essential as most of them are to body function and homeostasis, overactivation of GPCRs has been implicated in many pathologic diseases such as cancer, asthma, and heart failure (HF). Therefore, an important feature of G protein signaling systems is the ability to control GPCR responsiveness, and one key process to control overstimulation involves initiating receptor desensitization. A number of steps are appreciated in the desensitization process, including cell surface receptor phosphorylation, internalization, and downregulation. Rapid or short-term desensitization occurs within minutes and involves receptor phosphorylation via the action of intracellular protein kinases, the binding of β-arrestins, and the consequent uncoupling of GPCRs from their cognate heterotrimeric G proteins. On the other hand, long-term desensitization occurs over hours to days and involves receptor downregulation or a decrease in cell surface receptor protein level. Of the proteins involved in this biologic phenomenon, β-arrestins play a particularly significant role in both short- and long-term desensitization mechanisms. In addition, β-arrestins are involved in the phenomenon of biased agonism, where the biased ligand preferentially activates one of several downstream signaling pathways, leading to altered cellular responses. In this context, this review discusses the different patterns of desensitization of the α 1-, α 2- and the β adrenoceptors and highlights the role of β-arrestins in regulating physiologic responsiveness through desensitization and biased agonism. SIGNIFICANCE STATEMENT: A sophisticated network of proteins orchestrates the molecular regulation of GPCR activity. Adrenoceptors are GPCRs that play vast roles in many physiological processes. Without tightly controlled desensitization of these receptors, homeostatic imbalance may ensue, thus precipitating various diseases. Here, we critically appraise the mechanisms implicated in adrenoceptor desensitization. A better understanding of these mechanisms helps identify new druggable targets within the GPCR desensitization machinery and opens exciting therapeutic fronts in the treatment of several pathologies.
Collapse
Affiliation(s)
- Dina Maaliki
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Aneese A Jaffa
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Suzanne Nasser
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Amirhossein Sahebkar
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Ali H Eid
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| |
Collapse
|
5
|
Baker JG, Summers RJ. Adrenoceptors: Receptors, Ligands and Their Clinical Uses, Molecular Pharmacology and Assays. Handb Exp Pharmacol 2024; 285:55-145. [PMID: 38926158 DOI: 10.1007/164_2024_713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The nine G protein-coupled adrenoceptor subtypes are where the endogenous catecholamines adrenaline and noradrenaline interact with cells. Since they are important therapeutic targets, over a century of effort has been put into developing drugs that modify their activity. This chapter provides an outline of how we have arrived at current knowledge of the receptors, their physiological roles and the methods used to develop ligands. Initial studies in vivo and in vitro with isolated organs and tissues progressed to cell-based techniques and the use of cloned adrenoceptor subtypes together with high-throughput assays that allow close examination of receptors and their signalling pathways. The crystal structures of many of the adrenoceptor subtypes have now been determined opening up new possibilities for drug development.
Collapse
Affiliation(s)
- Jillian G Baker
- Cell Signalling, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, UK.
- Department of Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK.
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
6
|
Steinberg SF. Redox and proteolytic regulation of cardiomyocyte β 1-adrenergic receptors - a novel paradigm for the regulation of catecholamine responsiveness in the heart. Front Immunol 2023; 14:1306467. [PMID: 38111579 PMCID: PMC10726029 DOI: 10.3389/fimmu.2023.1306467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/21/2023] [Indexed: 12/20/2023] Open
Abstract
Conventional models view β1-adrenergic receptors (β1ARs) as full-length proteins that activate signaling pathways that influence contractile function and ventricular remodeling - and are susceptible to agonist-dependent desensitization. This perspective summarizes recent studies from my laboratory showing that post-translational processing of the β1-adrenergic receptor N-terminus results in the accumulation of both full-length and N-terminally truncated forms of the β1AR that differ in their signaling properties. We also implicate oxidative stress and β1AR cleavage by elastase as two novel mechanisms that would (in the setting of cardiac injury or inflammation) lead to altered or decreased β1AR responsiveness.
Collapse
Affiliation(s)
- Susan F. Steinberg
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, United States
| |
Collapse
|
7
|
Tropea T, Mavichak W, Evangelinos A, Brennan-Richardson C, Cottrell EC, Myers JE, Johnstone ED, Brownbill P. Fetoplacental vascular effects of maternal adrenergic antihypertensive and cardioprotective medications in pregnancy. J Hypertens 2023; 41:1675-1687. [PMID: 37694528 PMCID: PMC10552840 DOI: 10.1097/hjh.0000000000003532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/07/2023] [Accepted: 07/24/2023] [Indexed: 09/12/2023]
Abstract
Maternal cardiovascular diseases, including hypertension and cardiac conditions, are associated with poor fetal outcomes. A range of adrenergic antihypertensive and cardioprotective medications are often prescribed to pregnant women to reduce major maternal complications during pregnancy. Although these treatments are not considered teratogenic, they may have detrimental effects on fetal growth and development, as they cross the fetoplacental barrier, and may contribute to placental vascular dysregulation. Medication risk assessment sheets do not include specific advice to clinicians and women regarding the safety of these therapies for use in pregnancy and the potential off-target effects of adrenergic medications on fetal growth have not been rigorously conducted. Little is known of their effects on the fetoplacental vasculature. There is also a dearth of knowledge on adrenergic receptor activation and signalling within the endothelium and vascular smooth muscle cells of the human placenta, a vital organ in the maintenance of adequate blood flow to satisfy fetal growth and development. The fetoplacental circulation, absent of sympathetic innervation, and unique in its reliance on endocrine, paracrine and autocrine influence in the regulation of vascular tone, appears vulnerable to dysregulation by adrenergic antihypertensive and cardioprotective medications compared with the adult peripheral circulation. This semi-systematic review focuses on fetoplacental vascular expression of adrenergic receptors, associated cell signalling mechanisms and predictive consequences of receptor activation/deactivation by antihypertensive and cardioprotective medications.
Collapse
Affiliation(s)
- Teresa Tropea
- Maternal & Fetal Health Research Centre, Division of Developmental Biology & Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester
- St Mary's Hospital, Manchester University Hospital NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Weerawaroon Mavichak
- Maternal & Fetal Health Research Centre, Division of Developmental Biology & Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester
- St Mary's Hospital, Manchester University Hospital NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Angelos Evangelinos
- Maternal & Fetal Health Research Centre, Division of Developmental Biology & Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester
- St Mary's Hospital, Manchester University Hospital NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Charlotte Brennan-Richardson
- Maternal & Fetal Health Research Centre, Division of Developmental Biology & Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester
- St Mary's Hospital, Manchester University Hospital NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Elizabeth C. Cottrell
- Maternal & Fetal Health Research Centre, Division of Developmental Biology & Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester
- St Mary's Hospital, Manchester University Hospital NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Jenny E. Myers
- Maternal & Fetal Health Research Centre, Division of Developmental Biology & Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester
- St Mary's Hospital, Manchester University Hospital NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Edward D. Johnstone
- Maternal & Fetal Health Research Centre, Division of Developmental Biology & Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester
- St Mary's Hospital, Manchester University Hospital NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Paul Brownbill
- Maternal & Fetal Health Research Centre, Division of Developmental Biology & Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester
- St Mary's Hospital, Manchester University Hospital NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
8
|
Haddiya I, Valoti S. Current Knowledge of Beta-Blockers in Chronic Hemodialysis Patients. Int J Nephrol Renovasc Dis 2023; 16:223-230. [PMID: 37849744 PMCID: PMC10578177 DOI: 10.2147/ijnrd.s414774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/29/2023] [Indexed: 10/19/2023] Open
Abstract
Beta-blockers include a large spectrum of drugs with various specific characteristics, and a well-known cardioprotective efficacy. They are recommended in heart failure, hypertension and arrhythmia. Their use in chronic hemodialysis patients is still controversial, mainly because of the lack of specific randomized clinical trials. Large observational studies and two important clinical trials have reported almost unanimously their efficacy in chronic hemodialysis patients, which seems to be related to their levels of dialyzability and cardioselectivity. A recent meta-analysis suggested that high dialyzable beta-blockers are correlated to a reduced risk of all-cause mortality and cardiovascular complications compared with low dialyzable beta-blockers. Despite their benefits, beta-blockers may have adverse effects, such as intradialytic hypotension with low dialyzability beta-blockers or the risk of sub-therapeutic plasma concentration of high dialyzable ones during dialysis sessions. Both cases are linked to adverse cardiovascular events. A solution for both high and low dialyzable drugs could be their administration after dialysis sessions. Futhermore, the bulk of existing literature seems to favor cardioselective beta-blockers with moderate-to-high dialyzability as the ideal agents in dialysis patients, but further, larger studies are needed. This review aims to analyze beta-blockers' characteristics, indications and evidence-based role in chronic hemodialysis patients.
Collapse
Affiliation(s)
- Intissar Haddiya
- Department of Nephrology, Faculty of Medicine and Pharmacy, University Mohamed Premier, Oujda, Morocco
- Laboratory of Epidemiology, Clinical Research and Public Health, Faculty of Medicine and Pharmacy, University Mohamed Premier, Oujda, Morocco
| | - Siria Valoti
- Department of Medicine, Faculty of Medicine, Università degli Studi di Milano Statale, Milano, Italia
| |
Collapse
|
9
|
Joyce W, Warwicker J, Shiels HA, Perry SF. Evolution and divergence of teleost adrenergic receptors: why sometimes 'the drugs don't work' in fish. J Exp Biol 2023; 226:jeb245859. [PMID: 37823524 DOI: 10.1242/jeb.245859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Adrenaline and noradrenaline, released as hormones and/or neurotransmitters, exert diverse physiological functions in vertebrates, and teleost fishes are widely used as model organisms to study adrenergic regulation; however, such investigations often rely on receptor subtype-specific pharmacological agents (agonists and antagonists; see Glossary) developed and validated in mammals. Meanwhile, evolutionary (phylogenetic and comparative genomic) studies have begun to unravel the diversification of adrenergic receptors (ARs) and reveal that whole-genome duplications and pseudogenization events in fishes results in notable distinctions from mammals in their genomic repertoire of ARs, while lineage-specific gene losses within teleosts have generated significant interspecific variability. In this Review, we visit the evolutionary history of ARs (including α1-, α2- and β-ARs) to highlight the prominent interspecific differences in teleosts, as well as between teleosts and other vertebrates. We also show that structural modelling of teleost ARs predicts differences in ligand binding affinity compared with mammalian orthologs. To emphasize the difficulty of studying the roles of different AR subtypes in fish, we collate examples from the literature of fish ARs behaving atypically compared with standard mammalian pharmacology. Thereafter, we focus on specific case studies of the liver, heart and red blood cells, where our understanding of AR expression has benefited from combining pharmacological approaches with molecular genetics. Finally, we briefly discuss the ongoing advances in 'omics' technologies that, alongside classical pharmacology, will provide abundant opportunities to further explore adrenergic signalling in teleosts.
Collapse
Affiliation(s)
- William Joyce
- Department of Biology - Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
| | - Jim Warwicker
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK
| | - Holly A Shiels
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Steve F Perry
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada, K1N 6N5
| |
Collapse
|
10
|
Wei W, Smrcka AV. Internalized β2-Adrenergic Receptors Inhibit Subcellular Phospholipase C-Dependent Cardiac Hypertrophic Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544153. [PMID: 37333278 PMCID: PMC10274790 DOI: 10.1101/2023.06.07.544153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Chronically elevated neurohumoral drive, and particularly elevated adrenergic tone leading to β-adrenergic receptor (β-AR) overstimulation in cardiac myocytes, is a key mechanism involved in the progression of heart failure. β1-AR and β2-ARs are the two major subtypes of β-ARs present in the human heart, however, they elicit different or even opposite effects on cardiac function and hypertrophy. For example, chronic activation of β1ARs drives detrimental cardiac remodeling while β2AR signaling is protective. The underlying molecular mechanisms for cardiac protection through β2ARs remain unclear. Here we show that β2-AR protects against hypertrophy through inhibition of PLCε signaling at the Golgi apparatus. The mechanism for β2AR-mediated PLC inhibition requires internalization of β2AR, activation of Gi and Gβγ subunit signaling at endosomes and ERK activation. This pathway inhibits both angiotensin II and Golgi-β1-AR-mediated stimulation of phosphoinositide hydrolysis at the Golgi apparatus ultimately resulting in decreased PKD and HDAC5 phosphorylation and protection against cardiac hypertrophy. This reveals a mechanism for β2-AR antagonism of the PLCε pathway that may contribute to the known protective effects of β2-AR signaling on the development of heart failure.
Collapse
Affiliation(s)
- Wenhui Wei
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, United States
| | - Alan V. Smrcka
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, United States
| |
Collapse
|
11
|
Dasram MH, Walker RB, Khamanga SM. Recent Advances in Endocannabinoid System Targeting for Improved Specificity: Strategic Approaches to Targeted Drug Delivery. Int J Mol Sci 2022; 23:13223. [PMID: 36362014 PMCID: PMC9658826 DOI: 10.3390/ijms232113223] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/26/2022] Open
Abstract
Opportunities for developing innovative and intelligent drug delivery technologies by targeting the endocannabinoid system are becoming more apparent. This review provides an overview of strategies to develop targeted drug delivery using the endocannabinoid system (ECS). Recent advances in endocannabinoid system targeting showcase enhanced pharmaceutical therapy specificity while minimizing undesirable side effects and overcoming formulation challenges associated with cannabinoids. This review identifies advances in targeted drug delivery technologies that may permit access to the full pharmacotherapeutic potential of the ECS. The design of optimized nanocarriers that target specific tissues can be improved by understanding the nature of the signaling pathways, distribution in the mammalian body, receptor structure, and enzymatic degradation of the ECS. A closer look at ligand-receptor complexes, endocannabinoid tone, tissue distribution, and G-protein activity leads to a better understanding of the potential of the ECS toolkit for therapeutics. The signal transduction pathways examine the modulation of downstream effector proteins, desensitization, signaling cascades, and biased signaling. An in-depth and overall view of the targeted system is achieved through homology modeling where mutagenesis and ligand binding examine the binding site and allow sequence analysis and the formation of libraries for molecular docking and molecular dynamic simulations. Internalization routes exploring receptor-mediated endocytosis and lipid rafts are also considered for explicit signaling. Furthermore, the review highlights nanotechnology and surface modification aspects as a possible future approach for specific targeting.
Collapse
Affiliation(s)
| | | | - Sandile M. Khamanga
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6139, South Africa
| |
Collapse
|
12
|
Wei W, Smrcka AV. Subcellular β-Adrenergic Receptor Signaling in Cardiac Physiology and Disease. J Cardiovasc Pharmacol 2022; 80:334-341. [PMID: 35881897 PMCID: PMC9452480 DOI: 10.1097/fjc.0000000000001324] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/29/2022] [Indexed: 01/31/2023]
Abstract
ABSTRACT Adrenergic receptors are critical regulators of cardiac function with profound effects on cardiac output during sympathetic stimulation. Chronic stimulation of the adrenergic system of the heart under conditions of cardiac stress leads to cardiac dysfunction, hypertrophy, and ultimately failure. Emerging data have revealed that G protein-coupled receptors in intracellular compartments are functionally active and regulate distinct cellular processes from those at the cell surface. β2 adrenergic receptors internalize onto endosomes in various cell types where they have recently been shown to continue to stimulate cAMP production to selectively regulate gene expression. Other studies have identified β1 adrenergic receptors at the nuclear envelope and the Golgi apparatus. Here, we discuss data on signaling by β1 and β2 adrenergic receptors in the heart and the possible influence of their subcellular locations on their divergent physiological functions in cardiac myocytes and in cardiac pathology. Understanding the relative roles of these receptors at these locations could have a significant impact on pharmacological targeting of these receptors for the treatment of heart failure and cardiac diseases.
Collapse
Affiliation(s)
- Wenhui Wei
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
| | | |
Collapse
|
13
|
Muslimova E, Rebrova T, Kondratieva D, Korepanov V, Sonduev E, Kozlov B, Afanasiev S. Expression of the β1-adrenergic receptor (ADRB1) gene in the myocardium and β-adrenergic reactivity of the body in patients with a history of myocardium infraction. Gene 2022; 844:146820. [PMID: 35987510 DOI: 10.1016/j.gene.2022.146820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022]
Abstract
β1-adrenergic receptors (β1-AR) directly affect on intracardiac hemodynamic and the ability of the heart to tolerate physical activity by regulating its inotropic and chronotropic functions. Severe hypersympathicotonia, specific to coronary artery disease (CAD) and chronic heart failure (HF), leads to impaired functioning of β1-AR. The aim of this research was to assess the expression level of the β1-AR ADRB1 gene in the myocardium, to evaluate the β-adrenergic reactivity of the membrane (β-ARM) of erythrocytes, and to analyze the association of these parameters with myocardial contractile dysfunction in patients with a myocardial infarction (MI) in the past and without it. The study included 126 patients with chronic CAD. Among the patients, 55.6 % had a history of MI at least 6 months ago. The expression of the ADRB1 gene was assessed using real-time polymerase chain reaction. With this purpose, we isolated RNA from the right atrial appendage, which was excised when a heart-lung machine was connected during a planned coronary bypass surgery. β-ARM was evaluated in 57 patients. This method is based on the fact of inhibition of hemolysis of erythrocytes, placed in a hyposmotic medium, in the presence of a β-blocker. Within the whole sample of patients, the expression of the ADRB1 gene is comparable in different functional classes of HF. There was no linear correlation between the expression of the ADRB1 gene and left ventricle ejection fraction (LVEF). In patients with a history of MI, the expression of the ADRB1 gene was elevated when compared to a group of patients without MI (p = 0.017). Patients with a history of MI had higher values of β-ARM than those without MI (p = 0.017). The reverse correlation between β-ARM and LVEF (r = -0,570, p = 0,002) was revealed in the group of patients without MI but not in the group of patients with a history of MI (r = -0,137, p = 0,479). In the sample of patients with chronic CAD, in the myocardium of subjects with a history of MI, the relative expression of ADRB1 gene was higher compared to the group of patients without MI. In patients with different functional classes (FC) of HF and with different ejection fraction, both with MI and without it, ADRB1 gene expression was comparable. In the group of patients with a history of MI, an increase in β-ARM was observed, i.e. decrease in the number or sensitivity of β-AR. Among patients without MI, an inverse correlation was found between β-ARM and LVEF.
Collapse
Affiliation(s)
- Elvira Muslimova
- Laboratory of Molecular and Cellular Pathology and Gene Diagnostics, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.
| | - Tatiana Rebrova
- Laboratory of Molecular and Cellular Pathology and Gene Diagnostics, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Dina Kondratieva
- Laboratory of Molecular and Cellular Pathology and Gene Diagnostics, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Viacheslav Korepanov
- Laboratory of Molecular and Cellular Pathology and Gene Diagnostics, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Erdeni Sonduev
- Department of Cardiovascular Surgery, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Boris Kozlov
- Department of Cardiovascular Surgery, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Sergey Afanasiev
- Laboratory of Molecular and Cellular Pathology and Gene Diagnostics, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
14
|
Yusifov A, Woulfe KC, Bruns DR. Mechanisms and implications of sex differences in cardiac aging. THE JOURNAL OF CARDIOVASCULAR AGING 2022; 2:20. [PMID: 35419571 PMCID: PMC9004711 DOI: 10.20517/jca.2022.01] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Aging promotes structural and functional remodeling of the heart, even in the absence of external factors. There is growing clinical and experimental evidence supporting the existence of sex-specific patterns of cardiac aging, and in some cases, these sex differences emerge early in life. Despite efforts to identify sex-specific differences in cardiac aging, understanding how these differences are established and regulated remains limited. In addition to contributing to sex differences in age-related heart disease, sex differences also appear to underlie differential responses to cardiac stress such as adrenergic activation. Identifying the underlying mechanisms of sex-specific differences may facilitate the characterization of underlying heart disease phenotypes, with the ultimate goal of utilizing sex-specific therapeutic approaches for cardiac disease. The purpose of this review is to discuss the mechanisms and implications of sex-specific cardiac aging, how these changes render the heart more susceptible to disease, and how we can target age- and sex-specific differences to advance therapies for both male and female patients.
Collapse
Affiliation(s)
- Aykhan Yusifov
- Kinesiology & Health, University of Wyoming, Laramie, WY 82071, USA
| | - Kathleen C. Woulfe
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Danielle R. Bruns
- Kinesiology & Health, University of Wyoming, Laramie, WY 82071, USA
- Wyoming WWAMI Medical Education, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
15
|
Nasution R, Husein A, Adhyatma KP. Efficacy and safety of mirabegron in pediatric population: A systematic review. INTERNATIONAL JOURNAL OF SURGERY OPEN 2021. [DOI: 10.1016/j.ijso.2021.100412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Muslimova EF, Rebrova TY, Kondratieva DS, Sonduev EL, Kozlov BN, Afanasiev SA. Expression of the β1 Adrenergic Receptor Gene (ADRB1) in the Myocardium of Patients with Chronic Heart Failure. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421110089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
The Adrenergic Nerve Network in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:271-294. [PMID: 34664245 DOI: 10.1007/978-3-030-73119-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
The central and autonomic nervous systems interact and converge to build up an adrenergic nerve network capable of promoting cancer. While a local adrenergic sympathetic innervation in peripheral solid tumors influences cancer and stromal cell behavior, the brain can participate to the development of cancer through an intermixed dysregulation of the sympathoadrenal system, adrenergic neurons, and the hypothalamo-pituitary-adrenal axis. A deeper understanding of the adrenergic nerve circuitry within the brain and tumors and its interactions with the microenvironment should enable elucidation of original mechanisms of cancer and novel therapeutic strategies.
Collapse
|
18
|
Clinical value of detecting autoantibodies against β 1-, β 2,- and α 1-adrenergic receptors in carvedilol treatment of patients with heart failure. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2020; 17:305-312. [PMID: 32670360 PMCID: PMC7338933 DOI: 10.11909/j.issn.1671-5411.2020.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Objective To determine the possible association of anti-β1-adrenergic receptors (anti-β1-AR), anti-β2-AR and anti-α1-AR with carvedilol treatment in patients with heart failure (HF). Methods A total of 267 HF patients were prospectively enrolled. Blood samples were measured by an enzyme-linked immunosorbent assay. All of the patients received carvedilol for their HF. Each patient was followed up for six months and their cardiac function was measured. Results The final analysis encompassed 137 patients comprising 65 patients with three autoantibodies (positive group) and 72 patients without all three autoantibodies but with one or two autoantibodies (negative group). The frequency and geometric mean titer of anti-β1-AR, anti-β2-AR, and anti-α1-AR were significantly lower in the group without all three autoantibodies after six months of carvedilol treatment (all P < 0.01; from 100% to 57%, 50%, and 49%, respectively; and from 1: 118, 1: 138, and 1: 130 to 1: 72, 1: 61, and 1: 67, respectively). Furthermore, 28 patients in the positive group demonstrated complete ablation of autoantibodies. In addition, left ventricular remodelling and function was significantly improved by the use of carvedilol combined with the standard treatment regime for six months in the positive group (P < 0.01) when compared to the negative group (P < 0.05). Conclusions Carvedilol treatment significantly decreases frequency and geometric mean titer in patients with all three autoantibodies, even up to complete ablation, and significantly improved cardiac function and remodelling. The effect of carvedilol is probably correlated to the presence of all three autoantibodies.
Collapse
|
19
|
Leach S, Suzuki K. Adrenergic Signaling in Circadian Control of Immunity. Front Immunol 2020; 11:1235. [PMID: 32714319 PMCID: PMC7344327 DOI: 10.3389/fimmu.2020.01235] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/18/2020] [Indexed: 01/07/2023] Open
Abstract
Circadian rhythms govern a multitude of physiologic processes, both on a cell-intrinsic level and systemically, through the coordinated function of multi-organ biosystems. One such system-the adrenergic system-relies on the catecholamine neurotransmitters, adrenaline and noradrenaline, to carry out a range of biological functions. Production of these catecholamines is under dual regulation by both neural components of the sympathetic nervous system and hormonal mechanisms involving the hypothalamus-pituitary-adrenal axis. Importantly, both neural and hormonal arms receive input from the body's central clock, giving rise to the observed rhythmic variations in catecholamine levels in blood and peripheral tissues. Oscillations in catecholamine signals have the potential to influence various cellular targets expressing adrenergic receptors, including cells of the immune system. This review will focus on ways in which the body's central master clock regulates the adrenergic system to generate circadian rhythms in adrenaline and noradrenaline, and will summarize the existing literature linking circadian control of the adrenergic system to immunologic outcomes. A better understanding of the complex, multi-system pathways involved in the control of adrenergic signals may provide immunologists with new insight into mechanisms of immune regulation and precipitate the discovery of new therapeutics.
Collapse
Affiliation(s)
| | - Kazuhiro Suzuki
- Laboratory of Immune Response Dynamics, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| |
Collapse
|
20
|
Wölfel A, Sättele M, Zechmeister C, Nikolaev VO, Lohse MJ, Boege F, Jahns R, Boivin-Jahns V. Unmasking features of the auto-epitope essential for β 1 -adrenoceptor activation by autoantibodies in chronic heart failure. ESC Heart Fail 2020; 7:1830-1841. [PMID: 32436653 PMCID: PMC7373925 DOI: 10.1002/ehf2.12747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/31/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022] Open
Abstract
Aims Chronic heart failure (CHF) can be caused by autoantibodies stimulating the heart via binding to first and/or second extracellular loops of cardiac β1‐adrenoceptors. Allosteric receptor activation depends on conformational features of the autoantibody binding site. Elucidating these features will pave the way for the development of specific diagnostics and therapeutics. Our aim was (i) to fine‐map the conformational epitope within the second extracellular loop of the human β1‐adrenoceptor (β1ECII) that is targeted by stimulating β1‐receptor (auto)antibodies and (ii) to generate competitive cyclopeptide inhibitors of allosteric receptor activation, which faithfully conserve the conformational auto‐epitope. Methods and results Non‐conserved amino acids within the β1ECII loop (compared with the amino acids constituting the ECII loop of the β2‐adrenoceptor) were one by one replaced with alanine; potential intra‐loop disulfide bridges were probed by cysteine–serine exchanges. Effects on antibody binding and allosteric receptor activation were assessed (i) by (auto)antibody neutralization using cyclopeptides mimicking β1ECII ± the above replacements, and (ii) by (auto)antibody stimulation of human β1‐adrenoceptors bearing corresponding point mutations. With the use of stimulating β1‐receptor (auto)antibodies raised in mice, rats, or rabbits and isolated from exemplary dilated cardiomyopathy patients, our series of experiments unmasked two features of the β1ECII loop essential for (auto)antibody binding and allosteric receptor activation: (i) the NDPK211–214 motif and (ii) the intra‐loop disulfide bond C209↔C215. Of note, aberrant intra‐loop disulfide bond C209↔C216 almost fully disrupted the functional auto‐epitope in cyclopeptides. Conclusions The conformational auto‐epitope targeted by cardio‐pathogenic β1‐receptor autoantibodies is faithfully conserved in cyclopeptide homologues of the β1ECII loop bearing the NDPK211–214 motif and the C209↔C215 bridge while lacking cysteine C216. Such molecules provide promising tools for novel diagnostic and therapeutic approaches in β1‐autoantibody‐positive CHF.
Collapse
Affiliation(s)
- Angela Wölfel
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, D-97078, Wuerzburg, Germany.,Rudolf-Virchow-Centre, Josef-Schneider-Str. 2, 97080, Würzburg, Germany.,Rudolf-Virchow-Centre, Pierre Fabre Dermo-Kosmetik GmbH, Jechtinger Straße 13, 79111, Freiburg, Germany
| | - Mathias Sättele
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, D-97078, Wuerzburg, Germany
| | - Christina Zechmeister
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, D-97078, Wuerzburg, Germany.,Interdisciplinary Bank of Biomaterials and Data (ibdw), University Hospital of Würzburg, Straubmühlweg 2A, D-97078, Würzburg, Germany.,Comprehensive Heart Failure Centre (CFHC), Am Schwarzenberg 11, 978078, Würzburg, Germany
| | - Viacheslav O Nikolaev
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, D-97078, Wuerzburg, Germany.,Institute for Molecular Cardiology, Department of Cardiology and Pneumology, University Hospital Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Martin J Lohse
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, D-97078, Wuerzburg, Germany.,Rudolf-Virchow-Centre, Josef-Schneider-Str. 2, 97080, Würzburg, Germany.,Institute Max Delbrück Center for Molecular Research, Berlin-Buch, Robert-Koch-Str. 40, 1000, Berlin, Germany
| | - Fritz Boege
- Rudolf-Virchow-Centre, Institute of Clinical Chemistry and Laboratory Diagnostics, University Hospital, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Roland Jahns
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, D-97078, Wuerzburg, Germany.,Interdisciplinary Bank of Biomaterials and Data (ibdw), University Hospital of Würzburg, Straubmühlweg 2A, D-97078, Würzburg, Germany.,Comprehensive Heart Failure Centre (CFHC), Am Schwarzenberg 11, 978078, Würzburg, Germany
| | - Valérie Boivin-Jahns
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, D-97078, Wuerzburg, Germany.,Comprehensive Heart Failure Centre (CFHC), Am Schwarzenberg 11, 978078, Würzburg, Germany
| |
Collapse
|
21
|
Martin P, de Witte PAM, Maurice T, Gammaitoni A, Farfel G, Galer B. Fenfluramine acts as a positive modulator of sigma-1 receptors. Epilepsy Behav 2020; 105:106989. [PMID: 32169824 DOI: 10.1016/j.yebeh.2020.106989] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Adjunctive fenfluramine hydrochloride, classically described as acting pharmacologically through a serotonergic mechanism, has demonstrated a unique and robust clinical response profile with regard to its magnitude, consistency, and durability of effect on seizure activity in patients with pharmacoresistant Dravet syndrome. Recent findings also support long-term improvements in executive functions (behavior, emotion, cognition) in these patients. The observed clinical profile is inconsistent with serotonergic activity alone, as other serotonergic medications have not been demonstrated to have these clinical effects. This study investigated a potential role for σ1 receptor activity in complementing fenfluramine's serotonergic pharmacology. METHODS Radioligand binding assays tested the affinity of fenfluramine for 47 receptors associated with seizures in the literature, including σ receptors. Cellular function assays tested fenfluramine and norfenfluramine (its major metabolite) activity at various receptors, including adrenergic, muscarinic, and serotonergic receptors. The σ1 receptor activity was assessed by the mouse vas deferens isometric twitch and by an assay of dissociation of the σ1 receptor from the endoplasmic reticulum stress protein binding immunoglobulin protein (BiP). In vivo mouse models assessed fenfluramine activity at σ1 receptors in ameliorating dizocilpine-induced learning deficits in spatial and nonspatial memory tasks, alone or in combination with the reference σ1 receptor agonist PRE-084. RESULTS Fenfluramine and norfenfluramine bound ≥30% to β2-adrenergic, muscarinic M1, serotonergic 5-HT1A, and σ receptors, as well as sodium channels, with a Ki between 266 nM (σ receptors) and 17.5 μM (β-adrenergic receptors). However, only σ1 receptor isometric twitch assays showed a positive functional response, with weak stimulation by fenfluramine and inhibition by norfenfluramine. Fenfluramine, but not the 5-HT2C agonist lorcaserin, showed a positive modulation of the PRE-084-induced dissociation of σ1 protein from BiP. Fenfluramine also showed dose-dependent antiamnesic effects against dizocilpine-induced learning deficits in spontaneous alternation and passive avoidance responses, which are models of σ1 activation. Moreover, low doses of fenfluramine synergistically potentiated the low-dose effect of PRE-084, confirming a positive modulatory effect at the σ1 receptor. Finally, all in vivo effects were blocked by the σ1 receptor antagonist NE-100. SIGNIFICANCE Fenfluramine demonstrated modulatory activity at σ1 receptors in vitro and in vivo in addition to its known serotonergic activity. These studies identify a possible new σ1 receptor mechanism underpinning fenfluramine's central nervous system effects, which may contribute to its antiseizure activity in Dravet syndrome and positive effects observed on executive functions in clinical studies.
Collapse
Affiliation(s)
| | - Peter A M de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| | - Tangui Maurice
- MMDN, University of Montpellier, INSERM, EPHE, UMR_S1198, Montpellier, France.
| | | | | | | |
Collapse
|
22
|
Ceddia RP, Collins S. A compendium of G-protein-coupled receptors and cyclic nucleotide regulation of adipose tissue metabolism and energy expenditure. Clin Sci (Lond) 2020; 134:473-512. [PMID: 32149342 PMCID: PMC9137350 DOI: 10.1042/cs20190579] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022]
Abstract
With the ever-increasing burden of obesity and Type 2 diabetes, it is generally acknowledged that there remains a need for developing new therapeutics. One potential mechanism to combat obesity is to raise energy expenditure via increasing the amount of uncoupled respiration from the mitochondria-rich brown and beige adipocytes. With the recent appreciation of thermogenic adipocytes in humans, much effort is being made to elucidate the signaling pathways that regulate the browning of adipose tissue. In this review, we focus on the ligand-receptor signaling pathways that influence the cyclic nucleotides, cAMP and cGMP, in adipocytes. We chose to focus on G-protein-coupled receptor (GPCR), guanylyl cyclase and phosphodiesterase regulation of adipocytes because they are the targets of a large proportion of all currently available therapeutics. Furthermore, there is a large overlap in their signaling pathways, as signaling events that raise cAMP or cGMP generally increase adipocyte lipolysis and cause changes that are commonly referred to as browning: increasing mitochondrial biogenesis, uncoupling protein 1 (UCP1) expression and respiration.
Collapse
Affiliation(s)
- Ryan P Ceddia
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| | - Sheila Collins
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| |
Collapse
|
23
|
Abstract
Ventricular myocytes dissociated from adult rat heart and cultured chick embryo ventricular cells were utilized to examine mechanisms by which neurotransmitters, hormones, and ontogeny modulate expression and function of β-adrenergic receptors and L-type calcium channels. Either freshly dissociated cells or cultured cells were studied by an optical-video system to characterize contractility and, in some instances, by a microspectrofluorimeter to determine [Ca2+]i as reported by fura 2. Ligand binding studies in intact cells and membranes were conducted with receptor and ion channel antagonists and agonists. Exposure of intact cells to isoproterenol produced contractile de-sensitization, loss of high affinity receptors from the sarcolemma and closely coupled decline in hormone-sensitive adenylate cyclase activity. Desensitization was by a microfilament-dependent process. Down-regulation depended upon microtubular function. During development of the chick heart, there was an increase in number of dihydropyridine binding sites, taken as a measure of number of L-type calcium channels, at a time when sensitivity to [Ca2+]o and to Bay k 8644 declined. Thyroid hormone was capable of up-regulating L-type calcium channels. Prolonged exposure to a β-adrenergic agonist produced coordinate down-regulation of β-receptors and calcium channels. Down-regulation was a cAMP-dependent process. Thus, the β-adrenergic receptor and a distal component of the effector-response coupling system, the L-type calcium channel, can be regulated independently and in concert by physiologically and pathophysiologically important mechanisms.
Collapse
Affiliation(s)
- James D. Marsh
- Cardiology Division, Department of Medicine,
Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
02115
| |
Collapse
|
24
|
Søndergaard AM, Overgaard CB, Mazur A, Postnov DD, Matchkov VV, Aalkjaer C. Rat mesenteric small artery neurogenic dilatation is predominantly mediated by β 1 -adrenoceptors in vivo. J Physiol 2019; 597:1819-1831. [PMID: 30693527 DOI: 10.1113/jp277368] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 01/23/2019] [Indexed: 01/19/2023] Open
Abstract
KEY POINTS The prevailing dogma about neurogenic regulation of vascular tone consists of major vasodilatation caused by CGRP (and possibly substance P) released from sensory-motor nerves and vasoconstriction caused by noradrenaline, ATP and neuropeptode Y release from sympathetic nerves. Most studies on perivascular nerve-mediated vasodilatation are made in vitro. In the present study, we provide evidence indicating that in vivo electrical perivascular nerve stimulation in rat mesenteric small arteries causes a large β1-adrenoceptor-mediated vasodilatation, which contrasts with a smaller vasodilatation caused by endogenous CGRP that is only visible after inhibition of Y1 NPY receptors. ABSTRACT Mesenteric arteries are densely innervated and the nerves are important regulators of vascular tone and hence blood pressure and blood flow. Perivascular sensory-motor nerves have been shown to cause vasodilatation in vitro. However, less is known about their function in vivo. Male Wistar rats (10-12 weeks old; n = 72) were anaesthetized with ketamine (3 mg kg-1 ) and xylazine (0.75 mg kg-1 ) or pentobarbital (60 mg kg-1 ). After a laparotomy, a section of second-order mesenteric artery was visualized in an organ bath after minimal removal of perivascular adipose tissue. The effects of electrical field stimulation (EFS) and drugs on artery diameter and blood flow were recorded with intravital microscopy and laser speckle imaging. EFS caused vasodilatation in arteries constricted with 1 μm U46619 in the presence of 140 μm suramin and 1 μm prazosin. The vasodilatation was inhibited by 1 μm tetrodotoxin and 5 μm guanethidine, although not by the 1 μm of the CGRP receptor antagonist BIBN4096bs. In the presence of 0.3 μm Y1 receptor antagonist BIBP3226, BIBN4096bs partly inhibited the vasodilatation. Atenolol at a concentration 1 μm inhibited the vasodilatation, whereas 0.1 μm of the β2 -adrenoceptor selective antagonist ICI-118,551 had no effect. Increasing the extracellular [K+ ] to 20 mm caused vasodilatation but was converted to vasoconstriction in the presence of 1 μm BIBN4096bs, and constriction to 30 mm potassium was potentiated by BIBN4096bs. Atenolol but not BIBN4096bs increased contraction to EFS in the absence of suramin and prazosin. In mesenteric small arteries of anaesthetized rats, EFS failed to stimulate major dilatation via sensory-motor nerves but induced sympathetic β1 -adrenoceptor-mediated dilatation.
Collapse
Affiliation(s)
| | | | - Aleksandra Mazur
- Department of Biomedicine, Membranes, University of Aarhus, Aarhus, Denmark
| | - Dmitry D Postnov
- Department of Biomedical Sciences, University of Copenhagen, Denmark.,Neurophotonics Center, Boston University, Boston, MA, USA
| | | | - Christian Aalkjaer
- Department of Biomedicine, Membranes, University of Aarhus, Aarhus, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
25
|
Abstract
The study of taste has been guided throughout much of its history by the conceptual framework of psychophysics, where the focus was on quantification of the subjective experience of the taste sensations. By the mid-20th century, data from physiologic studies had accumulated sufficiently to assemble a model for the function of receptors that must mediate the initial stimulus of tastant molecules in contact with the tongue. But the study of taste as a receptor-mediated event did not gain momentum until decades later when the actual receptor proteins and attendant signaling mechanisms were identified and localized to the highly specialized taste-responsive cells of the tongue. With those discoveries a new opportunity to examine taste as a function of receptor activity has come into focus. Pharmacology is the science designed specifically for the experimental interrogation and quantitative characterization of receptor function at all levels of inquiry from molecules to behavior. This review covers the history of some of the major concepts that have shaped thinking and experimental approaches to taste, the seminal discoveries that have led to elucidation of receptors for taste, and how applying principles of receptor pharmacology can enhance understanding of the mechanisms of taste physiology and perception.
Collapse
Affiliation(s)
- R Kyle Palmer
- Opertech Bio, Inc., Pennovation Center, Philadelphia, Pennsylvania
| |
Collapse
|
26
|
Park M, Steinberg SF. Carvedilol Prevents Redox Inactivation of Cardiomyocyte Β 1-Adrenergic Receptors. JACC Basic Transl Sci 2018; 3:521-532. [PMID: 30175276 PMCID: PMC6116783 DOI: 10.1016/j.jacbts.2018.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 01/14/2023]
Abstract
The mechanism that leads to a decrease in β1-adrenergic receptor (β1AR) expression in the failing heart remains uncertain. This study shows that cardiomyocyte β1AR expression and isoproterenol responsiveness decrease in response to oxidative stress. Studies of mechanisms show that the redox-dependent decrease in β1AR expression is uniquely prevented by carvedilol and not other βAR ligands. Carvedilol also promotes the accumulation of N-terminally truncated β1ARs that confer protection against doxorubicin-induced apoptosis in association with activation of protein kinase B. The redox-induced molecular controls for cardiomyocyte β1ARs and pharmacologic properties of carvedilol identified in this study have important clinical and therapeutic implications.
Collapse
Key Words
- AKT
- AKT, protein kinase B
- CREB, cyclic adenosine monophosphate binding response element protein
- ERK, extracellular regulated kinase
- FL, full-length
- GFX, GF109203X
- GRK, G protein–coupled receptor kinase
- HF, heart failure
- PKA, protein kinase A
- PKC, protein kinase C
- PTX, pertussis toxin
- ROS, reactive oxygen species
- cAMP, cyclic adenosine monophosphate
- cardiomyocytes
- cardioprotection
- oxidant stress
- β1-adrenergic receptor
- βAR, β-adrenergic receptor
Collapse
Affiliation(s)
- Misun Park
- Department of Pharmacology, Columbia University, New York, New York
| | | |
Collapse
|
27
|
Boivin-Jahns V, Uhland K, Holthoff HP, Beyersdorf N, Kocoski V, Kerkau T, Münch G, Lohse MJ, Ungerer M, Jahns R. Cyclopeptide COR-1 to treat beta1-adrenergic receptor antibody-induced heart failure. PLoS One 2018; 13:e0201160. [PMID: 30125285 PMCID: PMC6101361 DOI: 10.1371/journal.pone.0201160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/10/2018] [Indexed: 01/05/2023] Open
Abstract
RATIONALE Despite advances in pharmacotherapy, heart failure still incurs significant morbidity and mortality. Stimulating antibodies directed against the secondextracellular loop of the human ß1-adrenergic receptor (anti-ß1EC2) cause myocyte damage and heart failure in rats. This receptor domain is 100% homologous between rats and humans. OBJECTIVE ß1EC2-mimicking cyclopeptides (25-meric) markedly improved the development and/or course of anti-ß1EC2-mediated cardiomyopathy. Further developments should be investigated. METHODS AND RESULTS The shortened 18-meric cyclic peptide COR-1, in which one of the two disulphide bonds was removed to enable reproducible GMP production, can also be used to treat cardiomyopathic rats. Echocardiography, catheterization and histopathology of the rat hearts revealed that monthly intravenous administrations of COR-1 almost fully reversed the cardiomyopathic phenotype within 6 months at doses of 1 to 4 mg/kg body weight. Administration of COR-1 resulted in markedly reduced anti-ß1EC2-expressing memory B lymphocytes in the spleen despite continued antigenic boosts, but did not significantly decrease overall peripheral anti-ß1EC2 titers. COR-1 did not induce any anti-ß1EC2 or other immune response in naïve rats (corresponding to findings in healthy human volunteers). It did not cause any toxic side effects in GLP studies in dogs, rats or mice, and the "no observed adverse effect level" (NOAEL) exceeded the therapeutic doses by 100-fold. CONCLUSION The second generation immunomodulating epitope-mimicking cyclopeptide COR-1 (also termed JNJ-5442840) offers promise to treat immune-mediated cardiac diseases.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibody Specificity
- Disease Models, Animal
- Female
- Guinea Pigs
- Heart Failure/drug therapy
- Heart Failure/etiology
- Heart Failure/physiopathology
- Humans
- Male
- Molecular Mimicry/immunology
- Myocardium/metabolism
- Peptide Fragments/chemistry
- Peptide Fragments/therapeutic use
- Peptides, Cyclic/chemistry
- Peptides, Cyclic/therapeutic use
- Peptides, Cyclic/toxicity
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred Lew
- Rats, Wistar
- Receptors, Adrenergic, beta-1/chemistry
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-1/immunology
Collapse
Affiliation(s)
- Valérie Boivin-Jahns
- Department of Pharmacology and Toxicology, University of Würzburg, Comprehensive Heart Failure Centre (CHFC), University Hospital Würzburg, Würzburg, Germany
| | | | | | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Vladimir Kocoski
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Thomas Kerkau
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | | | - Martin J. Lohse
- Department of Pharmacology and Toxicology, University of Würzburg, Comprehensive Heart Failure Centre (CHFC), University Hospital Würzburg, Würzburg, Germany
| | | | - Roland Jahns
- Department of Pharmacology and Toxicology, University of Würzburg, Comprehensive Heart Failure Centre (CHFC), University Hospital Würzburg, Würzburg, Germany
- Interdisciplinary Bank of Biomaterials and Data Würzburg, Comprehensive Heart Failure Centre (CHFC), Würzburg, Germany
| |
Collapse
|
28
|
Ku AF, Cuny GD. Discovery of 7-hydroxyaporphines as conformationally restricted ligands for beta-1 and beta-2 adrenergic receptors. MEDCHEMCOMM 2018; 9:353-356. [PMID: 30108929 PMCID: PMC6083790 DOI: 10.1039/c7md00656j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 01/05/2018] [Indexed: 11/21/2022]
Abstract
A series of (-)-nornuciferidine derivatives was synthesized and the non-natural enantiomer of the aporphine alkaloid was discovered to be a potent β1- and β2-adrenergic receptor ligand that antagonized isoproterenol and procaterol induced cyclic AMP increases from adenylyl cyclase, respectively. Progressive deconstruction of the tetracyclic scaffold to less complex cyclic and acyclic analogues revealed that the conformationally restricted (6a-R,7-R)-7-hydroxyaporphine 2 (AK-2-202) was necessary for efficient receptor binding and antagonism.
Collapse
Affiliation(s)
- Angela F Ku
- Department of Pharmacological and Pharmaceutical Sciences , University of Houston , Science and Research Building 2 , Houston , Texas 77204 , USA .
| | - Gregory D Cuny
- Department of Pharmacological and Pharmaceutical Sciences , University of Houston , Science and Research Building 2 , Houston , Texas 77204 , USA .
| |
Collapse
|
29
|
Abstract
Cardiac diseases, such as heart failure, remain leading causes of morbidity and mortality worldwide, with myocardial infarction as the most common etiology. HF is characterized by β-adrenergic receptor (βAR) dysregulation that is primarily due to the upregulation of G protein–coupled receptor kinases that leads to overdesensitization of β1 and β2ARs, and this clinically manifests as a loss of inotropic reserve. Interestingly, the “minor” βAR isoform, the β3AR, found in the heart, lacks G protein–coupled receptor kinases recognition sites, and is not subject to desensitization, and as a consequence of this, in human failing myocardium, the levels of this receptor remain unchanged or are even increased. In different preclinical studies, it has been shown that β3ARs can activate different signaling pathways that can protect the heart. The clinical relevance of this is also supported by the effects of β-blockers which are well known for their proangiogenic and cardioprotective effects, and data are emerging showing that these are mediated, at least in part, by enhancement of β3AR activity. In this regard, targeting of β3ARs could represent a novel potential strategy to improve cardiac metabolism, function, and remodeling.
Collapse
|
30
|
Hoyer D. 5-HT Receptor Nomenclature: Naming Names, Does It Matter? A Tribute to Maurice Rapport. ACS Chem Neurosci 2017; 8:908-919. [PMID: 28269984 DOI: 10.1021/acschemneuro.7b00011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The naming of 5-HT receptors has been challenging, especially in the early days when the concept of multiple receptors for a single neurotransmitter was considered to be unrealistic at best. Yet pharmacological (rank orders of potency in functional or biochemical settings) and transductional evidence (second messengers, electrophysiology) clearly indicated the existence of receptor families and subfamilies. The genetic revolution, with the cloning and study of recombinantly expressed receptors, and eventually the cloning of the human and other genomes have made such reservations obsolete. Further, the advances in structural biology, with the possibility to study ligand receptor complexes as crystals and/or using solution NMR have largely confirmed the complexity of the 5-HT receptor system: species differences, existence of multiple receptor active and inactive states, splice variants, editing variants, complexes with multiple interacting proteins and transduction bias. This is a short personal history on how advances in biochemistry, molecular biology, biophysics, imaging and medicinal chemistry, some lateral thinking, and a decent amount of collaborative spirit within the 5-HT receptor nomenclature committee and the 5-HT community at large have helped to better define the pharmacology of the 5-HT receptor family.
Collapse
Affiliation(s)
- Daniel Hoyer
- Department of Pharmacology and Therapeutics,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
- The Florey Institute of Neuroscience
and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
31
|
Selectivity determinants of GPCR-G-protein binding. Nature 2017; 545:317-322. [PMID: 28489817 DOI: 10.1038/nature22070] [Citation(s) in RCA: 259] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 03/14/2017] [Indexed: 12/18/2022]
Abstract
The selective coupling of G-protein-coupled receptors (GPCRs) to specific G proteins is critical to trigger the appropriate physiological response. However, the determinants of selective binding have remained elusive. Here we reveal the existence of a selectivity barcode (that is, patterns of amino acids) on each of the 16 human G proteins that is recognized by distinct regions on the approximately 800 human receptors. Although universally conserved positions in the barcode allow the receptors to bind and activate G proteins in a similar manner, different receptors recognize the unique positions of the G-protein barcode through distinct residues, like multiple keys (receptors) opening the same lock (G protein) using non-identical cuts. Considering the evolutionary history of GPCRs allows the identification of these selectivity-determining residues. These findings lay the foundation for understanding the molecular basis of coupling selectivity within individual receptors and G proteins.
Collapse
|
32
|
2D-QSAR and 3D-QSAR/CoMSIA Studies on a Series of (R)-2-((2-(1H-Indol-2-yl)ethyl)amino)-1-Phenylethan-1-ol with Human β₃-Adrenergic Activity. Molecules 2017; 22:molecules22030404. [PMID: 28273884 PMCID: PMC6155312 DOI: 10.3390/molecules22030404] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 11/17/2022] Open
Abstract
The β₃ adrenergic receptor is raising as an important drug target for the treatment of pathologies such as diabetes, obesity, depression, and cardiac diseases among others. Several attempts to obtain selective and high affinity ligands have been made. Currently, Mirabegron is the only available drug on the market that targets this receptor approved for the treatment of overactive bladder. However, the FDA (Food and Drug Administration) in USA and the MHRA (Medicines and Healthcare products Regulatory Agency) in UK have made reports of potentially life-threatening side effects associated with the administration of Mirabegron, casting doubts on the continuity of this compound. Therefore, it is of utmost importance to gather information for the rational design and synthesis of new β₃ adrenergic ligands. Herein, we present the first combined 2D-QSAR (two-dimensional Quantitative Structure-Activity Relationship) and 3D-QSAR/CoMSIA (three-dimensional Quantitative Structure-Activity Relationship/Comparative Molecular Similarity Index Analysis) study on a series of potent β₃ adrenergic agonists of indole-alkylamine structure. We found a series of changes that can be made in the steric, hydrogen-bond donor and acceptor, lipophilicity and molar refractivity properties of the compounds to generate new promising molecules. Finally, based on our analysis, a summary and a regiospecific description of the requirements for improving β₃ adrenergic activity is given.
Collapse
|
33
|
Singh K, Zaw AM, Sekar R, Palak A, Allam AA, Ajarem J, Chow BKC. Glycyrrhizic Acid Reduces Heart Rate and Blood Pressure by a Dual Mechanism. Molecules 2016; 21:molecules21101291. [PMID: 27689971 PMCID: PMC6274536 DOI: 10.3390/molecules21101291] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/14/2016] [Accepted: 09/22/2016] [Indexed: 01/07/2023] Open
Abstract
Beta adrenergic receptors are crucial for their role in rhythmic contraction of heart along with their role in the pathological conditions such as tachycardia and high risk of heart failure. Studies report that the levels of beta-1 adrenergic receptor tend to decrease by 50%, whereas, the levels of beta-2 adrenergic receptor remains constant during the risk of heart failure. Beta blockers—the antagonistic molecules for beta-adrenergic receptors, function by slowing the heart rate, which thereby allows the left ventricle to fill completely during tachycardia incidents and hence helps in blood pumping capacity of heart and reducing the risk of heart failure. In the present study, we investigate the potential of glycyrrhizic acid (GA) as a possible principal drug molecule for cardiac arrhythmias owing to its ability to induce reduction in the heart rate and blood pressure. We use in vitro and in silico approach to study GA′s effect on beta adrenergic receptor along with an in vivo study to examine its effect on heart rate and blood pressure. Additionally, we explore GA′s proficiency in eliciting an increase in the plasma levels of vasoactive intestinal peptide, which by dilating the blood vessel consequently, can be a crucial aid during the occurrence of a potential heart attack. Therefore, we propose GA as a potential principal drug molecule via its potential in modulating heart rate and blood pressure.
Collapse
Affiliation(s)
- Kailash Singh
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
| | - Aung Moe Zaw
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
| | - Revathi Sekar
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
| | - Ahuja Palak
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
| | - Ahmed A Allam
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt.
| | - Jamaan Ajarem
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Billy K C Chow
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
| |
Collapse
|
34
|
Chen Y, Palczewska G, Masuho I, Gao S, Jin H, Dong Z, Gieser L, Brooks MJ, Kiser PD, Kern TS, Martemyanov KA, Swaroop A, Palczewski K. Synergistically acting agonists and antagonists of G protein-coupled receptors prevent photoreceptor cell degeneration. Sci Signal 2016; 9:ra74. [PMID: 27460988 DOI: 10.1126/scisignal.aag0245] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Photoreceptor cell degeneration leads to visual impairment and blindness in several types of retinal disease. However, the discovery of safe and effective therapeutic strategies conferring photoreceptor cell protection remains challenging. Targeting distinct cellular pathways with low doses of different drugs that produce a functionally synergistic effect could provide a strategy for preventing or treating retinal dystrophies. We took a systems pharmacology approach to identify potential combination therapies using a mouse model of light-induced retinal degeneration. We showed that a combination of U.S. Food and Drug Administration-approved drugs that act on different G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors (GPCRs) exhibited synergistic activity that protected retinas from light-induced degeneration even when each drug was administered at a low dose. In functional assays, the combined effects of these drugs were stimulation of Gi/o signaling by activating the dopamine receptors D2R and D4R, as well as inhibition of Gs and Gq signaling by antagonizing D1R and the α1A-adrenergic receptor ADRA1A, respectively. Moreover, transcriptome analyses demonstrated that such combined GPCR-targeted treatments preserved patterns of retinal gene expression that were more similar to those of the normal retina than did higher-dose monotherapy. Our study thus supports a systems pharmacology approach to identify treatments for retinopathies, an approach that could extend to other complex disorders.
Collapse
Affiliation(s)
- Yu Chen
- Yueyang Hospital and Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China. Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | | | - Ikuo Masuho
- Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Songqi Gao
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Hui Jin
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | - Linn Gieser
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew J Brooks
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Philip D Kiser
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA. Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
| | - Timothy S Kern
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA. Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA. Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA. Polgenix Inc., Cleveland, OH 44106, USA.
| |
Collapse
|
35
|
Tian H, Fürstenberg A, Huber T. Labeling and Single-Molecule Methods To Monitor G Protein-Coupled Receptor Dynamics. Chem Rev 2016; 117:186-245. [DOI: 10.1021/acs.chemrev.6b00084] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- He Tian
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| | - Alexandre Fürstenberg
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| | - Thomas Huber
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| |
Collapse
|
36
|
Wei W, Tian Y, Zhao C, Sui Z, Liu C, Wang C, Yang R. Correlation of ADRB1 rs1801253 Polymorphism with Analgesic Effect of Fentanyl After Cancer Surgeries. Med Sci Monit 2015; 21:4000-5. [PMID: 26694722 PMCID: PMC4692569 DOI: 10.12659/msm.894060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Our study aimed to explore the association between β1-adrenoceptor (ADRB1) rs1801253 polymorphism and analgesic effect of fentanyl after cancer surgeries in Chinese Han populations. MATERIAL AND METHODS Postoperative fentanyl consumption of 120 patients for analgesia was recorded. Genotype distributions were detected by allele specific amplification-polymerase chain reaction (ASA-PCR) method. Postoperative pain was measured by visual analogue scale (VAS) method. Differences in postoperative VAS score and postoperative fentanyl consumption for analgesia in different genotype groups were compared by analysis of variance (ANOVA). Preoperative cold pressor-induced pain test was also performed to test the analgesic effect of fentanyl. RESULTS Frequencies of Gly/Gly, Gly/Arg, Arg/Arg genotypes were 45.0%, 38.3%, and 16.7%, respectively, and passed the Hardy-Weinberg Equilibrium (HWE) test. The mean arterial pressure (MAP) and the heart rate (HR) had no significant differences at different times. After surgery, the VAS score and fentanyl consumption in Arg/Arg group were significantly higher than in other groups at the postoperative 2nd hour, but the differences were not obvious at the 4th hour, 24th hour, and the 48th hour. The results suggest that the Arg/Arg homozygote increased susceptibility to postoperative pain. The preoperative cold pressor-induced pain test suggested that individuals with Arg/Arg genotype showed worse analgesic effect of fentanyl compared to other genotypes. CONCLUSIONS In Chinese Han populations, ADRB1 rs1801253 polymorphism might be associated with the analgesic effect of fentanyl after cancer surgery.
Collapse
Affiliation(s)
- Wei Wei
- Department of Dermatology, The General Hospital of Beijing Military Command, Beijing, China (mainland)
| | - Yanli Tian
- Department of Dermatology, The General Hospital of Beijing Military Command, Beijing, China (mainland)
| | - Chunlei Zhao
- Hengshui Cardiovascular Hospital, Hengshui, Hebei, China (mainland)
| | - Zhifu Sui
- Department of Dermatology, The General Hospital of Beijing Military Command, Beijing, China (mainland)
| | - Chang Liu
- Department of Dermatology, The General Hospital of Beijing Military Command, Beijing, China (mainland)
| | - Congmin Wang
- Department of Dermatology, The General Hospital of Beijing Military Command, Beijing, China (mainland)
| | - Rongya Yang
- Department of Dermatology, The General Hospital of Beijing Military Command, Beijing, China (mainland)
| |
Collapse
|
37
|
Abstract
G-protein-coupled receptor kinases (GRKs) are serine/threonine protein kinases originally discovered for their role in G-protein-coupled receptor (GPCR) phosphorylation. Recent studies have demonstrated a much broader function for this kinase family including phosphorylation of cytosolic substrates involved in cell signaling pathways stimulated by GPCRs, as well as by non-GPCRs. In addition, GRKs modulate signaling via phosphorylation-independent functions. Because of these various biochemical functions, GRKs have been shown to affect critical physiological and pathophysiological processes, and thus are considered as drug targets in diseases such as heart failure. Role of GRKs in inflammation and inflammatory diseases is an evolving area of research and several studies including work from our lab in the recent years have demonstrated critical role of GRKs in the immune system. In this review, we discuss the classical and the newly emerging functions of GRKs in the immune system and their role in inflammation and disease processes.
Collapse
|
38
|
Zhao C, Liu Y, Xiao J, Liu L, Chen S, Mohammadi M, McClain CJ, Li X, Feng W. FGF21 mediates alcohol-induced adipose tissue lipolysis by activation of systemic release of catecholamine in mice. J Lipid Res 2015; 56:1481-91. [PMID: 26092866 PMCID: PMC4513989 DOI: 10.1194/jlr.m058610] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Indexed: 12/18/2022] Open
Abstract
Alcohol consumption leads to adipose tissue lipoatrophy and mobilization of FFAs, which contributes to hepatic fat accumulation in alcoholic liver disease. This study aimed to investigate the role of fibroblast growth factor (FGF)21, a metabolic regulator, in the regulation of chronic-binge alcohol-induced adipose tissue lipolysis. FGF21 KO mice were subjected to chronic-binge alcohol exposure, and epididymal white adipose tissue lipolysis and liver steatosis were investigated. Alcohol exposure caused adipose intracellular cAMP elevation and activation of lipolytic enzymes, leading to FFA mobilization in both WT and FGF21 KO mice. However, alcohol-induced systemic elevation of catecholamine, which is known to be a major player in adipose lipolysis by binding to the β-adrenergic receptor, was markedly inhibited in KO mice. Supplementation with recombinant human FGF21 to alcohol-exposed FGF21 KO mice resulted in an increase in fat loss in parallel with an increase of circulating norepinephrine concentration. Furthermore, alcohol consumption-induced fatty liver was blunted in the KO mice, indicating an inhibition of fatty acid reverse transport from adipose to the liver in the KO mice. Taken together, our studies demonstrate that FGF21 KO mice are protected from alcohol-induced adipose tissue excess-lipolysis through a mechanism involving systemic catecholamine release.
Collapse
Affiliation(s)
- Cuiqing Zhao
- College of Basic Medical Sciences, Jilin University, Changchun, China Departments of Medicine University of Louisville School of Medicine, Louisville, KY Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yanlong Liu
- Departments of Medicine University of Louisville School of Medicine, Louisville, KY Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Liming Liu
- Departments of Medicine University of Louisville School of Medicine, Louisville, KY Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY
| | - Shaoyu Chen
- Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY
| | - Moosa Mohammadi
- Department of Pharmacology, New York University School of Medicine, New York, NY
| | - Craig J McClain
- Departments of Medicine University of Louisville School of Medicine, Louisville, KY Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY Robley Rex Veterans Administration Medical Center, Louisville, KY
| | - Xiaokun Li
- College of Basic Medical Sciences, Jilin University, Changchun, China School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wenke Feng
- Departments of Medicine University of Louisville School of Medicine, Louisville, KY Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
39
|
Kokut S, Atay İM, Uz E, Akpinar A, Demirdaş A. The Polymorphisms of Ser49Gly and Gly389Arg in Beta-1-Adrenergic Receptor Gene in Major Depression. Noro Psikiyatr Ars 2015; 52:124-127. [PMID: 28360691 DOI: 10.5152/npa.2015.7321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 12/05/2013] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION It was reported that the genetic susceptibility of major depressive disorder (MDD) is related with genetic polymorphisms. The aim of this study was to investigate the possible association of the genotype and allele frequencies of Ser49Gly and Arg389Gly polymorphisms in MDD by comparing them with healthy subjects. METHODS A total of 144 patients with MDD diagnosed according to Diagnostic and Statistical Manual of Mental Disorders, 4th Edition (DSM-IV) criteria and 105 healthy controls were included in the study. Polymerase chain reaction (PCR) with restriction fragment length polymorphism (RFLP) was used for genotyping. RESULTS Of the 144 participants in the MDD group, 77 (53.5%) had homozygous wild type (AA), 57 (39.6%) had heterozygous type (AG), and 10 (6.9%) had mutant (GG) genotype for Ser49Gly, whereas 75 (52.1%) had homozygous wild type (GG), 59 (41.0%) had heterozygous (GC) type, and 10 (6.9%) had mutant homozygous (CC) genotype for Gly386Arg. There were no significant difference in the allele and genotype frequencies of the beta-1-adrenergic receptor (ADRB1) gene for Ser49Gly and Arg389Gly polymorphisms after comparing with healthy controls (p=0.626; p=0.863 and p=0.625; p=0.914). CONCLUSION The results of our study did not reveal a major effect of the polymorphism of Ser49Gly and Gly389Arg in the ADRB1 gene in MDD. Further studies with larger sample size are required to elucidate the role of other beta-1 adrenergic gene polymorphisms in MDD.
Collapse
Affiliation(s)
- Süleyman Kokut
- Clinic of Psychiatry, Serik Public Hospital, Antalya, Turkey
| | - İnci Meltem Atay
- Department of Psychiatry, Süleyman Demirel University, Faculty of Medicine, Isparta, Turkey
| | - Efkan Uz
- Department of Biochemistry, Süleyman Demirel University, Faculty of Medicine, Isparta, Turkey
| | - Abdullah Akpinar
- Department of Psychiatry, Süleyman Demirel University, Faculty of Medicine, Isparta, Turkey
| | - Arif Demirdaş
- Department of Psychiatry, Süleyman Demirel University, Faculty of Medicine, Isparta, Turkey
| |
Collapse
|
40
|
Boivin V, Beyersdorf N, Palm D, Nikolaev VO, Schlipp A, Müller J, Schmidt D, Kocoski V, Kerkau T, Hünig T, Ertl G, Lohse MJ, Jahns R. Novel receptor-derived cyclopeptides to treat heart failure caused by anti-β1-adrenoceptor antibodies in a human-analogous rat model. PLoS One 2015; 10:e0117589. [PMID: 25700031 PMCID: PMC4336331 DOI: 10.1371/journal.pone.0117589] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 12/28/2014] [Indexed: 01/14/2023] Open
Abstract
Despite recent therapeutic advances the prognosis of heart failure remains poor. Recent research suggests that heart failure is a heterogeneous syndrome and that many patients have stimulating auto-antibodies directed against the second extracellular loop of the β1 adrenergic receptor (β1EC2). In a human-analogous rat model such antibodies cause myocyte damage and heart failure. Here we used this model to test a novel antibody-directed strategy aiming to prevent and/or treat antibody-induced cardiomyopathy. To generate heart failure, we immunised n = 76/114 rats with a fusion protein containing the human β1EC2 (amino-acids 195-225) every 4 weeks; n = 38/114 rats were control-injected with 0.9% NaCl. Intravenous application of a novel cyclic peptide mimicking β1EC2 (β1EC2-CP, 1.0 mg/kg every 4 weeks) or administration of the β1-blocker bisoprolol (15 mg/kg/day orally) was initiated either 6 weeks (cardiac function still normal, prevention-study, n = 24 (16 treated vs. 8 untreated)) or 8.5 months after the 1st immunisation (onset of cardiomyopathy, therapy-study, n = 52 (40 treated vs. 12 untreated)); n = 8/52 rats from the therapy-study received β1EC2-CP/bisoprolol co-treatment. We found that β1EC2-CP prevented and (alone or as add-on drug) treated antibody-induced cardiac damage in the rat, and that its efficacy was superior to mono-treatment with bisoprolol, a standard drug in heart failure. While bisoprolol mono-therapy was able to stop disease-progression, β1EC2-CP mono-therapy -or as an add-on to bisoprolol- almost fully reversed antibody-induced cardiac damage. The cyclo¬peptide acted both by scavenging free anti-β1EC2-antibodies and by targeting β1EC2-specific memory B-cells involved in antibody-production. Our model provides the basis for the clinical translation of a novel double-acting therapeutic strategy that scavenges harmful anti-β1EC2-antibodies and also selectively depletes memory B-cells involved in the production of such antibodies. Treatment with immuno-modulating cyclopeptides alone or as an add-on to β1-blockade represents a promising new therapeutic option in immune-mediated heart failure.
Collapse
Affiliation(s)
- Valérie Boivin
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Rudolf-Virchow-Center/DFG-Research-Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
- Comprehensive Heart Failure Centre (CHFC), University Hospital of Würzburg, Würzburg, Germany
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Dieter Palm
- Rudolf-Virchow-Center/DFG-Research-Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | | | - Angela Schlipp
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Rudolf-Virchow-Center/DFG-Research-Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
- Lehrstuhl Anatomie I, University of München (LMU), München, Germany
| | - Justus Müller
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Doris Schmidt
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Vladimir Kocoski
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Thomas Kerkau
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Thomas Hünig
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Georg Ertl
- Comprehensive Heart Failure Centre (CHFC), University Hospital of Würzburg, Würzburg, Germany
| | - Martin J. Lohse
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Rudolf-Virchow-Center/DFG-Research-Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
- Comprehensive Heart Failure Centre (CHFC), University Hospital of Würzburg, Würzburg, Germany
| | - Roland Jahns
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Rudolf-Virchow-Center/DFG-Research-Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
- Comprehensive Heart Failure Centre (CHFC), University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
41
|
Kum JJ, Khan ZA. Mechanisms of propranolol action in infantile hemangioma. DERMATO-ENDOCRINOLOGY 2015; 6:e979699. [PMID: 26413184 PMCID: PMC4580045 DOI: 10.4161/19381980.2014.979699] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/20/2014] [Indexed: 12/17/2022]
Abstract
Infantile hemangioma is a common tumor of infancy. Although most hemangiomas spontaneously regress, treatment is indicated based on complications, risk to organ development and function, and disfigurement. The serendipitous discovery of propranolol, a non-selective β-adrenergic receptor blocker, as an effective means to regress hemangiomas has made this a first-line therapy for hemangioma patients. Propranolol has shown remarkable response rates. There are, however, some adverse effects, which include changes in sleep, acrocyanosis, hypotension, and hypoglycemia. Over the last few years, researchers have focused on understanding the mechanisms by which propranolol causes hemangioma regression. This has entailed study of cultured vascular endothelial cells including endothelial cells isolated from hemangioma patients. In this article, we review recent studies offering potential mechanisms of how various cell types found in hemangioma may respond to propranolol.
Collapse
Affiliation(s)
- Jina Jy Kum
- Department of Pathology and Laboratory Medicine; Schulich School of Medicine & Dentistry; Western University ; London, Ontario Canada
| | - Zia A Khan
- Department of Pathology and Laboratory Medicine; Schulich School of Medicine & Dentistry; Western University ; London, Ontario Canada ; Metabolism and Diabetes Research Program; Lawson Health Research Institute ; London, Ontario Canada ; Division of Genetics and Development; Children's Hospital Research Institute ; London, Ontario Canada
| |
Collapse
|
42
|
Ahles A, Engelhardt S. Polymorphic Variants of Adrenoceptors: Pharmacology, Physiology, and Role in Disease. Pharmacol Rev 2014; 66:598-637. [DOI: 10.1124/pr.113.008219] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
43
|
Giulivi C. Grand challenges in cellular biochemistry: the "next-gen" biochemistry. Front Chem 2014; 2:22. [PMID: 24809045 PMCID: PMC4010732 DOI: 10.3389/fchem.2014.00022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 04/10/2014] [Indexed: 01/10/2023] Open
Affiliation(s)
- Cecilia Giulivi
- Department of Molecular Biosciences, University of California, DavisDavis, CA, USA
- Medical Investigations of Neurodevelopmental Disorders Institute, University of California, DavisDavis, CA, USA
| |
Collapse
|
44
|
Shpakov AO. Advances in the study of structure and function of G protein-coupled receptors (about awarding the Nobel Prize for Chemistry in 2012 to Robert Lefkowitz and Brian Kobilka). J EVOL BIOCHEM PHYS+ 2013. [DOI: 10.1134/s0022093013050022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
45
|
Chruscinski AJ, Singh H, Chan SM, Utz PJ. Broad-scale phosphoprotein profiling of beta adrenergic receptor (β-AR) signaling reveals novel phosphorylation and dephosphorylation events. PLoS One 2013; 8:e82164. [PMID: 24340001 PMCID: PMC3855414 DOI: 10.1371/journal.pone.0082164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/21/2013] [Indexed: 01/28/2023] Open
Abstract
β-adrenergic receptors (β-ARs) are model G-protein coupled receptors that mediate signal transduction in the sympathetic nervous system. Despite the widespread clinical use of agents that target β-ARs, the signaling pathways that operate downstream of β-AR stimulation have not yet been completely elucidated. Here, we utilized a lysate microarray approach to obtain a broad-scale perspective of phosphoprotein signaling downstream of β-AR. We monitored the time course of phosphorylation states of 54 proteins after β-AR activation mouse embryonic fibroblast (MEF) cells. In response to stimulation with the non-selective β-AR agonist isoproterenol, we observed previously described phosphorylation events such as ERK1/2(T202/Y204) and CREB(S133), but also novel phosphorylation events such as Cdc2(Y15) and Pyk2(Y402). All of these events were mediated through cAMP and PKA as they were reproduced by stimulation with the adenylyl cyclase activator forskolin and were blocked by treatment with H89, a PKA inhibitor. In addition, we also observed a number of novel isoproterenol-induced protein dephosphorylation events in target substrates of the PI3K/AKT pathway: GSK3β(S9), 4E-BP1(S65), and p70s6k(T389). These dephosphorylations were dependent on cAMP, but were independent of PKA and correlated with reduced PI3K/AKT activity. Isoproterenol stimulation also led to a cAMP-dependent dephosphorylation of PP1α(T320), a modification known to correlate with enhanced activity of this phosphatase. Dephosphorylation of PP1α coincided with the secondary decline in phosphorylation of some PKA-phosphorylated substrates, suggesting that PP1α may act in a feedback loop to return these phosphorylations to baseline. In summary, lysate microarrays are a powerful tool to profile phosphoprotein signaling and have provided a broad-scale perspective of how β-AR signaling can regulate key pathways involved in cell growth and metabolism.
Collapse
Affiliation(s)
- Andrzej J. Chruscinski
- Division of Cardiology and Heart Transplantation, Department of Medicine, Toronto General Hospital, Toronto, Ontario, Canada
- * E-mail:
| | - Harvir Singh
- Developmental and Reproductive Biology, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Steven M. Chan
- Division of Hematology, Department of Medicine, Stanford University, Stanford, California, United States of America
| | - Paul J. Utz
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, United States of America
| |
Collapse
|
46
|
Cheng X, Wu J, Geng M, Xiong J. Role of synaptic activity in the regulation of amyloid beta levels in Alzheimer's disease. Neurobiol Aging 2013; 35:1217-32. [PMID: 24368087 DOI: 10.1016/j.neurobiolaging.2013.11.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 11/03/2013] [Accepted: 11/24/2013] [Indexed: 01/27/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Accumulation of amyloid-beta (Aβ) peptides is regarded as the critical component associated with AD pathogenesis, which is derived from the amyloid precursor protein (APP) cleavage. Recent studies suggest that synaptic activity is one of the most important factors that regulate Aβ levels. It has been found that synaptic activity facilitates APP internalization and influences APP cleavage. Glutamatergic, cholinergic, serotonergic, leptin, adrenergic, orexin, and gamma-amino butyric acid receptors, as well as the activity-regulated cytoskeleton-associated protein (Arc) are all involved in these processes. The present review summarizes the evidence for synaptic activity-modulated Aβ levels and the mechanisms underlying this regulation. Interestingly, the immediate early gene product Arc may also be the downstream signaling molecule of several receptors in the synaptic activity-modulated Aβ levels. Elucidating how Aβ levels are regulated by synaptic activity may provide new insights in both the understanding of the pathogenesis of AD and in the development of therapies to slow down the progression of AD.
Collapse
Affiliation(s)
- Xiaofang Cheng
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Jian Wu
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Miao Geng
- Institute of Geriatrics, General Hospital of Chinese PLA, Beijing, China
| | - Jiaxiang Xiong
- Department of Physiology, Third Military Medical University, Chongqing, China.
| |
Collapse
|
47
|
Haaksma E, Timmerman H, Weinstein H. The Effect of a Protein Environment on the Proposed Activation Mechanism of the Histamine H2-Receptor. Isr J Chem 2013. [DOI: 10.1002/ijch.199100047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
48
|
Cannavo A, Liccardo D, Koch WJ. Targeting cardiac β-adrenergic signaling via GRK2 inhibition for heart failure therapy. Front Physiol 2013; 4:264. [PMID: 24133451 PMCID: PMC3783981 DOI: 10.3389/fphys.2013.00264] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 09/06/2013] [Indexed: 12/23/2022] Open
Abstract
Cardiac cells, like those of the other tissues, undergo regulation through membrane-bound proteins known as G protein-coupled receptors (GPCRs). β-adrenergic receptors (βARs) are key GPCRs expressed on cardiomyocytes and their role is crucial in cardiac physiology since they regulate inotropic and chronotropic responses of the sympathetic nervous system (SNS). In compromised conditions such as heart failure (HF), chronic βAR hyperstimulation occurs via SNS activation resulting in receptor dysregulation and down-regulation and consequently there is a marked reduction of myocardial inotropic reserve and continued loss of pump function. Data accumulated over the last two decades indicates that a primary culprit in initiating and maintain βAR dysfunction in the injured and stressed heart is GPCR kinase 2 (GRK2), which was originally known as βARK1 (for βAR kinase). GRK2 is up-regulated in the failing heart due to chronic SNS activity and targeting this kinase has emerged as a novel therapeutic strategy in HF. Indeed, its inhibition or genetic deletion in several disparate animal models of HF including a pre-clinical pig model has shown that GRK2 targeting improves functional and morphological parameters of the failing heart. Moreover, non-βAR properties of GRK2 appear to also contribute to its pathological effects and thus, its inhibition will likely complement existing therapies such as βAR blockade. This review will explore recent research regarding GRK2 inhibition; in particular it will focus on the GRK2 inhibitor peptide known as βARKct, which represents new hope in the treatment against HF progression.
Collapse
Affiliation(s)
- Alessandro Cannavo
- Center for Translational Medicine, Department of Pharmacology, Temple UniversityPhiladelphia, PA, USA
| | - Daniela Liccardo
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of NaplesNaples, Italy
| | - Walter J. Koch
- Center for Translational Medicine, Department of Pharmacology, Temple UniversityPhiladelphia, PA, USA
| |
Collapse
|
49
|
Ma G, Li Y, Zhang J, Liu H, Hou D, Zhu L, Zhang Z, Zhang L. Association between the presence of autoantibodies against adrenoreceptors and severe pre-eclampsia: a pilot study. PLoS One 2013; 8:e57983. [PMID: 23483958 PMCID: PMC3587423 DOI: 10.1371/journal.pone.0057983] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 01/30/2013] [Indexed: 12/03/2022] Open
Abstract
Background Pre-eclampsia is the leading cause of maternal and neonatal morbidity and mortality with incompletely understood etiopathogenesis. The purpose of the current study is to determine whether there is a relationship between the presence of autoantibodies against β1, β2 and α1 adrenoreceptors and severe pre-eclampsia. Methodology/Principal Findings Synthetic peptides corresponding to amino acid sequences of the second extracellular loops of β1, β2 and α1 adrenoreceptors were synthesized as antigens to test 34 patients with severe pre-eclampsia, 36 normal pregnancy women and 40 non-pregnant controls for the presence of autoantibodies using enzyme-linked immunosorbent assay. The respective frequencies of autoantibodies against β1, β2 and α1 adrenoreceptors were 50.0% (17/34), 52.9% (18/34) and 55.9% (19/34) in patients with severe pre-eclampsia, 19.4% (7/36) (p = 0.011), 19.4% (7/36) (p = 0.006) and 17.6% (6/36) (p = 0.001) in normal pregnancy women and 10% (4/40), 7.5% (3/40) and 10% (4/40) (p<0.001) in non-pregnant controls. Titers of these autoantibodies were also significantly increased in patients with severe pre-eclampsia. By logistic regression analysis, the presence of these three autoantibodies significantly increased the risk of neonatal death (odds ratio, 13.5; 95% confidence interval, 1.3–141.3; p = 0.030) and long-term neonatal hospitalization (odds ratio, 5.0; 95% confidence interval, 1.3–19.1; p = 0.018). The risk of hypertension and fetal distress were also associated with the presence of these three autoantibodies. Conclusions/Significance This novel pilot study demonstrated for the first time that the presence of autoantibodies against β1, β2 and α1 adrenoreceptors are increased in patients with severe pre-eclampsia. Pregnant women who are positive for the three autoantibodies are at increased risks of neonatal mortality and morbidity. We posit that these autoantibodies may be involved in the pathogenesis of severe pre-eclampsia.
Collapse
Affiliation(s)
- Guiling Ma
- Heart Centre, Capital Medical University, Chao-Yang Hospital, Beijing, China
| | - Yanfang Li
- Gynaecology and Obstetrics Department, Capital Medical University, Chao-Yang Hospital, Beijing, China
| | - Juan Zhang
- Heart Centre, Capital Medical University, Chao-Yang Hospital, Beijing, China
| | - Hao Liu
- Gynaecology and Obstetrics Department, Capital Medical University, Chao-Yang Hospital, Beijing, China
| | - Dongyan Hou
- Heart Centre, Capital Medical University, Chao-Yang Hospital, Beijing, China
| | - Lei Zhu
- Gynaecology and Obstetrics Department, Capital Medical University, Chao-Yang Hospital, Beijing, China
| | - Zhenyu Zhang
- Gynaecology and Obstetrics Department, Capital Medical University, Chao-Yang Hospital, Beijing, China
- * E-mail: (ZZ); (L. Zhang)
| | - Lin Zhang
- Heart Centre, Capital Medical University, Chao-Yang Hospital, Beijing, China
- * E-mail: (ZZ); (L. Zhang)
| |
Collapse
|
50
|
Kong H, Li X, Zhang S, Guo S, Niu W. The β1-adrenoreceptor gene Arg389Gly and Ser49Gly polymorphisms and hypertension: a meta-analysis. Mol Biol Rep 2012; 40:4047-53. [PMID: 23271137 DOI: 10.1007/s11033-012-2482-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 12/19/2012] [Indexed: 12/30/2022]
Abstract
The gene encoding β1-adrenoreceptor is regarded as a hypertension-susceptibility candidate gene. The association of β1-adrenoreceptor gene Arg389Gly and Ser49Gly polymorphisms with hypertension has been exhaustively investigated; however, the studies have yielded inconsistent results. We sought to shed some light on this inconsistency by performing a systemic meta-analysis. Data were extracted from 17 articles (cases/controls: 7,586/8,441) for Arg389Gly, and eight articles (3,582/2,998) for Ser49Gly. The random-effects model was applied irrespective of between-study heterogeneity. Overall results indicated significance for Ser49Gly under both allelic (odds ratio = 1.13; 95 % confidence interval [95 % CI] 1.03-1.26; P = 0.011) and dominant (1.19; 1.04-1.28; 0.011) models, without evidence of heterogeneity (I (2) = 0.0 %). Grouping studies by ethnicity observed marginally significant association for Arg389Gly (0.82; 0.66-1.0; 0.049) and Ser49Gly (1.3; 1.0-1.68; 0.048) polymorphisms in Caucasians under allelic model. Association was strikingly potentiated for both polymorphisms after restricting analyses to studies published in English journals. When only large studies (≥500 subjects) were considered, 389Gly allele decreased the odds of developing hypertension by 16 % (0.84; 0.74-0.95; 0.007). There was no observable publication bias for both polymorphisms. Taken together, our results provide clarification to the logical candidacy of β1-adrenoreceptor gene in the development of hypertension.
Collapse
Affiliation(s)
- Hong Kong
- State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | |
Collapse
|