1
|
Loveland AB, Koh CS, Ganesan R, Jacobson A, Korostelev AA. Structural mechanism of angiogenin activation by the ribosome. Nature 2024; 630:769-776. [PMID: 38718836 DOI: 10.1038/s41586-024-07508-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/02/2024] [Indexed: 05/15/2024]
Abstract
Angiogenin, an RNase-A-family protein, promotes angiogenesis and has been implicated in cancer, neurodegenerative diseases and epigenetic inheritance1-10. After activation during cellular stress, angiogenin cleaves tRNAs at the anticodon loop, resulting in translation repression11-15. However, the catalytic activity of isolated angiogenin is very low, and the mechanisms of the enzyme activation and tRNA specificity have remained a puzzle3,16-23. Here we identify these mechanisms using biochemical assays and cryogenic electron microscopy (cryo-EM). Our study reveals that the cytosolic ribosome is the activator of angiogenin. A cryo-EM structure features angiogenin bound in the A site of the 80S ribosome. The C-terminal tail of angiogenin is rearranged by interactions with the ribosome to activate the RNase catalytic centre, making the enzyme several orders of magnitude more efficient in tRNA cleavage. Additional 80S-angiogenin structures capture how tRNA substrate is directed by the ribosome into angiogenin's active site, demonstrating that the ribosome acts as the specificity factor. Our findings therefore suggest that angiogenin is activated by ribosomes with a vacant A site, the abundance of which increases during cellular stress24-27. These results may facilitate the development of therapeutics to treat cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Anna B Loveland
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA, USA.
| | - Cha San Koh
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA, USA
| | - Robin Ganesan
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA
| | | |
Collapse
|
2
|
Ferguson R, van Es MA, van den Berg LH, Subramanian V. Neural stem cell homeostasis is affected in cortical organoids carrying a mutation in Angiogenin. J Pathol 2024; 262:410-426. [PMID: 38180358 DOI: 10.1002/path.6244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 11/07/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
Mutations in Angiogenin (ANG) and TARDBP encoding the 43 kDa transactive response DNA binding protein (TDP-43) are associated with amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD). ANG is neuroprotective and plays a role in stem cell dynamics in the haematopoietic system. We obtained skin fibroblasts from members of an ALS-FTD family, one with mutation in ANG, one with mutation in both TARDBP and ANG, and one with neither mutation. We reprogrammed these fibroblasts to induced pluripotent stem cells (iPSCs) and generated cortical organoids as well as induced stage-wise differentiation of the iPSCs to neurons. Using these two approaches we investigated the effects of FTD-associated mutations in ANG and TARDBP on neural precursor cells, neural differentiation, and response to stress. We observed striking neurodevelopmental defects such as abnormal and persistent rosettes in the organoids accompanied by increased self-renewal of neural precursor cells. There was also a propensity for differentiation to later-born neurons. In addition, cortical neurons showed increased susceptibility to stress, which is exacerbated in neurons carrying mutations in both ANG and TARDBP. The cortical organoids and neurons generated from patient-derived iPSCs carrying ANG and TARDBP gene variants recapitulate dysfunctions characteristic of frontotemporal lobar degeneration observed in FTD patients. These dysfunctions were ameliorated upon treatment with wild type ANG. In addition to its well-established role during the stress response of mature neurons, ANG also appears to play a role in neural progenitor dynamics. This has implications for neurogenesis and may indicate that subtle developmental defects play a role in disease susceptibility or onset. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Ross Ferguson
- Department of Life Sciences, University of Bath, Bath, UK
| | - Michael A van Es
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
3
|
Peng R, Santos HJ, Nozaki T. Transfer RNA-Derived Small RNAs in the Pathogenesis of Parasitic Protozoa. Genes (Basel) 2022; 13:286. [PMID: 35205331 PMCID: PMC8872473 DOI: 10.3390/genes13020286] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 01/25/2023] Open
Abstract
Transfer RNA (tRNA)-derived small RNAs (tsRNAs) are newly identified non-coding small RNAs that have recently attracted attention due to their functional significance in both prokaryotes and eukaryotes. tsRNAs originated from the cleavage of precursor or mature tRNAs by specific nucleases. According to the start and end sites, tsRNAs can be broadly divided into tRNA halves (31-40 nucleotides) and tRNA-derived fragments (tRFs, 14-30 nucleotides). tsRNAs have been reported in multiple organisms to be involved in gene expression regulation, protein synthesis, and signal transduction. As a novel regulator, tsRNAs have also been identified in various protozoan parasites. The conserved biogenesis of tsRNAs in early-branching eukaryotes strongly suggests the universality of this machinery, which requires future research on their shared and potentially disparate biological functions. Here, we reviewed the recent studies of tsRNAs in several representative protozoan parasites including their biogenesis and the roles in parasite biology and intercellular communication. Furthermore, we discussed the remaining questions and potential future works for tsRNAs in this group of organisms.
Collapse
Affiliation(s)
| | | | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; (R.P.); (H.J.S.)
| |
Collapse
|
4
|
ER Stress-Induced Secretion of Proteins and Their Extracellular Functions in the Heart. Cells 2020; 9:cells9092066. [PMID: 32927693 PMCID: PMC7563782 DOI: 10.3390/cells9092066] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is a result of conditions that imbalance protein homeostasis or proteostasis at the ER, for example ischemia, and is a common event in various human pathologies, including the diseased heart. Cardiac integrity and function depend on the active secretion of mature proteins from a variety of cell types in the heart, a process that requires an intact ER environment for efficient protein folding and trafficking to the secretory pathway. As a consequence of ER stress, most protein secretion by the ER secretory pathway is decreased. Strikingly, there is a select group of proteins that are secreted in greater quantities during ER stress. ER stress resulting from the dysregulation of ER Ca2+ levels, for instance, stimulates the secretion of Ca2+-binding ER chaperones, especially GRP78, GRP94, calreticulin, and mesencephalic astrocyte-derived neurotrophic factor (MANF), which play a multitude of roles outside the cell, strongly depending on the cell type and tissue. Here we review current insights in ER stress-induced secretion of proteins, particularly from the heart, and highlight the extracellular functions of these proteins, ranging from the augmentation of cardiac cell viability to the modulation of pro- and anti-apoptotic, oncogenic, and immune-stimulatory cell signaling, cell invasion, extracellular proteostasis, and more. Many of the roles of ER stress-induced protein secretion remain to be explored in the heart. This article is part of a special issue entitled “The Role of Proteostasis Derailment in Cardiac Diseases.”
Collapse
|
5
|
Oberbauer V, Schaefer MR. tRNA-Derived Small RNAs: Biogenesis, Modification, Function and Potential Impact on Human Disease Development. Genes (Basel) 2018; 9:genes9120607. [PMID: 30563140 PMCID: PMC6315542 DOI: 10.3390/genes9120607] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 12/11/2022] Open
Abstract
Transfer RNAs (tRNAs) are abundant small non-coding RNAs that are crucially important for decoding genetic information. Besides fulfilling canonical roles as adaptor molecules during protein synthesis, tRNAs are also the source of a heterogeneous class of small RNAs, tRNA-derived small RNAs (tsRNAs). Occurrence and the relatively high abundance of tsRNAs has been noted in many high-throughput sequencing data sets, leading to largely correlative assumptions about their potential as biologically active entities. tRNAs are also the most modified RNAs in any cell type. Mutations in tRNA biogenesis factors including tRNA modification enzymes correlate with a variety of human disease syndromes. However, whether it is the lack of tRNAs or the activity of functionally relevant tsRNAs that are causative for human disease development remains to be elucidated. Here, we review the current knowledge in regard to tsRNAs biogenesis, including the impact of RNA modifications on tRNA stability and discuss the existing experimental evidence in support for the seemingly large functional spectrum being proposed for tsRNAs. We also argue that improved methodology allowing exact quantification and specific manipulation of tsRNAs will be necessary before developing these small RNAs into diagnostic biomarkers and when aiming to harness them for therapeutic purposes.
Collapse
Affiliation(s)
- Vera Oberbauer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria.
| | - Matthias R Schaefer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria.
| |
Collapse
|
6
|
Jordaan S, Akinrinmade OA, Nachreiner T, Cremer C, Naran K, Chetty S, Barth S. Updates in the Development of ImmunoRNases for the Selective Killing of Tumor Cells. Biomedicines 2018; 6:biomedicines6010028. [PMID: 29510557 PMCID: PMC5874685 DOI: 10.3390/biomedicines6010028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/02/2018] [Accepted: 03/03/2018] [Indexed: 12/14/2022] Open
Abstract
Targeted cancer therapy includes, amongst others, antibody-based delivery of toxic payloads to selectively eliminate tumor cells. This payload can be either a synthetic small molecule drug composing an antibody-drug conjugate (ADC) or a cytotoxic protein composing an immunotoxin (IT). Non-human cytotoxic proteins, while potent, have limited clinical efficacy due to their immunogenicity and potential off-target toxicity. Humanization of the cytotoxic payload is essential and requires harnessing of potent apoptosis-inducing human proteins with conditional activity, which rely on targeted delivery to contact their substrate. Ribonucleases are attractive candidates, due to their ability to induce apoptosis by abrogating protein biosynthesis via tRNA degradation. In fact, several RNases of the pancreatic RNase A superfamily have shown potential as anti-cancer agents. Coupling of a human RNase to a humanized antibody or antibody derivative putatively eliminates the immunogenicity of an IT (now known as a human cytolytic fusion protein, hCFP). However, RNases are tightly regulated in vivo by endogenous inhibitors, controlling the ribonucleolytic balance subject to the cell’s metabolic requirements. Endogenous inhibition limits the efficacy with which RNase-based hCFPs induce apoptosis. However, abrogating the natural interaction with the natural inhibitors by mutation has been shown to significantly enhance RNase activity, paving the way toward achieving cytolytic potency comparable to that of bacterial immunotoxins. Here, we review the immunoRNases that have undergone preclinical studies as anti-cancer therapeutic agents.
Collapse
Affiliation(s)
- Sandra Jordaan
- Medical Biotechnology and Immunotherapy Group, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa.
| | - Olusiji A Akinrinmade
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa.
| | - Thomas Nachreiner
- Department of Experimental Medicine and Immunotherapy, Institute for Applied Medical Engineering, University Hospital RWTH Aachen, 52056 Aachen, Germany.
| | - Christian Cremer
- Department of Experimental Medicine and Immunotherapy, Institute for Applied Medical Engineering, University Hospital RWTH Aachen, 52056 Aachen, Germany.
| | - Krupa Naran
- Medical Biotechnology and Immunotherapy Group, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa.
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa.
| | - Shivan Chetty
- Medical Biotechnology and Immunotherapy Group, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa.
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa.
| | - Stefan Barth
- Medical Biotechnology and Immunotherapy Group, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa.
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa.
| |
Collapse
|
7
|
Akinrinmade OA, Chetty S, Daramola AK, Islam MU, Thepen T, Barth S. CD64: An Attractive Immunotherapeutic Target for M1-type Macrophage Mediated Chronic Inflammatory Diseases. Biomedicines 2017; 5:biomedicines5030056. [PMID: 28895912 PMCID: PMC5618314 DOI: 10.3390/biomedicines5030056] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 12/12/2022] Open
Abstract
To date, no curative therapy is available for the treatment of most chronic inflammatory diseases such as atopic dermatitis, rheumatoid arthritis, or autoimmune disorders. Current treatments require a lifetime supply for patients to alleviate clinical symptoms and are unable to stop the course of disease. In contrast, a new series of immunotherapeutic agents targeting the Fc γ receptor I (CD64) have emerged and demonstrated significant clinical potential to actually resolving chronic inflammation driven by M1-type dysregulated macrophages. This subpopulation plays a key role in the initiation and maintenance of a series of chronic diseases. The novel recombinant M1-specific immunotherapeutics offer the prospect of highly effective treatment strategies as they have been shown to selectively eliminate the disease-causing macrophage subpopulations. In this review, we provide a detailed summary of the data generated, together with the advantages and the clinical potential of CD64-based targeted therapies for the treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Olusiji A Akinrinmade
- South African Research Chair in Cancer Biotechnology, Institute of Infectious Disease and Molecular Medicine (IDM), Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, 7925 Cape Town, South Africa.
| | - Shivan Chetty
- South African Research Chair in Cancer Biotechnology, Institute of Infectious Disease and Molecular Medicine (IDM), Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, 7925 Cape Town, South Africa.
| | - Adebukola K Daramola
- South African Research Chair in Cancer Biotechnology, Institute of Infectious Disease and Molecular Medicine (IDM), Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, 7925 Cape Town, South Africa.
| | - Mukit-Ul Islam
- South African Research Chair in Cancer Biotechnology, Institute of Infectious Disease and Molecular Medicine (IDM), Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, 7925 Cape Town, South Africa.
| | - Theo Thepen
- Institute for Transfusion Medicine and Immunohematology and Blood Bank. University Hospital Magdeburg A.ö.R, 39120 Magdeburg, Germany.
| | - Stefan Barth
- South African Research Chair in Cancer Biotechnology, Institute of Infectious Disease and Molecular Medicine (IDM), Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, 7925 Cape Town, South Africa.
| |
Collapse
|
8
|
Bochicchio A, Jordaan S, Losasso V, Chetty S, Perera RC, Ippoliti E, Barth S, Carloni P. Designing the Sniper: Improving Targeted Human Cytolytic Fusion Proteins for Anti-Cancer Therapy via Molecular Simulation. Biomedicines 2017; 5:E9. [PMID: 28536352 PMCID: PMC5423494 DOI: 10.3390/biomedicines5010009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 01/27/2017] [Accepted: 02/10/2017] [Indexed: 12/19/2022] Open
Abstract
Targeted human cytolytic fusion proteins (hCFPs) are humanized immunotoxins for selective treatment of different diseases including cancer. They are composed of a ligand specifically binding to target cells genetically linked to a human apoptosis-inducing enzyme. hCFPs target cancer cells via an antibody or derivative (scFv) specifically binding to e.g., tumor associated antigens (TAAs). After internalization and translocation of the enzyme from endocytosed endosomes, the human enzymes introduced into the cytosol are efficiently inducing apoptosis. Under in vivo conditions such enzymes are subject to tight regulation by native inhibitors in order to prevent inappropriate induction of cell death in healthy cells. Tumor cells are known to upregulate these inhibitors as a survival mechanism resulting in escape of malignant cells from elimination by immune effector cells. Cytosolic inhibitors of Granzyme B and Angiogenin (Serpin P9 and RNH1, respectively), reduce the efficacy of hCFPs with these enzymes as effector domains, requiring detrimentally high doses in order to saturate inhibitor binding and rescue cytolytic activity. Variants of Granzyme B and Angiogenin might feature reduced affinity for their respective inhibitors, while retaining or even enhancing their catalytic activity. A powerful tool to design hCFPs mutants with improved potency is given by in silico methods. These include molecular dynamics (MD) simulations and enhanced sampling methods (ESM). MD and ESM allow predicting the enzyme-protein inhibitor binding stability and the associated conformational changes, provided that structural information is available. Such "high-resolution" detailed description enables the elucidation of interaction domains and the identification of sites where particular point mutations may modify those interactions. This review discusses recent advances in the use of MD and ESM for hCFP development from the viewpoints of scientists involved in both fields.
Collapse
Affiliation(s)
- Anna Bochicchio
- German Research School for Simulation Sciences, Forschungszentrum Jülich, Jülich 52425, Germany.
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich 52425, Germany.
- Department of Physics, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen 52062, Germany.
| | - Sandra Jordaan
- Department of Integrative Biomedical Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7701, South Africa.
| | - Valeria Losasso
- Scientific Computing Department, Science and Technology Facilities Council, Daresbury Laboratory, Warrington WA4 4AD, UK.
| | - Shivan Chetty
- Department of Integrative Biomedical Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7701, South Africa.
| | - Rodrigo Casasnovas Perera
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich 52425, Germany.
| | - Emiliano Ippoliti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich 52425, Germany.
| | - Stefan Barth
- Department of Integrative Biomedical Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7701, South Africa.
| | - Paolo Carloni
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich 52425, Germany.
- Department of Physics, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen 52062, Germany.
- JARA-HPC, Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, Jülich 52425, Germany.
| |
Collapse
|
9
|
Cong X, Cremer C, Nachreiner T, Barth S, Carloni P. Engineered human angiogenin mutations in the placental ribonuclease inhibitor complex for anticancer therapy: Insights from enhanced sampling simulations. Protein Sci 2016; 25:1451-60. [PMID: 27110669 PMCID: PMC4972201 DOI: 10.1002/pro.2941] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 04/20/2016] [Indexed: 01/29/2023]
Abstract
Targeted human cytolytic fusion proteins (hCFPs) represent a new generation of immunotoxins (ITs) for the specific targeting and elimination of malignant cell populations. Unlike conventional ITs, hCFPs comprise a human/humanized target cell-specific binding moiety (e.g., an antibody or a fragment thereof) fused to a human proapoptotic protein as the cytotoxic domain (effector domain). Therefore, hCFPs are humanized ITs expected to have low immunogenicity. This reduces side effects and allows long-term application. The human ribonuclease angiogenin (Ang) has been shown to be a promising effector domain candidate. However, the application of Ang-based hCFPs is largely hampered by the intracellular placental ribonuclease inhibitor (RNH1). It rapidly binds and inactivates Ang. Mutations altering Ang's affinity for RNH1 modulate the cytotoxicity of Ang-based hCFPs. Here we perform in total 2.7 µs replica-exchange molecular dynamics simulations to investigate some of these mutations-G85R/G86R (GGRRmut ), Q117G (QGmut ), and G85R/G86R/Q117G (GGRR/QGmut ). GGRRmut turns out to perturb greatly the overall Ang-RNH1 interactions, whereas QGmut optimizes them. Combining QGmut with GGRRmut compensates the effects of the latter. Our results explain the in vitro finding that, while Ang GGRRmut -based hCFPs resist RNH1 inhibition remarkably, Ang WT- and Ang QGmut -based ones are similarly sensitive to RNH1 inhibition, whereas Ang GGRR/QGmut -based ones are only slightly resistant. This work may help design novel Ang mutants with reduced affinity for RNH1 and improved cytotoxicity.
Collapse
Affiliation(s)
- Xiaojing Cong
- Computational Biophysics, German Research School for Simulation Sciences (Joint Venture of RWTH Aachen University and Forschungszentrum Jülich)Jülich52428Germany
- Computational Biomedicine Section, Institute for Advanced Simulations ‐ 5 (IAS‐5)Jülich52428GermanyForschungszentrum Jülich
- Computational Biomedicine Section, Institute for Neuroscience and Medicine ‐ 9 (INM‐9)Jülich52428GermanyForschungszentrum Jülich
| | - Christian Cremer
- Department of Experimental Medicine and Immunotherapy, Institute for Applied Medical EngineeringUniversity Hospital RWTH AachenAachen52074Germany
| | - Thomas Nachreiner
- Department of Experimental Medicine and Immunotherapy, Institute for Applied Medical EngineeringUniversity Hospital RWTH AachenAachen52074Germany
| | - Stefan Barth
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape TownCape Town7925South Africa
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape Town7925Cape TownSouth Africa
| | - Paolo Carloni
- Computational Biophysics, German Research School for Simulation Sciences (Joint Venture of RWTH Aachen University and Forschungszentrum Jülich)Jülich52428Germany
- Computational Biomedicine Section, Institute for Advanced Simulations ‐ 5 (IAS‐5)Jülich52428GermanyForschungszentrum Jülich
- Computational Biomedicine Section, Institute for Neuroscience and Medicine ‐ 9 (INM‐9)Jülich52428GermanyForschungszentrum Jülich
| |
Collapse
|
10
|
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disorder affecting motoneurons. Mutations in angiogenin, encoding a member of the pancreatic RNase A superfamily, segregate with ALS. We previously demonstrated that angiogenin administration shows promise as a neuroprotective therapeutic in studies using transgenic ALS mice and primary motoneuron cultures. Its mechanism of action and target cells in the spinal cord, however, are largely unknown. Using mixed motoneuron cultures, motoneuron-like NSC34 cells, and primary astroglia cultures as model systems, we here demonstrate that angiogenin is a neuronally secreted factor that is endocytosed by astroglia and mediates neuroprotection in paracrine. We show that wild-type angiogenin acts unidirectionally to induce RNA cleavage in astroglia, while the ALS-associated K40I mutant is also secreted and endocytosed, but fails to induce RNA cleavage. Angiogenin uptake into astroglia requires heparan sulfate proteoglycans, and engages clathrin-mediated endocytosis. We show that this uptake mechanism exists for mouse and human angiogenin, and delivers a functional RNase output. Moreover, we identify syndecan 4 as the angiogenin receptor mediating the selective uptake of angiogenin into astroglia. Our data provide new insights into the paracrine activities of angiogenin in the nervous system, and further highlight the critical role of non-neuronal cells in the pathogenesis of ALS.
Collapse
|
11
|
Li L, Zhao H, Chen Z, Mu X, Guo L. Aptamer biosensor for label-free square-wave voltammetry detection of angiogenin. Biosens Bioelectron 2011; 30:261-6. [PMID: 22018671 DOI: 10.1016/j.bios.2011.09.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/07/2011] [Accepted: 09/19/2011] [Indexed: 10/16/2022]
Abstract
Angiogenin (Ang), one of the most potent angiogenic factor, is related with the growth and metastasis of numerous tumors. This paper presents a very simple and label-free square-wave voltammetry (SWV) aptasensor to detect angiogenin, in which an anti-angiogenin-aptamer was used as a molecular recognition element, and the couple ferro/ferricyanide as a redox probe. At the bare gold electrode, the redox couple (K(4)[Fe(CN)(6)]/K(3)[Fe(CN)(6)]) can be very easily accessed to the electrode surface to give a very strong SWV signal. At the anti-angiogenin/Au electrode surface, when angiogenin was added to the electrochemical cell, the binding of the analyte results in less availability for a redox reaction, which led to smaller SWV current. To quantify the amount of angiogenin, current suppressions of SWV peak were monitored using the redox couple of an [Fe(CN)(6)](4-/3-) probe. The plot of signal suppression against the logarithm of angiogenin concentration is linear with over the range from 0.01 nM to 30 nM with a detection limit of 1 pM. The aptasensor also showed very good selectivity for angiogenin without being affected by the presence of other proteins in serum. It is the first time to use a very simple method to detect the cancer marker. Such an aptasensor opens a rapid, selective and sensitive route for angiogenin detection and provides a promising strategy for other protein detections.
Collapse
Affiliation(s)
- Lidong Li
- School of Chemistry & Environment, Beihang University, Beijing 100191, China.
| | | | | | | | | |
Collapse
|
12
|
Jang SH, Song HD, Kang DK, Chang SI, Kim MK, Cho KH, Scherga HA, Shin HC. Role of the surface loop on the structure and biological activity of angiogenin. BMB Rep 2009; 42:829-33. [DOI: 10.5483/bmbrep.2009.42.12.829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
13
|
Krauss J, Exner E, Mavratzas A, Seeber S, Arndt MAE. High-level production of a humanized immunoRNase fusion protein from stably transfected myeloma cells. Methods Mol Biol 2009; 525:471-xiv. [PMID: 19252845 DOI: 10.1007/978-1-59745-554-1_24] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ImmunoRNases represent a highly attractive alternative to conventional immunotoxins for cancer therapy. Quantitative production of immunoRNases in appropriate expression systems, however, remains a major challenge for further clinical development of these novel compounds. Here we describe a method for high-level production and purification of a fully functional immunoRNase fusion protein from supernatants of stably transfected mammalian cells.
Collapse
Affiliation(s)
- Jürgen Krauss
- National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
14
|
Smith BD, Raines RT. Genetic selection for peptide inhibitors of angiogenin. Protein Eng Des Sel 2008; 21:289-94. [PMID: 18308863 DOI: 10.1093/protein/gzm089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The improper regulation of angiogenesis is implicit in a variety of diseases, including cancer. Angiogenin is unique among angiogenic factors in having ribonucleolytic activity. Inhibitors of this activity could serve as chemotherapeutics. The ribonucleolytic activity of angiogenin is toxic to the Origami strain of Escherichia coli. Herein, this cytotoxicity was used to identify inhibitors from a random nonapeptide library tethered to the C-terminus of human angiogenin. The selected sequences fell into three classes: (i) extremely hydrophobic, (ii) putative protease (ClpXP) substrates and (iii) slightly anionic. Two peptides corresponding to sequences in the last class were synthesized chemically and found to inhibit the ribonucleolytic activity of human angiogenin in vitro with micromolar values of Ki. Both peptides also inhibit bovine pancreatic ribonuclease, a homolog of angiogenin, though one exhibits selectivity for angiogenin. The affinity and selectivity of these peptides are comparable with the best known inhibitors of angiogenin. Moreover, the strategy used to identify them is general and could be applied to other cytotoxins.
Collapse
Affiliation(s)
- Bryan D Smith
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706-1544, USA
| | | |
Collapse
|
15
|
Altman S. Ribonuclease P: an enzyme with a catalytic RNA subunit. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 62:1-36. [PMID: 2471397 DOI: 10.1002/9780470123089.ch1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- S Altman
- Department of Biology, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
16
|
Kim HM, Kang DK, Kim HY, Kang SS, Chang SI. Angiogenin-induced protein kinase B/Akt activation is necessary for angiogenesis but is independent of nuclear translocation of angiogenin in HUVE cells. Biochem Biophys Res Commun 2006; 352:509-13. [PMID: 17125737 DOI: 10.1016/j.bbrc.2006.11.047] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Accepted: 11/10/2006] [Indexed: 10/23/2022]
Abstract
Angiogenin, a potent angiogenic factor, binds to endothelial cells and is endocytosed and rapidly translocated to and concentrated in the nucleolus where it binds to DNA. In this study, we report that angiogenin induces transient phosphorylation of protein kinase B/Akt in cultured human umbilical vein endothelial (HUVE) cells. LY294002 inhibits the angiogenin-induced protein kinase B/Akt activation and also angiogenin-induced cell migration in vitro as well as angiogenesis in chick embryo chorioallantoic membrane in vivo without affecting nuclear translocation of angiogenin in HUVE cells. These results suggest that cross-talk between angiogenin and protein kinase B/Akt signaling pathways is essential for angiogenin-induced angiogenesis in vitro and in vivo, and that angiogenin-induced PKB/Akt activation is independent of nuclear translocation of angiogenin in HUVE cells.
Collapse
Affiliation(s)
- Hye-Mi Kim
- Department of Biochemistry, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | | | | | | | | |
Collapse
|
17
|
Smith BD, Raines RT. Genetic selection for critical residues in ribonucleases. J Mol Biol 2006; 362:459-78. [PMID: 16920150 DOI: 10.1016/j.jmb.2006.07.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 07/03/2006] [Accepted: 07/11/2006] [Indexed: 11/24/2022]
Abstract
Homologous mammalian proteins were subjected to an exhaustive search for residues that are critical to their structure/function. Error-prone polymerase chain reactions were used to generate random mutations in the genes of bovine pancreatic ribonuclease (RNase A) and human angiogenin, and a genetic selection based on the intrinsic cytotoxicity of ribonucleolytic activity was used to isolate inactive variants. Twenty-three of the 124 residues in RNase A were found to be intolerant to substitution with at least one particular amino acid. Twenty-nine of the 123 residues in angiogenin were likewise intolerant. In both RNase A and angiogenin, only six residues appeared to be wholly intolerant to substitution: two histidine residues involved in general acid/base catalysis and four cysteine residues that form two disulfide bonds. With few exceptions, the remaining critical residues were buried in the hydrophobic core of the proteins. Most of these residues were found to tolerate only conservative substitutions. The importance of a particular residue as revealed by this genetic selection correlated with its sequence conservation, though several non-conserved residues were found to be critical for protein structure/function. Despite voluminous research on RNase A, the importance of many residues identified herein was unknown, and those can now serve as targets for future work. Moreover, a comparison of the critical residues in RNase A and human angiogenin, which share only 35% amino acid sequence identity, provides a unique perspective on the molecular evolution of the RNase A superfamily, as well as an impetus for applying this methodology to other ribonucleases.
Collapse
Affiliation(s)
- Bryan D Smith
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
18
|
Abstract
The Ribonuclease A superfamily includes an extensive network of distinct and divergent gene lineages. Although all ribonucleases of this superfamily share invariant structural and catalytic elements and some degree of enzymatic activity, the primary sequences have diverged significantly, ostensibly to promote novel function. We will review the literature on the evolution and biology of the RNase A ribonuclease lineages that have been characterized specifically as involved in host defense including: (1) RNases 2 and RNases 3, also known as the eosinophil ribonucleases, which are rapidly-evolving cationic proteins released from eosinophilic leukocytes, (2) RNase 7, an anti-pathogen ribonuclease identified in human skin, and (3) RNase 5, also known as angiogenin, another rapidly-evolving ribonuclease known to promote blood vessel growth with recently-discovered antibacterial activity. Interestingly, some of the characterized anti-pathogen activities do not depend on ribonuclease activity per se. We discuss the ways in which the anti-pathogen activities characterized in vitro might translate into experimental confirmation in vivo. We will also consider the possibility that other ribonucleases, such as the dimeric bovine seminal ribonuclease and the frog oocyte ribonucleases, may have host defense functions and therapeutic value that remain to be explored. (190 words).
Collapse
Affiliation(s)
- Kimberly D Dyer
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
19
|
Ahn EH, Kang DK, Chang SI, Kang CS, Han MH, Kang IC. Profiling of differential protein expression in angiogenin-induced HUVECs using antibody-arrayed ProteoChip. Proteomics 2006; 6:1104-9. [PMID: 16404717 DOI: 10.1002/pmic.200500394] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
ProteoChip has been developed as a novel protein microarray technology. So far it has been applied in new lead screening and molecular diagnostics and we expect its role to grow in the field of biology. Here, we investigated the application of ProteoChip for the study of differential protein expression profiles in angiogenin-induced human umbilical vein endothelial cells (HUVECs). Antibody microarrays constructed by immobilizing 60 distinct antibodies against signal-transducing proteins on ProteoChip base plates were used to analyze the expression pattern of cell-signaling proteins in HUVECs treated with angiogenin. The antibody microarray approach showed that angiogenin induced the up- and down-regulation of several cellular regulators related with cell proliferation. Changes in the expression of signaling proteins determined by antibody microarray were validated by Western blot analysis. In this experiment, ten up-regulated proteins and six down-regulated proteins were identified and confirmed by immunoblot analysis. Taken together, these data suggest that antibody microarrays using ProteoChip technology can be a powerful tool for high-throughput analysis of proteomes in biological samples.
Collapse
Affiliation(s)
- Eun-Hee Ahn
- Protein Chip Research Center, Biotechnology Research Institute, Chungbuk National University, Cheongju, Korea
| | | | | | | | | | | |
Collapse
|
20
|
Campo L, Turley H, Han C, Pezzella F, Gatter KC, Harris AL, Fox SB. Angiogenin is up-regulated in the nucleus and cytoplasm in human primary breast carcinoma and is associated with markers of hypoxia but not survival. J Pathol 2005; 205:585-91. [PMID: 15776477 DOI: 10.1002/path.1740] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Angiogenin, a 14.2 kD polypeptide that was originally noted for its angiogenic activity, is now increasingly recognized to have a multiplicity of biological roles in both physiological and pathological conditions. In breast cancer, there are conflicting studies questioning the role of angiogenin. Here, the pattern of expression of angiogenin during the transition from normal breast tissue to ductal carcinoma in situ and invasive carcinoma is reported together with the correlates between the level of angiogenin in 239 invasive carcinomas and standard clinicopathological parameters, hypoxia-inducible factor (HIF)-1 alpha and the HIF-1 alpha target gene DEC-1. This study shows that angiogenin expression is up-regulated in the cytoplasmic and nuclear compartments in in situ carcinoma and invasive carcinoma compared with normal breast tissue and that angiogenin expression in invasive carcinomas is significantly positively associated with high tumour grade (p = 0.03), positive oestrogen receptor (ER) status (p = 0.01), HIF-1 alpha (p = 0.001) and DEC 1 (p = 0.001), but not with patient age (p = 0.8), tumour size (p = 0.25), lymph node status (p = 0.69), epidermal growth factor receptor (p = 0.56) or microvessel density (p = 0.32). No difference in relapse-free (p = 0.26) or overall (p = 0.63) survival was observed in patients stratified by angiogenin expression. This study suggests that angiogenin may be important in breast cancer progression and that, through its relationship with ER, it may be a target for tamoxifen.
Collapse
MESH Headings
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/blood supply
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Intraductal, Noninfiltrating/blood supply
- Carcinoma, Intraductal, Noninfiltrating/metabolism
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Cell Hypoxia
- Cell Nucleus/metabolism
- Cytoplasm/metabolism
- DNA-Binding Proteins/metabolism
- Disease Progression
- Female
- Humans
- Hypoxia-Inducible Factor 1
- Hypoxia-Inducible Factor 1, alpha Subunit
- Lymphatic Metastasis
- Middle Aged
- Neoplasm Proteins/metabolism
- Neovascularization, Pathologic/metabolism
- Nuclear Proteins/metabolism
- Receptors, Estrogen/metabolism
- Ribonuclease, Pancreatic/metabolism
- Survival Analysis
- Transcription Factors/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Leticia Campo
- Nuffield Department Clinical Laboratory Sciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | | | | | | | | | | | | |
Collapse
|
21
|
Krauss J, Arndt MAE, Vu BK, Newton DL, Rybak SM. Targeting malignant B-cell lymphoma with a humanized anti-CD22 scFv-angiogenin immunoenzyme. Br J Haematol 2005; 128:602-9. [PMID: 15725080 DOI: 10.1111/j.1365-2141.2005.05356.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report on the generation and functional characterization of a humanized immunoenzyme comprising a stable humanized single chain Fv (scFv) with grafted specificity of the anti-CD22 murine monoclonal antibody RFB4 and the human ribonuclease angiogenin (ANG). The fusion protein produced from transiently transfected mammalian Chinese hamster ovary cells could easily be purified to homogeneity, retained full ribonucleolytic activity, and efficiently killed CD22(+) tumour cells with an IC(50) of 56 nmol/l. In contrast, incubation of tumour cells with either ANG or scFv alone did not result in any cytotoxicity. Potent receptor-mediated killing of target cells, expected lack of extracellular toxicity, predictable low immunogenic potential, and ease of production, suggest that this novel immunoenzyme has potential for the immunotherapy of CD22(+) malignancies.
Collapse
Affiliation(s)
- Jürgen Krauss
- SAIC, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | | | | | | | | |
Collapse
|
22
|
Abraham AT, Lin JJ, Newton DL, Rybak S, Hecht SM. RNA cleavage and inhibition of protein synthesis by bleomycin. CHEMISTRY & BIOLOGY 2003; 10:45-52. [PMID: 12573697 DOI: 10.1016/s1074-5521(02)00306-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Bleomycin is a clinically used antitumor antibiotic long thought to function therapeutically at the level of DNA cleavage. Recently, it has become clear that bleomycin can also cleave selected members of all major classes of RNA. Using the computer program COMPARE to search the database established by the Anticancer Drug Screening Program of the National Cancer Institute, a possible mechanism-based correlation was found between onconase, an antitumor ribonuclease currently being evaluated in phase III clinical trials, and the chemotherapeutic agent bleomycin. Following these observations, experimentation revealed that bleomycin caused tRNA cleavage and DNA-independent protein synthesis inhibition in rabbit reticulocyte lysate and when microinjected into Xenopus oocytes. The correlation of protein synthesis inhibition to the previously reported site-specific RNA cleavage caused by bleomycin supports the thesis that RNA cleavage may constitute an important element of the mechanism of action of bleomycin.
Collapse
Affiliation(s)
- Anil T Abraham
- Department of Chemistry, University of Virginia, Charlottesville, VA 22901, USA
| | | | | | | | | |
Collapse
|
23
|
Newton DL, Rybak SM. Preparation of recombinant RNase single-chain antibody fusion proteins. Mol Biotechnol 2002; 20:63-76. [PMID: 11876300 DOI: 10.1385/mb:20:1:063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This article describes the construction, expression, and purification of RNase single-chain antibody fusion proteins. To construct a fusion protein, the gene for each moiety, the RNase and the binding ligand, is modified separately to contain complementary DNA encoding a 13 amino acid spacer that separates the RNase from the binding moiety. Appropriate restriction enzyme sites for cloning into the vector are also added. The modified DNA is combined and fused using the PCR technique of splicing by overlap extension (1). The resulting DNA construct is expressed in inclusion bodies in BL21(DE3) bacteria that are specifically engineered for the expression of toxic proteins (2). After isolation and purification of the inclusion bodies, the fusion protein is solubilized, denatured, and renatured. The renatured RNase fusion protein mixture is purified to homogeneity by two chromatography steps. The first column, a CM-Sephadex C-50 or a heparin Sepharose column, eliminates the majority of contaminating proteins while the second column, an affinity column (Ni2+-NTA agarose), results in the final purification of the RNase fusion protein.
Collapse
Affiliation(s)
- Dianne L Newton
- SAIC Frederick, National Cancer Institute-Frederick Cancer Research and Development Center, MD 21702, USA
| | | |
Collapse
|
24
|
Newton DL, Pollock D, DiTullio P, Echelard Y, Harvey M, Wilburn B, Williams J, Hoogenboom HR, Raus JC, Meade HM, Rybak SM. Antitransferrin receptor antibody-RNase fusion protein expressed in the mammary gland of transgenic mice. J Immunol Methods 1999; 231:159-67. [PMID: 10648935 DOI: 10.1016/s0022-1759(99)00154-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Antibodies fused to human enzymes offer an alternative to specifically targeting tumors with antibodies linked to plant or bacterial toxins. Since large amounts of these reagents can be administered without eliciting non-specific toxicities, efficient methods of production are needed. The goal of this work was to express a complex immunoenzyme fusion protein (immunotoxin) in the mammary gland of transgenic mice. A chimeric mouse/human antibody directed against the human transferrin receptor (E6) was fused at its CH2 domain to the gene for a human angiogenic ribonuclease, angiogenin (Ang). It was expressed in the mammary gland of mice and secreted into mouse milk. Expression levels in milk were approximately 0.8 g/l. The chimeric protein retained antibody binding activity and protein synthesis inhibitory activity equivalent to that of free Ang. It was specifically cytotoxic to human tumor cells in vitro.
Collapse
Affiliation(s)
- D L Newton
- Intramural Research Support Program, SAIC Frederick, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Morishita R, Kawagoshi A, Sawasaki T, Madin K, Ogasawara T, Oka T, Endo Y. Ribonuclease activity of rat liver perchloric acid-soluble protein, a potent inhibitor of protein synthesis. J Biol Chem 1999; 274:20688-92. [PMID: 10400702 DOI: 10.1074/jbc.274.29.20688] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rat liver perchloric acid-soluble protein (L-PSP) is a potent inhibitor of cell-free protein synthesis; however, its mechanism of action is not known. Here we show that the protein is a unique ribonuclease and that this activity is responsible for the inhibition of translation. The addition of perchloric acid-soluble protein to a rabbit reticulocyte cell-free system at a concentration of 6.2 microM led to an almost complete inhibition of protein synthesis. The kinetics are unlike those of hemin-controlled inhibitor, a protein that acts at the initiation step. The inhibition appears to be due to an endoribonucleolytic activity of perchloric acid-soluble protein because L-PSP directly affects mRNA template activity and induces disaggregation of the reticulocyte polysomes into 80 S ribosomes, even in the presence of cycloheximide. These effects were observed with authentic as well as recombinant L-PSP. Analysis by thin-layer chromatography of [alpha-32P]UTP-labeled mRNA incubated with the protein showed production of the ribonucleoside 3'-monophosphates Ap, Gp, Up, and Cp, providing direct evidence that the protein is an endoribonuclease. When either 5'- or 3'-32P-labeled 5 S rRNA was the substrate, L-PSP cleaved phosphodiester bonds only in the single-stranded regions of the molecule.
Collapse
Affiliation(s)
- R Morishita
- Department of Applied Chemistry, Faculty of Engineering, Ehime University, Matsuyama 790-8577, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Rosenberg HF, Dyer KD. Diversity among the primate eosinophil-derived neurotoxin genes: a specific C-terminal sequence is necessary for enhanced ribonuclease activity. Nucleic Acids Res 1997; 25:3532-6. [PMID: 9254715 PMCID: PMC146920 DOI: 10.1093/nar/25.17.3532] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The human eosinophil-derived neurotoxin (hEDN) is a secretory effector protein from eosinophilic leukocytes that is a member of the ribonuclease A (RNase A) family of ribonucleases. EDN is a rapidly evolving protein, accumulating non-silent mutations at a rate exceeding those of most other functional coding sequences studied in primates. Although all primate EDNs retain the structural and functional residues known to be prerequisites for ribonuclease activity, we have shown previously that recombinant EDN derived from a New World monkey sequence ( Saguinus oedipus ) had significantly less catalytic activity than the human (hEDN) ortholog.In this work, we have prepared recombinant proteins from EDN from sequences derived from orangutan (Pongo pygmaeus, oEDN) and Old World monkey (Macaca fascicularis, mcEDN) genomic DNAs, and from a second New World monkey sequence (Aotus trivirgatus, omEDN) as well. The catalytic efficiencies [ k cat/ K m (M-1s-1)] determined for both oEDN and mcEDN were similar to that determined previously for hEDN, while omEDN displayed approximately 100-fold less catalytic activity. The relative ribonuclease activities of hEDN/omEDN chimeras pointed to a C-terminal segment as crucial to the enhanced catalytic activity hEDN, and substitution of Arg 132-Ile 133 of hEDN with the Thr-Thr pair at the analogous position in omEDN resulted in an approximately 10-fold reduction in hEDN's catalytic efficiency. However, the reverse substitution, Arg-Ile for Thr-Thr in omEDN, did not enhance the catalytic efficiency of this relatively inactive protein. These results indicate that the Arg and/or Ile residues adjacent to the C-terminus are necessary (but not sufficient) for enhanced ribonuclease activity among the primate EDNs, and will permit prediction of the relative ribonuclease activities based on differences in primary structure.
Collapse
Affiliation(s)
- H F Rosenberg
- Laboratory of Host Defenses, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
27
|
Soncin F, Guitton JD, Cartwright T, Badet J. Interaction of human angiogenin with copper modulates angiogenin binding to endothelial cells. Biochem Biophys Res Commun 1997; 236:604-10. [PMID: 9245697 DOI: 10.1006/bbrc.1997.7018] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Angiogenin is a potent inducer of blood-vessel formation with ribonucleolytic activity. Angiogenin binds to high affinity endothelial cell receptors and with lower affinity to extracellular matrix components. Here we report the effect of copper and zinc on these interactions. There was a 4.3-fold increase in angiogenin binding to calf pulmonary artery endothelial cells in the presence of Cu2+ in vitro. A 3.8-fold increase was observed with Zn2+, whereas Ni2+, Co2+, or Li+ had no effect. Specific angiogenin binding to the lower affinity matrix sites was increased by 2.7- and 1.9-fold in the presence of Cu2+ and Zn2+ respectively. Metal ion affinity chromatography and atomic absorption spectrometry were used to show the direct interaction of angiogenin with copper and zinc ions. Angiogenin bound 2.4 mol of copper per mole of protein. We suggest that copper, a modulator of angiogenesis in vivo, may be involved in the regulation of the biological activity of angiogenin.
Collapse
Affiliation(s)
- F Soncin
- Centre National de la Recherche Scientifique, Unité 1813, Institut National de la Santé et de la Recherche Médicale, Université Paris XII-Val de Marne, Créteil, France
| | | | | | | |
Collapse
|
28
|
Strydom DJ, Bond MD, Vallee BL. An angiogenic protein from bovine serum and milk--purification and primary structure of angiogenin-2. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 247:535-44. [PMID: 9266695 DOI: 10.1111/j.1432-1033.1997.00535.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bovine serum and milk contain a basic angiogenic protein that binds tightly to placental ribonuclease inhibitor. It was purified from both sources by ion-exchange and reversed-phase chromatographies. Its amino acid sequence revealed that it is a member of the ribonuclease superfamily. It contains 123 amino acids in a single polypeptide chain, is cross-linked by three disulfide bonds, is glycosylated at Asn33, and is 57% identical to bovine angiogenin. The amino-terminal and carboxyl-terminal residues are pyroglutamic acid and proline, respectively. The protein has ribonucleolytic activity that is similar to, but somewhat lower than, that of bovine angiogenin, i.e. very low relative to RNase. It is angiogenically potent on chicken chorioallantoic membrane, but less so than angiogenin. The sequence and activities demonstrate that this protein is a second, distinct, member of the angiogenin sub-family of pancreatic ribonucleases, and is referred to as angiogenin-2.
Collapse
Affiliation(s)
- D J Strydom
- Center for Biochemical and Biophysical Sciences and Medicine, and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
29
|
Zewe M, Rybak SM, Dübel S, Coy JF, Welschof M, Newton DL, Little M. Cloning and cytotoxicity of a human pancreatic RNase immunofusion. IMMUNOTECHNOLOGY : AN INTERNATIONAL JOURNAL OF IMMUNOLOGICAL ENGINEERING 1997; 3:127-36. [PMID: 9237097 DOI: 10.1016/s1380-2933(97)00070-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Immunotoxins based on plant and bacterial proteins are usually very immunogenic. Human ribonucleases could provide an alternative basis for the construction of less immunogenic reagents. Two members of the human RNase family, angiogenin and eosinophil-derived neurotoxin (EDN), have been fused to a single chain antibody against the transferrin receptor, which is known to be internalised by endocytosis. The fusion proteins proved to be very efficient inhibitors of protein synthesis using various cell lines. It is not yet known whether the side effects of angiogenin and EDN will compromise their potential use as immunotoxins. OBJECTIVES The goal of this work was to construct a human immunotoxin with no harmful side effects. Bovine pancreatic ribonuclease has been shown to be as potent as ricin at abolishing protein synthesis on injection into oocytes. We therefore decided to clone its human analogue, which is fairly ubiquitous and per se non-toxic. An immunofusion of human pancreatic RNase with a single chain antibody against the transferrin receptor was tested for its ability to inhibit protein synthesis in three different human tumor cell lines. STUDY DESIGN DNA coding for the human pancreatic RNase was cloned partially from a human fetal brain cDNA library and then completed by PCR using a human placental cDNA library as a template. The RNase gene was then fused with a DNA coding for an single chain antibody against the transferrin receptor (CD71). After expressing the fusion protein in E. coli, the gene product was isolated from inclusion bodies and tested for cytotoxicity. RESULTS This fusion protein inhibited the protein synthesis of three human tumor cell lines derived from a melanoma, a renal carcinoma and a breast carcinoma, with IC50s of 8, 5 and 10 nM, respectively. These values were comparable with those using a similar fusion protein constructed with eosinophil derived neurotoxin (EDN) as the toxic moiety (IC50s of 8, 1.2 and 3 nM, respectively). The slightly lower activities of the human pancreatic RNase-scFv (pancRNase-scFv) with two of the cell lines suggests that fewer molecules are reaching the cytoplasmic compartment, since it was twice as active as EDN-scFv in inhibiting the protein synthesis of a rabbit reticulocyte lysate. CONCLUSION These results demonstrate that the human pancreatic RNase, which is expected to have a very low immunogenic potential in humans with no inherent toxicity, may be a potent cytotoxin for tumor cells after antibody targeting.
Collapse
Affiliation(s)
- M Zewe
- Recombinant Antibody Group, Diagnostics and Experimental Therapy Program, German Cancer Research Center, Heidelberg
| | | | | | | | | | | | | |
Collapse
|
30
|
Futami J, Tsushima Y, Murato Y, Tada H, Sasaki J, Seno M, Yamada H. Tissue-specific expression of pancreatic-type RNases and RNase inhibitor in humans. DNA Cell Biol 1997; 16:413-9. [PMID: 9150428 DOI: 10.1089/dna.1997.16.413] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The tissue-specific expression of five human pancreatic-type RNases and RNase inhibitor was analyzed by Northern hybridization against poly(A)+ RNA prepared from 16 normal tissues. The widespread expression of RNase 1 was observed in almost all of the tissues. RNase 4 and angiogenin showed a similar distribution of expression abundantly present in the liver. This suggested the identity of the cell types producing these two molecules. However, no relativity appeared to be present between the vascularization of the tissues and the angiogenin expression. A narrow range of expression of the eosinophil-derived neurotoxin gene was observed. This localization seems related to the phagocytic cells in the tissues. The undetectable level of the eosinophil cationic protein mRNA in normal tissues suggests that the differentiation of eosinophils, triggered by inflammation and/or atopy, is required. The expression of RNase inhibitor was found to be ubiquitous. The regulatory function of inhibitor against RNases in the cell should be considered in studying the physiological significance of the pancreatic-type RNase family.
Collapse
Affiliation(s)
- J Futami
- Department of Bioengineering Science, Faculty of Engineering, Okayama University, Tsushima-Naka, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Chang SI, Jeong GB, Park SH, Ahn BC, Choi JD, Chae Q, Namgoong SK, Chung SI. Detection, quantitation, and localization of bovine angiogenin by immunological assays. Biochem Biophys Res Commun 1997; 232:323-7. [PMID: 9125173 DOI: 10.1006/bbrc.1997.6280] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bovine angiogenin (bAng) is a potent blood vessel inducing protein found in bovine serum and milk. Antisera have been raised against bAng. Western blot analysis for bAng indicated that the polyclonal antibody recognized bAng specifically, and no cross-reactivity with bovine RNase A, a protein homologous to bAng, was observed. The sandwich enzyme-linked immunosorbent assay for bAng was sensitive to 10 pg of bAng, and this assay was able to quantitate bAng in bovine serum (100-180 ng/mL) and milk (4-8 micrograms/mL). Strong positive immunohistochemical reactions were detected in alveolar cells, the secretion of alveolar cells and excretory ducts in sections of cow mammary gland, epithelial cells of visceral peritoneum and bile-duct in sections of cow liver, and epithelial cells and mucous glands in sections of cow gallbladder. These results suggest that epithelial cells and secretory cells are major sites of angiogenin synthesis.
Collapse
Affiliation(s)
- S I Chang
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, Korea.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Rosenberg HF, Dyer KD. Molecular cloning and characterization of a novel human ribonuclease (RNase k6): increasing diversity in the enlarging ribonuclease gene family. Nucleic Acids Res 1996; 24:3507-13. [PMID: 8836175 PMCID: PMC146131 DOI: 10.1093/nar/24.18.3507] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The discovery of Ribonuclease k6 (RNase k6) was an unexpected result of our ongoing efforts to trace the evolutionary history of the ribonuclease gene family. The open reading frame of RNase k6, amplified from human genomic DNA, encodes a 150 amino acid polypeptide with eight cysteines and histidine and lysine residues corresponding to those found in the active site of the prototype, ribonuclease A. The single-copy gene encoding RNase k6 maps to human chromosome 14 and orthologous sequences were detected in both primate and non-primate mammalian species. A single mRNA transcript (1.5 kb) was detected in all human tissues tested, with lung representing the most abundant source. At the cellular level, transcripts encoding RNase k6 were detected in normal human monocytes and neutrophils (but not in eosinophils) suggesting a role for this ribonuclease in host defense. Of the five previously identified human ribonucleases of this group, RNase k6 is most closely related to eosinophil-derived neurotoxin (EDN), with 47% amino acid sequence identity; slight cross-reactivity between RNase k6 and EDN was observed on Western blots probed with polyclonal anti-EDN antiserum. The catalytic constants determined, Km = 5.0 microM and Kcat = 0.13 s-1, indicate that recombinant RNase k6 has approximately 40-fold less ribonuclease activity than recombinant EDN. The identification and characterization of RNase k6 has extended the ribonuclease gene family and suggests the possibility that there are others awaiting discovery.
Collapse
Affiliation(s)
- H F Rosenberg
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
33
|
Teicher BA. A systems approach to cancer therapy. (Antioncogenics + standard cytotoxics-->mechanism(s) of interaction). Cancer Metastasis Rev 1996; 15:247-72. [PMID: 8842498 DOI: 10.1007/bf00437479] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- B A Teicher
- Dana-Farber Cancer Institute, Boston, MA 02115, USA
| |
Collapse
|
34
|
Moses MA, Klagsbrun M, Shing Y. The role of growth factors in vascular cell development and differentiation. INTERNATIONAL REVIEW OF CYTOLOGY 1995; 161:1-48. [PMID: 7558689 DOI: 10.1016/s0074-7696(08)62495-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The control of vascular growth and differentiation is a complex system of activity and interaction between positive and negative modulators of these processes. A number of important stimulators and inhibitors of both smooth muscle cells and endothelial cells have now been purified and biochemically characterized. Imbalances in the activity of these factors can result in serious pathologies. In this chapter, we briefly discuss the biology of blood vessel development and growth, review the current literature which describes these stimulators and inhibitors, and discuss current therapeutic strategies designed around these growth modulators.
Collapse
Affiliation(s)
- M A Moses
- Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
35
|
Inhibition of degranulation of polymorphonuclear leukocytes by angiogenin and its tryptic fragment. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)43808-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
36
|
Moenner M, Gusse M, Hatzi E, Badet J. The widespread expression of angiogenin in different human cells suggests a biological function not only related to angiogenesis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 226:483-90. [PMID: 7528139 DOI: 10.1111/j.1432-1033.1994.tb20073.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Angiogenin is a secreted polypeptide that induces neovascularization in vivo. The expression of angiogenin by human cells in culture was investigated by using a specific radioimmunoassay and by cDNA hybridization. Angiogenin immunoreactivity was widely but differentially produced by anchorage-dependent growing cells including vascular endothelial cells from saphenous and umbilical veins, aortic smooth muscle cells, fibroblasts (from embryos, new-borns and adults), and tumour cells. Endothelial cells from saphenous veins and the endothelium-derived EA.hy926 cell line released immunoreactivity whatever the stage of the culture, including release at the lag phase, during exponential growth and at the confluent phase. However, the rate of accumulation of angiogenin varied as a function of EA.hy926 cell density. As compared to anchored cells, normal peripheral blood cells and tumour cells of myelomonocytic and megakaryocytic origin did not noticeably secrete angiogenin except at low levels. A myeloma cell line supernatant contained as much angiogenin cross-reactivity as did anchored cells, while four tumour T-cell lines expressed the cross-reactivity at different levels, i.e. from undetectable levels to a high level. A 0.9-kb angiogenin messenger RNA was detected by Northern-blot analyses in a variety of representative cells correlating with the presence of immunoreactivity in the cell-culture media. The widespread expression pattern of angiogenin suggests a physiological function that is not restricted to the neovascularization process.
Collapse
Affiliation(s)
- M Moenner
- Laboratoire de Recherche sur la Croissance Cellulaire, Institut National de la Santé et de la Recherche Médicale, Université Paris, France
| | | | | | | |
Collapse
|
37
|
Fett JW, Olson KA, Rybak SM. A monoclonal antibody to human angiogenin. Inhibition of ribonucleolytic and angiogenic activities and localization of the antigenic epitope. Biochemistry 1994; 33:5421-7. [PMID: 7514035 DOI: 10.1021/bi00184a010] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A monoclonal antibody (mAb) to human angiogenin, a protein that induces formation of new blood vessels, was produced by somatic cell fusion techniques and designated as 26-2F. It is an IgGl kappa whose binding affinity, expressed as an IC50, is (1.6 +/- 0.1) x 10(-9) M as determined by a competition radioimmunoassay. mAb 26-2F neutralizes the ribonucleolytic activity of angiogenin as assessed by in vitro protein synthesis and tRNA degradation assays. It also effectively inhibits neovascularization induced by angiogenin on the chick chorioallantoic membrane. Epitope mapping indicates that the binding region of angiogenin recognized by mAb 26-2F is discontinuous and involves both Trp-89 and residues in the segment 38-41. This epitope is formed by two surface loops which are juxtaposed in the three-dimensional structure of human angiogenin recently determined by X-ray crystallography. Thus mAb 26-2F, along with similar antibodies under investigation, will facilitate structure/function studies of angiogenin, help define its physiological role, and lead to an understanding of the consequences of its inhibition in pathological situations in which angiogenin may be involved.
Collapse
Affiliation(s)
- J W Fett
- Center for Biochemical and Biophysical Sciences and Medicine, Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|
38
|
Moroianu J, Riordan JF. Nuclear translocation of angiogenin in proliferating endothelial cells is essential to its angiogenic activity. Proc Natl Acad Sci U S A 1994; 91:1677-81. [PMID: 8127865 PMCID: PMC43226 DOI: 10.1073/pnas.91.5.1677] [Citation(s) in RCA: 211] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The intracellular pathway of human angiogenin in calf pulmonary artery endothelial (CPAE) cells has been studied by immunofluorescence microscopy. Proliferating CPAE cells specifically endocytose native angiogenin and translocate it to the nucleus, where it accumulates in the nucleoli. Nuclear translocation of angiogenin does not occur in nonproliferative, confluent CPAE cells. These cells were previously found to express an angiogenin-binding protein (AngBP) that was identified as smooth muscle alpha-actin. Exogenous actin, an anti-actin antibody, heparin, and heparinase treatment all inhibit the internalization of angiogenin, suggesting the involvement of cell surface AngBP/actin and heparan sulfate proteoglycans in this process. It has been established that two regions of angiogenin are essential for its angiogenic activity, one is its endothelial cell binding site and the other its catalytic site capable of cleaving RNA. CPAE cells do not internalize four enzymatically active angiogenin derivatives whose cell binding site is modified, but they do internalize two enzymatically inactive mutants whose cell binding site is intact. Thus, the putative cell binding site of angiogenin is necessary for both endocytosis and nuclear translocation, but the catalytic site is not. Three other angiogenic molecules are also translocated to the nucleus of growing CPAE cells. Overall, the results suggest that nuclear translocation of angiogenin and other angiogenic molecules is a critical step in the process of angiogenesis.
Collapse
Affiliation(s)
- J Moroianu
- Center for Biochemical and Biophysical Sciences and Medicine, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
39
|
Curran TP, Shapiro R, Riordan JF. Alteration of the enzymatic specificity of human angiogenin by site-directed mutagenesis. Biochemistry 1993; 32:2307-13. [PMID: 8095159 DOI: 10.1021/bi00060a023] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The molecular basis for the enzymatic specificity of human angiogenin has been investigated by site-directed mutagenesis of Thr-44, Glu-108, and Ser-118--residues corresponding to those thought to be involved in substrate base recognition in the homologous protein, RNase A. Mutations of Thr-44 to Ala, His, and Asp affect both activity and specificity dramatically. The Ala and His replacements decrease activity toward tRNA by factors of 25 and 40, respectively, and reduce cleavage of cytidylyl more than uridylyl dinucleotides. Substitution by Asp does not influence the rate of tRNA and rRNA degradation but alters specificity even more markedly than the other mutations: T44D-angiogenin has 17-40-fold decreased activity toward CpN' dinucleotides and 1.3-1.9-fold increased activity toward UpN', resulting in an inverted order of preference (U > C) compared to native angiogenin. Mutations of Glu-108 to Lys and Gln change activity toward RNA and dinucleotides by no more than 50% and produce slight increases in preference for adenosine vs guanosine at position N' of NpN' substrates. Mutations of Ser-118 to Asp and Arg have a larger effect, decreasing activity by factors of approximately 2 and 4, respectively, toward all substrates examined. These results indicate that: (i) Thr-44 is important for recognition of the pyrimidine moiety at position N, (ii) Glu-108 may make a small contribution to binding the N'-nucleotide, and (iii) Ser-118 has a minor functional role, which appears to involve catalysis rather than nucleotide binding.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- T P Curran
- Center for Biochemical and Biophysical Sciences and Medicine, Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|
40
|
Lee FS, Vallee BL. Structure and action of mammalian ribonuclease (angiogenin) inhibitor. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1993; 44:1-30. [PMID: 8434120 DOI: 10.1016/s0079-6603(08)60215-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- F S Lee
- Center for Biochemical and Biophysical Sciences and Medicine, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
41
|
Saxena S, Rybak S, Davey R, Youle R, Ackerman E. Angiogenin is a cytotoxic, tRNA-specific ribonuclease in the RNase A superfamily. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)36710-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
42
|
Rybak SM, Hoogenboom HR, Newton DL, Raus JC, Youle RJ. Rational immunotherapy with ribonuclease chimeras. An approach toward humanizing immunotoxins. CELL BIOPHYSICS 1992; 21:121-38. [PMID: 1285324 DOI: 10.1007/bf02789483] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Members of the pancreatic ribonuclease (RNase) family have diverse activities toward RNA that could cause them to function during host defense and physiological cell death pathways. This activity could be harnessed by coupling RNases to cell binding ligands for the purpose of engineering them into cell-type specific cytotoxins. Therefore, the cytotoxic potential of RNase was explored by linking bovine pancreatic ribonuclease A via a disulfide bond to human transferrin or antibodies to the transferrin receptor. The RNase hybrid proteins were cytotoxic to K562 human erythroleukemia cells in vitro with an IC50 around 10(-7) M, whereas > 10(-4) M of native RNase was required to inhibit protein synthesis. Cytotoxicity required both components of the conjugate since excess transferrin or ribonuclease inhibitors added to the medium protected the cells from the transferrin-RNase toxicity. Importantly, the RNase conjugates were found to have potent antitumor effects in vivo. Chimeric RNase fusion proteins were also developed. F(ab')2-like antibody-enzyme fusions were prepared by linking the gene for human RNase to a chimeric antitransferrin receptor heavy chain gene. The antibody enzyme fusion gene was introduced into a transfectoma that secreted the chimeric light chain of the same antibody, and cell lines were cloned that synthesized and secreted the antibody-enzyme fusion protein of the expected size at a concentration of 1-5 ng/mL. Culture supernatants from clones secreting the fusion protein caused inhibition of growth and protein synthesis toward K562 cells that express the human transferrin receptor but not toward a nonhuman derived cell line. Since human ribonucleases coupled to antibodies also exhibited receptor mediated toxicities, a new approach to selective cell killing is provided. This may allow the development of new therapeutics for cancer treatment that exhibit less systemic toxicity and, importantly, less immunogenicity than the currently employed ligand-toxin conjugates.
Collapse
Affiliation(s)
- S M Rybak
- Surgical Neurology Branch, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|
43
|
|
44
|
Rybak SM, Hoogenboom HR, Meade HM, Raus JC, Schwartz D, Youle RJ. Humanization of immunotoxins. Proc Natl Acad Sci U S A 1992; 89:3165-9. [PMID: 1565609 PMCID: PMC48826 DOI: 10.1073/pnas.89.8.3165] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The construction and expression of a chimeric gene encoding a mouse/human antibody to the human transferrin receptor fused to the gene for angiogenin, a human homolog of pancreatic RNase, are described. F(ab')2-like antibody-enzyme fusions were prepared by linking the gene for human angiogenin to a chimeric anti-transferrin receptor heavy chain gene. The antibody-enzyme fusion gene was introduced into a transfectoma that secretes the chimeric light chain of the same antibody, and cell lines were cloned that synthesize and secrete the antibody-enzyme fusion protein of the expected size at a concentration of 1-5 ng/ml. Culture supernatants from clones secreting the fusion protein caused inhibition of growth and protein synthesis of K562 cells that express the human transferrin receptor but not toward a non-human-derived cell line that lacks this receptor. Whereas excess antibody to the same receptor did not itself inhibit protein synthesis, it was able to completely prevent the protein synthesis inhibition caused by the fusion protein. These results indicate that the cytotoxicity is due to a transferrin receptor-mediated mechanism involving the angiogenin portion of the fusion protein and demonstrate the feasibility of constructing recombinant antibody-RNase molecules capable of killing tumor cells bearing the transferrin receptor. The significance of the acquired cytotoxicity of a mouse/human chimeric antibody linked to a human protein may bear importantly in human therapeutic strategies that use mouse antibodies linked to toxins from plants or bacteria to target tumor cells. It is expected that the humanization of immunotoxins will lead to less toxicity and immunogenicity than currently available reagents.
Collapse
Affiliation(s)
- S M Rybak
- Biochemistry Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20896
| | | | | | | | | | | |
Collapse
|
45
|
Rybak S, Saxena S, Ackerman E, Youle R. Cytotoxic potential of ribonuclease and ribonuclease hybrid proteins. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54841-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
46
|
Saxena S, Rybak S, Winkler G, Meade H, McGray P, Youle R, Ackerman E. Comparison of RNases and toxins upon injection into Xenopus oocytes. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54842-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
47
|
Hallahan TW, Shapiro R, Vallee BL. Dual site model for the organogenic activity of angiogenin. Proc Natl Acad Sci U S A 1991; 88:2222-6. [PMID: 2006161 PMCID: PMC51202 DOI: 10.1073/pnas.88.6.2222] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The residues that are indispensable for the ribonucleolytic activity of angiogenin are also known to be essential for its angiogenic activity. We now demonstrate that residues in another region of the protein, devoid of catalytic residues, are additionally required for angiogenesis. Endoproteinase Lys-C or a baby hamster kidney cell protease cleaves angiogenin at the peptide bond either between Lys-60 and Asn-61 or between Glu-67 and Asn-68, respectively. The two polypeptide fragments resulting from either cleavage remain linked by disulfide bonds. These two derivatives and des-(Asn61-Glu67)-angiogenin--in which both bonds are cleaved--retain their ribonucleolytic activities toward tRNA, 18S and 28S rRNA, and dinucleoside phosphates but are no longer angiogenic on the chicken embryo chorioallantoic membrane. Further, their capacity to elicit a second messenger response in endothelial cells is greatly decreased. Moreover, none of these three derivatives inhibit angiogenin-induced angiogenesis. This contrasts with two active site mutants of angiogenin. These results identify the residues from 60 to 68 as a region of angiogenin that is part of a cell-surface receptor binding site [see accompanying manuscript: Hu, G.-F., Chang, S.-I., Riordan, J.F. & Vallee, B.L. (1991) Proc. Natl. Acad. Sci. USA 88, 2227-2231] and serve as the basis for a dual site model of the organogenic activity of angiogenin.
Collapse
Affiliation(s)
- T W Hallahan
- Center for Biochemical and Biophysical Sciences and Medicine, Harvard Medical School, Boston, MA 02115
| | | | | |
Collapse
|
48
|
Hu GF, Chang SI, Riordan JF, Vallee BL. An angiogenin-binding protein from endothelial cells. Proc Natl Acad Sci U S A 1991; 88:2227-31. [PMID: 2006162 PMCID: PMC51203 DOI: 10.1073/pnas.88.6.2227] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A 42-kDa bovine protein that binds bovine angiogenin [angiogenin binding protein (AngBP)] has been identified as a dissociable cell-surface component of calf pulmonary artery endothelial cells and a transformed bovine endothelial cell line, GM7373. Binding of 125I-labeled bovine angiogenin (125I-Ang) to AngBP occurs with an apparent Kd approximately 5 x 10(-10) M and is specific, saturable, and inhibited by excess unlabeled angiogenin. 125I-Ang can be crosslinked efficiently to AngBP by a water-soluble carbodiimide, 1-ethyl-3-(3-dimethylaminopropyl)carbo-diimide. Bovine ribonuclease A competes with the binding of 125I-Ang to AngBP, but lysozyme does not. Direct binding to AngBP of 125I-labeled bovine ribonuclease A is, however, much weaker than that of 125I-Ang. Two enzymatically active derivatives of angiogenin cleaved at residues 60-61 and 67-68, respectively, fail to induce angiogenesis and also bind to AngBP only weakly. AngBP has been isolated by treatment of cells with heparan sulfate, affinity chromatography on angiogenin-Sepharose of the material dissociated from the cell surface, and gel filtration HPLC. The results suggest that AngBP has the characteristics of a receptor that may likely function in angiogenesis.
Collapse
Affiliation(s)
- G F Hu
- Center for Biochemical and Biophysical Sciences and Medicine, Harvard Medical School, Boston, MA 02115
| | | | | | | |
Collapse
|
49
|
Shapiro R, Vallee BL. Interaction of human placental ribonuclease with placental ribonuclease inhibitor. Biochemistry 1991; 30:2246-55. [PMID: 1998683 DOI: 10.1021/bi00222a030] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The interactions of human placental ribonuclease inhibitor (PRI) with bovine pancreatic ribonuclease (RNase) A and human angiogenin, a plasma protein that induces blood vessel formation, have been characterized in detail in earlier studies. However, studies on the interaction of PRI with the RNase(s) indigenous to placenta have not been performed previously, nor have any placental RNases been identified. In the present work, the major human placental RNase (PR) was purified to homogeneity by a five-step procedure and was obtained in a yield of 110 micrograms/kg of tissue. The placental content of angiogenin was also examined and was found to be at least 10-fold lower than that of PR. On the basis of its amino acid composition, amino-terminal sequence, and catalytic properties, PR appears to be identical with an RNase previously isolated from eosinophils (eosinophil-derived neurotoxin), liver, and urine. The apparent second-order rate constant of association for the PR.PRI complex, measured by examining the competition between PR and angiogenin for PRI, is 1.9 X 10(8) M-1 s-1. The rate constant for dissociation of the complex, determined by HPLC measurement of the rate of release of PR from its complex with PRI in the presence of a scavenger for free PRI, is 1.8 X 10(-7) s-1. Thus the Ki value for the PR.PRI complex is 9 X 10(-16) M, similar to that obtained with angiogenin, and 40-fold lower than that measured with RNase A. Complex formation causes a small red shift in the protein fluorescence emission spectrum, with no significant change in overall intensity. The fluorescence quantum yield of PR and the Stern-Volmer constant for fluorescence quenching by acrylamide are both high, possibly due to the presence of an unusual posttranslationally modified tryptophan residue at position 7 in the primary sequence.
Collapse
Affiliation(s)
- R Shapiro
- Center for Biochemical and Biophysical Sciences and Medicine, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
50
|
Riedel CJ, Muraszko KM, Youle RJ. Diphtheria toxin mutant selectively kills cerebellar Purkinje neurons. Proc Natl Acad Sci U S A 1990; 87:5051-5. [PMID: 2367523 PMCID: PMC54259 DOI: 10.1073/pnas.87.13.5051] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
CRM107 (crossreacting material 107), a double point mutant of diphtheria toxin that lacks receptor-binding activity, specifically kills cerebellar Purkinje cells in vivo. After injection into guinea pig cerebrospinal fluid, CRM107 (0.9 micrograms) and CRM107-monoclonal antibody conjugates (10 micrograms) kill up to 90% of the total Purkinje cell population with no detectable toxicity to other neurons. Animals exhibit ataxia, tremor, and abnormalities of posture and tone. Native diphtheria toxin, ricin, and ricin A chain do not cause ataxia and do not reduce the Purkinje cell population after intrathecal injection into guinea pigs at toxic or maximally tolerated doses. However, in rats, which will tolerate higher doses of diphtheria toxin than guinea pigs, Purkinje cells can be killed by both CRM107 and diphtheria toxin. A truncated mutant of diphtheria toxin, called CRM45, can also cause Purkinje cell killing but has additional toxicity not seen with CRM107. Animals treated with intrathecal CRM107 or CRM107 linked to antibodies may serve as models for Purkinje cell loss in a broad spectrum of human diseases and may be used to further study cerebellar physiology. Understanding the basis for the Purkinje cell sensitivity to CRM107 may illuminate other causes of Purkinje cell loss.
Collapse
Affiliation(s)
- C J Riedel
- Biochemistry Section, National Institute of Neurological and Communicative Disorders and Stroke, National Institutes of Health, Bethesda, MD 20896
| | | | | |
Collapse
|