1
|
Gupta MN, Uversky VN. Protein structure-function continuum model: Emerging nexuses between specificity, evolution, and structure. Protein Sci 2024; 33:e4968. [PMID: 38532700 DOI: 10.1002/pro.4968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/18/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Abstract
The rationale for replacing the old binary of structure-function with the trinity of structure, disorder, and function has gained considerable ground in recent years. A continuum model based on the expanded form of the existing paradigm can now subsume importance of both conformational flexibility and intrinsic disorder in protein function. The disorder is actually critical for understanding the protein-protein interactions in many regulatory processes, formation of membrane-less organelles, and our revised notions of specificity as amply illustrated by moonlighting proteins. While its importance in formation of amyloids and function of prions is often discussed, the roles of intrinsic disorder in infectious diseases and protein function under extreme conditions are also becoming clear. This review is an attempt to discuss how our current understanding of protein function, specificity, and evolution fit better with the continuum model. This integration of structure and disorder under a single model may bring greater clarity in our continuing quest for understanding proteins and molecular mechanisms of their functionality.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
2
|
Liu D, Liu LL, Zheng XQ, Chen R, Lin LR, Yang TC, Tong ML. Genetic Profiling of the Full-Length tprK Gene in Patients with Primary and Secondary Syphilis. Microbiol Spectr 2023; 11:e0493122. [PMID: 37036342 PMCID: PMC10269439 DOI: 10.1128/spectrum.04931-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/17/2023] [Indexed: 04/11/2023] Open
Abstract
TprK antigenic variation is acknowledged as an important strategy developed by Treponema pallidum to achieve immune evasion. Previous studies applied short-read sequencing to explore tprK gene sequence diversity in clinical samples; however, due to the limitations of short-read sequencing, it was difficult to determine the linkage between the seven V regions, and crucial information about full-length tprK variants was lost. Although two recent studies explored complete tprK gene profiles in natural human syphilis infection, there are still too few profiled full-length tprK variants among clinical T. pallidum isolates to fully understand the characteristics of TprK coding diversity. Here, Pacific Biosciences (PacBio) long-read sequencing was applied to examine the diversity of full-length tprK variants in 21 clinical T. pallidum isolates from 11 patients with primary syphilis and 10 patients with secondary syphilis. A total of 398 high-confidence full-length sequences, which presented remarkable sequence heterogeneity, were found. However, these full-length tprK variants exhibited limited variation in length and GC content, showing 24 length types and average GC content of 51.5 ± 0.42% and 51.6 ± 0.26% for primary and secondary syphilis samples, respectively. Additionally, the combined patterns of mutated V regions generating new tprK variants were obviously different in primary and secondary syphilis samples. The diversity of tprK gene sequences in primary syphilis samples may represent the underlying variability of the bacterium; conversely, the variability of the tprK gene in secondary syphilis samples may more accurately reflect how T. pallidum escapes host immune clearance. These data highlight the tprK gene as an important coding gene that shows conflicting genetic characteristics but underlies the persistence of spirochete infection. IMPORTANCE The resurgence of syphilis in both low- and high-income countries has attracted attention, and persistent infection by the pathogen has long been a research focus. The tprK gene, encoding the hypervariable outer membrane protein, is thought to be responsible for pathogen immune evasion and persistent infection. Here, PacBio long-read sequencing was applied to examine the diversity of full-length tprK variants in 21 clinical T. pallidum isolates from 11 patients with primary syphilis and 10 patients with secondary syphilis. The results showed that the sequences of the tprK gene were remarkably heterogeneous; however, the sequences presented limited variation in length and GC content. The investigation of the combined patterns of the V regions allowed us to gain insight into the features of the tprK gene generating new variants at different clinical stages. The findings of this study will be helpful for further exploration of the pathogenesis of syphilis.
Collapse
Affiliation(s)
- Dan Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Li Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Xin-Qi Zheng
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Rui Chen
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Rong Lin
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Tian-Ci Yang
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Man-Li Tong
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
3
|
Dautt-Castro M, López-Virgen AG, Ochoa-Leyva A, Contreras-Vergara CA, Sortillón-Sortillón AP, Martínez-Téllez MA, González-Aguilar GA, Casas-Flores JS, Sañudo-Barajas A, Kuhn DN, Islas-Osuna MA. Genome-Wide Identification of Mango ( Mangifera indica L.) Polygalacturonases: Expression Analysis of Family Members and Total Enzyme Activity During Fruit Ripening. FRONTIERS IN PLANT SCIENCE 2019; 10:969. [PMID: 31417586 PMCID: PMC6682704 DOI: 10.3389/fpls.2019.00969] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/10/2019] [Indexed: 05/22/2023]
Abstract
Mango (Mangifera indica L.) is an important commercial fruit that shows a noticeable loss of firmness during ripening. Polygalacturonase (PG, E.C. 3.2.1.15) is a crucial enzyme for cell wall loosening during fruit ripening since it solubilizes pectin and its activity correlates with fruit softening. Mango PGs were mapped to a genome draft using seventeen PGs found in mango transcriptomes and 48 bonafide PGs were identified. The phylogenetic analysis suggests that they are related to Citrus sinensis, which may indicate a recent evolutive divergence and related functions with orthologs in the tree. Gene expression analysis for nine PGs showed differential expression for them during post-harvest fruit ripening, MiPG21-1, MiPG14, MiPG69-1, MiPG17, MiPG49, MiPG23-3, MiPG22-7, and MiPG16 were highly up-regulated. PG enzymatic activity also increased during maturation and these results correlate with the loss of firmness observed in mango during post-harvest ripening, between the ethylene production burst and the climacteric peak. The analysis of PGs promoter regions identified regulatory sequences associated to ripening such as MADS-box, ethylene regulation like ethylene insensitive 3 (EIN3) factors, APETALA2-like and ethylene response element factors. During mango fruit ripening the action of at least these nine PGs contribute to softening, and their expression is regulated at the transcriptional level. The prediction of the tridimensional structure of some PGs showed a conserved parallel beta-helical fold related to polysaccharide hydrolysis and a modular architecture, where exons correspond to structural elements. Further biotechnological approaches could target specific softening-related PGs to extend mango post-harvest shelf life.
Collapse
Affiliation(s)
- Mitzuko Dautt-Castro
- Laboratorio de Genética y Biología Molecular de Plantas, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo, Mexico
- Laboratorio de Genómica Funcional y Comparativa, División de Biología Molecular, IPICYT, San Luis Potosí, Mexico
| | - Andrés G. López-Virgen
- Laboratorio de Genética y Biología Molecular de Plantas, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo, Mexico
| | - Adrian Ochoa-Leyva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Carmen A. Contreras-Vergara
- Laboratorio de Genética y Biología Molecular de Plantas, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo, Mexico
| | - Ana P. Sortillón-Sortillón
- Laboratorio de Genética y Biología Molecular de Plantas, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo, Mexico
| | - Miguel A. Martínez-Téllez
- Laboratorio de Genética y Biología Molecular de Plantas, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo, Mexico
| | - Gustavo A. González-Aguilar
- Laboratorio de Genética y Biología Molecular de Plantas, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo, Mexico
| | - J. Sergio Casas-Flores
- Laboratorio de Genómica Funcional y Comparativa, División de Biología Molecular, IPICYT, San Luis Potosí, Mexico
| | - Adriana Sañudo-Barajas
- Laboratorio de Bioquímica, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Unidad Culiacán, Culiacán, Mexico
| | - David N. Kuhn
- Agricultural Research Service, Subtropical Horticulture Research Station, United States Department of Agriculture, Miami, FL, United States
| | - Maria A. Islas-Osuna
- Laboratorio de Genética y Biología Molecular de Plantas, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo, Mexico
| |
Collapse
|
4
|
Phylogenetic, molecular evolution and structural analyses of the WFDC1/prostate stromal protein 20 (ps20). Gene 2019; 686:125-140. [DOI: 10.1016/j.gene.2018.10.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/07/2018] [Accepted: 10/19/2018] [Indexed: 12/20/2022]
|
5
|
Hamid MH, Rozano L, Yeong WC, Abdullah JO, Saidi NB. Analysis of MAP kinase MPK4/MEKK1/MKK genes of Carica papaya L. comparative to other plant homologues. Bioinformation 2017; 13:31-41. [PMID: 28642634 PMCID: PMC5463617 DOI: 10.6026/97320630013031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/17/2017] [Accepted: 02/17/2017] [Indexed: 12/25/2022] Open
Abstract
Mitogen-activated protein kinase 4 (MPK4) interacts with the (Mitogen-activated protein kinase kinase kinase 1) MEKK1/ Mitogenactivated protein kinase kinase 1 (MKK1)/ Mitogen-activated protein kinase kinase 2 (MKK2) complex to affect its function in plant development or against pathogen attacks. The KEGG (Kyoto Encyclopedia of Genes and Genomes) network analysis of Arabidopsis thaliana revealed close interactions between those four genes in the same plant-pathogen interaction pathway, which warrants further study of these genes due to their evolutionary conservation in different plant species. Through targeting the signature sequence in MPK4 of papaya using orthologs from Arabidopsis, the predicted sequence of MPK4 was studied using a comparative in silico approach between different plant species and the MAP cascade complex of MEKK1/MKK1/MKK2. This paper reported that MPK4 was highly conserved in papaya with 93% identical across more than 500 bases compared in each species predicted. Slight variations found in the MEKK1/MKK1/MKK2 complex nevertheless still illustrated sequence similarities between most of the species. Localization of each gene in the cascade network was also predicted, potentiating future functional verification of these genes interactions using knock out or/and gene silencing tactics.
Collapse
Affiliation(s)
- Muhammad Hanam Hamid
- Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute, 43400 Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Lina Rozano
- Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute, 43400 Serdang, Selangor, Malaysia
| | - Wee Chien Yeong
- Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute, 43400 Serdang, Selangor, Malaysia
| | - Janna Ong Abdullah
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Noor Baity Saidi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
6
|
Frietze KK, Pappy AL, Melson JW, O'Driscoll EE, Tyler CM, Perlman DH, Boulanger LM. Cryptic protein-protein interaction motifs in the cytoplasmic domain of MHCI proteins. BMC Immunol 2016; 17:24. [PMID: 27435737 PMCID: PMC4950430 DOI: 10.1186/s12865-016-0154-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 05/27/2016] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Major histocompatibility complex class I (MHCI) proteins present antigenic peptides for immune surveillance and play critical roles in nervous system development and plasticity. Most MHCI are transmembrane proteins. The extracellular domain of MHCI interacts with immunoreceptors, peptides, and co-receptors to mediate immune signaling. While the cytoplasmic domain also plays important roles in endocytic trafficking, cross-presentation of extracellularly derived antigens, and CTL priming, the molecular mediators of cytoplasmic signaling by MHCI remain largely unknown. RESULTS Here we show that the cytoplasmic domain of MHCI contains putative protein-protein interaction domains known as PDZ (PSD95/disc large/zonula occludens-1) ligands. PDZ ligands are motifs that bind to PDZ domains to organize and mediate signaling at cell-cell contacts. PDZ ligands are short, degenerate motifs, and are therefore difficult to identify via sequence homology alone, but several lines of evidence suggest that putative PDZ ligand motifs in MHCI are under positive selective pressure. Putative PDZ ligands are found in all of the 99 MHCI proteins examined from diverse species, and are enriched in the cytoplasmic domain, where PDZ interactions occur. Both the position of the PDZ ligand and the class of ligand motif are conserved across species, as well as among genes within a species. Non-synonymous substitutions, when they occur, frequently preserve the motif. Of the many specific possible PDZ ligand motifs, a handful are strikingly and selectively overrepresented in MHCI's cytoplasmic domain, but not elsewhere in the same proteins. Putative PDZ ligands in MHCI encompass conserved serine and tyrosine residues that are targets of phosphorylation, a post-translational modification that can regulate PDZ interactions. Finally, proof-of-principle in vitro interaction assays demonstrate that the cytoplasmic domains of particular MHCI proteins can bind directly and specifically to PDZ1 and PDZ4&5 of MAGI-1, and identify a conserved PDZ ligand motif in the classical MHCI H2-K that is required for this interaction. CONCLUSIONS These results identify cryptic protein interaction motifs in the cytoplasmic domain of MHCI. In so doing, they suggest that the cytoplasmic domain of MHCI could participate in previously unsuspected PDZ mediated protein-protein interactions at neuronal as well as immunological synapses.
Collapse
Affiliation(s)
- Karla K Frietze
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Adlai L Pappy
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Jack W Melson
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Emily E O'Driscoll
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Carolyn M Tyler
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.,Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - David H Perlman
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Lisa M Boulanger
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA. .,Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
7
|
Suzuki T, Suzuki J, Nagata S. Functional swapping between transmembrane proteins TMEM16A and TMEM16F. J Biol Chem 2014; 289:7438-47. [PMID: 24478309 PMCID: PMC3953258 DOI: 10.1074/jbc.m113.542324] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/24/2014] [Indexed: 11/06/2022] Open
Abstract
The transmembrane proteins TMEM16A and -16F each carry eight transmembrane regions with cytoplasmic N and C termini. TMEM16A carries out Ca(2+)-dependent Cl(-) ion transport, and TMEM16F is responsible for Ca(2+)-dependent phospholipid scrambling. Here we established assay systems for the Ca(2+)-dependent Cl(-) channel activity using 293T cells and for the phospholipid scramblase activity using TMEM16F(-/-) immortalized fetal thymocytes. Chemical cross-linking analysis showed that TMEM16A and -16F form homodimers in both 293T cells and immortalized fetal thymocytes. Successive deletion from the N or C terminus of both proteins and the swapping of regions between TMEM16A and -16F indicated that their cytoplasmic N-terminal (147 amino acids for TMEM16A and 95 for 16F) and C-terminal (88 amino acids for TMEM16A and 68 for 16F) regions were essential for their localization at plasma membranes and protein stability, respectively, and could be exchanged. Analyses of TMEM16A and -16F mutants with point mutations in the pore region (located between the fifth and sixth transmembrane regions) indicated that the pore region is essential for both the Cl(-) channel activity of TMEM16A and the phospholipid scramblase activity of TMEM16F. Some chemicals such as epigallocatechin-3-gallate and digallic acid inhibited the Cl(-) channel activity of TMEM16A and the scramblase activity of TMEM16F with an opposite preference. These results indicate that TMEM16A and -16F use a similar mechanism for sorting to plasma membrane and protein stabilization, but their functional domains significantly differ.
Collapse
Affiliation(s)
- Takayuki Suzuki
- From the Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan and
| | - Jun Suzuki
- From the Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan and
| | - Shigekazu Nagata
- From the Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan and
- Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Kyoto 606-8501, Japan
| |
Collapse
|
8
|
Gullotto D, Nolassi MS, Bernini A, Spiga O, Niccolai N. Probing the protein space for extending the detection of weak homology folds. J Theor Biol 2013; 320:152-8. [DOI: 10.1016/j.jtbi.2012.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 11/03/2012] [Accepted: 12/05/2012] [Indexed: 12/19/2022]
|
9
|
Pham Y, Kuhlman B, Butterfoss GL, Hu H, Weinreb V, Carter CW. Tryptophanyl-tRNA synthetase Urzyme: a model to recapitulate molecular evolution and investigate intramolecular complementation. J Biol Chem 2010; 285:38590-601. [PMID: 20864539 PMCID: PMC2992291 DOI: 10.1074/jbc.m110.136911] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 09/14/2010] [Indexed: 01/26/2023] Open
Abstract
We substantiate our preliminary description of the class I tryptophanyl-tRNA synthetase minimal catalytic domain with details of its construction, structure, and steady-state kinetic parameters. Generating that active fragment involved deleting 65% of the contemporary enzyme, including the anticodon-binding domain and connecting peptide 1, CP1, a 74-residue internal segment from within the Rossmann fold. We used protein design (Rosetta), rather than phylogenetic sequence alignments, to identify mutations to compensate for the severe loss of modularity, thus restoring stability, as evidenced by renaturation described previously and by 70-ns molecular dynamics simulations. Sufficient solubility to enable biochemical studies was achieved by expressing the redesigned Urzyme as a maltose-binding protein fusion. Michaelis-Menten kinetic parameters from amino acid activation assays showed that, compared with the native full-length enzyme, TrpRS Urzyme binds ATP with similar affinity. This suggests that neither of the two deleted structural modules has a strong influence on ground-state ATP binding. However, tryptophan has 10(3) lower affinity, and the Urzyme has comparably reduced specificity relative to the related amino acid, tyrosine. Molecular dynamics simulations revealed how CP1 may contribute significantly to cognate amino acid specificity. As class Ia editing domains are nested within the CP1, this finding suggests that this module enhanced amino acid specificity continuously, throughout their evolution. We call this type of reconstructed protein catalyst an Urzyme (Ur prefix indicates original, primitive, or earliest). It establishes a model for recapitulating very early steps in molecular evolution in which fitness may have been enhanced by accumulating entire modules, rather than by discrete amino acid sequence changes.
Collapse
Affiliation(s)
- Yen Pham
- From the Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Brian Kuhlman
- From the Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Glenn L. Butterfoss
- the Biology and Courant Computer Science Department, New York University, New York, New York 10003, and
| | - Hao Hu
- the Chong Yuet Ming Chemistry Building, University of Hong Kong, Pokfulam Road, 999077 Hong Kong, China
| | - Violetta Weinreb
- From the Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Charles W. Carter
- From the Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
10
|
Lifanov AP, Vlasov PK, Makeev VY, Esipova NG. Regular location of exon starts in collagen I and VII genes with periods comparable to nucleosome repeat lengths. Biophysics (Nagoya-shi) 2008. [DOI: 10.1134/s0006350908030147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
11
|
Armstrong RN. Glutathione S-transferases: structure and mechanism of an archetypical detoxication enzyme. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 69:1-44. [PMID: 7817866 DOI: 10.1002/9780470123157.ch1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- R N Armstrong
- Department of Chemistry and Biochemistry, University of Maryland, College Park
| |
Collapse
|
12
|
Wilson JE. The use of monoclonal antibodies and limited proteolysis in elucidation of structure-function relationships in proteins. METHODS OF BIOCHEMICAL ANALYSIS 2006; 35:207-50. [PMID: 2002771 DOI: 10.1002/9780470110560.ch4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- J E Wilson
- Biochemistry Department, Michigan State University, East Lansing
| |
Collapse
|
13
|
Faure E. Alternative peptide-fusion proteins generated by out-of-frame mutations, just upstream ORFs or elongations in mutants of human hepatitis B viruses. Virus Res 2005; 117:185-201. [PMID: 16364485 DOI: 10.1016/j.virusres.2005.10.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 10/28/2005] [Accepted: 10/28/2005] [Indexed: 12/18/2022]
Abstract
By various means including out-of-frame mutations, just upstream ORFs and elongations, additional peptide fusions could be generated by mutants of Human Hepatitis B Virus (HBV). Numerous frameshift mutations inducing long alternative open reading frames have been evidenced in all HBV genes. Interestingly, these mutants are frequently detected in severe liver diseases, but seldom in asymptomatic carriers. The high level of conservation of some of these sequences in spite of the fact that they could be generated by different types of mutations, as their presence in mutants found on various continents, suggest that these mutations could play a role. These mutants could combine two advantages, that related to the loss of a part of a wild-type protein and that related to the putative advantage conferred by the additional sequences. In addition, in numerous Asian genomes (more than 300 to date) pre-X or pre-pre-S regions were found just upstream to, respectively, the X and the pre-S1 genes. These two regions are translated with their respective genes in frame and recent studies have evidenced the transactivating role of the corresponding proteins. With some exceptions, these regions are genotype- and serotype-specific (C/adr). In addition, these mutants have been found principally in patients with severe hepatitis diseases, for example, hepatocarcinoma in more than one third of the cases. As additional sequences generated by HBV variants may be relevant for viral life cycle, persistence and pathogenesis, further investigations are necessary to give a clearer picture of the subject.
Collapse
Affiliation(s)
- E Faure
- E.R. Biodiversity and environment, case 5, University of Provence, Place Victor Hugo, 13331 Marseilles cedex 3, France.
| |
Collapse
|
14
|
Howard KM, Muga SJ, Zhang L, Thigpen AE, Appling DR. Characterization of the rat cytoplasmic C1-tetrahydrofolate synthase gene and analysis of its expression in liver regeneration and fetal development. Gene 2003; 319:85-97. [PMID: 14597174 DOI: 10.1016/s0378-1119(03)00796-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The eukaryotic trifunctional enzyme, C(1)-tetrahydrofolate (THF) synthase, interconverts folic acid derivatives between various oxidation states and is critical for normal cellular function, growth, and differentiation. Using a rat C(1)-THF synthase cDNA and synthetic oligonucleotides, the rat C(1)-THF synthase gene was isolated and characterized. The gene consists of 28 exons and spans 67.5 kbp. Primer extension, RNase protection, and rapid amplification of cDNA ends (RACE) experiments indicate the presence of multiple transcription start points (tsp) within a 250-bp window located between 50 and 300 bp upstream from the start codon. The 5' flanking region is devoid of a TATA consensus sequence motif, but putative regulatory elements, including NF-kappabeta, HNF-4alpha1, RARalpha1, C/EBP, and PPAR are present in the promoter region. The 5' flanking region also contains two sets of tetranucleotide repeats and two short interspersed nuclear elements (SINES). The initial 2500 bp of 5' flanking sequences of the rat and mouse cytoplasmic C(1)-THF synthase genes share 70% identity. However, comparison with the human gene from the Human Genome Data Bank revealed no significant homology in the 5' flanking region. The gene structure characterization led to the identification of a pseudogene that is 94% identical to the C(1)-THF synthase gene and probably diverged 10-12 million years ago. In addition, the gene expression patterns of C(1)-THF synthase were investigated during liver regeneration and liver and kidney organogenesis, two highly regulated events. In both processes, C(1)-THF synthase expression correlated with increased nucleotide metabolism. This pattern suggests that the gene is regulated in response to changes in the demand for folate-dependent one-carbon units.
Collapse
MESH Headings
- 5' Flanking Region/genetics
- Aminohydrolases/genetics
- Animals
- Animals, Newborn
- Base Sequence
- Cytoplasm/enzymology
- DNA/chemistry
- DNA/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Embryonic and Fetal Development/genetics
- Exons
- Female
- Formate-Tetrahydrofolate Ligase/genetics
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic
- Genes/genetics
- Introns
- Liver Regeneration/genetics
- Male
- Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics
- Molecular Sequence Data
- Multienzyme Complexes/genetics
- Pregnancy
- Promoter Regions, Genetic/genetics
- Rats
- Rats, Sprague-Dawley
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Time Factors
- Transcription Initiation Site
- Transcription, Genetic
Collapse
Affiliation(s)
- Katherine M Howard
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station, Austin, TX 78712-0165, USA
| | | | | | | | | |
Collapse
|
15
|
Xue HY, Forsdyke DR. Low-complexity segments in Plasmodium falciparum proteins are primarily nucleic acid level adaptations. Mol Biochem Parasitol 2003; 128:21-32. [PMID: 12706793 DOI: 10.1016/s0166-6851(03)00039-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Protein segments that contain few of the possible 20 amino acids, sometimes in tandem repeat arrays, are referred to as containing "simple" or "low-complexity" sequence. Many Plasmodium falciparum proteins are longer than their homologs in other species by virtue of their content of such low-complexity segments that have no known function; these are interspersed among segments of higher complexity to which function can often be ascribed. If there is low complexity at the protein level, there is likely to be low complexity at the corresponding nucleic acid level (departure from equifrequency of the four bases). Thus, low complexity may have been selected primarily at the nucleic acid level and low complexity at the protein level may be secondary. In this case, the amino acid composition of low-complexity segments should be more reflective than that of high complexity segments on forces operating at the nucleic acid level, which include GC-pressure and AG-pressure. Consistent with this, for amino acid determining first and second codon positions, open reading frames containing low-complexity segments show increased contributions to downward GC-pressure (revealed as decreased percentage of G+C) and to upward AG-pressure (revealed as increased percentage A+G). When not countermanded by high contributions to AG-pressure, low-complexity segments can contribute to base order-dependent fold potential; in this respect, they resemble introns. Thus, in P. falciparum, low-complexity segments appear as adaptations primarily serving nucleic acid level functions.
Collapse
Affiliation(s)
- H Y Xue
- Department of Biochemistry, Queen's University, Kingston, Ont, K7L3N6, Canada
| | | |
Collapse
|
16
|
Ponting CP, Russell RR. The natural history of protein domains. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2002; 31:45-71. [PMID: 11988462 DOI: 10.1146/annurev.biophys.31.082901.134314] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genome sequencing and structural genomics projects are providing new insights into the evolutionary history ofprote in domains. As methods for sequence and structure comparison improve, more distantly related domains are shown to be homologous. Thus there is a need for domain families to be classified within a hierarchy similar to Linnaeus' Systema Naturae, the classification of species. With such a hierarchy in mind, we discuss the evolution of domains, their combination into proteins, and evidence as to the likely origin of protein domains. We also discuss when and how analysis of domains can be used to understand details of protein function. Unconventional features of domain evolution such as intragenomic competition, domain insertion, horizontal gene transfer, and convergent evolution are seen as analogs of organismal evolutionary events. These parallels illustrate how the concept of domains can be applied to provide insights into evolutionary biology.
Collapse
Affiliation(s)
- Chris P Ponting
- Department of Human Anatomy and Genetics, University of Oxford, MRC Functional Genetics Unit, South Parks Road, Oxford OX1 3QX, UK.
| | | |
Collapse
|
17
|
Chen J, Yokoyama T, Saito K, Yoshiike N, Date C, Tanaka H. Association of human cholesteryl ester transfer protein-TaqI polymorphisms with serum HDL cholesterol levels in a normolipemic Japanese rural population. J Epidemiol 2002; 12:77-84. [PMID: 12033532 PMCID: PMC10468339 DOI: 10.2188/jea.12.77] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2001] [Accepted: 12/04/2001] [Indexed: 11/18/2022] Open
Abstract
We examined allele frequencies for the common cholesteryl ester transfer protein (CETP) TaqI polymorphisms and the associations of CETP-TaqI polymorphisms with serum lipid and lipoprotein levels taking into account for selected lifestyle factors in a well-characterized random sample of 527 healthy subjects living a rural community in Japan (256 men and 271 women aged 40-69 years). B2 allele frequency was 0.39 in men and 0.41 in women, and its presence was significantly associated with increased levels of HDL cholesterol (HDL-C) in men (P=0.003 for linear trend). A similar tendency in women was observed, although P value for trend did not reach 0.05. There were not significant interactions between TaqIB genotype and smoking and alcohol drinking or daily physical activity in HDL-C. There were no statistically significant differences among TaqIA genotype in lipid and lipoprotein levels. Multiple linear regression analysis showed that B1B2 and B2B2 explained 1.7% and 2.2%, and 0.6% and 1.0% of variation in men and in women in HDL-C, respectively. We conclude that the CETP-TaqIB polymorphism has a quantitative influence, but appears to be stronger one in men, on HDL-C levels even after adjustment for important lifestyle factors (smoking, alcohol drinking, and daily physical activity).
Collapse
Affiliation(s)
- Jianguo Chen
- Department of Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Bernauer S, Wehling M, Gerdes D, Falkenstein E. The human membrane progesterone receptor gene: genomic structure and promoter analysis. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 2001; 12:13-25. [PMID: 11697142 DOI: 10.3109/10425170109042047] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Rapid, nongenomic effects of steroids are likely to be mediated by membrane receptors not by intracellular steroid receptors. We recently identified a progesterone membrane binding protein (mPR) from human liver. The corresponding hmpr gene is comprised of 3 exons and 2 introns. The promoter sequence of hmpr lacks a typical TATA box but contains instead a high homology to a transcription Initiatior consensus sequence, which overlaps the experimentally determined transcriptional start site. The major proximal promoter is GC-rich and sequence analysis revealed a CpG island spanning the transcriptional start site. Several putative cis-regulatory DNA-motifs, which represent possible binding sites for transcription factors like AP2, NF-AT, Ahr/Arnt and C/EBP were identified in the genomic upstream region by sequence homology. Functional analysis of differently deleted fragments of the hmpr upstream region in a GFP-reportergene assay in transiently transfected cultured cells indicates the general testability of the hmpr promoter in vivo.
Collapse
Affiliation(s)
- S Bernauer
- Institute of Clinical Pharmacology, Faculty of Clinical Medicine Mannheim, University of Heidelberg, 68135 Mannheim, Germany
| | | | | | | |
Collapse
|
19
|
Abstract
The introns-early view has been challenged for several genes; prominent instances are triose phosphate isomerase (TPI), aldolase, pyruvate kinase (PK), alcohol dehydrogenase (ADH), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and myosin heavy chain. While some of their introns appear to be phylogenetically ancient and/or to delineate exons corresponding to protein modules, a considerable number seemingly do not. But it is argued here that many of these anomalous introns are periodic, that is, relics of internal sequence repetitions within the ancestral gene. Some of these periodic-intron patterns are shared between related genes, as in the alphabeta -barrels of TPI, aldolase and PK, or the Rossmann nucleotide-binding domain common to PK, ADH and GAPDH. This is further evidence for the ancestral status of these introns. The myosin heavy chain C-terminal rod region is paradoxical in that its sequence is clearly periodic but its intron placements are not; however, they exhibit a remarkable coherence of intron translational phases, suggesting that these introns may also have originally had a periodic arrangement now obscured by intron slipping.
Collapse
Affiliation(s)
- D Elder
- School of Pharmacy, University of South Australia, North Terrace, Adelaide, SA, 5000, Australia
| |
Collapse
|
20
|
Reddy KL, Wohlwill A, Dzitoeva S, Lin MH, Holbrook S, Storti RV. The Drosophila PAR domain protein 1 (Pdp1) gene encodes multiple differentially expressed mRNAs and proteins through the use of multiple enhancers and promoters. Dev Biol 2000; 224:401-14. [PMID: 10926776 DOI: 10.1006/dbio.2000.9797] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Transcription factors are often expressed at several times and in multiple tissues during development and regulate diverse sets of downstream target genes by varying their combinatorial interactions with other transcription factors. The Drosophila Tropomyosin I (TmI) gene is regulated by a complex of proteins within the enhancer that synergistically interacts with MEF2 to activate TmI transcription as muscle cells fuse and differentiate. One of the components of this complex is PDP1 (PAR domain protein 1), a basic leucine zipper transcription factor that is highly homologous to three vertebrate genes that are members of the PAR domain subfamily. We have isolated and describe here the structure of the Pdp1 gene. The Pdp1 gene is complex, containing at least four transcriptional start sites and producing at least six different mRNAs and PDP1 isoforms. Five of the PDP1 isoforms differ by the substitution or insertion of amino acids at or near the N-terminal of the protein. At least three of these alternately spliced transcripts are differentially expressed in different tissues of the developing embryo in which PDP1 expression is correlated with the differentiation of different cell types. A sixth isoform is produced by splicing out part of the PAR and basic DNA binding domains, and DNA binding and transient transfection experiments suggest that it functions as a dominant negative inhibitor of transcription. Furthermore, two enhancers have been identified within the gene that express in the somatic mesodermal precursors to body wall muscles and fat body and together direct expression in other tissues that closely mimics that of the endogenous gene. These results show that Pdp1 is widely expressed, including in muscle, fat, and gut precursors, and is likely involved in the transcriptional control of different developmental pathways through the use of differentially expressed PDP1 isoforms. Furthermore, the similarities between Pdp1 and the other PAR domain genes suggest that Pdp1 is the homologue of the vertebrate genes.
Collapse
Affiliation(s)
- K L Reddy
- Department of Biochemistry and Molecular Biology M/C536, University of Illinois College of Medicine, Chicago 60612, USA
| | | | | | | | | | | |
Collapse
|
21
|
Kriventseva EV, Gelfand MS. Statistical analysis of the exon-intron structure of higher and lower eukaryote genes. J Biomol Struct Dyn 1999; 17:281-8. [PMID: 10563578 DOI: 10.1080/07391102.1999.10508361] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Statistics of the exon-intron structure and splicing sites of several diverse eukaryotes was studied. The yeast exon-intron structures have a number of unique features. A yeast gene usually have at most one intron. The branch site is strongly conserved, whereas the polypirimidine tract is short. Long yeast introns tend to have stronger acceptor sites. In other species the branch site is less conserved and often cannot be determined. In non-yeast samples there is an almost universal correlation between lengths of neighboring exons (all samples excluding protists) and correlation between lengths of neighboring introns (human, drosophila, protists). On the average first introns are longer, and anomalously long introns are usually first introns in a gene. There is a universal preference for exons and exon pairs with the (total) length divisible by 3. Introns positioned between codons are preferred, whereas those positioned between the first and second positions in codon are avoided. The choice of A or G at the third position of intron (the donor splice sites generally prefer purines at this position) is correlated with the overall GC-composition of the gene. In all samples dinucleotide AG is avoided in the region preceding the acceptor site.
Collapse
Affiliation(s)
- E V Kriventseva
- VA Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow
| | | |
Collapse
|
22
|
Keinänen R, Vartiainen N, Koistinaho J. Molecular cloning and characterization of the rat inducible nitric oxide synthase (iNOS) gene. Gene X 1999; 234:297-305. [PMID: 10395902 DOI: 10.1016/s0378-1119(99)00196-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We have cloned and characterized the rat inducible nitric oxide synthase (iNOS) gene. It spans approx. 36kb and is divided into 27 exons and 26 introns. The distribution and length of exons are similar to those in the human iNOS gene. In the 5' flanking regulatory region of the rat iNOS gene, there are a number of putative transcription factor binding sites (>20), many of them probably indispensable for the gene's nuclear factor kappaB (NFkappaB)-dependent induction, but also many which may have a role in its NFkappaB-independent induction pathway. These include cyclic adenosine 3', 5'-monophosphate (cAMP) response elements (CRE), hypoxia responsive element (HRE) and GATA-core elements. Rat models are powerful tools in studies of neurological diseases. Because iNOS is most likely responsible for the harmful consequences of nitric oxide (NO) in general, the cloned rat iNOS gene will further reveal the mechanisms of iNOS inducibility in different cell types during development and disease, including brain diseases, and to promote studies of pharmacological intervention in cases where extensive NO production plays a critical role.
Collapse
Affiliation(s)
- R Keinänen
- A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, P.O. Box 1627, FIN-70211, Kuopio, Finland.
| | | | | |
Collapse
|
23
|
Schmidt A, Langbein L, Prätzel S, Rode M, Rackwitz HR, Franke WW. Plakophilin 3--a novel cell-type-specific desmosomal plaque protein. Differentiation 1999; 64:291-306. [PMID: 10374265 DOI: 10.1046/j.1432-0436.1999.6450291.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Desomosomes are cell-cell adhesion structures of epithelia and some non-epithelial tissues, such as heart muscle and the dendritic reticulum of lymph node follicles, which on their cytoplasmic side anchor intermediate filaments at the plasma membrane. Besides clusters of specific transmembrane glycoproteins of the cadherin family (desmogleins and desmocollins), they contain several desmosomal plaque proteins, such as desmoplakins, plakoglobin, and one or more plakophilins. Using recombinant DNA and immunological techniques, we have identified a novel desmosomal plaque protein that is closely related to plakophilins 1 and 2, both members of the "armadillo-repeat" multigene family, and have named it plakophilin 3 (PKP3). The product of the complete human cDNA defines a protein of 797 amino acids, with a calculated molecular weight of 87.081 kDa and an isoelectric point of pH 10.1. Northern blot analysis has shown that PKP3 mRNA has a size of approximately 2.9 kb and is detectable in the total RNA of cells of stratified and single-layered epithelia. With the help of specific poly- and monoclonal antibodies we have localized PKP3, by immunofluorescence or immunoelectron microscopy, to desmosomes of most simple and almost all stratified epithelia and cell lines derived therefrom, with the remarkable exception of hepatocytes and hepatocellular carcinoma cells. We have also determined the structure of the human PKP3 gene and compared it with that of plakophilin 1 (PKP1). Using fluorescence in situ hybridization, we have localized the human genes for the three known plakophilins to the chromosomes 1q32 (PKP1), 12p11 (PKP2) and 11p15 (PKP3). The similarities and differences of the diverse plakophilins are discussed.
Collapse
Affiliation(s)
- A Schmidt
- Division of Cell Biology, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Miranda-Vizuete A, Damdimopoulos AE, Pedrajas JR, Gustafsson JA, Spyrou G. Human mitochondrial thioredoxin reductase cDNA cloning, expression and genomic organization. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 261:405-12. [PMID: 10215850 DOI: 10.1046/j.1432-1327.1999.00286.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have isolated a 1918-bp cDNA from a human adrenal cDNA library which encodes a novel thioredoxin reductase (TrxR2) of 521 amino acid residues with a calculated molecular mass of 56.2 kDa. It is highly homologous to the previously described cytosolic enzyme (TrxR1), including the conserved active site CVNVGC and the FAD-binding and NADPH-binding domains. However, human TrxR2 differs from human TrxR1 by the presence of a 33-amino acid extension at the N-terminus which has properties characteristic of a mitochondrial translocation signal. Northern-blot analysis identified one mRNA species of 2.2 kb with highest expression in prostate, testis and liver. We expressed human TrxR2 as a fusion protein with green fluorescent protein and showed that in vivo it is localized in mitochondria. Removal of the mitochondrial targeting sequence abolishes the mitochondrial translocation. Finally, we determined the genomic organization of the human TrxR2 gene, which consists of 18 exons spanning about 67 kb, and its chromosomal localization at position 22q11.2.
Collapse
Affiliation(s)
- A Miranda-Vizuete
- Department of Biosciences at Novum, Karolinska Institute, Huddinge, Sweden
| | | | | | | | | |
Collapse
|
25
|
Girgis S, Nasrallah IM, Suh JR, Oppenheim E, Zanetti KA, Mastri MG, Stover PJ. Molecular cloning, characterization and alternative splicing of the human cytoplasmic serine hydroxymethyltransferase gene. Gene 1998; 210:315-24. [PMID: 9573390 DOI: 10.1016/s0378-1119(98)00085-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The human cytoplasmic serine hydroxymethyltransferase (CSHMT) gene was isolated, sequenced and its expression characterized in human MCF-7 mammary carcinoma and SH_5Y5Y neuroblastoma cells. The 23-kb gene contains 12 introns and 13 exons; all splice junctions conform to the gt/ag rule. The open reading frame is interrupted by 10 introns, two of which are positionally conserved within the human mitochondrial SHMT gene. The gene is expressed with 330 nucleotides of 5' untranslated message within three exons. The 5' promoter region does not contain a consensus TATA, and primer extension and 5'-RACE studies suggest that transcription initiation occurs at multiple sites. Consensus motifs for several regulatory proteins, including SP1, mammary and neuronal-specific elements, NF1, a Y-box, and two steroid hormone response elements, are present within the first 408 nucleotides of the 5' promoter region. The human gene is expressed as multiple splice variants in both the 5' untranslated region and within the open reading frame, all due to exon excision. The splicing pattern is cell-specific. At least six CSHMT mRNA splice forms are present in MCF-7 cells; the gene is expressed as a full-length message as well as splice forms that lack exon(s) 2, 9 and 10. In 5Y cells, the predominant form of the message lacks exon 2, which encodes part of the 5' untranslated region, but does not contain deletions within the open reading frame. Western analysis suggests that the CSHMT gene is expressed as a single full-length protein in 5Y cells, but as multiple forms in MCF-7 cells. Multiple tissue Northern blots suggest that the CSHMT message levels and alternative splicing patterns display tissue-specific variations.
Collapse
Affiliation(s)
- S Girgis
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Royaux I, Lambert de Rouvroit C, D'Arcangelo G, Demirov D, Goffinet AM. Genomic organization of the mouse reelin gene. Genomics 1997; 46:240-50. [PMID: 9417911 DOI: 10.1006/geno.1997.4983] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Reelin is the protein defective in reeler mice, an extensively studied model of brain development. The reelin gene (symbol Reln) codes for a protein of the extracellular matrix that contains eight successive repeats of 350 to 390 amino acids. In this work, we describe the genomic structure of the mouse reelin gene and the 5'-flanking genomic DNA sequences. The reelin gene is composed of 65 exons spread over approximately 450 kb of genomic DNA. We identified different reelin transcripts, formed by alternative splicing of a microexon as well as by use of two different polyadenylation sites. All splice sites conform to the GT-AG rule, except for the splice donor site of intron 30, which is GC instead of GT. A processed pseudogene is present in intron 42. Its nucleotide sequence is 86% identical to the sequence of the rat RDJ1 cDNA, which codes for a DnaJ-like protein of the Hsp40 family. Comparison of 8 intron positions in mouse and human reelin genes reveals a highly conserved genomic structure, suggesting a similar structure of the whole gene in both species. We identified two transcription start sites embedded within a CpG. The promoter region contains putative recognition sites for the transcription factors Sp1 and AP2 but lacks TATA and CAAT boxes. The presence of tandemly repeated regions in the Reelin protein suggests that gene duplication events occurred during evolution. By comparison of the amino acid sequences of the eight repeats and the positions of introns, we suggest a model for the evolution of the repeat coding portion of the reelin gene from a putative ancestral minigene.
Collapse
Affiliation(s)
- I Royaux
- Department of Physiology, University of Namur School of Medicine, Belgium
| | | | | | | | | |
Collapse
|
27
|
Coughlan SJ, Hastings C, Winfrey R. Cloning and characterization of the calreticulin gene from Ricinus communis L. PLANT MOLECULAR BIOLOGY 1997; 34:897-911. [PMID: 9290642 DOI: 10.1023/a:1005822327479] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A full-length cDNA encoding a calreticulin-like protein was isolated by immune-screening a germinating castor bean endosperm cDNA library with antisera raised to the total lumenal fraction of purified plant endoplasmic reticulum. The calcium-binding properties of the recombinant protein were characterized and shown to be essentially identical to those reported for the mammalian calreticulin. Calcium overlays and immune blot analysis confirmed the endoplasmic lumenal identity of this reticuloplasmin. Probing protein blots of endoplasmic reticulum subfractions with radio-iodinated calreticulin showed specific associations with various polypeptides including one identified as the abundant reticuloplasmin protein disulfide isomerase. Characterization of the corresponding genomic clones revealed that calreticulin is encoded by a single gene of 3 kb in castor. The full genomic sequence reveals the presence of 12 introns, 12 translated exons, and one exon containing the last three amino acids of the translated sequence and the 3'-untranslated region of the gene. Northern blot analysis of RNA isolated from various organ tissues showed a basal constitutive level of expression throughout the plant, but more abundant mRNA being detected in tissues active in secretion. This was confirmed by analysis of transgenic tobacco plants containing 1.8 kb of 5'-untranslated genomic sequence fused to the beta-glucuronidase reporter gene (GUS) showed a more localized pattern of expression. Activity being localized to the vasculature (phloem, root hairs and root tip) in vegetative tissue, and being strongly expressed in the floral organs including the developing and germinating seed.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Calcium/metabolism
- Calcium-Binding Proteins/genetics
- Calreticulin
- Ricinus communis/genetics
- Cell Compartmentation
- Chromatography, Affinity
- DNA, Complementary/genetics
- Endoplasmic Reticulum/genetics
- Escherichia coli/genetics
- Gene Expression
- Gene Expression Regulation, Plant
- Gene Library
- Genes, Plant
- Genes, Reporter
- Molecular Sequence Data
- Plants, Toxic
- Promoter Regions, Genetic/genetics
- Protein Binding
- RNA, Messenger/isolation & purification
- RNA, Plant/isolation & purification
- Recombinant Proteins/metabolism
- Ribonucleoproteins/genetics
- Seeds/genetics
- Sequence Analysis, DNA
- Sequence Homology
- Tissue Distribution
- Transformation, Genetic
Collapse
Affiliation(s)
- S J Coughlan
- Trait and Technology Development Department, Pioneer-Hi-Bred International, Johnston, IA 50131-1004, USA
| | | | | |
Collapse
|
28
|
Stover PJ, Chen LH, Suh JR, Stover DM, Keyomarsi K, Shane B. Molecular cloning, characterization, and regulation of the human mitochondrial serine hydroxymethyltransferase gene. J Biol Chem 1997; 272:1842-8. [PMID: 8999870 DOI: 10.1074/jbc.272.3.1842] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The human mitochondrial serine hydroxymethyltransferase (mSHMT) gene was isolated, sequenced, and characterized. The 4.5-kilobase gene contains 10 introns and 11 exons, with all splice junctions conforming to the GT/AG rule. The 5' promoter region contains consensus motifs for several regulatory proteins including PEA-3, Sp-1, AP-2, and a CCCTCCC motif common to many genes expressed in liver. Consensus TATA or CAAT sequence motifs are not present, and primer extension and 5'-rapid amplification of cDNA ends studies suggest that transcription initiation occurs at multiple sites. The mitochondrial leader sequence region of the deduced mRNA contains two potential ATG start sites, which are encoded by separate exons. The intervening 891-base pair intron contains consensus promoter elements suggesting that mSHMT may be transcribed from alternate promoters. 5'-Rapid amplification of cDNA ends analysis demonstrated that the first ATG is transcribed in human MCF-7 cells. However, transfection of Chinese hamster ovary cells deficient in mSHMT activity with the human mSHMT gene lacking exon 1 overcame the cell's glycine auxotrophy and restored intracellular glycine concentrations to that observed in wild-type cells, showing that exon 1 is not essential for mSHMT localization or activity and that translation initiation from the second ATG is sufficient for mSHMT import into the mitochondria. Mitochondrial SHMT mRNA levels in MCF-7 cells did not vary during the cell cycle and were not affected by the absence of glycine, serine, folate, thymidylate, or purines from the media.
Collapse
Affiliation(s)
- P J Stover
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
29
|
Schwidetzky U, Schleuning WD, Haendler B. Isolation and characterization of the androgen-dependent mouse cysteine-rich secretory protein-1 (CRISP-1) gene. Biochem J 1997; 321 ( Pt 2):325-32. [PMID: 9020862 PMCID: PMC1218072 DOI: 10.1042/bj3210325] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In mice, cysteine-rich secretory protein-1 (CRISP-1) is mainly found in the epididymis and also, to a lesser extent, in the salivary gland of males, where androgens control its expression. We have now isolated and characterized overlapping phage clones covering the entire length of the CRISP-1 gene. DNA sequencing revealed that the gene is organized into eight exons, ranging between 55 and 748 bp in size, and seven introns. All exon-intron junctions conformed to the GT/AG rule established for eukaryotic genes. The intron length, as determined by PCR, varied between 1.05 and 4.0 kb so that the CRISP-1 gene spans over 20 kb of the mouse genome. The transcription-initiation site was determined by primer extension and localized at the expected distance downstream of a consensus TATA box. Approximately 3.7 kb of the CRISP-1 promoter region were isolated and sequenced, and several stretches fitting the androgen-responsive element consensus were found. Those that most resembled the consensus were analysed by electrophoretic mobility-shift assay and found to form specific complexes with the liganded androgen receptor in vitro, but with different affinities. Putative binding elements for the transcription factors Oct, GATA, PEA3, CF1. AP-1 and AP-3 were also found in the promoter region.
Collapse
Affiliation(s)
- U Schwidetzky
- Research Laboratories of Schering AG, Berlin, Germany
| | | | | |
Collapse
|
30
|
The Platelet Integrin, GP IIb-IIIa (αIIbß3). ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s1569-2558(08)60411-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
31
|
Abstract
Since base composition of translational stop codons (TAG, TAA, and TGA) is biased toward a low G+C content, a differential density for these termination signals is expected in random DNA sequences of different base compositions. The expected length of reading frames (DNA segments of sense codons flanked by in-phase stop codons) in random sequences is thus a function of GC content. The analysis of DNA sequences from several genome databases stratified according to GC content reveals that the longest coding sequences-exons in vertebrates and genes in prokaryotes-are GC-rich, while the shortest ones are GC-poor. Exon lengthening in GC-rich vertebrate regions does not result, however, in longer vertebrate proteins, perhaps because of the lower number of exons in the genes located in these regions. The effects on coding-sequence lengths constitute a new evolutionary meaning for compositional variations in DNA GC content.
Collapse
Affiliation(s)
- J L Oliver
- Departamento de Genética, Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, E-18071-Granada, Spain
| | | |
Collapse
|
32
|
Abstract
Close analysis of intron phase - the position of introns within codons - is claimed to provide novel evidence supporting the view that introns predate the divergence of bacteria and eukaryotes and, via 'exon shuffling', played a crucial role in protein evolution. But just how compelling is this evidence?
Collapse
Affiliation(s)
- L D Hurst
- Department of Genetics, Downing Street, Cambridge, CB2 3EH, UK
| | | |
Collapse
|
33
|
Proudhon D, Wei J, Briat J, Theil EC. Ferritin gene organization: differences between plants and animals suggest possible kingdom-specific selective constraints. J Mol Evol 1996; 42:325-36. [PMID: 8661994 DOI: 10.1007/bf02337543] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Ferritin, a protein widespread in nature, concentrates iron approximately 10(11)-10(12)-fold above the solubility within a spherical shell of 24 subunits; it derives in plants and animals from a common ancestor (based on sequence) but displays a cytoplasmic location in animals compared to the plastid in contemporary plants. Ferritin gene regulation in plants and animals is altered by development, hormones, and excess iron; iron signals target DNA in plants but mRNA in animals. Evolution has thus conserved the two end points of ferritin gene expression, the physiological signals and the protein structure, while allowing some divergence of the genetic mechanisms. Comparison of ferritin gene organization in plants and animals, made possible by the cloning of a dicot (soybean) ferritin gene presented here and the recent cloning of two monocot (maize) ferritin genes, shows evolutionary divergence in ferritin gene organization between plants and animals but conservation among plants or among animals; divergence in the genetic mechanism for iron regulation is reflected by the absence in all three plant genes of the IRE, a highly conserved, noncoding sequence in vertebrate animal ferritin mRNA. In plant ferritin genes, the number of introns (n = 7) is higher than in animals (n = 3). Second, no intron positions are conserved when ferritin genes of plants and animals are compared, although all ferritin gene introns are in the coding region; within kingdoms, the intron positions in ferritin genes are conserved. Finally, secondary protein structure has no apparent relationship to intron/exon boundaries in plant ferritin genes, whereas in animal ferritin genes the correspondence is high. The structural differences in introns/exons among phylogenetically related ferritin coding sequences and the high conservation of the gene structure within plant or animal kingdoms of the gene structure within plant or animal kingdoms suggest that kingdom-specific functional constraints may exist to maintain a particular intron/exon pattern within ferritin genes. In the case of plants, where ferritin gene intron placement is unrelated to triplet codons or protein structure, and where ferritin is targeted to the plastid, the selection pressure on gene organization may relate to RNA function and plastid/nuclear signaling.
Collapse
Affiliation(s)
- D Proudhon
- Department of Biochemistry, North Carolina State University, NCSU Box 7622, Raleigh, NC 27695-7622, USA
| | | | | | | |
Collapse
|
34
|
Brocchieri L, Karlin S. How are close residues of protein structures distributed in primary sequence? Proc Natl Acad Sci U S A 1995; 92:12136-40. [PMID: 8618859 PMCID: PMC40311 DOI: 10.1073/pnas.92.26.12136] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Structurally neighboring residues are categorized according to their separation in the primary sequence as proximal (1-4 positions apart) and otherwise distal, which in turn is divided into near (5-20 positions), far (21-50 positions), very far ( > 50 positions), and interchain (from different chains of the same structure). These categories describe the linear distance histogram (LDH) for three-dimensional neighboring residue types. Among the main results are the following: (i) nearest-neighbor hydrophobic residues tend to be increasingly distally separated in the linear sequence, thus most often connecting distinct secondary structure units. (ii) The LDHs of oppositely charged nearest-neighbors emphasize proximal positions with a subsidiary maximum for very far positions. (iii) Cysteine-cysteine structural interactions rarely involve proximal positions. (iv) The greatest numbers of interchain specific nearest-neighbors in protein structures are composed of oppositely charged residues. (v) The largest fraction of side-chain neighboring residues from beta-strands involves near positions, emphasizing associations between consecutive strands. (vi) Exposed residue pairs are predominantly located in proximal linear positions, while buried residue pairs principally correspond to far or very far distal positions. The results are principally invariant to protein sizes, amino acid usages, linear distance normalizations, and over- and underrepresentations among nearest-neighbor types. Interpretations and hypotheses concerning the LDHs, particularly those of hydrophobic and charged pairings, are discussed with respect to protein stability and functionality. The pronounced occurrence of oppositely charged interchain contacts is consistent with many observations on protein complexes where multichain stabilization is facilitated by electrostatic interactions.
Collapse
Affiliation(s)
- L Brocchieri
- Department of Mathematics, Stanford University, CA 94305-2125, USA
| | | |
Collapse
|
35
|
van den Hoff MJ, Jonker A, Beintema JJ, Lamers WH. Evolutionary relationships of the carbamoylphosphate synthetase genes. J Mol Evol 1995; 41:813-32. [PMID: 8587126 DOI: 10.1007/bf00173161] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Carbamoylphosphate is a common intermediate in the metabolic pathways leading to the biosynthesis of arginine and pyrimidines. The amino acid sequences of all available proteins that catalyze the formation of carbamoylphosphate were retrieved from Genbank and aligned to estimate their mutual phylogenetic relations. In gram-negative bacteria carbamoylphosphate is synthesized by a two-subunit enzyme with glutaminase and carbamoylphosphate synthetase (CPS) activity, respectively. In gram-positive bacteria and lower eukaryotes this two-subunit CPS has become dedicated to arginine biosynthesis, while in higher eukaryotes the two subunits fused and subsequently lost the glutaminase activity. The CPS dedicated to pyrimidine synthesis is part of a multifunctional enzyme (CPS II), encoding in addition dihydroorotase and aspartate transcarbamoylase. Evidence is presented to strengthen the hypothesis that the two "kinase" subdomains of all CPS isozymes arose from a duplication of an ancestral gene in the progenote. A further duplication of the entire CPS gene occurred after the divergence of the plants and before the divergence of the fungi from the eukaryotic root, generating the two isoenzymes involved in either the synthesis of arginine or that of pyrimidines. The mutation rate was found to be five- to tenfold higher after the duplication than before, probably reflecting optimization of the enzymes for their newly acquired specialized function. We hypothesize that this duplication arose from a need for metabolic channeling for pyrimidine biosynthesis as it was accompanied by the tagging of the CPS gene with the genes for dihydroorotase and aspartate transcarbamoylase, and as the duplication occurred independently also in gram-positive bacteria. Analysis of the exon-intron organization of the two "kinase" subdomains in CPS I and II suggests that ancient exons may have comprised approx. 19 amino acids, in accordance with the prediction of the "intron-early" theory.
Collapse
Affiliation(s)
- M J van den Hoff
- Department of Anatomy and Embryology, University of Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
36
|
Exposito JY, Boute N, Deleage G, Garrone R. Characterization of two genes coding for a similar four-cysteine motif of the amino-terminal propeptide of a sea urchin fibrillar collagen. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 234:59-65. [PMID: 8529669 DOI: 10.1111/j.1432-1033.1995.059_c.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We report the characterization of the 5' region of the gene coding for the 2 alpha fibrillar collagen chain of the sea urchin Paracentrotus lividus. This sequence analysis identified the intron/exon organization of the region of the gene coding for the signal peptide, the cysteine-rich domain and the 12 repeats of the four-cysteine module of the unusually long amino-propeptide. This still unknown four-cysteine motif is generally encoded by one exon, which confirms that the distinct amino-propeptide structures of the fibrillar collagens arise from the shuffling of several exon-encoding modules. Moreover, Southern-blot analysis of the sea urchin genome and sequencing of selected genomic clones allowed us to demonstrate that several sea urchin genes could potentially code for the four-cysteine module. Curiously, one of these genes lacks the exons coding for four repeats of this motif while, in another gene, the same exons are submitted to an alternative splicing event.
Collapse
Affiliation(s)
- J Y Exposito
- Institut de Biologie et Chimie des Protéines, Centre National de la Recherche Scientifique, Université Claude Bernard, Lyon, France
| | | | | | | |
Collapse
|
37
|
Schwidetzky U, Haendler B, Schleuning WD. Isolation and characterization of the androgen-dependent mouse cysteine-rich secretory protein-3 (CRISP-3) gene. Biochem J 1995; 309 ( Pt 3):831-6. [PMID: 7639699 PMCID: PMC1135707 DOI: 10.1042/bj3090831] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The mRNA for cysteine-rich secretory protein-3 (CRISP-3) was originally identified in the mouse salivary gland as an androgen-dependent transcript, and is closely related to CRISP-1 and CRISP-2 which are abundantly expressed in the epididymis and testis respectively. Overlapping phage clones encompassing the entire length of the CRISP-3 gene were isolated from a lambda EMBL3 genomic library and analysed. DNA sequencing revealed that the gene consisted of eight exons ranging between 55 and 740 bp in size, and seven introns. All exon-intron junctions conformed to the GT/AG rule established for eukaryotic genes. The length of the introns was determined by PCR and was found to vary between 1.0 and 3.7 kb, indicating that the gene spans over 20 kb of the mouse genome. Primer extension allowed the mapping of the major transcription initiation site to an adenine located at the appropriate position downstream of a bona fide TATA box, in a region corresponding well to the eukaryotic consensus sequence. Over 800 bp of CRISP-3 promoter region were determined and two regions almost exactly matching the androgen-responsive element consensus RGWACANNNTGTWCY detected. In addition, sequences described in the Drosophila melanogaster Sgs-3 gene as being involved in its salivary gland-specific expression as well as two putative OTF- and GATA-binding elements were also found.
Collapse
Affiliation(s)
- U Schwidetzky
- Research Laboratories of Schering AG, Berlin, Germany
| | | | | |
Collapse
|
38
|
Pardon E, Haezebrouck P, De Baetselier A, Hooke SD, Fancourt KT, Desmet J, Dobson CM, Van Dael H, Joniau M. A Ca(2+)-binding chimera of human lysozyme and bovine alpha-lactalbumin that can form a molten globule. J Biol Chem 1995; 270:10514-24. [PMID: 7737986 DOI: 10.1074/jbc.270.18.10514] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In contrast to lysozymes, which undergo two-state thermal denaturation, the Ca(2+)-free form of the homologous alpha-lactalbumins forms an intermediate "molten globule" state. To understand this difference, we have produced a chimera of human lysozyme and bovine alpha-lactalbumin. In the synthetic gene of the former the sequence coding for amino acid residues 76-102 was replaced by that for bovine alpha-lactalbumin 72-97, which represents the Ca(2+)-binding loop and the central helix C. The chimeric protein, LYLA1, expressed in Saccharomyces cerevisiae was homogeneous on electrophoresis and mass spectrometry. Its Ca2+ binding constant was 2.50 (+/- 0.04) x 10(8) M-1, and its muramidase activity 10% of that of human lysozyme. One-dimensional NMR spectroscopy indicated the presence of a compact, well structured protein. From two-dimensional NMR spectra, main chain resonances for 118 of a total of 129 residues could be readily assigned. Nuclear Overhauser effect analysis and hydrogen-deuterium exchange measurements indicated the presence and persistence of all expected secondary structure elements. Thermal denaturation, measured by circular dichroism, showed a single transition temperature for the Ca2+ form at 90 degrees C, whereas unfolding of the apo form occurred at 73 degrees C in the near-UV and 81 degrees C in the far-UV range. These observations illustrate that by transplanting the central part of bovine alpha-lactalbumin, we have introduced into human lysozyme two important properties of alpha-lactalbumins, i.e. stabilization through Ca2+ binding and molten globule behavior.
Collapse
Affiliation(s)
- E Pardon
- Interdisciplinary Research Center, K. U. Leuven, Kortrijk, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Tümer Z, Vural B, Tønnesen T, Chelly J, Monaco AP, Horn N. Characterization of the exon structure of the Menkes disease gene using vectorette PCR. Genomics 1995; 26:437-42. [PMID: 7607665 DOI: 10.1016/0888-7543(95)80160-n] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The gene defective in Menkes disease, an X-linked recessive disturbance of copper metabolism, has been isolated and predicted to encode a copper-binding P-type ATPase. We determined the complete exon-intron structure of the Menkes disease gene, which spans about 150 kb of genomic DNA. The gene contains 23 exons, and the ATG start codon is in the second exon. All of the exon-intron boundaries were sequenced and conformed to the GT/AT rule, except for the 5' splice site of intron 9. A preliminary comparison demonstrated a striking similarity between the exon structures of the Menkes and Wilson disease genes, giving insight into their evolution.
Collapse
Affiliation(s)
- Z Tümer
- Danish Centre for Human Genome Research, John F. Kennedy Institute, Glostrup
| | | | | | | | | | | |
Collapse
|
40
|
Strelets VB, Shindyalov IN, Lim HA. Analysis of peptides from known proteins: clusterization in sequence space. J Mol Evol 1994; 39:625-30. [PMID: 7807551 DOI: 10.1007/bf00160408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A combinatorial sequence space (CSS) model was introduced to represent sequences as a set of overlapping k-tuples of some fixed length which correspond to points in the CSS. The aim was to analyze clusterization of protein sequences in the CSS and to test various hypotheses about the possible evolutionary basis of this clusterization. The authors developed an easy-to-use technique which can reveal and analyze such a clusterization in a multidimensional CSS. Application of the technique led to an unexpectedly high clusterization of points in the CSS corresponding to k-tuples from known proteins. The clusterization could not be inferred from nonuniform amino acid frequencies or be explained by the influence of homologous data. None of the tested possible evolutionary and structural factors could explain the clusterization observed either. It looked as if certain protein sequence variations occurred and were fixed in the early course of evolution. Subsequent evolution (predominantly neutral) allowed only a limited number of changes and permitted new variants which led to preservation of certain k-tuples during the course of evolution. This was consistent with the theory of exon shuffling and protein block structure evolution. Possible applications of sequence space features found were also discussed.
Collapse
Affiliation(s)
- V B Strelets
- Supercomputer Computations Research Institute, Florida State University, Tallahassee 32306-4052
| | | | | |
Collapse
|
41
|
Oommen A, Dixon RA, Paiva NL. The elicitor-inducible alfalfa isoflavone reductase promoter confers different patterns of developmental expression in homologous and heterologous transgenic plants. THE PLANT CELL 1994; 6:1789-1803. [PMID: 7866024 PMCID: PMC160562 DOI: 10.1105/tpc.6.12.1789] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In legumes, the synthesis of infection- and elicitor-inducible antimicrobial phytoalexins occurs via the isoflavonoid branch of the phenylpropanoid pathway. To study transcriptional regulation of isoflavonoid pathway-specific genes, we have isolated the gene encoding isoflavone reductase (IFR), which is the enzyme that catalyzes the penultimate step in the synthesis of the phytoalexin medicarpin in alfalfa. Chimeric gene fusions were constructed between 765- and 436-bp promoter fragments of the IFR gene and the beta-glucuronidase reporter gene and transferred to alfalfa and tobacco by Agrobacterium-mediated transformation. Both promoter fragments conferred elicitor-mediated expression in cell suspension cultures derived from transgenic plants of both species and fungal infection-mediated expression in leaves of transgenic alfalfa. Developmental expression directed by both promoter fragments in transgenic alfalfa was observed only in the root meristem, cortex, and nodules, which is consistent with the accumulation of endogenous IFR transcripts. However, in transgenic tobacco, expression from the 765-bp promoter was observed in vegetative tissues (root meristem and cortex, inner vascular tissue of stems and petioles, leaf tips, and stem peripheries adjacent to petioles) and in reproductive tissues (stigma, placenta, base of the ovary, receptacle, seed, tapetal layer, and pollen grains), whereas the 436-bp promoter was expressed only in fruits, seed, and pollen. These data indicate that infection/elicitor inducibility of the IFR promoter in both species and developmental expression in alfalfa are determined by sequences downstream of position -436, whereas sequences between -436 and -765 confer a complex pattern of strong ectopic developmental expression in the heterologous species that lacks the isoflavonoid pathway.
Collapse
Affiliation(s)
- A Oommen
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73402
| | | | | |
Collapse
|
42
|
Iozzo RV, Cohen IR, Grässel S, Murdoch AD. The biology of perlecan: the multifaceted heparan sulphate proteoglycan of basement membranes and pericellular matrices. Biochem J 1994; 302 ( Pt 3):625-39. [PMID: 7945186 PMCID: PMC1137278 DOI: 10.1042/bj3020625] [Citation(s) in RCA: 309] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- R V Iozzo
- Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | | | | | | |
Collapse
|
43
|
Radley E, Alderton R, Kelly A, Trowsdale J, Beck S. Genomic organization of HLA-DMA and HLA-DMB. Comparison of the gene organization of all six class II families in the human major histocompatibility complex. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32242-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
44
|
Traut TW. The functions and consensus motifs of nine types of peptide segments that form different types of nucleotide-binding sites. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 222:9-19. [PMID: 8200357 DOI: 10.1111/j.1432-1033.1994.tb18835.x] [Citation(s) in RCA: 289] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
From an analysis of current data on 16 protein structures with defined nucleotide-binding sites consensus motifs were determined for the peptide segments that form such nucleotide-binding sites. This was done by using the actual residues shown to contact ligands in the different protein structures, plus an additional 50 sequences for various kinases. Three peptide segments are commonly required to form the binding site for ATP or GTP. Binding motif Kinase-1a is found in almost all sequences examined, and functions in binding the phosphates of the ligand. Variant versions, comparable to Kinase-1a, are found in a subset of proteins and appear to be related to unique functions of those enzymes. Motif Kinase-2 contains the conserved aspartate that coordinates the metal ion on Mg-ATP. Motif Kinase-3 occurs in at least four versions, and functions in binding the purine base or the pentose. Two protein structures show ATP-binding at a separate regulatory site, formed by the motifs Regulatory-1 and Regulatory-2. Structures for adenylate kinase and guanylate kinase show three different sequence motifs that form the binding site for a nucleoside monophosphate (NMP). NMP-1 and NMP-2 bind to the pentose and phosphate of the bound ligand. NMP-1 is found in almost all the kinases that phosphorylate AMP, CMP, GMP, dTMP, or UMP. NMP-3a is found in kinases for AMP, GMP, and UMP, while NMP-3b binds only GMP. For the binding of NTPs, three distinct types of nucleotide-binding fold structures have been described. Each structure is associated with a particular function (e.g. transfer of the gamma-phosphate, or of the adenylate to an acceptor) and also with a particular spatial arrangement of the three Kinase segments evident in the linear sequence for the protein.
Collapse
Affiliation(s)
- T W Traut
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill 27599-7260
| |
Collapse
|
45
|
White SH. The evolution of proteins from random amino acid sequences: II. Evidence from the statistical distributions of the lengths of modern protein sequences. J Mol Evol 1994; 38:383-94. [PMID: 8007006 DOI: 10.1007/bf00163155] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This paper continues an examination of the hypothesis that modern proteins evolved from random heteropeptide sequences. In support of the hypothesis, White and Jacobs (1993, J Mol Evol 36:79-95) have shown that any sequence chosen randomly from a large collection of nonhomologous proteins has a 90% or better chance of having a lengthwise distribution of amino acids that is indistinguishable from the random expectation regardless of amino acid type. The goal of the present study was to investigate the possibility that the random-origin hypothesis could explain the lengths of modern protein sequences without invoking specific mechanisms such as gene duplication or exon splicing. The sets of sequences examined were taken from the 1989 PIR database and consisted of 1,792 "super-family" proteins selected to have little sequence identity, 623 E. coli sequences, and 398 human sequences. The length distributions of the proteins could be described with high significance by either of two closely related probability density functions: The gamma distribution with parameter 2 or the distribution for the sum of two exponential random independent variables. A simple theory for the distributions was developed which assumes that (1) protoprotein sequences had exponentially distributed random independent lengths, (2) the length dependence of protein stability determined which of these protoproteins could fold into compact primitive proteins and thereby attain the potential for biochemical activity, (3) the useful protein sequences were preserved by the primitive genome, and (4) the resulting distribution of sequence lengths is reflected by modern proteins. The theory successfully predicts the two observed distributions which can be distinguished by the functional form of the dependence of protein stability on length. The theory leads to three interesting conclusions. First, it predicts that a tetra-nucleotide was the signal for primitive translation termination. This prediction is entirely consistent with the observations of Brown et al. (1990a,b, Nucleic Acids Res 18:2079-2086 and 18: 6339-6345) which show that tetra-nucleotides (stop codon plus following nucleotide) are the actual signals for termination of translation in both prokaryotes and eukaryotes. Second, the strong dependence of statistical length distributions on sequence-termination signaling codes implies that the evolution of stop codons and translation-termination processes was as important as gene splicing in early evolution. Third, because the theory is based upon a simple no-exon stochastic model, it provides a plausible alternative to a limited universe of exons from which all proteins evolved by gene duplication and exon splicing (Dorit et al. 1990, Science 250:1377-1382).
Collapse
Affiliation(s)
- S H White
- Department of Physiology and Biophysics, University of California, Irvine 92717
| |
Collapse
|
46
|
Abstract
Exon sizes in vertebrate genes are, with a few exceptions, limited to less than 300 bases. It has been proposed that this limitation may derive from the exon definition model of splice site recognition. In this model, a downstream donor site enhances splicing at the upstream acceptor site of the same exon. This enhancement may require contact between factors bound to each end of the exon; an exon size limitation would promote such contact. To test the idea that proximity was required for exon definition, we inserted random DNA fragments from Escherichia coli into a central exon in a three-exon dihydrofolate reductase minigene and tested whether the expanded exons were efficiently spliced. DNA from a plasmid library of expanded minigenes was used to transfect a CHO cell deletion mutant lacking the dhfr locus. PCR analysis of DNA isolated from the pooled stable cotransfectant populations displayed a range of DNA insert sizes from 50 to 1,500 nucleotides. A parallel analysis of the RNA from this population by reverse transcription followed by PCR showed a similar size distribution. Central exons as large as 1,400 bases could be spliced into mRNA. We also tested individual plasmid clones containing exon inserts of defined sizes. The largest exon included in mRNA was 1,200 bases in length, well above the 300-base limit implied by the survey of naturally occurring exons. We conclude that a limitation in exon size is not part of the exon definition mechanism.
Collapse
|
47
|
Abstract
Exon sizes in vertebrate genes are, with a few exceptions, limited to less than 300 bases. It has been proposed that this limitation may derive from the exon definition model of splice site recognition. In this model, a downstream donor site enhances splicing at the upstream acceptor site of the same exon. This enhancement may require contact between factors bound to each end of the exon; an exon size limitation would promote such contact. To test the idea that proximity was required for exon definition, we inserted random DNA fragments from Escherichia coli into a central exon in a three-exon dihydrofolate reductase minigene and tested whether the expanded exons were efficiently spliced. DNA from a plasmid library of expanded minigenes was used to transfect a CHO cell deletion mutant lacking the dhfr locus. PCR analysis of DNA isolated from the pooled stable cotransfectant populations displayed a range of DNA insert sizes from 50 to 1,500 nucleotides. A parallel analysis of the RNA from this population by reverse transcription followed by PCR showed a similar size distribution. Central exons as large as 1,400 bases could be spliced into mRNA. We also tested individual plasmid clones containing exon inserts of defined sizes. The largest exon included in mRNA was 1,200 bases in length, well above the 300-base limit implied by the survey of naturally occurring exons. We conclude that a limitation in exon size is not part of the exon definition mechanism.
Collapse
Affiliation(s)
- I T Chen
- Department of Biological Sciences, Columbia University, New York, New York 10027
| | | |
Collapse
|
48
|
Ghiglione C, Lhomond G, Lepage T, Gache C. Structure of the sea urchin hatching enzyme gene. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 219:845-54. [PMID: 8112336 DOI: 10.1111/j.1432-1033.1994.tb18566.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The sea urchin embryo develops from an encased to a free-living larva by secreting at an early stage the hatching enzyme, a metalloprotease which hydrolyses a protective envelope derived from the egg extracellular matrix. Genomic clones containing the entire hatching enzyme gene were isolated from a lambda phage sea urchin library and the complete sequence of the transcription unit was determined. The hatching enzyme gene spans 6.3 kb and comprises 9 exons. The exon/intron organization of the hatching enzyme gene is similar but not identical to those of the vertebrate collagenases and stromelysins. The position and/or phase of several introns are different even in the N-terminal moiety where similarity between echinoderm and vertebrate enzymes was first detected. The active-center domain is encoded by a 1-1 class exon whose sequence, length and borders are highly conserved and might be considered as coding for a protein module. Adjacent to the active-center exon, the hatching enzyme gene has an additional 1-1 exon which codes for a threonine-rich region. This provides further evidence that the matrix-degrading metalloproteinases evolved by shuffling exons of the 1-1 class. Phylogeny analysis indicates a close relationship between the sea urchin and vertebrate enzymes.
Collapse
Affiliation(s)
- C Ghiglione
- Unité de Biologie Cellulaire Marine, Centre National de la Recherche Scientifique, Villefranche-sur-Mer, France
| | | | | | | |
Collapse
|
49
|
Puttagunta S, Mathur M, Cowin P. Structure of DSG1, the bovine desmosomal cadherin gene encoding the pemphigus foliaceus antigen. Evidence of polymorphism. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42119-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
50
|
Bolander FF. Molecular Evolution of the Endocrine System. Mol Endocrinol 1994. [DOI: 10.1016/b978-0-12-111231-8.50020-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|