1
|
Fan K, Pfister E, Weng Z. Toward a comprehensive catalog of regulatory elements. Hum Genet 2023; 142:1091-1111. [PMID: 36935423 DOI: 10.1007/s00439-023-02519-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/03/2023] [Indexed: 03/21/2023]
Abstract
Regulatory elements are the genomic regions that interact with transcription factors to control cell-type-specific gene expression in different cellular environments. A precise and complete catalog of functional elements encoded by the human genome is key to understanding mammalian gene regulation. Here, we review the current state of regulatory element annotation. We first provide an overview of assays for characterizing functional elements, including genome, epigenome, transcriptome, three-dimensional chromatin interaction, and functional validation assays. We then discuss computational methods for defining regulatory elements, including peak-calling and other statistical modeling methods. Finally, we introduce several high-quality lists of regulatory element annotations and suggest potential future directions.
Collapse
Affiliation(s)
- Kaili Fan
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, 368 Plantation Street, ASC5-1069, Worcester, MA, 01605, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Edith Pfister
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, 368 Plantation Street, ASC5-1069, Worcester, MA, 01605, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, 368 Plantation Street, ASC5-1069, Worcester, MA, 01605, USA.
| |
Collapse
|
2
|
Chauhan W, Zennadi R. Keap1-Nrf2 Heterodimer: A Therapeutic Target to Ameliorate Sickle Cell Disease. Antioxidants (Basel) 2023; 12:antiox12030740. [PMID: 36978988 PMCID: PMC10045360 DOI: 10.3390/antiox12030740] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/04/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Sickle cell disease (SCD) is a monogenic inheritable disease characterized by severe anemia, increased hemolysis, and recurrent, painful vaso-occlusive crises due to the polymerization of hemoglobin S (HbS)-generated oxidative stress. Up until now, only four drugs are approved for SCD in the US. However, each of these drugs affects only a limited array of SCD pathologies. Importantly, curative therapies, such as gene therapy, or hematopoietic stem cell transplantation are not available for every patient because of their high costs, availability of donor matching, and their serious adverse effects. Therefore, there is an unmet medical need for novel therapeutic strategies that target broader SCD sequelae. SCD phenotypic severity can be alleviated by increasing fetal hemoglobin (HbF) expression. This results in the inhibition of HbS polymerization and thus sickling, and a reduction in oxidative stress. The efficacy of HbF is due to its ability to dilute HbS levels below the threshold required for polymerization and to influence HbS polymer stability in RBCs. Nuclear factor-E2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein-1 (Keap1)-complex signaling is one of the most important cytoprotective signaling controlling oxidative stress. Nrf2 is present in most organs and, after dissociation from Keap1, it accumulates in the cytoplasm, then translocates to the nucleus where it binds to the antioxidant response element (ARE) sequences and increases the expression of various cytoprotective antioxidant genes. Keeping this in mind, various researchers have proposed a role of multiple agents, more importantly tert-Butylhydroquinone (tBHQ), curcumin, etc., (having electrophilic properties) in inhibiting keap1 activity, so that Nrf2 can translocate to the nucleus to activate the gamma globin gene, thus maintaining alpha-hemoglobin-stabilizing protein (AHSP) and HbF levels. This leads to reduced oxidative stress, consequently minimizing SCD-associated complications. In this review, we will discuss the role of the Keap-1–Nrf2 complex in hemoglobinopathies, especially in SCD, and how this complex might represent a better target for more effective treatment options.
Collapse
|
3
|
Current challenges in understanding the role of enhancers in disease. Nat Struct Mol Biol 2022; 29:1148-1158. [PMID: 36482255 DOI: 10.1038/s41594-022-00896-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/04/2022] [Indexed: 12/13/2022]
Abstract
Enhancers play a central role in the spatiotemporal control of gene expression and tend to work in a cell-type-specific manner. In addition, they are suggested to be major contributors to phenotypic variation, evolution and disease. There is growing evidence that enhancer dysfunction due to genetic, structural or epigenetic mechanisms contributes to a broad range of human diseases referred to as enhanceropathies. Such mechanisms often underlie the susceptibility to common diseases, but can also play a direct causal role in cancer or Mendelian diseases. Despite the recent gain of insights into enhancer biology and function, we still have a limited ability to predict how enhancer dysfunction impacts gene expression. Here we discuss the major challenges that need to be overcome when studying the role of enhancers in disease etiology and highlight opportunities and directions for future studies, aiming to disentangle the molecular basis of enhanceropathies.
Collapse
|
4
|
Huang P, Peslak SA, Ren R, Khandros E, Qin K, Keller CA, Giardine B, Bell HW, Lan X, Sharma M, Horton JR, Abdulmalik O, Chou ST, Shi J, Crossley M, Hardison RC, Cheng X, Blobel GA. HIC2 controls developmental hemoglobin switching by repressing BCL11A transcription. Nat Genet 2022; 54:1417-1426. [PMID: 35941187 PMCID: PMC9940634 DOI: 10.1038/s41588-022-01152-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 07/05/2022] [Indexed: 02/02/2023]
Abstract
The fetal-to-adult switch in hemoglobin production is a model of developmental gene control with relevance to the treatment of hemoglobinopathies. The expression of transcription factor BCL11A, which represses fetal β-type globin (HBG) genes in adult erythroid cells, is predominantly controlled at the transcriptional level but the underlying mechanism is unclear. We identify HIC2 as a repressor of BCL11A transcription. HIC2 and BCL11A are reciprocally expressed during development. Forced expression of HIC2 in adult erythroid cells inhibits BCL11A transcription and induces HBG expression. HIC2 binds to erythroid BCL11A enhancers to reduce chromatin accessibility and binding of transcription factor GATA1, diminishing enhancer activity and enhancer-promoter contacts. DNA-binding and crystallography studies reveal direct steric hindrance as one mechanism by which HIC2 inhibits GATA1 binding at a critical BCL11A enhancer. Conversely, loss of HIC2 in fetal erythroblasts increases enhancer accessibility, GATA1 binding and BCL11A transcription. HIC2 emerges as an evolutionarily conserved regulator of hemoglobin switching via developmental control of BCL11A.
Collapse
Affiliation(s)
- Peng Huang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Scott A Peslak
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Hematology/Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ren Ren
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eugene Khandros
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kunhua Qin
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
- Genomics Research Incubator, Pennsylvania State University, University Park, PA, USA
| | - Belinda Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Henry W Bell
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Xianjiang Lan
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Malini Sharma
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Osheiza Abdulmalik
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stella T Chou
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Junwei Shi
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Merlin Crossley
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Shahbazi Z, Rostami G, Hamid M. New heritable ATRX mutation identified by whole exome sequencing and review. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00227-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The mutations in the ATRX gene have been shown to cause two types of disorders: inherited mutations lead to alpha thalassemia X-linked mental retardation (ATR-X) syndrome and acquired somatic mutations cause alpha thalassemia myelodysplastic syndrome (ATMDS). Here we report a case of ATRX gene mutation without completely features of ATR-X or ATMDS syndromes. Moreover we review previous reports of ATRX gene mutations in both ATR-X syndrome and ATMDS.
Methods
After sample collection and DNA extraction, whole exome sequencing was performed using Illumina HiSeq PE150 apparatus. The results were confirmed using Sanger sequencing for the patients and his relatives. Literature review was performed based on the published data in Web of science, Science direct, Springer link and Pubmed databases.
Results
We identified a hemizygous missense ATRX gene mutation (ATRX, c.2388A > C, p. K796N) as a new disease-causing variant in the patient, heterozygous situation for his mother and his father was hemizygous for wild type allele. The literatures of patients were reviewed regarding the ATR-X syndrome.
Conclusions
According to previous findings, inherited ATRX mutations are associated with a broad spectrum of clinical presentations. Therefore a person with a mild α-thalassemia phenotype may also has mutation in ATRX gene. Accordingly, it is critical for geneticist and physicians to increase awareness in molecular diagnosis of α-thalassemia patients.
Collapse
|
6
|
Kneppers J, Bergman AM, Zwart W. Prostate Cancer Epigenetic Plasticity and Enhancer Heterogeneity: Molecular Causes, Consequences and Clinical Implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:255-275. [DOI: 10.1007/978-3-031-11836-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
|
7
|
Fotzi I, Pegoraro F, Chiocca E, Casini T, Mogni M, Veltroni M, Favre C. Case Report: Clinical and Hematological Characteristics of ε γδβ Thalassemia in an Italian Patient. Front Pediatr 2022; 10:839775. [PMID: 35372167 PMCID: PMC8969019 DOI: 10.3389/fped.2022.839775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/07/2022] [Indexed: 12/01/2022] Open
Abstract
INTRODUCTION εγδβ thalassemia is a rare form of β-thalassemia mostly described in children originating from Northern Europe. Only anecdotic cases from the Mediterranean area are reported. The diagnosis is challenging, considering the rarity of the disease and its heterogeneous clinical presentation. Most patients have neonatal microcytic anemia, sometimes requiring in utero and/or neonatal transfusions, and typically improving with age. CASE DESCRIPTION We report on an Italian newborn presenting with severe neonatal anemia that required red blood cell transfusion. After the first months of life, hemoglobin levels improved with residual very low mean corpuscular volume. β and α thalassemia, IRIDA syndrome, and sideroblastic anemia were excluded. Finally, a diagnosis of εγδβ thalassemia was made after microarray analysis of single nucleotide polymorphisms revealed a 26 kb single copy loss of chromosome 11p15.4, including the HBD, HBBP1, HBG1, and HBB genes. CONCLUSIONS Despite its rarity, the diagnosis of εγδβ thalassemia should be considered in newborns with severe neonatal anemia requiring in utero and/or neonatal transfusions, but also in older infants with microcytic anemia, after excluding more prevalent red blood cell disorders.
Collapse
Affiliation(s)
- Ilaria Fotzi
- Department of Pediatric Hematology/Oncology and Hematopoietic Stem Cell Transplantation (HSCT), Meyer Children's University Hospital, Florence, Italy
| | - Francesco Pegoraro
- Department of Pediatric Hematology/Oncology and Hematopoietic Stem Cell Transplantation (HSCT), Meyer Children's University Hospital, Florence, Italy.,Department of Health Science, University of Florence, Florence, Italy
| | - Elena Chiocca
- Department of Pediatric Hematology/Oncology and Hematopoietic Stem Cell Transplantation (HSCT), Meyer Children's University Hospital, Florence, Italy
| | - Tommaso Casini
- Department of Pediatric Hematology/Oncology and Hematopoietic Stem Cell Transplantation (HSCT), Meyer Children's University Hospital, Florence, Italy
| | - Massimo Mogni
- Human Genetics Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Marinella Veltroni
- Department of Pediatric Hematology/Oncology and Hematopoietic Stem Cell Transplantation (HSCT), Meyer Children's University Hospital, Florence, Italy
| | - Claudio Favre
- Department of Pediatric Hematology/Oncology and Hematopoietic Stem Cell Transplantation (HSCT), Meyer Children's University Hospital, Florence, Italy
| |
Collapse
|
8
|
Ray-Jones H, Spivakov M. Transcriptional enhancers and their communication with gene promoters. Cell Mol Life Sci 2021; 78:6453-6485. [PMID: 34414474 PMCID: PMC8558291 DOI: 10.1007/s00018-021-03903-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022]
Abstract
Transcriptional enhancers play a key role in the initiation and maintenance of gene expression programmes, particularly in metazoa. How these elements control their target genes in the right place and time is one of the most pertinent questions in functional genomics, with wide implications for most areas of biology. Here, we synthesise classic and recent evidence on the regulatory logic of enhancers, including the principles of enhancer organisation, factors that facilitate and delimit enhancer-promoter communication, and the joint effects of multiple enhancers. We show how modern approaches building on classic insights have begun to unravel the complexity of enhancer-promoter relationships, paving the way towards a quantitative understanding of gene control.
Collapse
Affiliation(s)
- Helen Ray-Jones
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, W12 0NN, UK
| | - Mikhail Spivakov
- MRC London Institute of Medical Sciences, London, W12 0NN, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, W12 0NN, UK.
| |
Collapse
|
9
|
Kim J, Kang J, Kim YW, Kim A. The human β-globin enhancer LCR HS2 plays a role in forming a TAD by activating chromatin structure at neighboring CTCF sites. FASEB J 2021; 35:e21669. [PMID: 34033138 DOI: 10.1096/fj.202002337r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/14/2021] [Accepted: 04/30/2021] [Indexed: 12/31/2022]
Abstract
The human β-globin locus control region (LCR) hypersensitive site 2 (HS2) is one of enhancers for transcription of the β-like globin genes in erythroid cells. Our previous study showed that the LCR HS2 has active chromatin structure before transcriptional induction of the β-globin gene, while another enhancer LCR HS3 is activated by the induction. To compare functional difference between them, we deleted each HS (ΔHS2 and ΔHS3) from the human β-globin locus in hybrid MEL/ch11 cells. Deletion of either HS2 or HS3 dramatically diminished the β-globin transcription and disrupted locus-wide histone H3K27ac and chromatin interaction between LCR HSs and gene. Surprisingly, ΔHS2 weakened interactions between CTCF sites forming the β-globin topologically associating domain (TAD), while ΔHS3 did not. CTCF occupancy and chromatin accessibility were reduced at the CTCF sites in the ΔHS2 locus. To further characterize the HS2, we deleted the maf-recognition elements for erythroid activator NF-E2 at HS2. This deletion decreased the β-globin transcription and enhancer-promoter interaction, but did not affect interactions between CTCF sites for the TAD. In light of these results, we propose that the HS2 has a role in forming a β-globin TAD by activating neighboring CTCF sites and this role is beyond typical enhancer activity.
Collapse
Affiliation(s)
- Jiwook Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Korea
| | - Jin Kang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Korea
| | - Yea Woon Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Korea
| | - AeRi Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Korea
| |
Collapse
|
10
|
Cheng L, Li Y, Qi Q, Xu P, Feng R, Palmer L, Chen J, Wu R, Yee T, Zhang J, Yao Y, Sharma A, Hardison RC, Weiss MJ, Cheng Y. Single-nucleotide-level mapping of DNA regulatory elements that control fetal hemoglobin expression. Nat Genet 2021; 53:869-880. [PMID: 33958780 PMCID: PMC8628368 DOI: 10.1038/s41588-021-00861-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 03/30/2021] [Indexed: 02/02/2023]
Abstract
Pinpointing functional noncoding DNA sequences and defining their contributions to health-related traits is a major challenge for modern genetics. We developed a high-throughput framework to map noncoding DNA functions with single-nucleotide resolution in four loci that control erythroid fetal hemoglobin (HbF) expression, a genetically determined trait that modifies sickle cell disease (SCD) phenotypes. Specifically, we used the adenine base editor ABEmax to introduce 10,156 separate A•T to G•C conversions in 307 predicted regulatory elements and quantified the effects on erythroid HbF expression. We identified numerous regulatory elements, defined their epigenomic structures and linked them to low-frequency variants associated with HbF expression in an SCD cohort. Targeting a newly discovered γ-globin gene repressor element in SCD donor CD34+ hematopoietic progenitors raised HbF levels in the erythroid progeny, inhibiting hypoxia-induced sickling. Our findings reveal previously unappreciated genetic complexities of HbF regulation and provide potentially therapeutic insights into SCD.
Collapse
Affiliation(s)
- Li Cheng
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yichao Li
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Qian Qi
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Peng Xu
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ruopeng Feng
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lance Palmer
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jingjing Chen
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ruiqiong Wu
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tiffany Yee
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jingjing Zhang
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yu Yao
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Yong Cheng
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
11
|
Abstract
How transcriptional enhancers function to activate distant genes has been the subject of lively investigation for decades. "Enhancers, gene regulation, and genome organization" was the subject of a virtual meeting held November 16-17, 2020, under sponsorship of the National Cancer Institute (NCI), the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), and the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) at the National Institutes of Health (NIH). The goal of the meeting was to advance an understanding of how transcriptional enhancers function within the framework of the folded genome as we understand it, emphasizing how levels of organization may influence each other and may contribute to the spatiotemporal specification of transcription. Here we focus on broad questions about enhancer function that remain unsettled and that we anticipate will be central to work in this field going forward. Perforce, we cover contributions of only some speakers and apologize to other contributors in vital areas that we could not include because of space constraints.
Collapse
Affiliation(s)
- Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda Maryland 20892, USA
| | - Daniel R Larson
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
12
|
Islam MT, Sultana N, Sarker SK, Hossain T, Tasnim S, Al Mahmud-Un-Nabi M, Safain KS, Biswas A, Hossain SR, Begum MN, Islam MS, Noor FA, Bhuyan GS, Shirin T, Muraduzzaman A, Khan WA, Hossain AE, Shekhar HU, Nabi AN, Qadri SS, Qadri F, Mannoor K. Association of diverse population of red blood cells with different disease manifestations in patients with beta-thalassemia. Meta Gene 2021; 27:100846. [DOI: 10.1016/j.mgene.2020.100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
13
|
Ding T, Zhu L, Fang Y, Liu Y, Tang W, Zou P. Chromophore‐Assisted Proximity Labeling of DNA Reveals Chromosomal Organization in Living Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tao Ding
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Liyuan Zhu
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Yuxin Fang
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Yangluorong Liu
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Wei Tang
- Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 China
- Peking-Tsinghua Center for Life Sciences Beijing 100871 China
| | - Peng Zou
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
- Peking-Tsinghua Center for Life Sciences Beijing 100871 China
- PKU-IDG/McGovern Institute for Brain Research Beijing 100871 China
- Chinese Institute for Brain Research (CIBR) Beijing 102206 China
| |
Collapse
|
14
|
Ding T, Zhu L, Fang Y, Liu Y, Tang W, Zou P. Chromophore‐Assisted Proximity Labeling of DNA Reveals Chromosomal Organization in Living Cells. Angew Chem Int Ed Engl 2020; 59:22933-22937. [DOI: 10.1002/anie.202005486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/11/2020] [Indexed: 01/26/2023]
Affiliation(s)
- Tao Ding
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Liyuan Zhu
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Yuxin Fang
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Yangluorong Liu
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Wei Tang
- Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 China
- Peking-Tsinghua Center for Life Sciences Beijing 100871 China
| | - Peng Zou
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
- Peking-Tsinghua Center for Life Sciences Beijing 100871 China
- PKU-IDG/McGovern Institute for Brain Research Beijing 100871 China
- Chinese Institute for Brain Research (CIBR) Beijing 102206 China
| |
Collapse
|
15
|
Gasperini M, Tome JM, Shendure J. Towards a comprehensive catalogue of validated and target-linked human enhancers. Nat Rev Genet 2020; 21:292-310. [PMID: 31988385 PMCID: PMC7845138 DOI: 10.1038/s41576-019-0209-0] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2019] [Indexed: 12/14/2022]
Abstract
The human gene catalogue is essentially complete, but we lack an equivalently vetted inventory of bona fide human enhancers. Hundreds of thousands of candidate enhancers have been nominated via biochemical annotations; however, only a handful of these have been validated and confidently linked to their target genes. Here we review emerging technologies for discovering, characterizing and validating human enhancers at scale. We furthermore propose a new framework for operationally defining enhancers that accommodates the heterogeneous and complementary results that are emerging from reporter assays, biochemical measurements and CRISPR screens.
Collapse
Affiliation(s)
- Molly Gasperini
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Jacob M Tome
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
- Allen Discovery Center for Cell Lineage, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
16
|
Sharma BS, Swain PK, Verma RJ. A Systematic Bioinformatics Approach to Motif-Based Analysis of Human Locus Control Regions. J Comput Biol 2019; 26:1427-1437. [PMID: 31305132 DOI: 10.1089/cmb.2019.0155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Locus control regions (LCRs), cis-acting, noncoding regulatory elements with strong transcription-enhancing activity, are conserved in sequence and organization, and exhibit strict gene-specific expression. LCRs have been reported and studied in several mammalian gene systems, signifying that they play an important role in eukaryotic gene expression control. Their highly regulated, stable, and precise levels of expression have made them a strong candidate for use in gene therapy vectors. In this study, we attempted to determine the unique signatures of human LCRs by analyzing a data set of LCR sequences for the presence of motifs through systematic bioinformatics approach. Using web-based regulatory sequence analysis tools (RSAT), motif-based analysis was performed. Detected significant motifs were analyzed further for their identity using Tomtom tool. RSAT analysis revealed that significant motifs are existent within the LCRs. Identity analysis using Tomtom showed that detected significant motifs were comparable with known transcription factor (TF) binding sites and the top scoring motifs belong to zinc finger-containing proteins, an important group of proteins involved in a variety of cellular activities. Correspondence to segment of known motif indicates the biological relevance of the detected motifs. Motif-based analysis is valuable for analyzing the various characteristics of sequences, notably TF binding models in this study. Owning to their unique expression control abilities, LCRs form an important component of integrating vectors, therefore identification of unique signatures present within LCR sequences will be instrumental in the design of new generation of regulatory elements containing LCR sequences.
Collapse
Affiliation(s)
- B Sharan Sharma
- Life Sciences Research Division, Indrashil Institute of Science and Technology (IIST), Indrashil University (IU), Mehsana, India.,Department of Human Genetics, Zoology and Biomedical Technology, University School of Sciences, Gujarat University, Ahmedabad, India
| | - Prabodha K Swain
- Life Sciences Research Division, Indrashil Institute of Science and Technology (IIST), Indrashil University (IU), Mehsana, India
| | - Ramtej J Verma
- Department of Human Genetics, Zoology and Biomedical Technology, University School of Sciences, Gujarat University, Ahmedabad, India
| |
Collapse
|
17
|
Evolutionary Loss of Genomic Proximity to Conserved Noncoding Elements Impacted the Gene Expression Dynamics During Mammalian Brain Development. Genetics 2019; 211:1239-1254. [PMID: 30796012 DOI: 10.1534/genetics.119.301973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/14/2019] [Indexed: 01/05/2023] Open
Abstract
Conserved noncoding elements (CNEs) have a significant regulatory influence on their neighboring genes. Loss of proximity to CNEs through genomic rearrangements can, therefore, impact the transcriptional states of the cognate genes. Yet, the evolutionary implications of such chromosomal alterations have not been studied. Through genome-wide analysis of CNEs and the cognate genes of representative species from five different mammalian orders, we observed a significant loss of genes' linear proximity to CNEs in the rat lineage. The CNEs and the genes losing proximity had a significant association with fetal, but not postnatal, brain development as assessed through ontology terms, developmental gene expression, chromatin marks, and genetic mutations. The loss of proximity to CNEs correlated with the independent evolutionary loss of fetus-specific upregulation of nearby genes in the rat brain. DNA breakpoints implicated in brain abnormalities of germline origin had significant representation between a CNE and the gene that exhibited loss of proximity, signifying the underlying developmental tolerance of genomic rearrangements that allowed the evolutionary splits of CNEs and the cognate genes in the rodent lineage. Our observations highlighted a nontrivial impact of chromosomal rearrangements in shaping the evolutionary dynamics of mammalian brain development and might explain the loss of brain traits, like cerebral folding of the cortex, in the rodent lineage.
Collapse
|
18
|
Tanimoto K, Matsuzaki H, Okamura E, Ushiki A, Fukamizu A, Engel JD. Transvection-like interchromosomal interaction is not observed at the transcriptional level when tested in the Rosa26 locus in mouse. PLoS One 2019; 14:e0203099. [PMID: 30763343 PMCID: PMC6375575 DOI: 10.1371/journal.pone.0203099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/30/2019] [Indexed: 11/19/2022] Open
Abstract
Long-range associations between enhancers and their target gene promoters have been shown to play critical roles in executing genome function. Recent variations of chromosome capture technology have revealed a comprehensive view of intra- and interchromosomal contacts between specific genomic sites. The locus control region of the β-globin genes (β-LCR) is a super-enhancer that is capable of activating all of the β-like globin genes within the locus in cis through physical interaction by forming DNA loops. CTCF helps to mediate loop formation between LCR-HS5 and 3’HS1 in the human β-globin locus, in this way thought to contribute to the formation of a “chromatin hub”. The β-globin locus is also in close physical proximity to other erythrocyte-specific genes located long distances away on the same chromosome. In this case, erythrocyte-specific genes gather together at a shared “transcription factory” for co-transcription. Theoretically, enhancers could also activate target gene promoters at the identical loci, yet on different chromosomes in trans, a phenomenon originally described as transvection in Drosophilla. Although close physical proximity has been reported for the β-LCR and the β-like globin genes when integrated at the mouse homologous loci in trans, their structural and functional interactions were found to be rare, possibly because of a lack of suitable regulatory elements that might facilitate such trans interactions. Therefore, we re-evaluated presumptive transvection-like enhancer-promoter communication by introducing CTCF binding sites and erythrocyte-specific transcription units into both LCR-enhancer and β-promoter alleles, each inserted into the mouse ROSA26 locus on separate chromosomes. Following cross-mating of mice to place the two mutant loci at the identical chromosomal position and into active chromation in trans, their transcriptional output was evaluated. The results demonstrate that there was no significant functional association between the LCR and the β-globin gene in trans even in this idealized experimental context.
Collapse
Affiliation(s)
- Keiji Tanimoto
- Faculty of Life and Environmental Sciences, Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail:
| | - Hitomi Matsuzaki
- Faculty of Life and Environmental Sciences, Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Eiichi Okamura
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Aki Ushiki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akiyoshi Fukamizu
- Faculty of Life and Environmental Sciences, Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States of America
| |
Collapse
|
19
|
Fishilevich S, Nudel R, Rappaport N, Hadar R, Plaschkes I, Iny Stein T, Rosen N, Kohn A, Twik M, Safran M, Lancet D, Cohen D. GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2017; 2017:3737828. [PMID: 28605766 PMCID: PMC5467550 DOI: 10.1093/database/bax028] [Citation(s) in RCA: 769] [Impact Index Per Article: 96.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/10/2017] [Indexed: 12/14/2022]
Abstract
A major challenge in understanding gene regulation is the unequivocal identification of enhancer elements and uncovering their connections to genes. We present GeneHancer, a novel database of human enhancers and their inferred target genes, in the framework of GeneCards. First, we integrated a total of 434 000 reported enhancers from four different genome-wide databases: the Encyclopedia of DNA Elements (ENCODE), the Ensembl regulatory build, the functional annotation of the mammalian genome (FANTOM) project and the VISTA Enhancer Browser. Employing an integration algorithm that aims to remove redundancy, GeneHancer portrays 285 000 integrated candidate enhancers (covering 12.4% of the genome), 94 000 of which are derived from more than one source, and each assigned an annotation-derived confidence score. GeneHancer subsequently links enhancers to genes, using: tissue co-expression correlation between genes and enhancer RNAs, as well as enhancer-targeted transcription factor genes; expression quantitative trait loci for variants within enhancers; and capture Hi-C, a promoter-specific genome conformation assay. The individual scores based on each of these four methods, along with gene–enhancer genomic distances, form the basis for GeneHancer’s combinatorial likelihood-based scores for enhancer–gene pairing. Finally, we define ‘elite’ enhancer–gene relations reflecting both a high-likelihood enhancer definition and a strong enhancer–gene association. GeneHancer predictions are fully integrated in the widely used GeneCards Suite, whereby candidate enhancers and their annotations are displayed on every relevant GeneCard. This assists in the mapping of non-coding variants to enhancers, and via the linked genes, forms a basis for variant–phenotype interpretation of whole-genome sequences in health and disease. Database URL:http://www.genecards.org/
Collapse
Affiliation(s)
- Simon Fishilevich
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ron Nudel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Noa Rappaport
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Rotem Hadar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Inbar Plaschkes
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tsippi Iny Stein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Naomi Rosen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Asher Kohn
- LifeMap Sciences Inc, Marshfield, MA 02050, USA
| | - Michal Twik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Marilyn Safran
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Doron Lancet
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Dana Cohen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
20
|
Abstract
Gene expression changes, the driving forces for cellular diversity in multicellular organisms, are regulated by a diverse set of gene regulatory elements that direct transcription in specific cells. Mutations in these elements, ranging from chromosomal aberrations to single-nucleotide polymorphisms, are a major cause of human disease. However, we currently have a very limited understanding of how regulatory element genotypes lead to specific phenotypes. In this review, we discuss the various methods of regulatory element identification, the different types of mutations they harbor, and their impact on human disease. We highlight how these variations can affect transcription of multiple genes in gene regulatory networks. In addition, we describe how novel technologies, such as massively parallel reporter assays and CRISPR/Cas9 genome editing, are beginning to provide a better understanding of the functional roles that these elements have and how their alteration can lead to specific phenotypes.
Collapse
Affiliation(s)
- Sumantra Chatterjee
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences and Institute for Human Genetics, University of California, San Francisco, California 94158;
| |
Collapse
|
21
|
Abstract
Hypothyroidism may occur in association with congenital parathyroid disorders determining parathyroid hormone insufficiency, which is characterized by hypocalcemia and concomitant inappropriately low secretion of parathormone (PTH). The association is often due to loss of function of genes common to thyroid and parathyroid glands embryonic development. Hypothyroidism associated with hypoparathyroidism is generally mild and not associated with goiter; moreover, it is usually part of a multisystemic involvement not restricted to endocrine function as occurs in patients with 22q11 microdeletion/DiGeorge syndrome, the most frequent disorders. Hypothyroidism and hypoparathyroidism may also follow endocrine glands' damages due to autoimmunity or chronic iron overload in thalassemic disorders, both genetically determined conditions. Finally, besides PTH deficiency, hypocalcemia can be due to PTH resistance in pseudohypoparathyroidism; when hormone resistance is generalized, patients can suffer from hypothyroidism due to TSH resistance. In evaluating patients with hypothyroidism and hypocalcemia, physical examination and clinical history are essential to drive the diagnostic process, while routine genetic screening is not recommended.
Collapse
Affiliation(s)
- Giovanna Mantovani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Francesca Marta Elli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Sabrina Corbetta
- Endocrinology Service, Department of Biomedical Sciences, University of Milan, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.
| |
Collapse
|
22
|
Tam KT, Chan PK, Zhang W, Law PP, Tian Z, Fung Chan GC, Philipsen S, Festenstein R, Tan-Un KC. Identification of a novel distal regulatory element of the human Neuroglobin gene by the chromosome conformation capture approach. Nucleic Acids Res 2017; 45:115-126. [PMID: 27651453 PMCID: PMC5224503 DOI: 10.1093/nar/gkw820] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 08/29/2016] [Accepted: 08/31/2016] [Indexed: 12/24/2022] Open
Abstract
Neuroglobin (NGB) is predominantly expressed in the brain and retina. Studies suggest that NGB exerts protective effects to neuronal cells and is implicated in reducing the severity of stroke and Alzheimer's disease. However, little is known about the mechanisms which regulate the cell type-specific expression of the gene. In this study, we hypothesized that distal regulatory elements (DREs) are involved in optimal expression of the NGB gene. By chromosome conformation capture we identified two novel DREs located -70 kb upstream and +100 kb downstream from the NGB gene. ENCODE database showed the presence of DNaseI hypersensitive and transcription factors binding sites in these regions. Further analyses using luciferase reporters and chromatin immunoprecipitation suggested that the -70 kb region upstream of the NGB gene contained a neuronal-specific enhancer and GATA transcription factor binding sites. Knockdown of GATA-2 caused NGB expression to drop dramatically, indicating GATA-2 as an essential transcription factor for the activation of NGB expression. The crucial role of the DRE in NGB expression activation was further confirmed by the drop in NGB level after CRISPR-mediated deletion of the DRE. Taken together, we show that the NGB gene is regulated by a cell type-specific loop formed between its promoter and the novel DRE.
Collapse
MESH Headings
- Binding Sites
- CRISPR-Cas Systems
- Cell Line, Tumor
- Chromosomes, Human, Pair 14/chemistry
- Deoxyribonuclease I/genetics
- Deoxyribonuclease I/metabolism
- GATA2 Transcription Factor/genetics
- GATA2 Transcription Factor/metabolism
- Gene Editing
- Gene Expression Regulation
- Genes, Reporter
- Globins/antagonists & inhibitors
- Globins/genetics
- Globins/metabolism
- HeLa Cells
- Humans
- K562 Cells
- Luciferases/genetics
- Luciferases/metabolism
- Nerve Tissue Proteins/antagonists & inhibitors
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neuroglobin
- Neurons/cytology
- Neurons/metabolism
- Organ Specificity
- Protein Binding
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Regulatory Elements, Transcriptional
- Signal Transduction
Collapse
Affiliation(s)
- Kin Tung Tam
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., China
| | - Ping Kei Chan
- Gene Control Mechanisms and Disease Group, Department of Medicine, Division of Brain Sciences and MRC Clinical Sciences Centre, Imperial College School of Medicine, London W12 0NN, United Kingdom
| | - Wei Zhang
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., China
| | - Pui Pik Law
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., China
- Gene Control Mechanisms and Disease Group, Department of Medicine, Division of Brain Sciences and MRC Clinical Sciences Centre, Imperial College School of Medicine, London W12 0NN, United Kingdom
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., China
| | - Zhipeng Tian
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., China
- School of Professional and Continuing Education (HKU SPACE), The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., China
| | - Godfrey Chi Fung Chan
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., China
| | - Sjaak Philipsen
- Department of Cell Biology, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Richard Festenstein
- Gene Control Mechanisms and Disease Group, Department of Medicine, Division of Brain Sciences and MRC Clinical Sciences Centre, Imperial College School of Medicine, London W12 0NN, United Kingdom
| | - Kian Cheng Tan-Un
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., China
- School of Professional and Continuing Education (HKU SPACE), The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., China
| |
Collapse
|
23
|
Fishilevich S, Nudel R, Rappaport N, Hadar R, Plaschkes I, Iny Stein T, Rosen N, Kohn A, Twik M, Safran M, Lancet D, Cohen D. GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. Database (Oxford) 2017; 2017:3737828. [PMID: 28605766 DOI: 10.1093/database/bax028/3737828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/10/2017] [Indexed: 05/26/2023]
Abstract
UNLABELLED A major challenge in understanding gene regulation is the unequivocal identification of enhancer elements and uncovering their connections to genes. We present GeneHancer, a novel database of human enhancers and their inferred target genes, in the framework of GeneCards. First, we integrated a total of 434 000 reported enhancers from four different genome-wide databases: the Encyclopedia of DNA Elements (ENCODE), the Ensembl regulatory build, the functional annotation of the mammalian genome (FANTOM) project and the VISTA Enhancer Browser. Employing an integration algorithm that aims to remove redundancy, GeneHancer portrays 285 000 integrated candidate enhancers (covering 12.4% of the genome), 94 000 of which are derived from more than one source, and each assigned an annotation-derived confidence score. GeneHancer subsequently links enhancers to genes, using: tissue co-expression correlation between genes and enhancer RNAs, as well as enhancer-targeted transcription factor genes; expression quantitative trait loci for variants within enhancers; and capture Hi-C, a promoter-specific genome conformation assay. The individual scores based on each of these four methods, along with gene–enhancer genomic distances, form the basis for GeneHancer’s combinatorial likelihood-based scores for enhancer–gene pairing. Finally, we define ‘elite’ enhancer–gene relations reflecting both a high-likelihood enhancer definition and a strong enhancer–gene association. GeneHancer predictions are fully integrated in the widely used GeneCards Suite, whereby candidate enhancers and their annotations are displayed on every relevant GeneCard. This assists in the mapping of non-coding variants to enhancers, and via the linked genes, forms a basis for variant–phenotype interpretation of whole-genome sequences in health and disease. DATABASE URL http://www.genecards.org/.
Collapse
Affiliation(s)
- Simon Fishilevich
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ron Nudel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Noa Rappaport
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Rotem Hadar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Inbar Plaschkes
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tsippi Iny Stein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Naomi Rosen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Asher Kohn
- LifeMap Sciences Inc, Marshfield, MA 02050, USA
| | - Michal Twik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Marilyn Safran
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Doron Lancet
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Dana Cohen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
24
|
Chatterjee S, Kapoor A, Akiyama JA, Auer DR, Lee D, Gabriel S, Berrios C, Pennacchio LA, Chakravarti A. Enhancer Variants Synergistically Drive Dysfunction of a Gene Regulatory Network In Hirschsprung Disease. Cell 2016; 167:355-368.e10. [PMID: 27693352 DOI: 10.1016/j.cell.2016.09.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/23/2016] [Accepted: 09/02/2016] [Indexed: 12/11/2022]
Abstract
Common sequence variants in cis-regulatory elements (CREs) are suspected etiological causes of complex disorders. We previously identified an intronic enhancer variant in the RET gene disrupting SOX10 binding and increasing Hirschsprung disease (HSCR) risk 4-fold. We now show that two other functionally independent CRE variants, one binding Gata2 and the other binding Rarb, also reduce Ret expression and increase risk 2- and 1.7-fold. By studying human and mouse fetal gut tissues and cell lines, we demonstrate that reduced RET expression propagates throughout its gene regulatory network, exerting effects on both its positive and negative feedback components. We also provide evidence that the presence of a combination of CRE variants synergistically reduces RET expression and its effects throughout the GRN. These studies show how the effects of functionally independent non-coding variants in a coordinated gene regulatory network amplify their individually small effects, providing a model for complex disorders.
Collapse
Affiliation(s)
- Sumantra Chatterjee
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ashish Kapoor
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jennifer A Akiyama
- Genomics Division, MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Dallas R Auer
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dongwon Lee
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Courtney Berrios
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Len A Pennacchio
- Genomics Division, MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Aravinda Chakravarti
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
25
|
Reading NS, Shooter C, Song J, Miller R, Agarwal A, Lanikova L, Clark B, Thein SL, Divoky V, Prchal JT. Loss of Major DNase I Hypersensitive Sites in Duplicatedβ-globinGene Cluster Incompletely SilencesHBBGene Expression. Hum Mutat 2016; 37:1153-1156. [DOI: 10.1002/humu.23061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/21/2016] [Accepted: 07/27/2016] [Indexed: 11/06/2022]
Affiliation(s)
- N. Scott Reading
- Institute for Clinical and Experimental Pathology; ARUP Laboratories; Salt Lake City Utah
- Division of Hematology, Department of Internal Medicine, School of Medicine; University of Utah; Salt Lake City Utah
- Department of Pathology, School of Medicine; University of Utah; Salt Lake City Utah
| | - Claire Shooter
- Molecular Haematology, Division of Cancer Studies; King's College London Faculty of Life Sciences & Medicine; London UK
| | - Jihyun Song
- Division of Hematology, Department of Internal Medicine, School of Medicine; University of Utah; Salt Lake City Utah
| | - Robin Miller
- Center for Cancer and Blood Disorders; Nemours/El Dupont Hospital for Children; Wilmington Delaware
| | - Archana Agarwal
- Institute for Clinical and Experimental Pathology; ARUP Laboratories; Salt Lake City Utah
- Department of Pathology, School of Medicine; University of Utah; Salt Lake City Utah
| | - Lucie Lanikova
- Division of Hematology, Department of Internal Medicine, School of Medicine; University of Utah; Salt Lake City Utah
- Department of Cell and Developmental Biology, Institute of Molecular Genetics; Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - Barnaby Clark
- Molecular Haematology, Division of Cancer Studies; King's College London Faculty of Life Sciences & Medicine; London UK
- Department of Molecular Pathology; Viapath at King's College Hospital NHS Foundation Trust; London UK
| | - Swee Lay Thein
- Molecular Haematology, Division of Cancer Studies; King's College London Faculty of Life Sciences & Medicine; London UK
- National Heart, Lung and Blood Institute, Sickle Cell Branch; National Institutes of Health; Bethesda Maryland
| | - Vladimir Divoky
- Department of Biology, Faculty of Medicine and Dentistry; Palacky University; Olomouc Czech Republic
- Department of Biology, Faculty of Medicine; Masaryk University; Brno Czech Republic
| | - Josef T. Prchal
- Institute for Clinical and Experimental Pathology; ARUP Laboratories; Salt Lake City Utah
- Division of Hematology, Department of Internal Medicine, School of Medicine; University of Utah; Salt Lake City Utah
- Department of Pathology, School of Medicine; University of Utah; Salt Lake City Utah
| |
Collapse
|
26
|
Zhang Y, Huang L, Fu H, Smith OK, Lin CM, Utani K, Rao M, Reinhold WC, Redon CE, Ryan M, Kim R, You Y, Hanna H, Boisclair Y, Long Q, Aladjem MI. A replicator-specific binding protein essential for site-specific initiation of DNA replication in mammalian cells. Nat Commun 2016; 7:11748. [PMID: 27272143 PMCID: PMC4899857 DOI: 10.1038/ncomms11748] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 04/26/2016] [Indexed: 12/28/2022] Open
Abstract
Mammalian chromosome replication starts from distinct sites; however, the principles governing initiation site selection are unclear because proteins essential for DNA replication do not exhibit sequence-specific DNA binding. Here we identify a replication-initiation determinant (RepID) protein that binds a subset of replication-initiation sites. A large fraction of RepID-binding sites share a common G-rich motif and exhibit elevated replication initiation. RepID is required for initiation of DNA replication from RepID-bound replication origins, including the origin at the human beta-globin (HBB) locus. At HBB, RepID is involved in an interaction between the replication origin (Rep-P) and the locus control region. RepID-depleted murine embryonic fibroblasts exhibit abnormal replication fork progression and fewer replication-initiation events. These observations are consistent with a model, suggesting that RepID facilitates replication initiation at a distinct group of human replication origins. Origins of mammalian DNA replication are poorly characterised because they lack an Identifiable consensus sequence. Here the authors identify RepID, a protein that binds to a subset of G-rich replication origins and facilitates initiation from those origins.
Collapse
Affiliation(s)
- Ya Zhang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Liang Huang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Haiqing Fu
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Owen K Smith
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Chii Mei Lin
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Koichi Utani
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Mishal Rao
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - William C Reinhold
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Christophe E Redon
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Michael Ryan
- In Silico Solutions, Fairfax, Virginia 22033, USA
| | - RyangGuk Kim
- In Silico Solutions, Fairfax, Virginia 22033, USA
| | - Yang You
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Harlington Hanna
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Yves Boisclair
- Department of Animal Science, Cornell University, Ithaca, New York 14853-4801, USA
| | - Qiaoming Long
- Department of Animal Science, Cornell University, Ithaca, New York 14853-4801, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
27
|
Abstract
Genetic causes for human disorders are being discovered at an unprecedented pace. A growing subclass of disease-causing mutations involves changes in the epigenome or in the abundance and activity of proteins that regulate chromatin structure. This article focuses on research that has uncovered human diseases that stem from such epigenetic deregulation. Disease may be caused by direct changes in epigenetic marks, such as DNA methylation, commonly found to affect imprinted gene regulation. Also described are disease-causing genetic mutations in epigenetic modifiers that either affect chromatin in trans or have a cis effect in altering chromatin configuration.
Collapse
Affiliation(s)
- Huda Y Zoghbi
- Howard Hughes Medical Institute, Baylor College of Medicine, and Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Arthur L Beaudet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
28
|
Barr CL, Misener VL. Decoding the non-coding genome: elucidating genetic risk outside the coding genome. GENES, BRAIN, AND BEHAVIOR 2016; 15:187-204. [PMID: 26515765 PMCID: PMC4833497 DOI: 10.1111/gbb.12269] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/19/2015] [Accepted: 10/28/2015] [Indexed: 12/11/2022]
Abstract
Current evidence emerging from genome-wide association studies indicates that the genetic underpinnings of complex traits are likely attributable to genetic variation that changes gene expression, rather than (or in combination with) variation that changes protein-coding sequences. This is particularly compelling with respect to psychiatric disorders, as genetic changes in regulatory regions may result in differential transcriptional responses to developmental cues and environmental/psychosocial stressors. Until recently, however, the link between transcriptional regulation and psychiatric genetic risk has been understudied. Multiple obstacles have contributed to the paucity of research in this area, including challenges in identifying the positions of remote (distal from the promoter) regulatory elements (e.g. enhancers) and their target genes and the underrepresentation of neural cell types and brain tissues in epigenome projects - the availability of high-quality brain tissues for epigenetic and transcriptome profiling, particularly for the adolescent and developing brain, has been limited. Further challenges have arisen in the prediction and testing of the functional impact of DNA variation with respect to multiple aspects of transcriptional control, including regulatory-element interaction (e.g. between enhancers and promoters), transcription factor binding and DNA methylation. Further, the brain has uncommon DNA-methylation marks with unique genomic distributions not found in other tissues - current evidence suggests the involvement of non-CG methylation and 5-hydroxymethylation in neurodevelopmental processes but much remains unknown. We review here knowledge gaps as well as both technological and resource obstacles that will need to be overcome in order to elucidate the involvement of brain-relevant gene-regulatory variants in genetic risk for psychiatric disorders.
Collapse
Affiliation(s)
- C. L. Barr
- Toronto Western Research Institute, University Health Network, Toronto, ON, Canada
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - V. L. Misener
- Toronto Western Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
29
|
Rivella S. β-thalassemias: paradigmatic diseases for scientific discoveries and development of innovative therapies. Haematologica 2015; 100:418-30. [PMID: 25828088 DOI: 10.3324/haematol.2014.114827] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
β-thalassemias are monogenic disorders characterized by defective synthesis of the β-globin chain, one of the major components of adult hemoglobin. A large number of mutations in the β-globin gene or its regulatory elements have been associated with β-thalassemias. Due to the complexity of the regulation of the β-globin gene and the role of red cells in many physiological processes, patients can manifest a large spectrum of phenotypes, and clinical requirements vary from patient to patient. It is important to consider the major differences in the light of potential novel therapeutics. This review summarizes the main discoveries and mechanisms associated with the synthesis of β-globin and abnormal erythropoiesis, as well as current and novel therapies.
Collapse
Affiliation(s)
- Stefano Rivella
- Department of Pediatrics Hematology-Oncology Department of Cell and Developmental Biology Weill Cornell Medical College New York, NY, USA
| |
Collapse
|
30
|
Erokhin M, Vassetzky Y, Georgiev P, Chetverina D. Eukaryotic enhancers: common features, regulation, and participation in diseases. Cell Mol Life Sci 2015; 72:2361-75. [PMID: 25715743 PMCID: PMC11114076 DOI: 10.1007/s00018-015-1871-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/07/2015] [Accepted: 02/20/2015] [Indexed: 01/01/2023]
Abstract
Enhancers are positive DNA regulatory sequences controlling temporal and tissue-specific gene expression. These elements act independently of their orientation and distance relative to the promoters of target genes. Enhancers act through a variety of transcription factors that ensure their correct match with target promoters and consequent gene activation. There is a growing body of evidence on association of enhancers with transcription factors, co-activators, histone chromatin marks, and lncRNAs. Alterations in enhancers lead to misregulation of gene expression, causing a number of human diseases. In this review, we focus on the common characteristics of enhancers required for transcription stimulation.
Collapse
Affiliation(s)
- Maksim Erokhin
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334 Russia
- LIA 1066, Laboratoire Franco-Russe de recherche en oncologie, 119334 Moscow, Russia
| | - Yegor Vassetzky
- LIA 1066, Laboratoire Franco-Russe de recherche en oncologie, 119334 Moscow, Russia
- UMR8126, Université Paris-Sud, CNRS, Institut de cancérologie Gustave Roussy, 94805 Villejuif, France
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334 Russia
- LIA 1066, Laboratoire Franco-Russe de recherche en oncologie, 119334 Moscow, Russia
| | - Darya Chetverina
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334 Russia
| |
Collapse
|
31
|
Amid A, Cheong M, Eng B, Hanna M, Hohenadel BA, Nakamura LM, Walker L, Odame I, Kirby-Allen M, Waye JS. Hb S/β+-thalassemia due to Hb sickle and a novel deletion of DNase I hypersensitive sites HS3 and HS4 of the β locus control region. Haematologica 2015; 100:e166-8. [PMID: 25682598 DOI: 10.3324/haematol.2014.117408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Ali Amid
- Division of Hematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Melina Cheong
- Division of Hematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Barry Eng
- Hamilton Regional Laboratory Medicine Program, Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Meredith Hanna
- Hamilton Regional Laboratory Medicine Program, Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Betty-Ann Hohenadel
- Hamilton Regional Laboratory Medicine Program, Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Lisa M Nakamura
- Hamilton Regional Laboratory Medicine Program, Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Lynda Walker
- Hamilton Regional Laboratory Medicine Program, Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Isaac Odame
- Division of Hematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Melanie Kirby-Allen
- Division of Hematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - John S Waye
- Hamilton Regional Laboratory Medicine Program, Hamilton Health Sciences, Hamilton, Ontario, Canada Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
32
|
Heterozygosity for deletion of hypersensitive site 3 in the human locus control region has an unexpected minor effect on red cell phenotype. J Hum Genet 2014; 59:585-7. [PMID: 25186056 DOI: 10.1038/jhg.2014.76] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/06/2014] [Accepted: 08/08/2014] [Indexed: 11/09/2022]
Abstract
The locus control region (LCR) is a genetic region that regulates the expression of the β-globin locus (HBB locus). This region is composed of several DNase I hypersensitive sites (HSs) in which the regulatory functions of the LCR may reside. To date, some individuals bearing deletions of several HSs or even the complete LCR have been described. Although the globin genes of the HBB locus are intact, most of these patients suffer thalassemia due to the reduced expression of such genes. The LCR and the HSs forming it have been thoroughly studied in different genetic models. However, seemingly contradictory results are often obtained. Here, we describe the first deletion found in humans exclusively affecting the HS3 element of the LCR. The adult carrying this deletion shows very mild hematological modifications, indicating that HS3 deletion does not severely impair the β-gene expression. Our results also reveal limitations of the murine models when studying the native mouse genes for understanding human diseases like thalassemias.
Collapse
|
33
|
Bian Q, Khanna N, Alvikas J, Belmont AS. β-Globin cis-elements determine differential nuclear targeting through epigenetic modifications. ACTA ACUST UNITED AC 2013; 203:767-83. [PMID: 24297746 PMCID: PMC3857487 DOI: 10.1083/jcb.201305027] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multiple cis-elements surrounding the β-globin gene locus combine to target this locus to the nuclear periphery through at least two different epigenetic marks. Increasing evidence points to nuclear compartmentalization as a contributing mechanism for gene regulation, yet mechanisms for compartmentalization remain unclear. In this paper, we use autonomous targeting of bacterial artificial chromosome (BAC) transgenes to reveal cis requirements for peripheral targeting. Three peripheral targeting regions (PTRs) within an HBB BAC bias a competition between pericentric versus peripheral heterochromatin targeting toward the nuclear periphery, which correlates with increased H3K9me3 across the β-globin gene cluster and locus control region. Targeting to both heterochromatin compartments is dependent on Suv39H-mediated H3K9me3 methylation. In different chromosomal contexts, PTRs confer no targeting, targeting to pericentric heterochromatin, or targeting to the periphery. A combination of fluorescent in situ hybridization, BAC transgenesis, and knockdown experiments reveals that peripheral tethering of the endogenous HBB locus depends both on Suv39H-mediated H3K9me3 methylation over hundreds of kilobases surrounding HBB and on G9a-mediated H3K9me2 methylation over flanking sequences in an adjacent lamin-associated domain. Our results demonstrate that multiple cis-elements regulate the overall balance of specific epigenetic marks and peripheral gene targeting.
Collapse
Affiliation(s)
- Qian Bian
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | | | | | | |
Collapse
|
34
|
Katsumura KR, DeVilbiss AW, Pope NJ, Johnson KD, Bresnick EH. Transcriptional mechanisms underlying hemoglobin synthesis. Cold Spring Harb Perspect Med 2013; 3:a015412. [PMID: 23838521 PMCID: PMC3753722 DOI: 10.1101/cshperspect.a015412] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The physiological switch in expression of the embryonic, fetal, and adult β-like globin genes has garnered enormous attention from investigators interested in transcriptional mechanisms and the molecular basis of hemoglobinopathies. These efforts have led to the discovery of cell type-specific transcription factors, unprecedented mechanisms of transcriptional coregulator function, genome biology principles, unique contributions of nuclear organization to transcription and cell function, and promising therapeutic targets. Given the vast literature accrued on this topic, this article will focus on the master regulator of erythroid cell development and function GATA-1, its associated proteins, and its frontline role in controlling hemoglobin synthesis. GATA-1 is a crucial regulator of genes encoding hemoglobin subunits and heme biosynthetic enzymes. GATA-1-dependent mechanisms constitute an essential regulatory core that nucleates additional mechanisms to achieve the physiological control of hemoglobin synthesis.
Collapse
Affiliation(s)
- Koichi R Katsumura
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Wisconsin Institute for Medical Research, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705
| | | | | | | | | |
Collapse
|
35
|
Abstract
In vivo, the human genome functions as a complex, folded, three-dimensional chromatin polymer. Understanding how the human genome is spatially organized and folded inside the cell nucleus is therefore central to understanding how genes are regulated in normal development and dysregulated in disease. Established light microscopy-based approaches and more recent molecular chromosome conformation capture methods are now combining to give us unprecedented insight into this fascinating aspect of human genomics.
Collapse
Affiliation(s)
- Wendy A Bickmore
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom;
| |
Collapse
|
36
|
Shalev H, Landau D, Pissard S, Krasnov T, Kapelushnik J, Gilad O, Broides A, Dgany O, Tamary H. A novel epsilon gamma delta beta thalassemia presenting with pregnancy complications and severe neonatal anemia. Eur J Haematol 2013. [DOI: 10.1111/ejh.12047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Hanna Shalev
- Pediatric Division; Soroka University Medical Center; Beer Sheva; Israel
| | - Daniela Landau
- Pediatric Division; Soroka University Medical Center; Beer Sheva; Israel
| | - Serge Pissard
- Laboratory of Biochemistry and Genetics, Henri Mondor and UPEC; Creteil; France
| | - Tanya Krasnov
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva and Sackler Faculty of Medicine, Tel Aviv University; Tel Aviv; Israel
| | - Joseph Kapelushnik
- Pediatric Division; Soroka University Medical Center; Beer Sheva; Israel
| | - Oded Gilad
- Department of Pediatrics B; Schneider Children's Medical Center of Israel, Petach Tikva and Sackler Faculty of Medicine, Tel Aviv University; Tel Aviv; Israel
| | - Arnon Broides
- Pediatric Division; Soroka University Medical Center; Beer Sheva; Israel
| | - Orly Dgany
- Laboratory of Biochemistry and Genetics, Henri Mondor and UPEC; Creteil; France
| | - Hannah Tamary
- Department of Hematology-Oncology; Schneider Children's Medical Center of Israel; Petach Tikva and Sackler Faculty of Medicine; Tel Aviv University; Tel Aviv; Israel
| |
Collapse
|
37
|
|
38
|
Rooks H, Clark B, Best S, Rushton P, Oakley M, Thein OS, Cuthbert AC, Britland A, Ruf A, Thein SL. A novel 506kb deletion causing εγδβ thalassemia. Blood Cells Mol Dis 2012; 49:121-7. [PMID: 22677107 DOI: 10.1016/j.bcmd.2012.05.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 05/04/2012] [Indexed: 01/01/2023]
Abstract
We describe a novel deletion causing εγδβ thalassemia in a Pakistani family. The Pakistani deletion is 506kb in length, and the second largest εγδβ thalassemia deletion reported to date. It removes the entire β globin gene (HBB) cluster, extending from 431kb upstream to 75kb downstream of the ε globin gene (HBE). The breakpoint junction occurred within a 160bp palindrome embedded in LINE/LTR repeats, and contained a short (9bp) region of direct homology which may have contributed to the recombination event. Characterization of the deletion breakpoints has been particularly challenging due to the complexity of DNA deletion, insertion and inversion, involving a multitude of methodologies, mirroring the changing DNA analysis technologies.
Collapse
Affiliation(s)
- Helen Rooks
- King's College London, Molecular Haematology, James Black Centre, London SE5 9NU, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Fleetwood MR, Ho Y, Cooke NE, Liebhaber SA. DNase I hypersensitive site II of the human growth hormone locus control region mediates an essential and distinct long-range enhancer function. J Biol Chem 2012; 287:25454-65. [PMID: 22669946 DOI: 10.1074/jbc.m112.365825] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Locus control regions (LCRs) comprise sets of DNA elements capable of establishing autonomous chromatin domains that support robust and physiologically appropriate expression of target genes, often working over extensive distances. Human growth hormone (hGH-N) expression in the pituitary is under the regulation of a well characterized LCR containing four DNase I hypersensitive sites (HSs). The two pituitary-specific HS, HSI and HSII, are located 14.5 and 15.5 kb 5' to the hGH-N promoter. HSI is essential for activation of hGH-N during pituitary development and for sustaining robust activity in the adult. To determine whether the closely linked HSII has a role in hGH-N expression, it was deleted from a previously validated hGH/P1 transgene. Analysis of three independent hGH/P1(ΔHSII) transgenic mouse lines revealed that this deletion had no adverse effect on the formation of HSI, yet resulted in a substantial loss (70%) in hGH-N mRNA expression. This loss of expression was accompanied by a corresponding reduction in recruitment of the pituitary-specific transcription factor Pit-1 to the hGH-N promoter and a selective decrease in promoter occupancy of the elongation-linked isoform of RNA polymerase II. Sufficiency of HSI and HSII in LCR activity was explored by establishing two additional sets of mouse transgenic lines in which DNA segments containing these HS were positioned within the λ phage genome. In this "neutral" DNA context, HSII was required for the recruitment of HAT activity. These data establish HSII as a nonredundant component of the hGH LCR essential for establishment of robust levels of hGH-N gene expression.
Collapse
Affiliation(s)
- Margaret R Fleetwood
- Department of Genetics and Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
40
|
Jarinova O, Ekker M. Regulatory variations in the era of next-generation sequencing: Implications for clinical molecular diagnostics. Hum Mutat 2012; 33:1021-30. [DOI: 10.1002/humu.22083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 03/06/2012] [Indexed: 01/05/2023]
|
41
|
Abstract
Thalassaemia is one of the most common genetic diseases worldwide, with at least 60,000 severely affected individuals born every year. Individuals originating from tropical and subtropical regions are most at risk. Disorders of haemoglobin synthesis (thalassaemia) and structure (eg, sickle-cell disease) were among the first molecular diseases to be identified, and have been investigated and characterised in detail over the past 40 years. Nevertheless, treatment of thalassaemia is still largely dependent on supportive care with blood transfusion and iron chelation. Since 1978, scientists and clinicians in this specialty have met regularly in an international effort to improve the management of thalassaemia, with the aim of increasing the expression of unaffected fetal genes to improve the deficiency in adult β-globin synthesis. In this Seminar we discuss important advances in the understanding of the molecular and cellular basis of normal and abnormal expression of globin genes. We will summarise new approaches to the development of tailored pharmacological agents to alter regulation of globin genes, the first trial of gene therapy for thalassaemia, and future prospects of cell therapy.
Collapse
Affiliation(s)
- Douglas R Higgs
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK.
| | | | | |
Collapse
|
42
|
Abstract
During the past decade, widespread use of microarray-based technologies, including oligonucleotide array comparative genomic hybridization (aCGH) and single nucleotide polymorphism (SNP) genotyping arrays have dramatically changed our perspective on genome-wide structural variation. Submicroscopic genomic rearrangements or copy-number variation (CNV) have proven to be an important factor responsible for primate evolution, phenotypic differences between individuals and populations, and susceptibility to many diseases. The number of diseases caused by chromosomal microdeletions and microduplications, also referred to as genomic disorders, has been increasing at a rapid pace. Microdeletions and microduplications are found in patients with a wide variety of phenotypes, including Mendelian diseases as well as common complex traits, such as developmental delay/intellectual disability, autism, schizophrenia, obesity, and epilepsy. This chapter provides an overview of common microdeletion and microduplication syndromes and their clinical phenotypes, and discusses the genomic structures and molecular mechanisms of formation. In addition, an explanation for how these genomic rearrangements convey abnormal phenotypes is provided.
Collapse
Affiliation(s)
- Lisenka E L M Vissers
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | |
Collapse
|
43
|
Amouyal M. Gene insulation. Part II: natural strategies in vertebrates. Biochem Cell Biol 2011; 88:885-98. [PMID: 21102651 DOI: 10.1139/o10-111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The way a gene is insulated from its genomic environment in vertebrates is not basically different from what is observed in yeast and Drosophila (preceding article in this issue). If the formation of a looped chromatin domain, whether generated by attachment to the nuclear matrix or not, has become a classic way to confine an enhancer to a specific genomic domain and to coordinate, sequentially or simultaneously, gene expression in a given program, its role has been extended to new networks of genes or regulators within the same gene. A wider definition of the bases of the chromatin loops (nonchromosomal nuclear structures or genomic interacting elements) is also available. However, whereas insulation in Drosophila is due to a variety of proteins, in vertebrates insulators are still practically limited to CTCF (the CCCTC-binding factor), which appears in all cases to be the linchpin of an architecture that structures the assembly of DNA-protein interactions for gene regulation. As in yeast and Drosophila, the economy of means is the rule and the same unexpected diversion of known transcription elements (active or poised RNA polymerases, TFIIIC elements out of tRNA genes, permanent histone replacement) is observed, with variants peculiar to CTCF. Thus, besides structuring DNA looping, CTCF is a barrier to DNA methylation or interferes with all sorts of transcription processes, such as that generating heterochromatin.
Collapse
|
44
|
Cooper DN, Chen JM, Ball EV, Howells K, Mort M, Phillips AD, Chuzhanova N, Krawczak M, Kehrer-Sawatzki H, Stenson PD. Genes, mutations, and human inherited disease at the dawn of the age of personalized genomics. Hum Mutat 2010; 31:631-55. [PMID: 20506564 DOI: 10.1002/humu.21260] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The number of reported germline mutations in human nuclear genes, either underlying or associated with inherited disease, has now exceeded 100,000 in more than 3,700 different genes. The availability of these data has both revolutionized the study of the morbid anatomy of the human genome and facilitated "personalized genomics." With approximately 300 new "inherited disease genes" (and approximately 10,000 new mutations) being identified annually, it is pertinent to ask how many "inherited disease genes" there are in the human genome, how many mutations reside within them, and where such lesions are likely to be located? To address these questions, it is necessary not only to reconsider how we define human genes but also to explore notions of gene "essentiality" and "dispensability."Answers to these questions are now emerging from recent novel insights into genome structure and function and through complete genome sequence information derived from multiple individual human genomes. However, a change in focus toward screening functional genomic elements as opposed to genes sensu stricto will be required if we are to capitalize fully on recent technical and conceptual advances and identify new types of disease-associated mutation within noncoding regions remote from the genes whose function they disrupt.
Collapse
Affiliation(s)
- David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Shimotsuma M, Okamura E, Matsuzaki H, Fukamizu A, Tanimoto K. DNase I hypersensitivity and epsilon-globin transcriptional enhancement are separable in locus control region (LCR) HS1 mutant human beta-globin YAC transgenic mice. J Biol Chem 2010; 285:14495-503. [PMID: 20231293 DOI: 10.1074/jbc.m110.116525] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the five beta-like globin genes (epsilon, Ggamma, Agamma, delta, beta) in the human beta-globin locus depends on enhancement by the locus control region, which consists of five DNase I hypersensitive sites (5'HS1 through 5'HS5). We report here a novel enhancer activity in 5'HS1 that appears to be potent in transfected K562 cells. Deletion analyses identified a core activating element that bound to GATA-1, and a two-nucleotide mutation that disrupted GATA-1 binding in vitro abrogated 5'HS1 enhancer activity in transfection experiments. To determine the in vivo role of this GATA site, we generated multiple lines of human beta-globin YAC transgenic mice bearing the same two-nucleotide mutation. In the mutant mice, epsilon-, but not gamma-globin, gene expression in primitive erythroid cells was severely attenuated, while adult beta-globin gene expression in definitive erythroid cells was unaffected. Interestingly, DNaseI hypersensitivity near the 5'HS1 mutant sequence was eliminated in definitive erythroid cells, whereas it was only mildly affected in primitive erythroid cells. We therefore conclude that, although the GATA site in 5'HS1 is critical for efficient epsilon-globin gene expression, hypersensitive site formation per se is independent of 5'HS1 function, if any, in definitive erythroid cells.
Collapse
Affiliation(s)
- Motoshi Shimotsuma
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | | | | | | | | |
Collapse
|
46
|
Gallienne AE, Dréau HM, McCarthy J, Timbs AT, Hampson JM, Schuh A, Old JM, Henderson SJ. Multiplex Ligation-Dependent Probe Amplification Identification of 17 Different β-Globin Gene Deletions (Including Four Novel Mutations) in the Uk Population. Hemoglobin 2009; 33:406-16. [DOI: 10.3109/03630260903344564] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
47
|
Koenig SC, Becirevic E, Hellberg MSC, Li MY, So JCC, Hankins JS, Ware RE, McMahon L, Steinberg MH, Luo HY, Chui DHK. Sickle cell disease caused by heterozygosity for Hb S and novel LCR deletion: Report of two patients. Am J Hematol 2009; 84:603-6. [PMID: 19650141 DOI: 10.1002/ajh.21480] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The b-globin gene LCR is located approximately 6 kb upstream of the embryonic epsilon-globin gene, and is made up of five DNase I hypersensitive sites (HSs), HS 1-5. LCR plays a pivotal role in regulating the expression of downstream epsilon-, (G)gamma-, (A)gamma-, delta-, and beta-globin genes in cis [1]. Deletions removing the LCR and parts of the downstream beta-globin gene cluster in patients have been described [2]. These individuals present with a (gammadeltabeta)0-thalassemia carrier phenotype. We now report two patients with severe sickle cell disease who were compound heterozygous for Hb S mutation and novel LCR deletion. In one case, HS 1-3 were deleted; in the other, HS 1-5 were deleted. In both cases, the b-like globin genes in cis to the LCR deletions were intact. Genotypically, both patients appeared to have sickle cell trait. Coinherited with either LCR deletion, these individuals presented as sickle cell disease patients. The breakpoints of these LCR deletions were defined. These results affirm that HS 2 and 3 are primarily responsible for conferring erythroid specific high-level expression of cis-linked beta-like globin genes. Furthermore, LCR deletions might cause hemolytic disease of newborns.
Collapse
|
48
|
Kleinjan DJ, Coutinho P. Cis-ruption mechanisms: disruption of cis-regulatory control as a cause of human genetic disease. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2009; 8:317-32. [PMID: 19596743 DOI: 10.1093/bfgp/elp022] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The spatiotemporally and quantitatively correct activity of a gene requires the presence of intact coding sequence as well as properly functioning regulatory control. One of the great challenges of the post-genome era is to gain a better understanding of the mechanisms of gene control. Proper gene regulation depends not only on the required transcription factors and associated complexes being present (in the correct dosage), but also on the integrity, chromatin conformation and nuclear positioning of the gene's chromosomal segment. Thus, when either the cis-trans regulatory system of a gene or the normal context of its chromatin structure are disrupted, gene expression may be adversely affected, potentially leading to disease. As transcriptional regulation is a highly complex process depending on many factors, there are many different mechanisms that can cause aberrant gene expression. Traditionally, the term 'position effect' was used to refer to situations where the level of expression of a gene is deleteriously affected by an alteration in its chromosomal environment, while maintaining an intact transcription unit. Over the past years, an ever increasing number of such disease-related position effect cases have come to light, and detailed studies have revealed insight into the variety of causes, which can be categorized into a number of different mechanistic groups. We suggest replacing the outdated term of 'position effect disease' with the new generic name of 'cis-ruption disorder' to describe genetic disease cases that are caused by disruption of the normal cis-regulatory architecture of the disease gene locus. Here, we review these various cis-ruption mechanisms and discuss how their studies have contributed to our understanding of long- range gene regulation.
Collapse
Affiliation(s)
- Dirk-Jan Kleinjan
- Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, EH4 2XU, UK.
| | | |
Collapse
|
49
|
Boudrahem-Addour N, Zidani N, Carion N, Labie D, Belhani M, Beldjord C. Molecular heterogeneity of beta-thalassemia in Algeria: how to face up to a major health problem. Hemoglobin 2009; 33:24-36. [PMID: 19205970 DOI: 10.1080/03630260802626061] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This study concerns the molecular characterization of beta-thalassemia (beta-thal) alleles in 210 chromosomes. In the studied population, mutations were detected in 98% of the beta-thalassemic chromosomes. Twenty-one molecular defects have been found, where the five dominant mutations, IVS-I-110 (G>A), nonsense mutation at codon 39 (C>T), the frameshift codon (FSC) 6 (-A), IVS-I-1 (G>A), and IVS-I-6 (T>C), account for 80% of the independent chromosomes. Among the remaining alleles, 16 different mutations were identified, half of them being described for the first time in Algeria. These include the -101 (C>T) and the -90 (C>T) mutations in the distal and proximal promoter elements, respectively, the FSC 8 (-AA), IVS-I-5 (G>T), IVS-I-128 (T>G), FSC 47 (+A), IVS-II-1 (G>A), and the substitution in the polyadenylation signal (poly A) site AATAAA>AATGAA. Haplotype analyses on rare variants were performed. The possible origin of these mutations either by founder effect or by migrations is discussed, and raises the question of an adequate strategy to be used adapted to socio-economical status.
Collapse
Affiliation(s)
- Nassima Boudrahem-Addour
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediène, Alger, Algérie
| | | | | | | | | | | |
Collapse
|
50
|
Maston GA, Evans SK, Green MR. Transcriptional regulatory elements in the human genome. Annu Rev Genomics Hum Genet 2008; 7:29-59. [PMID: 16719718 DOI: 10.1146/annurev.genom.7.080505.115623] [Citation(s) in RCA: 567] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The faithful execution of biological processes requires a precise and carefully orchestrated set of steps that depend on the proper spatial and temporal expression of genes. Here we review the various classes of transcriptional regulatory elements (core promoters, proximal promoters, distal enhancers, silencers, insulators/boundary elements, and locus control regions) and the molecular machinery (general transcription factors, activators, and coactivators) that interacts with the regulatory elements to mediate precisely controlled patterns of gene expression. The biological importance of transcriptional regulation is highlighted by examples of how alterations in these transcriptional components can lead to disease. Finally, we discuss the methods currently used to identify transcriptional regulatory elements, and the ability of these methods to be scaled up for the purpose of annotating the entire human genome.
Collapse
Affiliation(s)
- Glenn A Maston
- Howard Hughes Medical Institute, Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| | | | | |
Collapse
|