1
|
Fish I, Stenfeldt C, Palinski RM, Pauszek SJ, Arzt J. Into the Deep (Sequence) of the Foot-and-Mouth Disease Virus Gene Pool: Bottlenecks and Adaptation during Infection in Naïve and Vaccinated Cattle. Pathogens 2020; 9:pathogens9030208. [PMID: 32178297 PMCID: PMC7157448 DOI: 10.3390/pathogens9030208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) infects hosts as a population of closely related viruses referred to as a quasispecies. The behavior of this quasispecies has not been described in detail in natural host species. In this study, virus samples collected from vaccinated and non-vaccinated cattle up to 35 days post-experimental infection with FMDV A24-Cruzeiro were analyzed by deep-sequencing. Vaccination induced significant differences compared to viruses from non-vaccinated cattle in substitution rates, entropy, and evidence for adaptation. Genomic variation detected during early infection reflected the diversity inherited from the source virus (inoculum), whereas by 12 days post infection, dominant viruses were defined by newly acquired mutations. Mutations conferring recognized fitness gain occurred and were associated with selective sweeps. Persistent infections always included multiple FMDV subpopulations, suggesting distinct foci of infection within the nasopharyngeal mucosa. Subclinical infection in vaccinated cattle included very early bottlenecks associated with reduced diversity within virus populations. Viruses from both animal cohorts contained putative antigenic escape mutations. However, these mutations occurred during later stages of infection, at which time transmission is less likely to occur. This study improves upon previously published work by analyzing deep sequences of samples, allowing for detailed characterization of FMDV populations over time within multiple hosts.
Collapse
Affiliation(s)
- Ian Fish
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Orient, NY 11957, USA; (I.F.); (C.S.); (R.M.P.); (S.J.P.)
- Oak Ridge Institute for Science and Education, PIADC Research Participation Program, Oak Ridge, TN 37830, USA
| | - Carolina Stenfeldt
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Orient, NY 11957, USA; (I.F.); (C.S.); (R.M.P.); (S.J.P.)
- College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Rachel M. Palinski
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Orient, NY 11957, USA; (I.F.); (C.S.); (R.M.P.); (S.J.P.)
| | - Steven J. Pauszek
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Orient, NY 11957, USA; (I.F.); (C.S.); (R.M.P.); (S.J.P.)
| | - Jonathan Arzt
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Orient, NY 11957, USA; (I.F.); (C.S.); (R.M.P.); (S.J.P.)
- Correspondence:
| |
Collapse
|
2
|
Shimmon G, Kotecha A, Ren J, Asfor AS, Newman J, Berryman S, Cottam EM, Gold S, Tuthill TJ, King DP, Brocchi E, King AMQ, Owens R, Fry EE, Stuart DI, Burman A, Jackson T. Generation and characterisation of recombinant FMDV antibodies: Applications for advancing diagnostic and laboratory assays. PLoS One 2018; 13:e0201853. [PMID: 30114227 PMCID: PMC6095514 DOI: 10.1371/journal.pone.0201853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/22/2018] [Indexed: 11/19/2022] Open
Abstract
Foot-and-mouth disease (FMD) affects economically important livestock and is one of the most contagious viral diseases. The most commonly used FMD diagnostic assay is a sandwich ELISA. However, the main disadvantage of this ELISA is that it requires anti-FMD virus (FMDV) serotype-specific antibodies raised in small animals. This problem can be, in part, overcome by using anti-FMDV monoclonal antibodies (MAbs) as detecting reagents. However, the long-term use of MAbs may be problematic and they may need to be replaced. Here we have constructed chimeric antibodies (mouse/rabbit D9) and Fabs (fragment antigen-binding) (mouse/cattle D9) using the Fv (fragment variable) regions of a mouse MAb, D9 (MAb D9), which recognises type O FMDV. The mouse/rabbit D9 chimeric antibody retained the FMDV serotype-specificity of MAb D9 and performed well in a FMDV detection ELISA as well as in routine laboratory assays. Cryo-electron microscopy analysis confirmed engagement with antigenic site 1 and peptide competition studies identified the aspartic acid at residue VP1 147 as a novel component of the D9 epitope. This chimeric expression approach is a simple but effective way to preserve valuable FMDV antibodies, and has the potential for unlimited generation of antibodies and antibody fragments in recombinant systems with the concomitant positive impacts on the 3Rs (Replacement, Reduction and Refinement) principles.
Collapse
Affiliation(s)
- Gareth Shimmon
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Abhay Kotecha
- Division of Structural Biology, University of Oxford, Headington, Oxford, United Kingdom
| | - Jingshan Ren
- Division of Structural Biology, University of Oxford, Headington, Oxford, United Kingdom
| | - Amin S. Asfor
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Joseph Newman
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | | | | | - Sarah Gold
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | | | - Donald P. King
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Emiliana Brocchi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Brescia, Italy
| | | | - Ray Owens
- Division of Structural Biology, University of Oxford, Headington, Oxford, United Kingdom
| | - Elizabeth E. Fry
- Division of Structural Biology, University of Oxford, Headington, Oxford, United Kingdom
| | - David I. Stuart
- Division of Structural Biology, University of Oxford, Headington, Oxford, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - Alison Burman
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Terry Jackson
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| |
Collapse
|
3
|
Human Memory B Cells Producing Potent Cross-Neutralizing Antibodies against Human Parechovirus: Implications for Prevalence, Treatment, and Diagnosis. J Virol 2015; 89:7457-64. [PMID: 25948742 DOI: 10.1128/jvi.01079-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 04/28/2015] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED The family Picornaviridae is a large and diverse group of positive-sense RNA viruses, including human enteroviruses (EVs) and human parechoviruses (HPeVs). The human immune response against EVs and HPeVs is thought to be mainly humoral, and an insufficient neutralizing antibody (Ab) response during infection is a risk factor and can ultimately be life threatening. The accessibility of different antigenic sites and observed cross-reactivity make HPeVs a good target for development of therapeutic human monoclonal antibodies (MAbs). In this study, we generated two different human MAbs specific for HPeV by screening culture supernatants of Ab-producing human B cell cultures for direct neutralization of HPeV1. Both MAbs showed HPeV1-specific neutralization as well as neutralization of HPeV2. One antibody, AM18, cross-neutralized HPeV4, -5, and -6 and coxsackievirus A9 (CV-A9). VP1 capsid protein-specific assays confirmed that AM18 bound VP1 of HPeV1, -2, and -4 with high affinity (11.5 pM). In contrast, the HPeV1-specific MAb AM28, which neutralized HPeV1 even more efficiently than did AM18, showed no cross-reactivity with HPeV3 to -6 or other EVs and did not bind any of the capsid proteins, suggesting that AM28 is specific for a conformation-dependent, nonlinear epitope on the virus. The discovery of MAbs that are cross-reactive between HPeVs may help development of HPeV treatment options with antibodies and vaccine design based on epitopes recognized by these antibodies. IMPORTANCE HPeV infections are widespread among young children and adults, causing a broad range of disease. Infections can be severe and life threatening, while no antiviral treatment is available. Given that the absence of neutralizing Abs is a risk factor for severe disease in infants, treatment of picornavirus infections with MAbs would be a therapeutic option. To study antibody neutralization of HPeV in more detail, we generated two different HPeV1-specific human MAbs. Both MAbs show HPeV1-specific neutralization and cross-neutralized HPeV2. One MAb also cross-neutralized other HPeVs. Surprisingly, this MAb also neutralized CV-A9. These MAbs provide a unique tool for further research and for the diagnosis (antigen detection) and possible treatment of HPeV infections.
Collapse
|
4
|
Bocanegra R, Rodríguez-Huete A, Fuertes MÁ, del Álamo M, Mateu MG. Molecular recognition in the human immunodeficiency virus capsid and antiviral design. Virus Res 2012; 169:388-410. [DOI: 10.1016/j.virusres.2012.06.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/11/2012] [Accepted: 06/12/2012] [Indexed: 01/07/2023]
|
5
|
Neill JD, Newcomer BW, Marley SD, Ridpath JF, Givens MD. Greater numbers of nucleotide substitutions are introduced into the genomic RNA of bovine viral diarrhea virus during acute infections of pregnant cattle than of non-pregnant cattle. Virol J 2012; 9:150. [PMID: 22867008 PMCID: PMC3487799 DOI: 10.1186/1743-422x-9-150] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 07/31/2012] [Indexed: 12/24/2022] Open
Abstract
Background Bovine viral diarrhea virus (BVDV) strains circulating in livestock herds show significant sequence variation. Conventional wisdom states that most sequence variation arises during acute infections in response to immune or other environmental pressures. A recent study showed that more nucleotide changes were introduced into the BVDV genomic RNA during the establishment of a single fetal persistent infection than following a series of acute infections of naïve cattle. However, it was not known if nucleotide changes were introduce when the virus crossed the placenta and infected the fetus or during the acute infection of the dam. Methods The sequence of the open reading frame (ORF) from viruses isolated from four acutely infected pregnant heifers following exposure to persistently infected (PI) calves was compared to the sequences of the virus from the progenitor PI calf and the virus from the resulting progeny PI calf to determine when genetic change was introduced. This was compared to genetic change found in viruses isolated from a pregnant PI cow and its PI calf, and in three viruses isolated from acutely infected, non-pregnant cattle exposed to PI calves. Results Most genetic changes previously identified between the progenitor and progeny PI viruses were in place in the acute phase viruses isolated from the dams six days post-exposure to the progenitor PI calf. Additionally, each progeny PI virus had two to three unique nucleotide substitutions that were introduced in crossing the placenta and infection of the fetus. The nucleotide sequence of two acute phase viruses isolated from steers exposed to PI calves revealed that six and seven nucleotide changes were introduced during the acute infection. The sequence of the BVDV-2 virus isolated from an acute infection of a PI calf (BVDV-1a) co-housed with a BVDV-2 PI calf had ten nucleotides that were different from the progenitor PI virus. Finally, twenty nucleotide changes were identified in the PI virus of a calf born to a PI dam. Conclusions These results demonstrate that nucleotide changes are introduced into the BVDV infecting pregnant cattle at rates of 2.3 to 8 fold higher then during the acute infection of non-pregnant animals.
Collapse
Affiliation(s)
- John D Neill
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, USDA, ARS, 1920 Dayton Ave, Ames, Iowa 50010, USA.
| | | | | | | | | |
Collapse
|
6
|
Abstract
A metaphor for adaptation that informs much evolutionary thinking today is that of mountain climbing, where horizontal displacement represents change in genotype, and vertical displacement represents change in fitness. If it were known a priori what the 'fitness landscape' looked like, that is, how the myriad possible genotypes mapped onto fitness, then the possible paths up the fitness mountain could each be assigned a probability, thus providing a dynamical theory with long-term predictive power. Such detailed genotype-fitness data, however, are rarely available and are subject to change with each change in the organism or in the environment. Here, we take a very different approach that depends only on fitness or phenotype-fitness data obtained in real time and requires no a priori information about the fitness landscape. Our general statistical model of adaptive evolution builds on classical theory and gives reasonable predictions of fitness and phenotype evolution many generations into the future.
Collapse
Affiliation(s)
- Philip J Gerrish
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | | |
Collapse
|
7
|
Quasispecies as a matter of fact: viruses and beyond. Virus Res 2011; 162:203-15. [PMID: 21945638 PMCID: PMC7172439 DOI: 10.1016/j.virusres.2011.09.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/12/2011] [Accepted: 09/12/2011] [Indexed: 12/13/2022]
Abstract
We review the origins of the quasispecies concept and its relevance for RNA virus evolution, viral pathogenesis and antiviral treatment strategies. We emphasize a critical point of quasispecies that refers to genome collectivities as the unit of selection, and establish parallels between RNA viruses and some cellular systems such as bacteria and tumor cells. We refer also to tantalizing new observations that suggest quasispecies behavior in prions, perhaps as a result of the same quantum-mechanical indeterminations that underlie protein conformation and error-prone replication in genetic systems. If substantiated, these observations with prions could lead to new research on the structure-function relationship of non-nucleic acid biological molecules.
Collapse
|
8
|
Horsington JJ, Gilkerson JR, Hartley CA. Mapping B-cell epitopes in equine rhinitis B viruses and identification of a neutralising site in the VP1 C-terminus. Vet Microbiol 2011; 155:128-36. [PMID: 21930350 DOI: 10.1016/j.vetmic.2011.08.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 08/22/2011] [Indexed: 11/25/2022]
Abstract
Erbovirus is a genus of the family Picornaviridae and equine rhinitis B virus (ERBV) is the sole species. Erboviruses infect horses causing acute respiratory disease and sub-clinical and persistent infections. Despite the high seroprevalence and worldwide distribution of these viruses, the pathogenesis and antigenic structure of the three ERBV serotypes (ERBV1, 2 and 3) is poorly understood. To characterise linear epitopes on ERBV structural proteins, a set of fusion proteins were expressed in Escherichia coli. These proteins were tested in Western blot and ELISA and reactive proteins were also used to identify neutralisation epitopes. VP1 contained serotype specific epitopes whereas VP2 was highly cross-reactive across the serotypes. The C-terminus of VP1 accounted for most of the reactivity of full-length VP1 and was also the location of a neutralising site in each serotype.
Collapse
Affiliation(s)
- Jacquelyn J Horsington
- Equine Infectious Diseases Laboratory, Faculty of Veterinary Science, The University of Melbourne, Australia
| | | | | |
Collapse
|
9
|
Rincón V, Bocanegra R, Rodríguez-Huete A, Rivas G, Mateu MG. Effects of macromolecular crowding on the inhibition of virus assembly and virus-cell receptor recognition. Biophys J 2011; 100:738-746. [PMID: 21281589 PMCID: PMC3030154 DOI: 10.1016/j.bpj.2010.12.3714] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 11/22/2010] [Accepted: 12/15/2010] [Indexed: 10/18/2022] Open
Abstract
Biological fluids contain a very high total concentration of macromolecules that leads to volume exclusion by one molecule to another. Theory and experiment have shown that this condition, termed macromolecular crowding, can have significant effects on molecular recognition. However, the influence of molecular crowding on recognition events involving virus particles, and their inhibition by antiviral compounds, is virtually unexplored. Among these processes, capsid self-assembly during viral morphogenesis and capsid-cell receptor recognition during virus entry into cells are receiving increasing attention as targets for the development of new antiviral drugs. In this study, we have analyzed the effect of macromolecular crowding on the inhibition of these two processes by peptides. Macromolecular crowding led to a significant reduction in the inhibitory activity of: 1), a capsid-binding peptide and a small capsid protein domain that interfere with assembly of the human immunodeficiency virus capsid, and 2), a RGD-containing peptide able to block the interaction between foot-and-mouth disease virus and receptor molecules on the host cell membrane (in this case, the effect was dependent on the conditions used). The results, discussed in the light of macromolecular crowding theory, are relevant for a quantitative understanding of molecular recognition processes during virus infection and its inhibition.
Collapse
Affiliation(s)
- Verónica Rincón
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, Madrid, Spain
| | - Rebeca Bocanegra
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, Madrid, Spain
| | - Alicia Rodríguez-Huete
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, Madrid, Spain
| | - Germán Rivas
- Centro de Investigaciones Biológicas (Consejo Superior de Investigaciones Científicas), Madrid, Spain
| | - Mauricio G Mateu
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
10
|
Yang D, Zhang C, Zhao L, Zhou G, Wang H, Yu L. Identification of a conserved linear epitope on the VP1 protein of serotype O foot-and-mouth disease virus by neutralising monoclonal antibody 8E8. Virus Res 2010; 155:291-9. [PMID: 20974198 DOI: 10.1016/j.virusres.2010.10.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 10/12/2010] [Accepted: 10/18/2010] [Indexed: 11/24/2022]
Abstract
Foot-and-mouth disease virus (FMDV) serotype O remains an important threat to animal husbandry worldwide, and the variability of the virus presents a major problem for FMDV vaccine design. High-affinity neutralising antibodies against a conserved epitope could provide protective immunity against diverse subtypes of FMDV serotype O and protect against future pandemics. We generated a novel monoclonal antibody (MAb) 8E8 that potently neutralised infection of FMDV O/YS/CHA/05 both in vitro and in vivo. Screening of a phage-displayed random 12-peptide library revealed that MAb 8E8 bound to phages displaying a consensus motif GDLNVRT, which is highly homologous to (146)GDLQVLT(152) of the FMDV VP1 protein. Given that MAb 8E8 showed reactivity with the (146)GDLQVLT(152) motif, we proposed that this motif represented a linear B-cell epitope of the VP1 protein. Western blot analysis revealed that the epitope peptide could be recognised by the positive sera from serotype O FMDV-infected pigs. The (147)DLQVLT(152) motif was the minimal requirement for reactivity as demonstrated by reactivity of MAb 8E8 with several truncated peptides derived from the motif. For further mapping, a set of different extended motifs derived from the minimally reactive epitope was expressed with a GST-tag and subjected to western blot. The results showed that a 10-aa peptide (145)RGDLQVLTPK(154) was the minimal unit with maximal binding activity to MAb 8E8. Subsequent alanine scanning mutagenesis studies revealed that D(147), Q(149) and V(150) are crucial for MAb 8E8 binding. Furthermore, the epitope was found to be highly conserved among different topotypes of serotype O FMDV through sequence alignment analysis and detection of MAb 8E8 for affinity to some isolates collected in China. Thus, the 8E8 epitope identified here should be helpful for designing epitope-based, intra-typic, cross-protective vaccines of serotype O FMDV.
Collapse
Affiliation(s)
- Decheng Yang
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin 150001, PR China
| | | | | | | | | | | |
Collapse
|
11
|
New vaccine design based on defective genomes that combines features of attenuated and inactivated vaccines. PLoS One 2010; 5:e10414. [PMID: 20454676 PMCID: PMC2861626 DOI: 10.1371/journal.pone.0010414] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 04/12/2010] [Indexed: 12/22/2022] Open
Abstract
Background New vaccine designs are needed to control diseases associated with antigenically variable RNA viruses. Foot-and-mouth disease (FMD) is a highly contagious disease of livestock that inflicts severe economic losses. Although the current whole-virus chemically inactivated vaccine has proven effective, it has led to new outbreaks of FMD because of incomplete inactivation of the virus or the escape of infectious virus from vaccine production premises. We have previously shown that serial passages of FMD virus (FMDV) C-S8c1 at high multiplicity of infection in cell culture resulted in virus populations consisting of defective genomes that are infectious by complementation (termed C-S8p260). Principal Finding Here we evaluate the immunogenicity of C-S8p260, first in a mouse model system to establish a proof of principle, and second, in swine, the natural host of FMDV C-S8c1. Mice were completely protected against a lethal challenge with FMDV C-S8c1, after vaccination with a single dose of C-S8p260. Pigs immunized with different C-S8p260 doses and challenged with FMDV C-S8c1 either did not develop any clinical signs or showed delayed and mild disease symptoms. C-S8p260 induced high titers of both FMDV-specific, neutralizing antibodies and activated FMDV-specific T cells in swine, that correlated with solid protection against FMDV. Conclusions The defective virus-based vaccine did not produce detectable levels of transmissible FMDV. Therefore, a segmented, replication-competent form of a virus, such as FMDV C-S8p260, can provide the basis of a new generation of attenuated antiviral vaccines with two safety barriers. The design can be extended to any viral pathogen that encodes trans-acting gene products, allowing complementation between replication-competent, defective forms.
Collapse
|
12
|
Zhang ZW, Zhang YG, Wang YL, Pan L, Fang YZ, Jiang ST, Lü JL, Zhou P. Screening and identification of B cell epitopes of structural proteins of foot-and-mouth disease virus serotype Asia1. Vet Microbiol 2010; 140:25-33. [PMID: 19699594 DOI: 10.1016/j.vetmic.2009.07.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 06/24/2009] [Accepted: 07/03/2009] [Indexed: 11/24/2022]
|
13
|
Biological effect of Muller's Ratchet: distant capsid site can affect picornavirus protein processing. J Virol 2009; 83:6748-56. [PMID: 19403672 DOI: 10.1128/jvi.00538-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Repeated bottleneck passages of RNA viruses result in accumulation of mutations and fitness decrease. Here, we show that clones of foot-and-mouth disease virus (FMDV) subjected to bottleneck passages, in the form of plaque-to-plaque transfers in BHK-21 cells, increased the thermosensitivity of the viral clones. By constructing infectious FMDV clones, we have identified the amino acid substitution M54I in capsid protein VP1 as one of the lesions associated with thermosensitivity. M54I affects processing of precursor P1, as evidenced by decreased production of VP1 and accumulation of VP1 precursor proteins. The defect is enhanced at high temperatures. Residue M54 of VP1 is exposed on the virion surface, and it is close to the B-C loop where an antigenic site of FMDV is located. M54 is not in direct contact with the VP1-VP3 cleavage site, according to the three-dimensional structure of FMDV particles. Models to account for the effect of M54 in processing of the FMDV polyprotein are proposed. In addition to revealing a distance effect in polyprotein processing, these results underline the importance of pursuing at the biochemical level the biological defects that arise when viruses are subjected to multiple bottleneck events.
Collapse
|
14
|
Herrera M, Grande-Pérez A, Perales C, Domingo E. Persistence of foot-and-mouth disease virus in cell culture revisited: implications for contingency in evolution. J Gen Virol 2008; 89:232-244. [DOI: 10.1099/vir.0.83312-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
If we could rewind the tape of evolution and play it again, would it turn out to be similar to or different from what we know? Obviously, this key question can only be addressed by fragmentary experimental approaches. Twenty-two years ago, we described the establishment of BHK-21 cells persistently infected with foot-and-mouth disease virus (FMDV), a system that displayed as its major biological feature a coevolution of the cells and the resident virus in the course of persistence. Now we report the establishment of two persistently infected cell lines in parallel, starting with the same clones of FMDV and BHK-21 cells used 22 years ago. We have asked whether the evolution of the two newly established cell lines and of the earlier cell line would be similar or different. The main conclusions of the study are: (i) the basic behaviour characterized by virus–cell coevolution is similar in the three carrier cell lines, despite differences in some genetic alterations of FMDV; (ii) a strikingly parallel behaviour has been observed with the two newly established cell lines passaged in parallel, unveiling a deterministic virus behaviour during persistence; and (iii) selective RT-PCR amplifications have detected imbalances in the proportion of positive- versus negative-strand viral RNA, mediated by both viral and cellular factors. The results confirm coevolution of cells and virus as a major and reproducible feature of FMDV persistence in cell culture, and suggest that rapidly evolving viruses may constitute adequate test systems to probe the influence of historical contingency on evolutionary events.
Collapse
Affiliation(s)
- Mónica Herrera
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Ana Grande-Pérez
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Celia Perales
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Esteban Domingo
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
15
|
Perales C, Mateo R, Mateu MG, Domingo E. Insights into RNA virus mutant spectrum and lethal mutagenesis events: replicative interference and complementation by multiple point mutants. J Mol Biol 2007; 369:985-1000. [PMID: 17481660 DOI: 10.1016/j.jmb.2007.03.074] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 03/20/2007] [Accepted: 03/27/2007] [Indexed: 10/23/2022]
Abstract
RNA virus behavior can be influenced by interactions among viral genomes and their expression products within the mutant spectra of replicating viral quasispecies. Here, we report the extent of interference of specific capsid and polymerase mutants of foot-and-mouth disease virus (FMDV) on replication of wild-type (wt) RNA. The capsid and polymerase mutants chosen for this analysis had been characterized biochemically and structurally. Upon co-electroporation of BHK-21 cells with wt RNA and a tenfold excess of mutant RNA, some mutants displayed strong interference (<10% of progeny production by wt RNA alone), while other mutants did not show detectable interference. The capacity to interfere required an excess of mutant RNA and was associated with intracellular replication, irrespective of the formation of infectious particles by the mutant virus. The extent of interference did not correlate with the known types and number of interactions involving the amino acid residue affected in each mutant. Synergistic interference was observed upon co-electroporation of wt RNA and mixtures of capsid and polymerase mutants. Interference was specific, in that the mutants did not affect expression of encephalomyocarditis virus RNA, and that a two nucleotide insertion mutant of FMDV expressing a truncated polymerase did not exert any detectable interference. The results support the lethal defection model for viral extinction by enhanced mutagenesis, and provide further evidence that the population behavior of highly variable viruses can be influenced strongly by the composition of the quasispecies mutant spectrum as a whole.
Collapse
Affiliation(s)
- Celia Perales
- Centro de Biología Molecular, Severo Ochoa CSIC-UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
16
|
Martín V, Perales C, Dávila M, Domingo E. Viral fitness can influence the repertoire of virus variants selected by antibodies. J Mol Biol 2006; 362:44-54. [PMID: 16890952 DOI: 10.1016/j.jmb.2006.06.077] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 06/30/2006] [Accepted: 06/30/2006] [Indexed: 10/24/2022]
Abstract
Minority genomes in the mutant spectra of viral quasispecies may differ in relative fitness. Here, we report experiments designed to evaluate the contribution of relative fitness to selection by a neutralizing monoclonal antibody (mAb). We have reconstructed a foot-and-mouth disease virus (FMDV) quasispecies, with two matched pairs of distinguishable mAb-escape mutants as minority genomes of the mutant spectrum. Each mutant of a pair differs from the other by 11-fold or 33-fold in relative fitness. Analysis of the mutant spectra of virus populations selected with different concentrations of antibody in infections in liquid culture medium has documented a dominance of the high fitness counterpart in the selected population. Plaque development as a function of increasing concentration of the antibody has shown that each mutant of a matched pair yielded the same number of plaques, although the high fitness mutant required less time for plaque formation, and attained a larger plaque size at any given time-point. This result documents equal intrinsic resistance to the antibody of each mutant of a matched pair, confirming previous biochemical, structural, and genetic studies, which indicated that the epitopes of each mutant pair were indistinguishable regarding reactivity with the monoclonal antibody. Thus, relative viral fitness can influence in a significant way the repertoire of viral mutants selected from a viral quasispecies by a neutralizing antibody. We discuss the significance of these results in relation to antibody selection, and to other selective forces likely encountered by viral quasispecies in vivo.
Collapse
Affiliation(s)
- Verónica Martín
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, E-28049 Madrid, Spain
| | | | | | | |
Collapse
|
17
|
Oliveira ED, Jiménez-Clavero MA, Núñez JI, Sobrino F, Andreu D. Analysis of the immune response against mixotope peptide libraries from a main antigenic site of foot-and-mouth disease virus. Vaccine 2005; 23:2647-57. [PMID: 15780448 DOI: 10.1016/j.vaccine.2004.10.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Accepted: 10/22/2004] [Indexed: 11/25/2022]
Abstract
The design of vaccines for RNA viral diseases is complicated by the high genetic variability of the viruses, which favors the selection of escape mutants. A case in point is foot-and-mouth disease virus (FMDV), for which only limited protection has been observed in vaccination with single peptides. We have explored the potential of immunogens of higher sequence diversity, covering a broad range of field or culture-induced mutations at the immunodominant site A of FMDV, serotype C. Four mixotope-type peptide libraries, containing ca. 3 x 10(3) or ca. 3 x 10(5) peptides each, in either linear or cyclic form, and combining most significant mutations found or induced at site A have been synthesized and used to immunize guinea-pigs. Substantial levels of serum conversion have been observed for all four mixotope libraries, as well as for single peptides, linear or cyclic, corresponding to the consensus site A sequence. The specificity and neutralizing ability of the anti-mixotope and -peptide antibodies have been evaluated by direct ELISA and by plaque reduction and micro-neutralization assays, respectively. Challenge experiments with an infectious, guinea-pig-adapted FMDV strain, have shown higher protection rates in animals immunized with the cyclic versions, either in single sequence or in combinatorial mixotope form.
Collapse
Affiliation(s)
- Eliandre de Oliveira
- Department of Experimental and Health Sciences, Pompeu Fabra University, Dr. Aiguader 80, 08003 Barcelona, Spain
| | | | | | | | | |
Collapse
|
18
|
Ruiz-Jarabo CM, Miller E, Gómez-Mariano G, Domingo E. Synchronous loss of quasispecies memory in parallel viral lineages: a deterministic feature of viral quasispecies. J Mol Biol 2003; 333:553-63. [PMID: 14556744 DOI: 10.1016/j.jmb.2003.08.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Viral quasispecies are endowed with a memory of their past evolutionary history in the form of minority genomes of their mutant spectra. To determine the fate of memory genomes in evolving viral quasispecies, we have measured memory levels of antigenic variant of foot-and-mouth disease virus (FMDV) RED, which includes an Arg-Glu-Asp (RED) at a surface antigenic loop of the viral capsid. The RED reverted to the standard Arg-Gly-Asp (RGD), and the RED remained as memory in the evolving quasispecies. In four parallel evolutionary lineages, memory reduction followed a strikingly similar pattern, and at passage 60 memory levels were indistinguishable from those of control populations (devoid of memory). Nucleotide sequence analyses indicated that memory loss occurred synchronously despite its ultimate molecular basis being the stochastic occurrence of mutations in the evolving quasispecies. These results on the kinetics of memory levels have unveiled a deterministic feature of viral quasispecies. Molecular mechanisms that may underlie synchronous memory loss are the averaging of noise signals derived from mutational input, and constraints to genome diversification imposed by a nucleotide sequence context in the viral genome. Possible implications of the behaviour of complex, adaptive viral systems as experimental models to address primary mechanisms of neurological memory are discussed.
Collapse
Affiliation(s)
- Carmen M Ruiz-Jarabo
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
19
|
Hemadri D, Sanyal A, Tosh C, Venkataramanan R, Pattnaik B. Serotype C foot-and-mouth disease virus isolates from India belong to a separate so far not described lineage. Vet Microbiol 2003; 92:25-35. [PMID: 12488068 DOI: 10.1016/s0378-1135(02)00354-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Complete 1D gene sequences of 13 Indian foot-and-mouth disease virus (FMDV) type C field isolates and a vaccine strain (C-Bombay/64) were determined. All the field isolates showed a greater genetic homogeneity (95-100%) among themselves and were 19.7-21.2% divergent from the vaccine strain. In the phylogenetic analysis, the Indian field isolates formed a separate lineage (lineage VII) different from the previously identified six lineages (lineage I-VI) in type C FMDV [J. Virol. 66 (1992) 3557]. The vaccine strain was grouped with European lineage (lineage II). Comparison of the deduced amino acid sequences of antigenic sites A and C of field isolates showed no significant variation from the vaccine strain. One-way serological relationship determined in ELISA showed antigenic closeness of the field isolates with C-Bombay/64.
Collapse
Affiliation(s)
- D Hemadri
- Project Directorate on Foot-and-Mouth Disease, Indian Veterinary Research Institute Campus, Mukteswar, Nainital 263 138, Uttaranchal, India.
| | | | | | | | | |
Collapse
|
20
|
Alcalá P, Ferrer-Miralles N, Villaverde A. Engineering of Escherichia coli beta-galactosidase for solvent display of a functional scFv antibody fragment. FEBS Lett 2003; 533:115-8. [PMID: 12505169 DOI: 10.1016/s0014-5793(02)03775-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Protein engineering allows the generation of hybrid polypeptides with functional domains from different origins and therefore exhibiting new biological properties. We have explored several permissive sites in Escherichia coli beta-galactosidase to generate functional hybrid enzymes displaying a mouse scFv antibody fragment. When this segment was placed at the amino-terminus of the enzyme, the whole fusion protein was stable, maintained its specific activity and interacted specifically with the target antigen, a main antigenic determinant of foot-and-mouth disease virus. In addition, the antigen-targeted enzyme was enzymatically active when bound to the antigen and therefore useful as a reagent in single-step immunoassays. These results prove the flexibility of E. coli beta-galactosidase as a carrier for large-sized functional domains with binding properties and prompt the further exploration of the biotechnological applicability of the scFv enzyme targeting principle for diagnosis or other biomedical applications involving antigen tagging.
Collapse
Affiliation(s)
- Pilar Alcalá
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | | | | |
Collapse
|
21
|
Boulestin A, Sandres-Sauné K, Payen JL, Alric L, Dubois M, Pasquier C, Vinel JP, Pascal JP, Puel J, Izopet J. Genetic heterogeneity of the envelope 2 gene and eradication of hepatitis C virus after a second course of interferon-alpha. J Med Virol 2002; 68:221-8. [PMID: 12210411 DOI: 10.1002/jmv.10192] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The heterogeneity of the envelope 2 (E2) gene of the hepatitis C virus (HCV) was involved in the sensitivity of HCV to interferon-alpha (IFN-alpha). To assess the factors leading to virus eradication by IFN-alpha, patients whose first treatment by IFN-alpha failed and who had virus eradication after a second treatment were studied. These patients were paired with subjects in whom both treatments failed. The phosphorylation homology domain of the E2 gene (E2-PHD) had no sequence variation between the two stages in both groups of patients. Therefore, this region has no clinical predictive value within a specific genotype. The hypervariable region 1 (HVR1) was analyzed by cloning and sequencing 20 clones per sample. Comparison of samples showed that the change in quasispecies induced by the first IFN-alpha therapy could be associated with virus elimination obtained after a second treatment. The greater proportion of nonsynonymous mutations that was noted before the second treatment in responders suggest that pretherapeutic immune response is a major factor determining virus elimination and that the immune status of these patients changed between the first and the second treatment.
Collapse
Affiliation(s)
- Anne Boulestin
- Laboratoire de Virologie, Hôpital Purpan, Toulouse Cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Barnett P, Garland AJM, Kitching RP, Schermbrucker CG. Aspects of emergency vaccination against foot-and-mouth disease. Comp Immunol Microbiol Infect Dis 2002; 25:345-64. [PMID: 12365810 DOI: 10.1016/s0147-9571(02)00031-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Emergency vaccination is one of several measures which may be deployed to control outbreaks of foot-and-mouth disease. It can be a valuable adjunct to the application of the essential zoosanitary controls which must include rapid diagnosis, tracing, movement control and disinfection and which may also include slaughter of infected and in-contact animals and their safe disposal. Criteria which determine the successful application of emergency vaccination include access to vaccine(s) that (i) contain virus strain(s) of sufficient antigenic relatedness to the outbreak strain(s) (ii) are of the required type of vaccine formulation (iii) have acceptable innocuity and potency (iv) have appropriate availability, including quantity and immediacy of supply and (v) meet considerations of cost. Contingency planning should include provision for emergency vaccination and must address the complex decisions of not only when, where, and how to apply vaccine but also its economic consequences. Computer modelling may be a useful aid to cost benefit and decision support systems in this context. Planning must be detailed and regularly reviewed and should ensure, (i) that the legal and financial aspects are catered for (ii) that any contractual supply agreements are in place (iii) that information is collected and its currency maintained on the species, numbers and whereabouts of susceptible livestock (iv) that vaccination teams are formed and trained (v) that the vaccine cold chain is established and maintained (vi) that supplies of vaccination equipment are held in readiness and (vii) that briefing materials are available to inform the various stakeholders on relevant aspects of emergency vaccination. Knowledge concerning the characteristics and performance of emergency vaccines is summarised and areas identified for further research.
Collapse
Affiliation(s)
- P Barnett
- Institute for Animal Health, Pirbright Laboratory, Surrey, UK
| | | | | | | |
Collapse
|
23
|
Baranowski E, Ruiz-Jarabo CM, Lim F, Domingo E. Foot-and-mouth disease virus lacking the VP1 G-H loop: the mutant spectrum uncovers interactions among antigenic sites for fitness gain. Virology 2001; 288:192-202. [PMID: 11601891 DOI: 10.1006/viro.2001.1096] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Arg-Gly-Asp (RGD) triplet found in the G-H loop of capsid protein VP1 of foot-and-mouth disease virus (FMDV) is critically involved in the interaction of FMDV with integrin receptors and with neutralizing antibodies. Multiplication of FMDV C-S8c1 in baby hamster kidney 21 (BHK-21) cells selected variant viruses exploiting alternative mechanisms of cell recognition that rendered the RGD integrin-binding triplet dispensable for infectivity. By constructing chimeric viruses, we show that dispensability of the RGD in these variant FMDVs can be extended to surrounding amino acid residues. Replacement of eight amino acid residues within the G-H loop of VP1 by an unrelated FLAG marker yielded infectious virus. Evolution of FLAG-containing viruses in BHK-21 cells generated complex quasispecies in which individual mutants included amino acid replacements at other antigenic sites of FMDV. Inclusion of such replacements in the parental FLAG clone resulted in an increase of relative fitness of the viruses. These results suggest structural or functional connections between antigenic sites of FMDV and underscore the value of mutant spectrum analysis for the identification of fitness-promoting genetic modifications in viral populations. The possibility of producing viable viruses lacking antigenic site A may find application in the design of new anti-FMD vaccines.
Collapse
Affiliation(s)
- E Baranowski
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | | | | | | |
Collapse
|
24
|
Núñez JI, Baranowski E, Molina N, Ruiz-Jarabo CM, Sánchez C, Domingo E, Sobrino F. A single amino acid substitution in nonstructural protein 3A can mediate adaptation of foot-and-mouth disease virus to the guinea pig. J Virol 2001; 75:3977-83. [PMID: 11264387 PMCID: PMC114889 DOI: 10.1128/jvi.75.8.3977-3983.2001] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genetic changes selected during the adaptation of a clonal population of foot-and-mouth disease virus (FMDV) to the guinea pig have been analyzed. FMDV clone C-S8c1 was adapted to the guinea pig by serial passage in the animals until secondary lesions were observed. Analysis of the virus directly recovered from the lesions developed by the animals revealed the selection of variants with two amino acid substitutions in nonstructural proteins, I(248)-->T in 2C and Q(44)-->R in 3A. On further passages, an additional mutation, L(147)-->P, was selected in an important antigenic site located in the G-H loop of capsid protein VP1. The amino acid substitution Q(44)-->R in 3A, either alone or in combination with the replacement I(248)-->T in 2C, was sufficient to give FMDV the ability to produce lesions. This was shown by using infectious transcripts which generated chimeric viruses with the relevant amino acid substitutions. Clinical symptoms produced by the artificial chimeras were similar to those produced by the naturally adapted virus. These results obtained with FMDV imply that one or very few replacements in nonstructural viral proteins, which should be within reach of the mutant spectra of replicating viral quasispecies, may result in adaptation of a virus to a new animal host.
Collapse
Affiliation(s)
- J I Núñez
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
25
|
Zinkernagel RM, LaMarre A, Ciurea A, Hunziker L, Ochsenbein AF, McCoy KD, Fehr T, Bachmann MF, Kalinke U, Hengartner H. Neutralizing antiviral antibody responses. Adv Immunol 2001; 79:1-53. [PMID: 11680006 PMCID: PMC7130890 DOI: 10.1016/s0065-2776(01)79001-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neutralizing antibodies are evolutionarily important effectors of immunity against viruses. Their evaluation has revealed a number of basic insights into specificity, rules of reactivity (tolerance), and memory—namely, (1) Specificity of neutralizing antibodies is defined by their capacity to distinguish between virus serotypes; (2) B cell reactivity is determined by antigen structure, concentration, and time of availability in secondary lymphoid organs; and (3) B cell memory is provided by elevated protective antibody titers in serum that are depending on antigen stimulation. These perhaps slightly overstated rules are simple, correlate with in vivo evidence as well as clinical observations, and appear to largely demystify many speculations about antibodies and B cell physiology. The chapter also considers successful vaccines and compares them with those infectious diseases where efficient protective vaccines are lacking, it is striking to note that all successful vaccines induce high levels of neutralizing antibodies (nAbs) that are both necessary and sufficient to protect the host from disease. Successful vaccination against infectious diseases such as tuberculosis, leprosy, or HIV would require induction of additional long-lasting T cell responses to control infection.
Collapse
Affiliation(s)
- R M Zinkernagel
- Institute of Experimental Immunology, Department of Pathology, University Hospital, CH-8091 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gomes P, Giralt E, Andreu D. Molecular analysis of peptides from the GH loop of foot-and-mouth disease virus C-S30 using surface plasmon resonance: a role for kinetic rate constants. Mol Immunol 2000; 37:975-85. [PMID: 11395136 DOI: 10.1016/s0161-5890(01)00014-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A foot-and-mouth disease virus (FMDV) field variant, isolate C-S30 (also named C(1)-Barcelona), is known to contain four changes within the main antigenic site A (GH loop of capsid protein VP1, residues 136-150), at least one of which (Leu147-->Val) involves a highly conserved position, critical for antibody recognition in the reference strain C-S8c1. However, immunoenzymatic analysis of FMDV C-S30 showed it was recognised by 4C4, a monoclonal antibody that specifically targets site A. This remarkable behaviour has led us to analyse the individual and combined contributions of the four mutations to the antigenicity of C-S30, by surface plasmon resonance (SPR) and enzyme-linked immunosorbent assay (ELISA) studies of pentadecapeptides displaying all possible combinations of the four replacements. Analysis of this family of C-S30-derived analogues shows a certain level of antibody recognition by SPR. In addition, SPR data suggest that kinetic rate constants provide an indirect measure, on the one hand, of paratope accessibility (association rate constant) and, on the other hand, of peptide fitness to the same paratope (dissociation rate constant).
Collapse
Affiliation(s)
- P Gomes
- Department of Organic Chemistry, University of Barcelona, Martí i Franquès 1, E-08028, Barcelona, Spain
| | | | | |
Collapse
|
27
|
Ochoa WF, Kalko SG, Mateu MG, Gomes P, Andreu D, Domingo E, Fita I, Verdaguer N. A multiply substituted G-H loop from foot-and-mouth disease virus in complex with a neutralizing antibody: a role for water molecules. J Gen Virol 2000; 81:1495-505. [PMID: 10811933 DOI: 10.1099/0022-1317-81-6-1495] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The crystal structure of a 15 amino acid synthetic peptide, corresponding to the sequence of the major antigenic site A (G-H loop of VP1) from a multiple variant of foot-and-mouth disease virus (FMDV), has been determined at 2.3 A resolution. The variant peptide includes four amino acid substitutions in the loop relative to the previously studied peptide representing FMDV C-S8c1 and corresponds to the loop of a natural FMDV isolate of subtype C(1). The peptide was complexed with the Fab fragment of the neutralizing monoclonal antibody 4C4. The peptide adopts a compact fold with a nearly cyclic conformation and a disposition of the receptor-recognition motif Arg-Gly-Asp that is closely related to the previously determined structure for the viral loop, as part of the virion, and for unsubstituted synthetic peptide antigen bound to neutralizing antibodies. New structural findings include the observation that well-defined solvent molecules appear to play a major role in stabilizing the conformation of the peptide and its interactions with the antibody. Structural results are supported by molecular-dynamic simulations. The multiply substituted peptide developed compensatory mechanisms to bind the antibody with a conformation very similar to that of its unsubstituted counterpart. One water molecule, which for steric reasons could not occupy the same position in the unsubstituted antigen, establishes hydrogen bonds with three peptide amino acids. The constancy of the structure of an antigenic domain despite multiple amino acid substitutions has implications for vaccine design.
Collapse
Affiliation(s)
- W F Ochoa
- Instituto Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Jordi-Girona 18-26, 08034 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Feliu JX, Carbonell X, Villaverde A. Successful mimicry of a complex viral antigen by multiple peptide insertions in a carrier protein. FEBS Lett 2000; 474:87-92. [PMID: 10828457 DOI: 10.1016/s0014-5793(00)01582-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The antigenic properties of a viral peptide from the surface of foot-and-mouth disease virus particles have been successfully mimicked by multiple insertion in solvent-exposed regions of Escherichia coli beta-galactosidase. By increasing the number of viral peptides per enzyme monomer, the average IC(50) of hybrid proteins in a competitive enzyme-linked immunosorbent assay) have decreased to values close to that presented by natural virions. Moreover, the antigenic diversity of these new recombinant enzymes when measured with different anti-virus antibodies has also been largely reduced, indicating a better presentation of the epitopes located in the viral peptide. Although bivalent antibody binding could have been favoured by multiple presentation, conformational modifications of the viral peptide, due to the presence of other insertions or a cooperative antibody binding cannot be excluded. In addition, a multidimensional antigenic analysis have grouped together the multiple-inserted proteins with the native virus, suggesting that increasing the number of insertions could be a good strategy to reproduce the antigenic properties of an immunoreactive peptide in a natural multimeric disposition.
Collapse
Affiliation(s)
- J X Feliu
- Institut de Biologia Fonamental and Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Belllaterra, 08193, Barcelona, Spain.
| | | | | |
Collapse
|
29
|
Berinstein A, Tami C, Taboga O, Smitsaart E, Carrillo E. Protective immunity against foot-and-mouth disease virus induced by a recombinant vaccinia virus. Vaccine 2000; 18:2231-8. [PMID: 10717342 DOI: 10.1016/s0264-410x(99)00561-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We report the construction of a recombinant vaccinia virus expressing the precursor for the four structural proteins of FMD virus (FMDV) (P1) strain C3Arg85 using a procedure for isolation of recombinant vaccinia viruses based solely on plaque formation. Adult mice vaccinated with this recombinant vaccinia virus elicited high titers of neutralizing antibodies against both the homologous FMDV and vaccinia virus, measured by neutralization assays. Liquid phase blocking sandwich enzyme-linked immunosorbent assays (ELISAs) using whole virus as antigen showed high total antibody titers against homologous FMDV, similar to those induced by the conventional inactivated vaccine. When ELISAs were carried out with heterologous strains A79 or O1Caseros as antigens, sera from animals vaccinated with the recombinant virus cross-reacted. Mice boosted once with the recombinant vaccinia virus were protected against challenge with infectious homologous virus. These results indicate that recombinant vaccinia viruses are efficient immunogens against FMDV when used as a live vaccine in a mouse model.
Collapse
Affiliation(s)
- A Berinstein
- Instituto de Biotecnología, Centro Nacional de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria cc77 Morón, (1708), Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
30
|
Abstract
Biological adaptive systems share some common features: variation among their constituent elements and continuity of core information. Some of them, such as the immune system, are endowed with memory of past events. In this study we provide direct evidence that evolving viral quasispecies possess a molecular memory in the form of minority components that populate their mutant spectra. The experiments have involved foot-and-mouth disease virus populations with known evolutionary histories. The composition and behavior of the viral population in response to a selective constraint were influenced by past evolutionary history in a way that could not be predicted from examination of consensus nucleotide sequences of the viral populations. The molecular memory of the viral quasispecies influenced both the nature and the intensity of the response of the virus to a selective constraint.
Collapse
Affiliation(s)
- C M Ruiz-Jarabo
- Centro de Biología Molecular "Severo Ochoa," Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
31
|
Baranowski E, Ruiz-Jarabo CM, Sevilla N, Andreu D, Beck E, Domingo E. Cell recognition by foot-and-mouth disease virus that lacks the RGD integrin-binding motif: flexibility in aphthovirus receptor usage. J Virol 2000; 74:1641-7. [PMID: 10644333 PMCID: PMC111638 DOI: 10.1128/jvi.74.4.1641-1647.2000] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell surface molecules that can act as virus receptors may exert an important selective pressure on RNA viral quasispecies. Large population passages of foot-and-mouth disease virus (FMDV) in cell culture select for mutant viruses that render dispensable a highly conserved Arg-Gly-Asp (RGD) motif responsible for integrin receptor recognition. Here, we provide evidence that viability of recombinant FMDVs including a Asp-143-->Gly change at the RGD motif was conditioned by a number of capsid substitutions selected upon FMDV evolution in cell culture. Multiply passaged FMDVs acquired the ability to infect human K-562 cells, which do not express integrin alpha(v)beta(3). In contrast to previously described cell culture-adapted FMDVs, the RGD-independent infection did not require binding to the surface glycosaminoglycan heparan sulfate (HS). Viruses which do not bind HS and lack the RGD integrin-binding motif replicate efficiently in BHK-21 cells. Interestingly, FMDV mutants selected from the quasispecies for the inability to bind heparin regained sensitivity to inhibition by a synthetic peptide that represents the G-H loop of VP1. Thus, a single amino acid replacement leading to loss of HS recognition can shift preferential receptor usage of FMDV from HS to integrin. These results indicate at least three different mechanisms for cell recognition by FMDV and suggest a potential for this virus to use multiple, alternative receptors for entry even into the same cell type.
Collapse
Affiliation(s)
- E Baranowski
- Centro de Biolog¿ia Molecular "Severo Ochoa", Universidad Aut¿onoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
32
|
Valero ML, Camarero JA, Haack T, Mateu MG, Domingo E, Giralt E, Andreu D. Native-like cyclic peptide models of a viral antigenic site: finding a balance between rigidity and flexibility. J Mol Recognit 2000; 13:5-13. [PMID: 10679891 DOI: 10.1002/(sici)1099-1352(200001/02)13:1<5::aid-jmr480>3.0.co;2-l] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Antigenic site A of foot-and-mouth disease virus (serotype C) has been reproduced by means of cyclic versions of peptide A15, YTASARGDLAHLTTT, corresponding to residues 136-150 of envelope protein VP1. A structural basis for the design of the cyclic peptides is provided by crystallographic data from complexes between the Fab fragments of anti-site A monoclonal antibodies and A15, in which the bound peptide is folded into a quasi-cyclic pattern. Head-to-tail cyclizations of A15 do not provide peptides of superior antigenicity. Internal disulfide cyclization, however, leads to analogs which are recognized as one to two orders of magnitude better than linear A15 in both ELISA and biosensor experiments. CD and NMR studies show that the best antigen, CTASARGDLAHLTT-Ahx-C (disulfide), is very insensitive to environment-induced conformational change, suggesting that cyclization helps to stabilize a bioactive-like structure.
Collapse
Affiliation(s)
- M L Valero
- Departament de Química Orgànica, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
33
|
Domingo E, Verdaguer N, Ochoa WF, Ruiz-Jarabo CM, Sevilla N, Baranowski E, Mateu MG, Fita I. Biochemical and structural studies with neutralizing antibodies raised against foot-and-mouth disease virus. Virus Res 1999; 62:169-75. [PMID: 10507326 DOI: 10.1016/s0168-1702(99)00042-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The function of a loop exposed on the aphthovirus capsid (the G-H loop of protein VP1) has been explored by combining genetic and structural studies with viral mutants. The loop displays a dual function of receptor recognition and interaction with neutralizing antibodies. Remarkably, some amino acid residues play a critical role in both such disparate functions. Therefore residues subjected to antibody pressure for variation may nevertheless maintain a role in receptor recognition for which invariance is a requirement. Evolution of FMDV in cell culture may relax the requirements at this site and allow further increase of antigenic diversification. Essential residues at one stage of virus evolution may become dispensable at another not very distant point in the evolutionary landscape. Implications for FMDV evolution and vaccine design are discussed.
Collapse
Affiliation(s)
- E Domingo
- Centro de Biologá Molecular Servero Ochoa, Universidad Autónoma de Madrid, Cantoblanco, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Ruiz-Jarabo CM, Sevilla N, Dávila M, Gómez-Mariano G, Baranowski E, Domingo E. Antigenic properties and population stability of a foot-and-mouth disease virus with an altered Arg-Gly-Asp receptor-recognition motif. J Gen Virol 1999; 80 ( Pt 8):1899-1909. [PMID: 10466785 DOI: 10.1099/0022-1317-80-8-1899] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The antigenic properties and genetic stability of a multiply passaged foot-and-mouth disease virus (FMDV) clone C-S8c1 with an Arg-Gly-Gly triplet (RGG) instead of the Arg-Gly-Asp (RGD) integrin-recognition motif at positions 141 to 143 of capsid protein VP1 are described. Clear antigenic differences between FMDV RGG and clone C-S8c1 have been documented in ELISA, enzyme-linked immunoelectrotransfer (Western) blot and neutralization assays using site A-specific monoclonal antibodies and anti-FMDV polyclonal antibodies from swine and guinea pigs. The results validate with a live virus the role of the RGD (in particular Asp-143) in recognition of (and neutralization by) antibodies, a role previously suggested by immunochemical and structural studies with synthetic peptides. The FMDV RGG was genetically stable in a large proportion of serial infections of BHK-21 cells. However, a revertant virus with RGD was generated in one out of six passage series. Interestingly, this revertant FMDV did not reach dominance but established an equilibrium with its parental FMDV RGG, accompanied by an increase of quasispecies complexity at the sequences around the RGG triplet. FMDV RGG exhibited a selective disadvantage relative to other RGD-containing clones isolated from the same parental FMDV population. The results suggest that large antigenic variations can be prompted by replacements at critical capsid sites, including those involved in receptor recognition. These critical replacements may yield viruses whose stability allows them to replicate efficiently and to expand the sequence repertoire of an antigenic site.
Collapse
Affiliation(s)
- Carmen M Ruiz-Jarabo
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain1
| | - Noemí Sevilla
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain1
| | - Mercedes Dávila
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain1
| | - Gema Gómez-Mariano
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain1
| | - Eric Baranowski
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain1
| | - Esteban Domingo
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain1
| |
Collapse
|
35
|
Feliu JX, Ramírez E, Villaverde A. Distinct mechanisms of antibody-mediated enzymatic reactivation in beta-galactosidase molecular sensors. FEBS Lett 1998; 438:267-71. [PMID: 9827559 DOI: 10.1016/s0014-5793(98)01315-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The antibody-mediated reactivation of engineered Escherichia coli beta-galactosidases [Benito et al. (1996) J. Biol. Chem. 271, 21251-21256] has been thoughtfully investigated in three recombinant molecular sensors. Proteins M278VP1, JX772A and JX795A display the highly antigenic G-H loop peptide segment of foot-and-mouth disease virus VP1 protein, accommodated in different solvent-exposed loops of the assembled tetramer. These chimaeric enzymes exhibit a significant increase in enzymatic activity upon binding of either monoclonal antibodies or sera directed against the inserted viral peptide. In JX772A but not in M278VP1, the Fab 3E5 antibody fragment promotes reactivation to the same extent as the complete antibody. On the other hand, M278VP1 Km is reduced by more than 50% in the presence of activating serum, this parameter remains invariable in JX772A and it is only slightly modified in JX795A. In these last two proteins, significant k(cat) variations can account for the increased enzymatic activity. Alternative reactivation mechanisms in the different beta-galactosidase probes are discussed in the context of the bacterial enzyme structure and its tolerance to antibody-induced conformational modifications.
Collapse
Affiliation(s)
- J X Feliu
- Institut de Biologia Fonamental and Department de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | |
Collapse
|
36
|
Domingo E, Escarmís C, Sevilla N, Baranowski E. Population dynamics in the evolution of RNA viruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 440:721-7. [PMID: 9782350 DOI: 10.1007/978-1-4615-5331-1_93] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
RNA virus quasispecies are subjected to processes of positive Darwinian selection, to a very active and continuous negative selection and to random genetic drift. The course of RNA virus evolution is often unpredictable, and recent results suggest that even highly conserved motifs, once regarded as essential for infectivity, may be rendered dispensable by singular evolutionary events. An immediate consequence of the quasispecies genetic organization of RNA viruses is a surprising ability to gain fitness once a minimal replication ability is established in a biological environment. The unique features of RNA genetics should not be underestimated since they are at the basis of the emergence of new viral diseases and of the current difficulties to control many diseases associated variable viruses.
Collapse
Affiliation(s)
- E Domingo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Spain
| | | | | | | |
Collapse
|
37
|
Carbonell X, Feliu JX, Benito A, Villaverde A. Display-induced antigenic variation in recombinant peptides. Biochem Biophys Res Commun 1998; 248:773-7. [PMID: 9704003 DOI: 10.1006/bbrc.1998.8938] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peptide display on solvent-exposed surfaces of carrier proteins is a promising approach pursuing the identification and improvement of reactive amino acid sequences. However, the contribution of the molecular environment where the peptide is inserted on its interactive properties remains essentially unexplored. By an exhaustive antigenic analysis of the same peptide displayed on 20 structurally distinct frameworks, we show that peptide accommodation into the acceptor site has dramatic effects on its immunoreactivity. Conformational constraints can modulate the molecular recognition properties of the insert within a surprisingly wide range, probably by affecting the positioning of critical contact residues. The observed display-induced antigenic variation prompts a careful consideration of the molecular context when evaluating output amino acid sequences from screening of peptide libraries or application of directed molecular evolution technologies.
Collapse
Affiliation(s)
- X Carbonell
- Institut de Biologia Fonamental, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | |
Collapse
|
38
|
Suryanarayana V, Tulasiram P, Prabhudas KS, Misra LD, Natarajan C. The foot and mouth disease virus type O outbreak of 1992 is not related to vaccine strain (O/R2/75). Virus Genes 1998; 16:167-72. [PMID: 9608661 DOI: 10.1023/a:1007993606750] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vaccination is the only pragmatic approach to control foot and mouth disease in India. Strict quality control measures are essential to supply potent vaccine to the field application, in addition to monitoring the performance of the vaccine in the field. During the process of monitoring, an outbreak of FMD in vaccinated animals caused by type "O" virus in Tanjavur district of Tamil Nadu and a type "O" virus from unvaccinated herd of Karnataka were studied. Field isolates and vaccine virus were sequenced and analyzed. Data indicated that the virus from the outbreak in vaccinated cattle was a variant which could escape neutralization by antibodies against vaccine virus.
Collapse
|
39
|
Pattnaik B, Venkataramanan R, Tosh C, Sanyal A, Hemadri D, Samuel AR, Knowles NJ, Kitching RP. Genetic heterogeneity of Indian field isolates of foot-and-mouth disease virus serotype O as revealed by partial sequencing of 1D gene. Virus Res 1998; 55:115-27. [PMID: 9725665 DOI: 10.1016/s0168-1702(98)00044-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The sequence of 165 nucleotides at the 3' end of the 1D gene, determined from RT PCR amplified cDNA fragments, of 25 type O strains isolated from different parts/regions of India during 1987 1995 and the vaccine strain (R2/75) currently in use in India were subjected to phylogenetic analysis. One isolate from the neighbouring country Nepal was also included in the study. The virus/ field strains showed high degree of genetic heterogeneity among themselves with % divergence in nucleotide sequence ranging from 1.2 to 19.4%. The Indian strains were much away (13.3 20.6%) from the exotic type O strains of O1BFS, O1K, and O1Campos. The type O strains analyzed were classified into three genotypes basing on level of divergence observed in nucleotide sequence. The type O vaccine virus (R2/75) was > 71% divergent (7.3-15.2%) from the field strains which revealed significant ( > 5%) genetic heterogeneity between the two. The phylogenetic analysis identified three distinct lineages, viz., (i) lineage 1 represented by the exotic strains, (ii) lineage 2 represented by 25 of the field strains which clustered into seven subgroups/sublines (2a-2g), and (iii) lineage 3 represented by a unique field isolate which shared the branching/origin with the vaccine strain. The lineage 2 which comprised of 25 of the 26 type O field strains analyzed, was placed almost at equidistance from the lineages 1 and 3 in the phylogenetic tree. The vaccine strain was closer to the viruses in lineage 2. Though there was no specific distribution pattern of sequences in different geographical regions of India, the viruses/ sequences in subgroup 2f appeared to be restricted to the southern states. Comparison of deduced amino acid sequence in the immunodominant regions 133-160 and 200-208 of the 1D gene product (VP1) showed that the two viruses in lineage 3 had unique amino acid residues at the positions 138 (D), 139 (G), 144 (I), and 158 (A) compared to rest of the strains including the exotic ones. Comparison of amino acid residues at critical positions 144, 148, 149, 151, 153, 154, and 208 revealed similarity between the type O strains analyzed. The virus strains showed variation (V/L/I) at position 144. One field strain showed replacement from Q149-->E and another from P208-->L. Thus, the study revealed that the type O FMD virus populations circulating in India and causing disease outbreaks are genetically much heterogeneous but related at the immunodominant region of VP1 polypeptide, and there are more than one genetically distinct virus populations in almost every region of the country which is possible due to unrestricted animal movement in the country. The involvement of vaccine virus in disease outbreaks was ruled out as the field strains (excluding the one in lineage 3) were phylogenetically distinct from it.
Collapse
Affiliation(s)
- B Pattnaik
- Central Laboratory, All India Coordinated Research Project on Foot-and-Mouth Disease, Indian Veterinary Research Institute, Mukteswar-Kumaon, Nainital
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Verdaguer N, Sevilla N, Valero ML, Stuart D, Brocchi E, Andreu D, Giralt E, Domingo E, Mateu MG, Fita I. A similar pattern of interaction for different antibodies with a major antigenic site of foot-and-mouth disease virus: implications for intratypic antigenic variation. J Virol 1998; 72:739-48. [PMID: 9420281 PMCID: PMC109430 DOI: 10.1128/jvi.72.1.739-748.1998] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/1997] [Accepted: 09/22/1997] [Indexed: 02/05/2023] Open
Abstract
The three-dimensional structures of the Fab fragment of a neutralizing antibody raised against a foot-and-mouth disease virus (FMDV) of serotype C1, alone and complexed to an antigenic peptide representing the major antigenic site A (G-H loop of VP1), have been determined. As previously seen in a complex of the same antigen with another antibody which recognizes a different epitope within antigenic site A, the receptor recognition motif Arg-Gly-Asp and some residues from an adjacent helix participate directly in the interaction with the complementarity-determining regions of the antibody. Remarkably, the structures of the two antibodies become more similar upon binding the peptide, and both undergo considerable induced fit to accommodate the peptide with a similar array of interactions. Furthermore, the pattern of reactivities of five additional antibodies with versions of the antigenic peptide bearing amino acid replacements suggests a similar pattern of interaction of antibodies raised against widely different antigens of serotype C. The results reinforce the occurrence of a defined antigenic structure at this mobile, exposed antigenic site and imply that intratypic antigenic variation of FMDV of serotype C is due to subtle structural differences that affect antibody recognition while preserving a functional structure for the receptor binding site.
Collapse
Affiliation(s)
- N Verdaguer
- Centre de Investigació i Desenvolupament (CSIC), Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Mateu MG, Escarmís C, Domingo E. Mutational analysis of discontinuous epitopes of foot-and-mouth disease virus using an unprocessed capsid protomer precursor. Virus Res 1998; 53:27-37. [PMID: 9617767 DOI: 10.1016/s0168-1702(97)00127-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An unprocessed capsid precursor (P1) of foot-and-mouth disease virus (FMDV) has been expressed in mammalian cells to study discontinuous epitopes involved in viral neutralization. Amino acid replacements found in virus-escape mutants were engineered in the P1 precursor by site-directed mutagenesis of the plasmid. In all cases the replacements abolished recognition of unprocessed P1 by the relevant monoclonal antibodies (MAbs), paralleling the effects of the corresponding substitutions in neutralization of infectious FMDV. Five capsid surface residues within the same discontinuous antigenic area that were never found replaced in escape mutants were also engineered in P1. None of the substitutions affected antibody recognition, suggesting that these residues were not directly involved in the interaction with the antibodies tested. The results validate site-directed mutagenesis of constructs encoding capsid precursors as an approach to probe the structure of viral discontinuous epitopes not amenable to analysis with synthetic peptides.
Collapse
Affiliation(s)
- M G Mateu
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, Madrid, Spain
| | | | | |
Collapse
|
42
|
Verdaguer N, Fita I, Domingo E, Mateu MG. Efficient neutralization of foot-and-mouth disease virus by monovalent antibody binding. J Virol 1997; 71:9813-6. [PMID: 9371652 PMCID: PMC230296 DOI: 10.1128/jvi.71.12.9813-9816.1997] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Neutralization of an aphthovirus by monovalent binding of an antibody is reported. Foot-and-mouth disease virus (FMDV) clone C-S8c1 was neutralized by monoclonal antibody (MAb) SD6, which was directed to a continuous epitope within a major antigenic site of the G-H loop of capsid protein VP1. On a molar basis, the Fab fragment was at most fivefold less active in neutralization than the intact antibody, and both blocked virus attachment to cells. Neither the antibody nor the Fab fragment caused aggregation of virions, as evidenced by sucrose gradient sedimentation studies of the antibody-virus complex formed at antibody to virion ratios of 1:50 to 1:10,000. The results of neutralization of infectivity and of ultracentrifugation are fully consistent with structural data based on X-ray crystallographic and cryoelectron microscopy studies, which showed monovalent interaction of the antibody with a critical receptor binding motif Arg-Gly-Asp. The conclusions of these neutralization studies are that (i) bivalent binding of antibody is not a requisite for strong neutralization of aphthoviruses and (ii) aggregation of viral particles, which has been proposed to be the dominant neutralization mechanism of antibodies that bind monovalently to virions, is not necessary for the neutralization of FMDV C-S8c1 by MAb SD6.
Collapse
Affiliation(s)
- N Verdaguer
- Centre de Investigació i Desenvolupament (CSIC), Barcelona, Spain
| | | | | | | |
Collapse
|
43
|
Lundkvist A, Cheng Y, Sjölander KB, Niklasson B, Vaheri A, Plyusnin A. Cell culture adaptation of Puumala hantavirus changes the infectivity for its natural reservoir, Clethrionomys glareolus, and leads to accumulation of mutants with altered genomic RNA S segment. J Virol 1997; 71:9515-23. [PMID: 9371614 PMCID: PMC230258 DOI: 10.1128/jvi.71.12.9515-9523.1997] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This paper reports the establishment of a model for hantavirus host adaptation. Wild-type (wt) (bank vole-passaged) and Vero E6 cell-cultured variants of Puumala virus strain Kazan were analyzed for their virologic and genetic properties. The wt variant was well adapted for reproduction in bank voles but not in cell culture, while the Vero E6 strains replicated to much higher efficiency in cell culture but did not reproducibly infect bank voles. Comparison of the consensus sequences of the respective viral genomes revealed no differences in the coding region of the S gene. However, the noncoding regions of the S gene were found to be different at positions 26 and 1577. In one additional and independent adaptation experiment, all analyzed cDNA clones from the Vero E6-adapted variant were found to carry substitutions at position 1580 of the S segment, just 3 nucleotides downstream of the mutation observed in the first adaptation. No differences were found in the consensus sequences of the entire M segments from the wt and the Vero E6-adapted variants. The results indicated different impacts of the S and the M genomic segments for the adaptation process and selective advantages for the variants that carried altered noncoding sequences of the S segment. We conclude that the isolation in cell culture resulted in a phenotypically and genotypically altered hantavirus.
Collapse
Affiliation(s)
- A Lundkvist
- Swedish Institute for Infectious Disease Control, Stockholm.
| | | | | | | | | | | |
Collapse
|
44
|
Butchaiah G, Morgan DO. Neutralization antigenic sites on type Asia-1 foot-and-mouth disease virus defined by monoclonal antibody-resistant variants. Virus Res 1997; 52:183-94. [PMID: 9495534 DOI: 10.1016/s0168-1702(97)00117-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Seven neutralizing monoclonal antibodies (nMAbs) produced against serotype Asia-1 foot-and-mouth disease virus (FMDV) were used to select neutralization-resistant variants. Seven single and six multiple antibody-resistant variants were selected to identify neutralization antigenic sites on FMDV Asia-1. The variants no longer reacted with nMAbs which were used to select them when tested by microneutralization test (MNT), radioimmunoassay (RIA) and agar gel immunodiffusion (AGID) assay. Based on the binding and neutralization patterns of the variants, the nMAbs could be divided into discrete groups indicating the presence of three independent antigenic sites with evidence for occurrence of possibly a fourth site on the virus surface. Site 1 was present on 140S, 12Sps and VP1 and thus was conformation-independent. Sites 2 and 3 were restricted to the intact virion (140S) and thus were more conformation-dependent. Site 4 present on 140S virions and 12S protein subunits was less conformation-dependent. The site 3 nMAbs neutralized the infectivity of all the ten different Asia-1 virus isolates tested indicating that this site is conserved in Asia-1 virus serotype. Both cross-neutralization of different Asia-1 viruses with the nMAbs and cross-inhibition assays between MAbs demonstrated that the nMAbs recognized at least six different epitopes on Asia-1 virus.
Collapse
Affiliation(s)
- G Butchaiah
- Indian Veterinary Research Institute, Hebbal, Bangalore, India
| | | |
Collapse
|
45
|
Tami C, Kaplan G, Piccone ME, Palma EL. Nucleotide sequence of the P1 region of foot-and-mouth disease virus strain O1 Caseros. Virus Genes 1997; 14:255-9. [PMID: 9311571 DOI: 10.1023/a:1007996213037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It has been shown that variation of antigenic site I in VP1 of foot-and-mouth disease virus (FMDV) plays an important role in the antigenic diversification of this virus. However, the O1 Campos strain is able to efficiently cross-protect cattle against the O1 Caseros strain, despite having a different sequence in the site I. In this paper we report and compare the P1 coding region for the capsid proteins of FMDV O1 Caseros and O1 Campos. The deduced amino acid sequence showed a total of 31 amino acid differences. Eight of them are located in surface-exposed loops that have been implicated in antigenic sites. This study should help to identify additional sites to be considered in the development of a new generation of FMDV vaccines.
Collapse
Affiliation(s)
- C Tami
- Instituto de Biotecnologia, CICV, INTA, Moron, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
46
|
|
47
|
Sa-Carvalho D, Rieder E, Baxt B, Rodarte R, Tanuri A, Mason PW. Tissue culture adaptation of foot-and-mouth disease virus selects viruses that bind to heparin and are attenuated in cattle. J Virol 1997; 71:5115-23. [PMID: 9188578 PMCID: PMC191746 DOI: 10.1128/jvi.71.7.5115-5123.1997] [Citation(s) in RCA: 236] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Isolates of foot-and-mouth disease virus (FMDV) exist as complex mixtures of variants. Two different serotype O1 Campos preparations that we examined contained two variants with distinct plaque morphologies on BHK cells: a small, clear-plaque virus that replicates in BHK and CHO cells, and a large, turbid-plaque virus that only grows in BHK cells. cDNAs encoding the capsids of these two variants were inserted into a genome-length FMDV type A12 infectious cDNA and used to produce chimeric viruses that exhibited the phenotype of the original variants. Analyses of these viruses, and hybrids created by exchanging portions of the capsid gene, identified codon 56 in VP3 (3056) as the critical determinant of both cell tropism and plaque phenotype. Specifically, the CHO growth/clear-plaque phenotype is dependent on the presence of the highly charged Arg residue at 3056, and viruses with this phenotype and genotype were selected during propagation in tissue culture. The genetically engineered Arg 3056 virus was highly attenuated in bovines, but viruses recovered from animals inoculated with high doses of this virus had lost the ability to grow in CHO cells and contained either an uncharged residue at 3056 or a negatively charged Glu substituted for a Lys at a spatially and antigenically related position on VP2 (2134). Comparison of these animal-derived viruses to other natural and engineered viruses demonstrated that positively charged residues are required at both 2134 and 3056 for binding to heparin. Taken together, these results indicate that in vitro cultivation of FMDV type O selects viruses that bind to heparin and that viruses with the heparin-binding phenotype are attenuated in the natural host.
Collapse
Affiliation(s)
- D Sa-Carvalho
- Plum Island Animal Disease Center, Agricultural Research Service, North Atlantic Area, U.S. Department of Agriculture, Greenport, New York 11944, USA
| | | | | | | | | | | |
Collapse
|
48
|
Martínez MA, Verdaguer N, Mateu MG, Domingo E. Evolution subverting essentiality: dispensability of the cell attachment Arg-Gly-Asp motif in multiply passaged foot-and-mouth disease virus. Proc Natl Acad Sci U S A 1997; 94:6798-802. [PMID: 9192645 PMCID: PMC21238 DOI: 10.1073/pnas.94.13.6798] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/1996] [Accepted: 04/07/1997] [Indexed: 02/04/2023] Open
Abstract
Aphthoviruses use a conserved Arg-Gly-Asp triplet for attachment to host cells and this motif is believed to be essential for virus viability. Here we report that this triplet-which is also a widespread motif involved in cell-to-cell adhesion-can become dispensable upon short-term evolution of the virus harboring it. Foot-and-mouth disease virus (FMDV), which was multiply passaged in cell culture, showed an altered repertoire of antigenic variants resistant to a neutralizing monoclonal antibody. The altered repertoire includes variants with substitutions at the Arg-Gly-Asp motif. Mutants lacking this sequence replicated normally in cell culture and were indistinguishable from the parental virus. Studies with individual FMDV clones indicate that amino acid replacements on the capsid surface located around the loop harboring the Arg-Gly-Asp triplet may mediate in the dispensability of this motif. The results show that FMDV quasispecies evolving in a constant biological environment have the capability of rendering totally dispensable a receptor recognition motif previously invariant, and to ensure an alternative pathway for normal viral replication. Thus, variability of highly conserved motifs, even those that viruses have adapted from functional cellular motifs, can contribute to phenotypic flexibility of RNA viruses in nature.
Collapse
Affiliation(s)
- M A Martínez
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain
| | | | | | | |
Collapse
|
49
|
Mbayed V, Schiappacassi M, Corominas A, Campos R. Characteristic in vitro evolution pattern of foot and mouth disease virus A81/Castellanos/Arg/87. Virus Res 1997; 48:157-63. [PMID: 9175254 DOI: 10.1016/s0168-1702(97)81605-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The in vitro evolution of Foot and mouth disease virus (FMDV) A/81/Castellanos/Arg/87 (A/Castellanos/87) was studied by partial biological and biochemical characterization of viral populations selected after 25 passages on secondary fetal bovine kidney cell monolayers. These passages were performed in the presence or absence of immune pressure exerted in the form of antiviral polyclonal serum. While the viral populations passaged in the absence of immune pressure acquired characteristics such as antigenic heterogeneity, VP1 amino acid modification and plaque size reduction, the populations selected after immune pressure also presented both neutralizing resistance and attenuation for suckling mice. The comparison with other previously studied FMDV strains suggests that FMDV A/Castellanos/87 adopts a differential response to immunological pressure and other selective forces. In addition, the sequencing analysis of viral selected populations shows a restriction in the number and type of amino acid replacements tolerated by FMDV capsid proteins.
Collapse
Affiliation(s)
- V Mbayed
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
50
|
Taboga O, Tami C, Carrillo E, Núñez JI, Rodríguez A, Saíz JC, Blanco E, Valero ML, Roig X, Camarero JA, Andreu D, Mateu MG, Giralt E, Domingo E, Sobrino F, Palma EL. A large-scale evaluation of peptide vaccines against foot-and-mouth disease: lack of solid protection in cattle and isolation of escape mutants. J Virol 1997; 71:2606-14. [PMID: 9060612 PMCID: PMC191381 DOI: 10.1128/jvi.71.4.2606-2614.1997] [Citation(s) in RCA: 186] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A large-scale vaccination experiment involving a total of 138 cattle was carried out to evaluate the potential of synthetic peptides as vaccines against foot-and-mouth disease. Four types of peptides representing sequences of foot-and-mouth disease virus (FMDV) C3 Argentina 85 were tested: A, which includes the G-H loop of capsid protein VP1 (site A); AT, in which a T-cell epitope has been added to site A; AC, composed of site A and the carboxy-terminal region of VP1 (site C); and ACT, in which the three previous capsid motifs are colinearly represented. Induction of neutralizing antibodies, lymphoproliferation in response to viral antigens, and protection against challenge with homologous infectious virus were examined. None of the tested peptides, at several doses and vaccination schedules, afforded protection above 40%. Protection showed limited correlation with serum neutralization activity and lymphoproliferation in response to whole virus. In 12 of 29 lesions from vaccinated cattle that were challenged with homologous virus, mutant FMDVs with amino acid substitutions at antigenic site A were identified. This finding suggests the rapid generation and selection of FMDV antigenic variants in vivo. In contrast with previous studies, this large-scale vaccination experiment with an important FMDV host reveals considerable difficulties for vaccines based on synthetic peptides to achieve the required levels of efficacy. Possible modifications of the vaccine formulations to increase protective activity are discussed.
Collapse
Affiliation(s)
- O Taboga
- Instituto de Biotecnología, Centro de Investigacion en Ciencias Veterinarias, INTA, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|