1
|
Hu M, Liu Y, Wang G, Zhao Y. Mass-Selected Infrared Photodissociation Spectroscopic and Theoretical Insights into Nitrobenzene Dimer Anion Tagged by Argon. J Phys Chem A 2025. [PMID: 39995028 DOI: 10.1021/acs.jpca.4c06875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
The nitrobenzene dimer anion, NB2-, tagged with argon in the gas phase was successfully generated by using a collinear tandem time-of-flight mass spectrometer equipped with a supersonic ion source. Precise characterization was achieved through infrared photodissociation (IRPD) spectroscopy combining with theoretical calculation. Nine distinct absorptions were observed. The optimized structures of NB2(Ar)- were categorized into three types of isomers, including double-hydrogen-bonded (DHB), T-shaped (TS), and antiparallel π-π stacking (APS) isomers. The vibrational analysis indicated that the calculated spectrum of the APS isomer (e) exhibited better agreement with the experimentally observed spectrum than that of the lowest energy DHB isomer (a). Singly occupied molecular orbitals (SOMOs) and natural population analysis (NPA) confirmed that the negative charge in NB2(Ar)- was predominantly localized on one NB unit carrying a charge of -0.932 e, closely resembling a single electron charge. The other NB unit exhibited a minimal negative charge of -0.069 e, and Ar had a charge of 0.001 e. This distribution of charge suggests that NB2- can be viewed as a molecule-anion species, which consists of two separate frameworks: one neutral NB and one anionic NB framework. Energy decomposition analysis (EDA) further revealed that the stabilization of the APS isomer resulted from a nearly equal contribution of dispersion and electrostatic forces. However, for the DHB isomer, only the electrostatic interaction emerged as the primary stabilizing force.
Collapse
Affiliation(s)
- Mingxia Hu
- School of Chemistry and Chemical Engineering & School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yanhui Liu
- School of Chemistry and Chemical Engineering & School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Guanjun Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Yanying Zhao
- School of Chemistry and Chemical Engineering & School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
2
|
Wang M, Zhuang B, Tang K, Feng RR, Gai F. Unusual Hydrophobic Property of Blue Fluorescent Amino Acid 4-Cyanotryptophan. J Phys Chem Lett 2024; 15:11723-11729. [PMID: 39547671 DOI: 10.1021/acs.jpclett.4c02842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
It is a common belief that the negative heat capacity change (ΔCp) associated with protein folding, which is a manifestation of the hydrophobic effect, results from a decrease in the solvent accessible hydrophobic surface area. Herein, we investigate the conformational energy landscape and dynamics of a tetrapeptide composed of two glycine and two 4-cyanotryptophan residues using time-resolved fluorescence spectroscopy, molecular dynamics simulations, and density functional theory calculations and find that, contrary to this expectation, the hydrophobic association of two 4-cyanotryptophan side chains leads to a positive ΔCp (approximately 543 J K-1 mol-1). Furthermore, we find that promoting one of the 4-cyanotryptophans to its excited electronic state strengthens this self-association. Taken together, our results provide not only insight into how modification of an aromatic amino acid can affect its hydrophobicity but also a potential strategy for designing protein sequences that can fold (unfold) at high (low) temperatures.
Collapse
Affiliation(s)
- Manxi Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bo Zhuang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Kailin Tang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ran-Ran Feng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Feng Gai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Koenekoop L, Åqvist J. Computational Analysis of Heat Capacity Effects in Protein-Ligand Binding. J Chem Theory Comput 2024; 20:5708-5716. [PMID: 38870420 PMCID: PMC11238534 DOI: 10.1021/acs.jctc.4c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Heat capacity effects in protein-ligand binding as measured by calorimetric experiments have recently attracted considerable attention, particularly in the field of enzyme inhibitor design. A significant negative heat capacity change upon ligand binding implies a marked temperature dependence of the binding enthalpy, which is of high relevance for attempts to optimize protein-ligand interactions. In this work, we address the question of how well such heat capacity changes can be predicted by computer simulations. We examine a series of human thrombin inhibitors that all bind with ΔCp values of about -0.4 kcal/mol/K and calculate heat capacity changes from plain molecular dynamics simulations of the bound and free states of the enzyme and ligand. The results show that accurate ΔCp estimates within a few tenths of a kcal/mol/K of the experimental values can be obtained with this approach. This allows us to address the structural and energetic origin of the negative heat capacity changes for the thrombin inhibitors, and it is found that conformational equilibria of the free ligands in solution make a major contribution to the observed effect.
Collapse
Affiliation(s)
- Lucien Koenekoop
- Department of Cell & Molecular Biology, Uppsala University, Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Johan Åqvist
- Department of Cell & Molecular Biology, Uppsala University, Biomedical Center, SE-751 24 Uppsala, Sweden
| |
Collapse
|
4
|
Hadži S, Živič Z, Kovačič M, Zavrtanik U, Haesaerts S, Charlier D, Plavec J, Volkov AN, Lah J, Loris R. Fuzzy recognition by the prokaryotic transcription factor HigA2 from Vibrio cholerae. Nat Commun 2024; 15:3105. [PMID: 38600130 PMCID: PMC11006873 DOI: 10.1038/s41467-024-47296-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 03/22/2024] [Indexed: 04/12/2024] Open
Abstract
Disordered protein sequences can exhibit different binding modes, ranging from well-ordered folding-upon-binding to highly dynamic fuzzy binding. The primary function of the intrinsically disordered region of the antitoxin HigA2 from Vibrio cholerae is to neutralize HigB2 toxin through ultra-high-affinity folding-upon-binding interaction. Here, we show that the same intrinsically disordered region can also mediate fuzzy interactions with its operator DNA and, through interplay with the folded helix-turn-helix domain, regulates transcription from the higBA2 operon. NMR, SAXS, ITC and in vivo experiments converge towards a consistent picture where a specific set of residues in the intrinsically disordered region mediate electrostatic and hydrophobic interactions while "hovering" over the DNA operator. Sensitivity of the intrinsically disordered region to scrambling the sequence, position-specific contacts and absence of redundant, multivalent interactions, point towards a more specific type of fuzzy binding. Our work demonstrates how a bacterial regulator achieves dual functionality by utilizing two distinct interaction modes within the same disordered sequence.
Collapse
Affiliation(s)
- San Hadži
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
- Centre for Structural Biology, VIB, Pleinlaan 2, 1050, Brussels, Belgium
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Zala Živič
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Matic Kovačič
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova, 19, 1000, Ljubljana, Slovenia
| | - Uroš Zavrtanik
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Sarah Haesaerts
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
- Centre for Structural Biology, VIB, Pleinlaan 2, 1050, Brussels, Belgium
| | - Daniel Charlier
- Research group of Microbiology, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova, 19, 1000, Ljubljana, Slovenia
| | - Alexander N Volkov
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
- Centre for Structural Biology, VIB, Pleinlaan 2, 1050, Brussels, Belgium
- Jean Jeener NMR Centre, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Jurij Lah
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000, Ljubljana, Slovenia.
| | - Remy Loris
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
- Centre for Structural Biology, VIB, Pleinlaan 2, 1050, Brussels, Belgium.
| |
Collapse
|
5
|
Manzewitsch AN, Liu H, Lin B, Li P, Pellechia PJ, Shimizu KD. Empirical Model of Solvophobic Interactions in Organic Solvents. Angew Chem Int Ed Engl 2024; 63:e202314962. [PMID: 38032351 DOI: 10.1002/anie.202314962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/01/2023]
Abstract
An empirical model was developed to predict organic solvophobic effects using N-phenylimide molecular balances functionalized with non-polar alkyl groups. Solution studies and X-ray crystallography confirmed intramolecular alkyl-alkyl interactions in their folded conformers. The structural modularity of the balances allowed systematic variation of alkyl group lengths. Control balances were instrumental in isolating weak organic solvophobic effects by eliminating framework solvent-solute effects. A 19 F NMR label enabled analysis across 46 deuterated and non-deuterated solvent systems. Linear correlations were observed between organic solvophobic effects and solvent cohesive energy density (ced) as well as changes in solvent-accessible surface areas (SASA). Using these empirical relationships, a model was constructed to predict organic solvophobic interaction energy per unit area for any organic solvent with known ced values. The predicted interaction energies aligned with recent organic solvophobic measurements and literature values for the hydrophobic effect on non-polar surfaces confirmed the model's accuracy and utility.
Collapse
Affiliation(s)
- Alexander N Manzewitsch
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Hao Liu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Binzhou Lin
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Ping Li
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Perry J Pellechia
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Ken D Shimizu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
6
|
Shahbazi B, Mafakher L, Arab SS, Teimoori-Toolabi L. Kallistatin as an inhibitory protein against colorectal cancer cells through binding to LRP6. J Biomol Struct Dyn 2024; 42:918-934. [PMID: 37114408 DOI: 10.1080/07391102.2023.2196704] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/22/2023] [Indexed: 04/29/2023]
Abstract
Kallistatin (KL) is a member of the serine proteinase inhibitor (serpin) family regulating oxidative stress, vascular relaxation, inflammation, angiogenesis, cell proliferation, and invasion. The heparin-binding site of Kallistatin has an important role in the interaction with LRP6 leading to the blockade of the Wnt signaling pathway. In this study, we aimed to explore the structural basis of the Kallistatin-LRP6E1E4 complex using in silico approaches and evaluating the anti-proliferative, apoptotic, and cell cycle arrest activities of Kallistatin in colon cancer lines. The molecular docking showed Kallistatin could bind to the LRP6E3E4 much stronger than LRP6E1E2. The Kallistatin-LRP6E1E2 and Kallistatin-LRP6E3E4 complexes were stable during Molecular Dynamics (MD) simulation. The Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) showed that the Kallistatin-LRP6E3E4 has a higher binding affinity compared to Kallistatin-LRP6E1E2. Kallistatin induced higher cytotoxicity and apoptosis in HCT116 compared to the SW480 cell line. This protein-induced cell-cycle arrest in both cell lines at the G1 phase. The B-catenin, cyclin D1, and c-Myc expression levels were decreased in response to treatment with Kallistatin in both cell lines while the LRP6 expression level was decreased in the HCT116 cell line. Kallistatin has a greater effect on the HCT116 cell line compared to the SW480 cell line. Kallistatin can be used as a cytotoxic and apoptotic-inducing agent in colorectal cancer cell lines.
Collapse
Affiliation(s)
- Behzad Shahbazi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ladan Mafakher
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Shahriar Arab
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
7
|
Mohammadi E, Joshi SY, Deshmukh SA. Development, Validation, and Applications of Nonbonded Interaction Parameters between Coarse-Grained Amino Acid and Water Models. Biomacromolecules 2023; 24:4078-4092. [PMID: 37603467 DOI: 10.1021/acs.biomac.3c00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Interactions between amino acids and water play an important role in determining the stability and folding/unfolding, in aqueous solution, of many biological macromolecules, which affects their function. Thus, understanding the molecular-level interactions between water and amino acids is crucial to tune their function in aqueous solutions. Herein, we have developed nonbonded interaction parameters between the coarse-grained (CG) models of 20 amino acids and the one-site CG water model. The nonbonded parameters, represented using the 12-6 Lennard Jones (LJ) potential form, have been optimized using an artificial neural network (ANN)-assisted particle swarm optimization (PSO) (ANN-assisted PSO) method. All-atom (AA) molecular dynamics (MD) simulations of dipeptides in TIP3P water molecules were performed to calculate the Gibbs hydration free energies. The nonbonded force-field (FF) parameters between CG amino acids and the one-site CG water model were developed to accurately reproduce these energies. Furthermore, to test the transferability of these newly developed parameters, we calculated the hydration free energies of the analogues of the amino acid side chains, which showed good agreement with reported experimental data. Additionally, we show the applicability of these models by performing self-assembly simulations of peptide amphiphiles. Overall, these models are transferable and can be used to study the self-assembly of various biomaterials and biomolecules to develop a mechanistic understanding of these processes.
Collapse
Affiliation(s)
- Esmat Mohammadi
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Soumil Y Joshi
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Sanket A Deshmukh
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
8
|
Kuehm OP, Hayden JA, Bearne SL. A Phenylboronic Acid-Based Transition State Analogue Yields Nanomolar Inhibition of Mandelate Racemase. Biochemistry 2023. [PMID: 37285384 DOI: 10.1021/acs.biochem.3c00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mandelate racemase (MR) catalyzes the Mg2+-dependent interconversion of (R)- and (S)-mandelate by stabilizing the altered substrate in the transition state (TS) by ∼26 kcal/mol. The enzyme has been employed as a model to explore the limits to which the free energy of TS stabilization may be captured by TS analogues to effect strong binding. Herein, we determined the thermodynamic parameters accompanying binding of a series of bromo-, chloro-, and fluoro-substituted phenylboronic acids (PBAs) by MR and found that binding was predominately driven by favorable entropy changes. 3,4-Dichloro-PBA was discovered to be the most potent inhibitor yet identified for MR, binding with a Kdapp value of 11 ± 2 nM and exceeding the binding of the substrate by ∼72,000-fold. The ΔCp value accompanying binding (-488 ± 18 cal·mol-1 K-1) suggested that dispersion forces contribute significantly to the binding. The pH-dependence of the inhibition revealed that MR preferentially binds the anionic, tetrahedral form of 3,4-dichloro-PBA with a pH-independent Ki value of 5.7 ± 0.5 nM, which was consistent with the observed upfield shift of the 11B NMR signal. The linear free energy relationship between log(kcat/Km) and log(1/Ki) for wild-type and 11 MR variants binding 3,4-dichloro-PBA had a slope of 0.8 ± 0.2, indicating that MR recognizes the inhibitor as an analogue of the TS. Hence, halogen substitution may be utilized to capture additional free energy of TS stabilization arising from dispersion forces to enhance the binding of boronic acid inhibitors by MR.
Collapse
Affiliation(s)
- Oliver P Kuehm
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Joshua A Hayden
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Stephen L Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
9
|
Antibody CDR amino acids underlying the functionality of antibody repertoires in recognizing diverse protein antigens. Sci Rep 2022; 12:12555. [PMID: 35869245 PMCID: PMC9307644 DOI: 10.1038/s41598-022-16841-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022] Open
Abstract
Antibodies recognize protein antigens with exquisite specificity in a complex aqueous environment, where interfacial waters are an integral part of the antibody–protein complex interfaces. In this work, we elucidate, with computational analyses, the principles governing the antibodies’ specificity and affinity towards their cognate protein antigens in the presence of explicit interfacial waters. Experimentally, in four model antibody–protein complexes, we compared the contributions of the interaction types in antibody–protein antigen complex interfaces with the antibody variants selected from phage-displayed synthetic antibody libraries. Evidently, the specific interactions involving a subset of aromatic CDR (complementarity determining region) residues largely form the predominant determinant underlying the specificity of the antibody–protein complexes in nature. The interfacial direct/water-mediated hydrogen bonds accompanying the CDR aromatic interactions are optimized locally but contribute little in determining the epitope location. The results provide insights into the phenomenon that natural antibodies with limited sequence and structural variations in an antibody repertoire can recognize seemingly unlimited protein antigens. Our work suggests guidelines in designing functional artificial antibody repertoires with practical applications in developing novel antibody-based therapeutics and diagnostics for treating and preventing human diseases.
Collapse
|
10
|
Chen J, Peng Q, Peng X, Zhang H, Zeng H. Probing and Manipulating Noncovalent Interactions in Functional Polymeric Systems. Chem Rev 2022; 122:14594-14678. [PMID: 36054924 DOI: 10.1021/acs.chemrev.2c00215] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Noncovalent interactions, which usually feature tunable strength, reversibility, and environmental adaptability, have been recognized as driving forces in a variety of biological and chemical processes, contributing to the recognition between molecules, the formation of molecule clusters, and the establishment of complex structures of macromolecules. The marriage of noncovalent interactions and conventional covalent polymers offers the systems novel mechanical, physicochemical, and biological properties, which are highly dependent on the binding mechanisms of the noncovalent interactions that can be illuminated via quantification. This review systematically discusses the nanomechanical characterization of typical noncovalent interactions in polymeric systems, mainly through direct force measurements at microscopic, nanoscopic, and molecular levels, which provide quantitative information (e.g., ranges, strengths, and dynamics) on the binding behaviors. The fundamental understandings of intermolecular and interfacial interactions are then correlated to the macroscopic performances of a series of noncovalently bonded polymers, whose functions (e.g., stimuli-responsiveness, self-healing capacity, universal adhesiveness) can be customized through the manipulation of the noncovalent interactions, providing insights into the rational design of advanced materials with applications in biomedical, energy, environmental, and other engineering fields.
Collapse
Affiliation(s)
- Jingsi Chen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Qiongyao Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xuwen Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
11
|
Yachnin BJ, Azouz LR, White RE, Minetti CASA, Remeta DP, Tan VM, Drake JM, Khare SD. Massively parallel, computationally guided design of a proenzyme. Proc Natl Acad Sci U S A 2022; 119:e2116097119. [PMID: 35377786 PMCID: PMC9169645 DOI: 10.1073/pnas.2116097119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/25/2022] [Indexed: 01/28/2023] Open
Abstract
Confining the activity of a designed protein to a specific microenvironment would have broad-ranging applications, such as enabling cell type-specific therapeutic action by enzymes while avoiding off-target effects. While many natural enzymes are synthesized as inactive zymogens that can be activated by proteolysis, it has been challenging to redesign any chosen enzyme to be similarly stimulus responsive. Here, we develop a massively parallel computational design, screening, and next-generation sequencing-based approach for proenzyme design. For a model system, we employ carboxypeptidase G2 (CPG2), a clinically approved enzyme that has applications in both the treatment of cancer and controlling drug toxicity. Detailed kinetic characterization of the most effectively designed variants shows that they are inhibited by ∼80% compared to the unmodified protein, and their activity is fully restored following incubation with site-specific proteases. Introducing disulfide bonds between the pro- and catalytic domains based on the design models increases the degree of inhibition to 98% but decreases the degree of restoration of activity by proteolysis. A selected disulfide-containing proenzyme exhibits significantly lower activity relative to the fully activated enzyme when evaluated in cell culture. Structural and thermodynamic characterization provides detailed insights into the prodomain binding and inhibition mechanisms. The described methodology is general and could enable the design of a variety of proproteins with precise spatial regulation.
Collapse
Affiliation(s)
- Brahm J. Yachnin
- Department of Chemistry & Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Laura R. Azouz
- Department of Chemistry & Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Ralph E. White
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - Conceição A. S. A. Minetti
- Department of Chemistry & Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - David P. Remeta
- Department of Chemistry & Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Victor M. Tan
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
- Department of Pharmacology, Robert Wood Johnson Medical School, Piscataway, NJ 08854
| | - Justin M. Drake
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455
- Department of Urology, University of Minnesota, Minneapolis, MN 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Sagar D. Khare
- Department of Chemistry & Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| |
Collapse
|
12
|
Richaud AD, Zhao G, Hobloss S, Roche SP. Folding in Place: Design of β-Strap Motifs to Stabilize the Folding of Hairpins with Long Loops. J Org Chem 2021; 86:13535-13547. [PMID: 34499510 PMCID: PMC8576641 DOI: 10.1021/acs.joc.1c01442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite their pivotal role in defining antibody affinity and protein function, β-hairpins harboring long noncanonical loops remain synthetically challenging because of the large entropic penalty associated with their conformational folding. Little is known about the contribution and impact of stabilizing motifs on the folding of β-hairpins with loops of variable length and plasticity. Here, we report a design of minimalist β-straps (strap = strand + cap) that offset the entropic cost of long-loop folding. The judicious positioning of noncovalent interactions (hydrophobic cluster and salt-bridge) within the novel 8-mer β-strap design RW(V/H)W···WVWE stabilizes hairpins with up to 10-residue loops of varying degrees of plasticity (Tm up to 52 °C; 88 ± 1% folded at 18 °C). This "hyper" thermostable β-strap outperforms the previous gold-standard technology of β-strand-β-cap (16-mer) and provides a foundation for producing new classes of long hairpins as a viable and practical alternative to macrocyclic peptides.
Collapse
Affiliation(s)
- Alexis D Richaud
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Guangkuan Zhao
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Samir Hobloss
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Stéphane P Roche
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| |
Collapse
|
13
|
Schmit JD, Feric M, Dundr M. How Hierarchical Interactions Make Membraneless Organelles Tick Like Clockwork. Trends Biochem Sci 2021; 46:525-534. [PMID: 33483232 PMCID: PMC8195823 DOI: 10.1016/j.tibs.2020.12.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
Biomolecular condensates appear throughout the cell, serving many different biochemical functions. We argue that condensate functionality is optimized when the interactions driving condensation vary widely in affinity. Strong interactions provide structural specificity needed to encode functional properties but carry the risk of kinetic arrest, while weak interactions allow the system to remain dynamic but do not restrict the conformational ensemble enough to sustain specific functional features. To support our opinion, we describe illustrative examples of the interplay of strong and weak interactions that are found in the nucleolus, SPOP/DAXX condensates, polySUMO/polySIM condensates, chromatin, and stress granules. The common feature of these systems is a hierarchical assembly motif in which weak, transient interactions condense structurally defined functional units.
Collapse
Affiliation(s)
- Jeremy D Schmit
- Department of Physics, Kansas State University, Manhattan, KS 66506, USA.
| | - Marina Feric
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Miroslav Dundr
- Center for Cancer Cell Biology, Rosalind Franklin University of Medicine and Science, Chicago Medical School, North Chicago, IL 60064, USA.
| |
Collapse
|
14
|
Walkowiak JJ, Ballauff M. Interaction of Polyelectrolytes with Proteins: Quantifying the Role of Water. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100661. [PMID: 34194953 PMCID: PMC8224434 DOI: 10.1002/advs.202100661] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/29/2021] [Indexed: 05/11/2023]
Abstract
A theoretical model is presented for the free energy ΔGb of complex formation between a highly charged polyelectrolyte and a protein. The model introduced here comprises both the effect of released counterions and the uptake or release of water molecules during complex formation. The resulting expression for ΔGb is hence capable of describing the dependence of ΔGb on temperature as well as on the concentration of salt in the system: An increase of the salt concentration in the solution increases the activity of the ions and counterion release becomes less effective for binding. On the other hand, an increased salt concentration leads to the decrease of the activity of water in bulk. Hence, release of water molecules during complex formation will be more advantageous and lead to an increase of the magnitude of ΔGb and the binding constant. It is furthermore demonstrated that the release or uptake of water molecules is the origin of the marked enthalpy-entropy cancellation observed during complex formation of polyelectrolytes with proteins. The comparison with experimental data on complex formation between a synthetic (sulfated dendritic polyglycerol) and natural polyelectrolytes (DNA; heparin) with proteins shows full agreement with theory.
Collapse
Affiliation(s)
- Jacek J. Walkowiak
- Institut für Chemie und BiochemieFreie Universität BerlinTaktstraße 3Berlin14195Germany
- Aachen‐Maastricht Institute for Biobased MaterialsMaastricht UniversityBrightlands Chemelot Campus, Urmonderbaan 22Geleen6167 RDThe Netherlands
| | - Matthias Ballauff
- Institut für Chemie und BiochemieFreie Universität BerlinTaktstraße 3Berlin14195Germany
| |
Collapse
|
15
|
Czapinska H, Winiewska-Szajewska M, Szymaniec-Rutkowska A, Piasecka A, Bochtler M, Poznański J. Halogen Atoms in the Protein-Ligand System. Structural and Thermodynamic Studies of the Binding of Bromobenzotriazoles by the Catalytic Subunit of Human Protein Kinase CK2. J Phys Chem B 2021; 125:2491-2503. [PMID: 33689348 PMCID: PMC8041304 DOI: 10.1021/acs.jpcb.0c10264] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
![]()
Binding of a family
of brominated benzotriazoles to the catalytic
subunit of human protein kinase CK2 (hCK2α) was used as a model
system to assess the contribution of halogen bonding to protein–ligand
interaction. CK2 is a constitutively active pleiotropic serine/threonine
protein kinase that belongs to the CMGC group of eukaryotic protein
kinases (EPKs). Due to the addiction of some cancer cells, CK2 is
an attractive and well-characterized drug target. Halogenated benzotriazoles
act as ATP-competitive inhibitors with unexpectedly good selectivity
for CK2 over other EPKs. We have characterized the interaction of
bromobenzotriazoles with hCK2α by X-ray crystallography, low-volume
differential scanning fluorimetry, and isothermal titration calorimetry.
Properties of free ligands in solution were additionally characterized
by volumetric and RT-HPLC measurements. Thermodynamic data indicate
that the affinity increases with bromo substitution, with greater
contributions from 5- and 6-substituents than 4- and 7-substituents.
Except for 4,7-disubstituted compounds, the bromobenzotriazoles adopt
a canonical pose with the triazole close to lysine 68, which precludes
halogen bonding. More highly substituted benzotriazoles adopt many
additional noncanonical poses, presumably driven by a large hydrophobic
contribution to binding. Some noncanonical ligand orientations allow
the formation of halogen bonds with the hinge region. Consistent with
a predominantly hydrophobic interaction, the isobaric heat capacity
decreases upon ligand binding, the more so the higher the substitution.
Collapse
Affiliation(s)
- Honorata Czapinska
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106 Warsaw, Poland.,International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Maria Winiewska-Szajewska
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106 Warsaw, Poland.,Department of Biophysics, Institute of Experimental Physics, University of Warsaw, Pasteura 5, 02-089 Warsaw, Poland
| | | | - Anna Piasecka
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106 Warsaw, Poland.,International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Matthias Bochtler
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106 Warsaw, Poland.,International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
16
|
Achazi K, Haag R, Ballauff M, Dernedde J, Kizhakkedathu JN, Maysinger D, Multhaup G. Understanding the Interaction of Polyelectrolyte Architectures with Proteins and Biosystems. Angew Chem Int Ed Engl 2021; 60:3882-3904. [PMID: 32589355 PMCID: PMC7894192 DOI: 10.1002/anie.202006457] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Indexed: 02/06/2023]
Abstract
The counterions neutralizing the charges on polyelectrolytes such as DNA or heparin may dissociate in water and greatly influence the interaction of such polyelectrolytes with biomolecules, particularly proteins. In this Review we give an overview of studies on the interaction of proteins with polyelectrolytes and how this knowledge can be used for medical applications. Counterion release was identified as the main driving force for the binding of proteins to polyelectrolytes: Patches of positive charge become multivalent counterions of the polyelectrolyte and lead to the release of counterions from the polyelectrolyte and a concomitant increase in entropy. This is shown from investigations on the interaction of proteins with natural and synthetic polyelectrolytes. Special emphasis is paid to sulfated dendritic polyglycerols (dPGS). The Review demonstrates that we are moving to a better understanding of charge-charge interactions in systems of biological relevance. Research along these lines will aid and promote the design of synthetic polyelectrolytes for medical applications.
Collapse
Affiliation(s)
- Katharina Achazi
- Institut für Chemie und BiochemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Rainer Haag
- Institut für Chemie und BiochemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Matthias Ballauff
- Institut für Chemie und BiochemieFreie Universität BerlinTakustrasse 314195BerlinGermany
- IRIS AdlershofHumboldt Universität zu BerlinZum Grossen Windkanal 612489BerlinGermany
| | - Jens Dernedde
- Charité-Universitätsmedizin BerlinInstitute of Laboratory MedicineClinical Chemistry, and PathobiochemistryCVK Augustenburger Platz 113353BerlinGermany
| | - Jayachandran N. Kizhakkedathu
- Centre for Blood ResearchDepartment of Pathology and Laboratory MedicineLife Science InstituteDepartment of ChemistrySchool of Biomedical EngineeringUniversity of British ColumbiaVancouverV6T 1Z3Canada
| | - Dusica Maysinger
- Department of Pharmacology and TherapeuticsMcGill UniversityMontrealH3G 1Y6Canada
| | - Gerd Multhaup
- Department of Pharmacology and TherapeuticsMcGill UniversityMontrealH3G 1Y6Canada
| |
Collapse
|
17
|
Koh J. Probing coupled conformational transitions of intrinsically disordered proteins in their interactions with target proteins. Anal Biochem 2021; 619:114126. [PMID: 33567297 DOI: 10.1016/j.ab.2021.114126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 11/29/2022]
Abstract
Intrinsically disordered proteins or regions (IDPs or IDRs) are abundant in the eukaryotic proteome and critical in regulation of dynamic cellular processes. Intensive structural investigations have proposed the molecular mechanisms of the interaction between IDRs and their binding partners. Here we extract the distinct thermodynamic features of coupled conformational transitions of IDRs founding the interaction mechanisms. We also present simulation tools to facilitate a design of the calorimetric experiments probing and quantifying the conformational transitions of IDRs. The suggested thermodynamic approach will further advance our understanding of distribution among multiple states of IDRs in their interactions with target molecules.
Collapse
Affiliation(s)
- Junseock Koh
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
18
|
Achazi K, Haag R, Ballauff M, Dernedde J, Kizhakkedathu JN, Maysinger D, Multhaup G. Wechselwirkung von Polyelektrolyt‐Architekturen mit Proteinen und Biosystemen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Katharina Achazi
- Institut für Chemie und Biochemie Freie Universität Berlin Takustraße 3 14195 Berlin Deutschland
| | - Rainer Haag
- Institut für Chemie und Biochemie Freie Universität Berlin Takustraße 3 14195 Berlin Deutschland
| | - Matthias Ballauff
- Institut für Chemie und Biochemie Freie Universität Berlin Takustraße 3 14195 Berlin Deutschland
- IRIS Adlershof Humboldt-Universität zu Berlin Zum Großen Windkanal 6 12489 Berlin Deutschland
| | - Jens Dernedde
- Charité-Universitätsmedizin Berlin Institut für Laboratoriumsmedizin Klinische Chemie und Pathobiochemie CVK Augustenburger Platz 1 13353 Berlin Deutschland
| | - Jayachandran N. Kizhakkedathu
- Centre for Blood Research Department of Pathology and Laboratory Medicine Life Science Institute Department of Chemistry School of Biomedical Engineering University of British Columbia Vancouver V6T 1Z3 Kanada
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics McGill University Montreal H3G 1Y6 Kanada
| | - Gerd Multhaup
- Department of Pharmacology and Therapeutics McGill University Montreal H3G 1Y6 Kanada
| |
Collapse
|
19
|
Comparative study of the protein denaturing ability of different organic cosolvents. Int J Biol Macromol 2020; 160:880-888. [DOI: 10.1016/j.ijbiomac.2020.05.260] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/20/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022]
|
20
|
Walkowiak JJ, Ballauff M, Zimmermann R, Freudenberg U, Werner C. Thermodynamic Analysis of the Interaction of Heparin with Lysozyme. Biomacromolecules 2020; 21:4615-4625. [DOI: 10.1021/acs.biomac.0c00780] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jacek Janusz Walkowiak
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Matthias Ballauff
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Ralf Zimmermann
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center for Biomaterials Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center for Biomaterials Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center for Biomaterials Dresden, Hohe Str. 6, 01069 Dresden, Germany
| |
Collapse
|
21
|
Wu C, Wang J, Na X, Wang Z, Xu X, Wang T. Inducing secondary structural interplays between scallop muscle proteins and soy proteins to form soluble composites. Food Funct 2020; 11:3351-3360. [PMID: 32226997 DOI: 10.1039/c9fo03106e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Developing food protein structures with the freedom to tune their internal molecular arrangements is a fascinating aspect for serving the demands of multifunctional food components. However, a protein's conformation is highly submissive to its amino acid sequences, posing a great limitation on controlling its structural rearrangements. In this study, based on simply co-dissolving scallop muscle proteins (SMPs, water-insoluble) and soya proteins (SPs) at pH 12 prior to neutralization, the unfolding-folding pathways of both proteins were altered. Structural characterizations evidenced the complexation of SMPs and SPs using their secondary structures as the building blocks. Due to hydrophobic coalition between the α-helix (from SMPs) and β-sheet (from SPs), the co-assembled structures obtained considerable resistance against folding triggered by the hydrophobic effect. In addition, the kinetics by which the SMPs and SPs folded together was tailor-made by the compositional differences of the two proteins, resulting in the formation of well-defined, water-dispersible nanospheres with a tunable size and internal arrangements of the backbones. This study would enrich our choice of manipulated protein structures and enlarge the available protein sources with tailorable functions when applied in specific scenarios.
Collapse
Affiliation(s)
- Chao Wu
- National Engineering Research Centre of Seafood, Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China.
| | - Jiamei Wang
- National Engineering Research Centre of Seafood, Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China.
| | - Xiaokang Na
- National Engineering Research Centre of Seafood, Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China.
| | - Zhenyu Wang
- National Engineering Research Centre of Seafood, Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China.
| | - Xianbing Xu
- National Engineering Research Centre of Seafood, Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China.
| | - Tao Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education; National Engineering Laboratory for Cereal Fermentation Technology; Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
22
|
Wan M, Song J, Li W, Gao L, Fang W. Development of Coarse‐Grained Force Field by Combining Multilinear Interpolation Technique and Simplex Algorithm. J Comput Chem 2019; 41:814-829. [DOI: 10.1002/jcc.26131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/07/2019] [Accepted: 12/05/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Mingwei Wan
- Key Laboratory of Theoretical and Computational PhotochemistryMinistry of Education, College of Chemistry, Beijing Normal University 19 Xin‐Jie‐Kou‐Wai Street Beijing 100875 China
- Institution of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Junjie Song
- Key Laboratory of Theoretical and Computational PhotochemistryMinistry of Education, College of Chemistry, Beijing Normal University 19 Xin‐Jie‐Kou‐Wai Street Beijing 100875 China
| | - Wenli Li
- Key Laboratory of Theoretical and Computational PhotochemistryMinistry of Education, College of Chemistry, Beijing Normal University 19 Xin‐Jie‐Kou‐Wai Street Beijing 100875 China
| | - Lianghui Gao
- Key Laboratory of Theoretical and Computational PhotochemistryMinistry of Education, College of Chemistry, Beijing Normal University 19 Xin‐Jie‐Kou‐Wai Street Beijing 100875 China
| | - Weihai Fang
- Key Laboratory of Theoretical and Computational PhotochemistryMinistry of Education, College of Chemistry, Beijing Normal University 19 Xin‐Jie‐Kou‐Wai Street Beijing 100875 China
- Institution of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
23
|
Walkowiak J, Lu Y, Gradzielski M, Zauscher S, Ballauff M. Thermodynamic Analysis of the Uptake of a Protein in a Spherical Polyelectrolyte Brush. Macromol Rapid Commun 2019; 41:e1900421. [DOI: 10.1002/marc.201900421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/19/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Jacek Walkowiak
- Institut für Chemie und BiochemieFreie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Yan Lu
- Soft Matter and Functional MaterialsHelmholtz‐Zentrum Berlin für Materialen und Energie Hahn‐Meitner‐Platz 1 14109 Berlin Germany
- Institute of ChemistryUniversity of Potsdam 14467 Potsdam Germany
| | - Michael Gradzielski
- Stranski Laboratorium für Physikalische Chemie und Theoretische ChemieInstitut für ChemieStraße des 17. Juni 124Sekr. TC7Technische Universität Berlin D‐10623 Berlin Germany
| | - Stefan Zauscher
- Mechanical Engineering and Material ScienceDuke University Durham NC 27708 USA
| | - Matthias Ballauff
- Soft Matter and Functional MaterialsHelmholtz‐Zentrum Berlin für Materialen und Energie Hahn‐Meitner‐Platz 1 14109 Berlin Germany
| |
Collapse
|
24
|
Xu X, Ballauff M. Interaction of Lysozyme with a Dendritic Polyelectrolyte: Quantitative Analysis of the Free Energy of Binding and Comparison to Molecular Dynamics Simulations. J Phys Chem B 2019; 123:8222-8231. [DOI: 10.1021/acs.jpcb.9b07448] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xiao Xu
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, 210094 Nanjing, P. R. China
| | - Matthias Ballauff
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109 Berlin, Germany
- Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| |
Collapse
|
25
|
Fang J. A critical review of five machine learning-based algorithms for predicting protein stability changes upon mutation. Brief Bioinform 2019; 21:1285-1292. [PMID: 31273374 DOI: 10.1093/bib/bbz071] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 01/02/2023] Open
Abstract
A number of machine learning (ML)-based algorithms have been proposed for predicting mutation-induced stability changes in proteins. In this critical review, we used hypothetical reverse mutations to evaluate the performance of five representative algorithms and found all of them suffer from the problem of overfitting. This approach is based on the fact that if a wild-type protein is more stable than a mutant protein, then the same mutant is less stable than the wild-type protein. We analyzed the underlying issues and suggest that the main causes of the overfitting problem include that the numbers of training cases were too small, and the features used in the models were not sufficiently informative for the task. We make recommendations on how to avoid overfitting in this important research area and improve the reliability and robustness of ML-based algorithms in general.
Collapse
Affiliation(s)
- Jianwen Fang
- Computational & Systems Biology Branch, Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850, USA
| |
Collapse
|
26
|
Shuai J, Guan F, He B, Hu J, Li Y, He D, Hu J. Self-Assembled Nanoparticles of Symmetrical Cationic Peptide Against Citrus Pathogenic Bacteria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5720-5727. [PMID: 31046262 DOI: 10.1021/acs.jafc.9b00820] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The increasing drug resistance of phytopathogenic bacteria to conventional bactericides has driven the necessity for exploring new alternatives with a lower tendency to develop bacterial resistance. Here, we report a novel cationic symmetrical peptide P5VP5 (Ac- R+ LI R+ K+ V K+ R+ IL R+ -NH2 that enables self-assembly to form nanoparticles with excellent thermal stability. An in vitro assay showed that P5VP5 nanoparticles exhibited excellent antibacterial activity against Xanthomonas axonopodis pv citri with a MIC value of 20 μM. Meanwhile, under an in planta condition, treatment with peptide nanoparticles demonstrated the highest ability to reduce the development of citrus canker lesions in leaves. Moreover, the nanoparticles could destroy the biofilm formation, damage the cell membranes, and affect the cell membrane permeability, ultimately leading to the death of bacteria. Taken together, these nanoparticles are a promising antibacterial agent that can be used to control citrus canker and other plant diseases caused by bacteria.
Collapse
Affiliation(s)
- Jianbo Shuai
- School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Fuyi Guan
- School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Bi He
- School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Jianqing Hu
- School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Yan Li
- School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Daohang He
- School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Jianfeng Hu
- School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
27
|
Zheng L, Xia K, Mu Y. Ligand Binding Induces Agonistic-Like Conformational Adaptations in Helix 12 of Progesterone Receptor Ligand Binding Domain. Front Chem 2019; 7:315. [PMID: 31134186 PMCID: PMC6514052 DOI: 10.3389/fchem.2019.00315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 04/23/2019] [Indexed: 01/28/2023] Open
Abstract
Progesterone receptor (PR) is a member of the nuclear receptor (NR) superfamily and plays a vital role in the female reproductive system. The malfunction of it would lead to several types of cancers. The understanding of conformational changes in its ligand binding domain (LBD) is valuable for both biological function studies and therapeutically intervenes. A key unsolved question is how the binding of a ligand (agonist, antagonist, or a selective modulator) induces conformational changes of PR LBD, especially its helix 12. We applied molecular dynamics (MD) simulations to explore the conformational adaptations of PR LBD with or without a ligand or the co-repressor peptides binding. From the simulations, both the agonist progesterone (P4) and the selective PR modulator (SPRM) asoprisnil induces agonistic-like helix 12 conformations (the "closed" states) in PR LBD and the complex of LBD-SPRM is less stable, comparing to the agonist-liganded PR LBD. The results, therefore, explain the partial agonism of the SPRM, which could induce weak agonistic effects in PR. We also found that co-repressor peptides could be stably associated with the LBD and stabilize the LBD in a "semi-open" state for helix 12. These findings would enhance our understanding of PR structural and functional relationships and would also be useful for future structure and knowledge-based drug discovery.
Collapse
Affiliation(s)
- Liangzhen Zheng
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Kelin Xia
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
28
|
Investigations into the interaction thermodynamics of TRAP-related peptides with a temperature-responsive polymer-bonded porous silica stationary phase. Anal Chim Acta X 2019; 1:100008. [PMID: 33117975 PMCID: PMC7587034 DOI: 10.1016/j.acax.2019.100008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The interaction thermodynamics of the thrombin receptor agonistic peptide (TRAP-1), H-Ser-Phe-Leu-Leu-Arg-Asn-Pro-OH, and a set of alanine scan substitution peptides, have been investigated with an n-octadecylacrylic polymer-bonded porous silica (Sil-ODA18) and water-acetonitrile mobile phases at temperatures ranging from 5 to 80 °C in 5 °C increments. The retention of these peptides on the Sil-ODA18 stationary phase decreased as the water content in the mobile phase was lowered from 80% (v/v) to ca. 45% (v/v) and reached a minimum value for each peptide at a specific water-acetonitrile composition. Further decreases in the water content of the mobile phase led to increased retention. The magnitude of the changes in enthalpy of interaction, Δ H a s s o c 0 , changes in entropy of interaction, Δ S a s s o c 0 , and changes in heat capacity, Δ C p 0 , were found to be dependent on the molecular properties of the mobile phase, the temperature, the structure/mobility of the stationary phase, and the conformation and solvation state of the peptides. With water-rich mobile phases, the retention behaviour of the TRAP analogues was dominated by enthalpic processes, consistent with the participation of strong hydrogen bonding effects, but became dominated by entropic effects with acetonitrile-rich mobile phases as the temperature was increased. These changes in the retention behaviour of these TRAP peptides are consistent with the generation of water or acetonitrile clusters in the mobile phase depending on the volume fractions of the organic solvent as the Sil-ODA18 stationary phase transitions from its crystalline to its isotropic state.
Collapse
|
29
|
Lam J, Lutsko JF. Solvent-mediated interactions between nanostructures: From water to Lennard-Jones liquid. J Chem Phys 2018; 149:134703. [PMID: 30292194 DOI: 10.1063/1.5037571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Solvent-mediated interactions emerge from complex mechanisms that depend on the solute structure, its wetting properties, and the nature of the liquid. While numerous studies have focused on the first two influences, here, we compare the results from water and Lennard-Jones liquid in order to reveal to what extent solvent-mediated interactions are universal with respect to the nature of the liquid. Besides the influence of the liquid, the results were obtained with classical density functional theory and brute-force molecular dynamics simulations which allow us to contrast these two numerical techniques.
Collapse
Affiliation(s)
- Julien Lam
- Center for Nonlinear Phenomena and Complex Systems, Universite Libre de Bruxelles, Code Postal 231, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - James F Lutsko
- Center for Nonlinear Phenomena and Complex Systems, Universite Libre de Bruxelles, Code Postal 231, Boulevard du Triomphe, 1050 Brussels, Belgium
| |
Collapse
|
30
|
Carr CE, Khutsishvili I, Marky LA. Energetics, Ion, and Water Binding of the Unfolding of AA/UU Base Pair Stacks and UAU/UAU Base Triplet Stacks in RNA. J Phys Chem B 2018; 122:7057-7065. [PMID: 29932334 DOI: 10.1021/acs.jpcb.8b05575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Triplex formation occurs via interaction of a third strand with the major groove of double-stranded nucleic acid, through Hoogsteen hydrogen bonding. In this work, we use a combination of temperature-dependent UV spectroscopy and differential scanning calorimetry to determine complete thermodynamic profiles for the unfolding of polyadenylic acid (poly(rA))·polyuridylic acid (poly(rU)) (duplex) and poly(rA)·2poly(rU) (triplex). Our thermodynamic results are in good agreement with the much earlier work of Krakauer and Sturtevant using only UV melting techniques. The folding of these two helices yielded an uptake of ions, Δ nNa+ = 0.15 mol Na+/mol base pair (duplex) and 0.30 mol Na+/mole base triplet (triplex), which are consistent with their polymer behavior and the higher charge density parameter of triple helices. The osmotic stress technique yielded a release of structural water, Δ nW = 2 mol H2O/mol base pair (duplex unfolding into single strands) and an uptake of structural water, Δ nW = 2 mol H2O/mole base pair (triplex unfolding into duplex and a single strand). However, an overall release of electrostricted waters is obtained for the unfolding of both complexes from pressure perturbation calorimetric experiments. In total, the Δ V values obtained for the unfolding of triplex into duplex and a single strand correspond to an immobilization of two structural waters and a release of three electrostricted waters. The Δ V values obtained for the unfolding of duplex into two single strands correspond to the release of two structural waters and the immobilization of four electrostricted water molecules.
Collapse
Affiliation(s)
- Carolyn E Carr
- Department of Pharmaceutical Sciences , University of Nebraska Medical Center , 986025 Nebraska Medical Center , Omaha , Nebraska 68198-6025 , United States
| | - Irine Khutsishvili
- Department of Pharmaceutical Sciences , University of Nebraska Medical Center , 986025 Nebraska Medical Center , Omaha , Nebraska 68198-6025 , United States
| | - Luis A Marky
- Department of Pharmaceutical Sciences , University of Nebraska Medical Center , 986025 Nebraska Medical Center , Omaha , Nebraska 68198-6025 , United States
| |
Collapse
|
31
|
Carlsson ACC, Scholfield MR, Rowe RK, Ford MC, Alexander AT, Mehl RA, Ho PS. Increasing Enzyme Stability and Activity through Hydrogen Bond-Enhanced Halogen Bonds. Biochemistry 2018; 57:4135-4147. [PMID: 29921126 PMCID: PMC6052408 DOI: 10.1021/acs.biochem.8b00603] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
The construction of more stable proteins
is important in biomolecular
engineering, particularly in the design of biologics-based therapeutics.
We show here that replacing the tyrosine at position 18 (Y18) of T4
lysozyme with the unnatural amino acid m-chlorotyrosine
(mClY) increases both the thermal stability
(increasing the melting temperature by ∼1 °C and the melting
enthalpy by 3 kcal/mol) and the enzymatic activity at elevated temperatures
(15% higher than that of the parent enzyme at 40 °C) of this
classic enzyme. The chlorine of mClY forms
a halogen bond (XB) to the carbonyl oxygen of the peptide bond at
glycine 28 (G28) in a tight loop near the active site. In this case,
the XB potential of the typically weak XB donor Cl is shown from quantum
chemical calculations to be significantly enhanced by polarization
via an intramolecular hydrogen bond (HB) from the adjacent hydroxyl
substituent of the tyrosyl side chain, resulting in a distinctive
synergistic HB-enhanced XB (or HeX-B for short) interaction. The larger
halogens (bromine and iodine) are not well accommodated within this
same loop and, consequently, do not exhibit the effects on protein
stability or function associated with the HeX-B interaction. Thus,
we have for the first time demonstrated that an XB can be engineered
to stabilize and increase the activity of an enzyme, with the increased
stabilizing potential of the HeX-B further extending the application
of halogenated amino acids in the design of more stable protein therapeutics.
Collapse
Affiliation(s)
- Anna-Carin C Carlsson
- Department of Biochemistry & Molecular Biology , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Matthew R Scholfield
- Department of Biochemistry & Molecular Biology , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Rhianon K Rowe
- Department of Biochemistry & Molecular Biology , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Melissa Coates Ford
- Department of Biochemistry & Molecular Biology , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Austin T Alexander
- Department of Biochemistry & Biophysics , Oregon State University , Corvallis , Oregon 97333 , United States
| | - Ryan A Mehl
- Department of Biochemistry & Biophysics , Oregon State University , Corvallis , Oregon 97333 , United States
| | - P Shing Ho
- Department of Biochemistry & Molecular Biology , Colorado State University , Fort Collins , Colorado 80523 , United States
| |
Collapse
|
32
|
Carr CE, Marky LA. Increased Flexibility between Stems of Intramolecular Three-Way Junctions by the Insertion of Bulges. Biophys J 2018; 114:2764-2774. [PMID: 29925014 PMCID: PMC6026347 DOI: 10.1016/j.bpj.2018.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/25/2018] [Accepted: 05/01/2018] [Indexed: 12/20/2022] Open
Abstract
Intramolecular junctions are a ubiquitous structure within DNA and RNA; three-way junctions in particular have high strain around the junction because of the lack of flexibility, preventing the junctions from adopting conformations that would allow for optimal folding. In this work, we used a combination of calorimetric and spectroscopic techniques to study the unfolding of four intramolecular three-way junctions. The control three-way junction, 3H, has the sequence d(GAAATTGCGCT5GCGCGTGCT5GCACAATTTC), which has three arms of different sequences. We studied three other three-way junctions in which one (2HS1H), two (HS12HS1), and three (HS1HS1HS1) cytosine bulges were placed at the junction to allow the arms to adopt a wider range of conformations that may potentially relieve strain. Through calorimetric studies, it was concluded that bulges produce only minor effects on the enthalpic and thermal stability at physiological salt concentrations for 2HS1H and HS1HS1HS1. HS12HS1 displays the strongest effect, with the GTGC stem lacking a defined transition. In addition to unfolding thermodynamics, the differential binding of counterions, water, and protons was determined. It was found that with each bulge, there was a large increase in the binding of counterions; this correlated with a decrease in the immobilization of structural water molecules. The increase in counterion uptake upon folding likely displaces binding of structural water, which is measured by the osmotic stress method, in favor of electrostricted waters. The cytosine bulges do not affect the binding of protons; this finding indicates that the bulges are not forming base-triplet stacks. These results indicate that bulges in junctions do not affect the unfolding profile or the enthalpy of oligonucleotides but do affect the number and amount of molecules immobilized by the junction.
Collapse
Affiliation(s)
- Carolyn E Carr
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Luis A Marky
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
33
|
McRae EKS, Davidson DE, Dupas SJ, McKenna SA. Insights into the RNA quadruplex binding specificity of DDX21. Biochim Biophys Acta Gen Subj 2018; 1862:1973-1979. [PMID: 29906500 DOI: 10.1016/j.bbagen.2018.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/28/2018] [Accepted: 06/11/2018] [Indexed: 11/20/2022]
Abstract
Guanine quadruplexes can form in both DNA and RNA and influence many biological processes through various protein interactions. The DEAD-box RNA helicase protein DDX21 has been shown to bind and remodel RNA quadruplexes but little is known about its specificity for different quadruplex species. Previous reports have suggested DDX21 may interact with telomeric repeat containing RNA quadruplex (TERRA), an integral component of the telomere that contributes to telomeric heterochromatin formation and telomere length regulation. Here we report that the C-terminus of DDX21 directly interacts with TERRA. We use, for the first time, 2D saturation transfer difference NMR to map the protein binding site on a ribonucleic acid species and show that the quadruplex binding domain of DDX21 interacts primarily with the phosphoribose backbone of quadruplexes. Furthermore, by mutating the 2'OH of loop nucleotides we can drastically reduce DDX21's affinity for quadruplex, indicating that the recognition of quadruplex and specificity for TERRA is mediated by interactions with the 2'OH of loop nucleotides.
Collapse
Affiliation(s)
- Ewan K S McRae
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - David E Davidson
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Steven J Dupas
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada; Manitoba Institute for Materials, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
34
|
Paul S, Samanta A. Ground- and Excited-State Interactions of a Psoralen Derivative with Human Telomeric G-Quadruplex DNA. J Phys Chem B 2018; 122:2277-2286. [PMID: 29376354 DOI: 10.1021/acs.jpcb.7b12475] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
G-quadruplex DNA has been a recent target for anticancer agents, and its binding interactions with small molecules, often used as anticancer drugs, have become an important area of research. Considering that psoralens have long been studied in the context of duplex DNA but that very little is known about their potential as G-quadruplex binders and their excited-state interaction with the latter has not been explored, we have studied herein the binding of a planar water-soluble psoralen derivative, 4'-aminomethyl-4,5',8-trimethylpsoralen (AMT), with the 22-mer human telomeric G-quadruplex-forming sequence, AGGG(TTAGGG)3, labeled here as (hTel22), and investigated the consequences of photoexcitation of AMT by calorimetric and spectroscopic techniques. The results show an enthalpy-driven 1:1 binding of AMT with hTel22 via end-stacking mode. Fluorescence quenching experiments on 6-fluorescein amidite-labeled oligomers indicate that the binding site is nearer to the 3' end of hTel22 in the diagonal loop region. Femtosecond time-resolved transient absorption measurements indicate electron transfer from the guanine moiety of hTel22 to photoexcited AMT, leading to the formation of a radical pair species (AMT•-G•+), which survives for 30 ps and is favored by a parallel/quasi-parallel orientation between the two. The findings reveal psoralens as a prospective class of compounds for the development of anticancer therapeutics by targeting the G-quadruplex DNA.
Collapse
Affiliation(s)
- Sneha Paul
- School of Chemistry, University of Hyderabad , Hyderabad 500046, India
| | - Anunay Samanta
- School of Chemistry, University of Hyderabad , Hyderabad 500046, India
| |
Collapse
|
35
|
Agrawal N, Skelton AA. Binding of 12-Crown-4 with Alzheimer’s Aβ40 and Aβ42 Monomers and Its Effect on Their Conformation: Insight from Molecular Dynamics Simulations. Mol Pharm 2017; 15:289-299. [DOI: 10.1021/acs.molpharmaceut.7b00966] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nikhil Agrawal
- College
of Health Sciences, Discipline of Pharmaceutical Sciences, University of KwaZulu-Natal, Westville, Durban 4041, South Africa
| | - Adam A. Skelton
- College
of Health Sciences, Discipline of Pharmaceutical Sciences, University of KwaZulu-Natal, Westville, Durban 4041, South Africa
| |
Collapse
|
36
|
Bozelli JC, Hou YH, Epand RM. Thermodynamics of Methyl-β-cyclodextrin-Induced Lipid Vesicle Solubilization: Effect of Lipid Headgroup and Backbone. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13882-13891. [PMID: 29120189 DOI: 10.1021/acs.langmuir.7b03447] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The low aqueous solubility of phospholipids makes necessary the use of lipid carriers in studies ranging from lipid traffic and metabolism to the engineering of model membranes bearing lipid transverse asymmetry. One particular lipid carrier that has proven to be particularly useful is methyl-β-cyclodextrin (MβCD). To assess the interaction of MβCD with structurally different phospholipids, the present work reports the results of isothermal titration calorimetry in conjunction with dynamic light scattering measurements. The results showed that the interaction of MβCD with large unilamellar vesicles composed of a single type of lipid led to the solubilization of the lipid vesicle and, consequently, the complexation of MβCD with the lipids. This interaction is dependent on the nature of the lipid headgroup, with a preferable interaction with phosphatidylglycerol in comparison to phosphatidylcholine. It was also possible to show a role played by the phospholipid backbone in this interaction. In many cases, the differences in the transfer energy between one lipid and another in going from a bilayer to a cyclodextrin-bound state can be qualitatively explained by the energy required to extract the lipid from a bilayer. In all cases, the data showed that the solubilization of the vesicles is entropically driven with a large negative ΔCp, suggesting a mechanism dependent on the hydrophobic effect.
Collapse
Affiliation(s)
- José Carlos Bozelli
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre , Hamilton, Ontario L8S 4K1 Canada
| | - Yu Heng Hou
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre , Hamilton, Ontario L8S 4K1 Canada
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre , Hamilton, Ontario L8S 4K1 Canada
| |
Collapse
|
37
|
Guha R, Mohajerani F, Collins M, Ghosh S, Sen A, Velegol D. Chemotaxis of Molecular Dyes in Polymer Gradients in Solution. J Am Chem Soc 2017; 139:15588-15591. [DOI: 10.1021/jacs.7b08783] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Rajarshi Guha
- Department of Chemical Engineering, †Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Farzad Mohajerani
- Department of Chemical Engineering, †Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Matthew Collins
- Department of Chemical Engineering, †Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Subhadip Ghosh
- Department of Chemical Engineering, †Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ayusman Sen
- Department of Chemical Engineering, †Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Darrell Velegol
- Department of Chemical Engineering, †Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
38
|
Concha-Marambio L, Maldonado P, Lagos R, Monasterio O, Montecinos-Franjola F. Thermal adaptation of mesophilic and thermophilic FtsZ assembly by modulation of the critical concentration. PLoS One 2017; 12:e0185707. [PMID: 28982174 PMCID: PMC5628889 DOI: 10.1371/journal.pone.0185707] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 09/18/2017] [Indexed: 01/16/2023] Open
Abstract
Cytokinesis is the last stage in the cell cycle. In prokaryotes, the protein FtsZ guides cell constriction by assembling into a contractile ring-shaped structure termed the Z-ring. Constriction of the Z-ring is driven by the GTPase activity of FtsZ that overcomes the energetic barrier between two protein conformations having different propensities to assemble into polymers. FtsZ is found in psychrophilic, mesophilic and thermophilic organisms thereby functioning at temperatures ranging from subzero to >100°C. To gain insight into the functional adaptations enabling assembly of FtsZ in distinct environmental conditions, we analyzed the energetics of FtsZ function from mesophilic Escherichia coli in comparison with FtsZ from thermophilic Methanocaldococcus jannaschii. Presumably, the assembly may be similarly modulated by temperature for both FtsZ orthologs. The temperature dependence of the first-order rates of nucleotide hydrolysis and of polymer disassembly, indicated an entropy-driven destabilization of the FtsZ-GTP intermediate. This destabilization was true for both mesophilic and thermophilic FtsZ, reflecting a conserved mechanism of disassembly. From the temperature dependence of the critical concentrations for polymerization, we detected a change of opposite sign in the heat capacity, that was partially explained by the specific changes in the solvent-accessible surface area between the free and polymerized states of FtsZ. At the physiological temperature, the assembly of both FtsZ orthologs was found to be driven by a small positive entropy. In contrast, the assembly occurred with a negative enthalpy for mesophilic FtsZ and with a positive enthalpy for thermophilic FtsZ. Notably, the assembly of both FtsZ orthologs is characterized by a critical concentration of similar value (1–2 μM) at the environmental temperatures of their host organisms. These findings suggest a simple but robust mechanism of adaptation of FtsZ, previously shown for eukaryotic tubulin, by adjustment of the critical concentration for polymerization.
Collapse
Affiliation(s)
- Luis Concha-Marambio
- Laboratorio de Biologia Estructural y Molecular/Departamento de Biologia/Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Paula Maldonado
- Laboratorio de Biologia Estructural y Molecular/Departamento de Biologia/Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Rosalba Lagos
- Laboratorio de Biologia Estructural y Molecular/Departamento de Biologia/Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Octavio Monasterio
- Laboratorio de Biologia Estructural y Molecular/Departamento de Biologia/Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- * E-mail: (OM); (FMF)
| | - Felipe Montecinos-Franjola
- Laboratorio de Biologia Estructural y Molecular/Departamento de Biologia/Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- * E-mail: (OM); (FMF)
| |
Collapse
|
39
|
Schön A, Clarkson BR, Jaime M, Freire E. Temperature stability of proteins: Analysis of irreversible denaturation using isothermal calorimetry. Proteins 2017; 85:2009-2016. [PMID: 28722205 DOI: 10.1002/prot.25354] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/10/2017] [Accepted: 07/18/2017] [Indexed: 01/17/2023]
Abstract
The structural stability of proteins has been traditionally studied under conditions in which the folding/unfolding reaction is reversible, since thermodynamic parameters can only be determined under these conditions. Achieving reversibility conditions in temperature stability experiments has often required performing the experiments at acidic pH or other nonphysiological solvent conditions. With the rapid development of protein drugs, the fastest growing segment in the pharmaceutical industry, the need to evaluate protein stability under formulation conditions has acquired renewed urgency. Under formulation conditions and the required high protein concentration (∼100 mg/mL), protein denaturation is irreversible and frequently coupled to aggregation and precipitation. In this article, we examine the thermal denaturation of hen egg white lysozyme (HEWL) under irreversible conditions and concentrations up to 100 mg/mL using several techniques, especially isothermal calorimetry which has been used to measure the enthalpy and kinetics of the unfolding and aggregation/precipitation at 12°C below the transition temperature measured by DSC. At those temperatures the rate of irreversible protein denaturation and aggregation of HEWL is measured to be on the order of 1 day-1 . Isothermal calorimetry appears a suitable technique to identify buffer formulation conditions that maximize the long term stability of protein drugs.
Collapse
Affiliation(s)
- Arne Schön
- Department of Biology, Johns Hopkins University, 3400 North Charles, Baltimore, Maryland, 21218
| | - Benjamin R Clarkson
- Department of Biology, Johns Hopkins University, 3400 North Charles, Baltimore, Maryland, 21218
| | - Maria Jaime
- Department of Biology, Johns Hopkins University, 3400 North Charles, Baltimore, Maryland, 21218
| | - Ernesto Freire
- Department of Biology, Johns Hopkins University, 3400 North Charles, Baltimore, Maryland, 21218
| |
Collapse
|
40
|
Volk K, Breunig SD, Rid R, Herzog J, Bräuer M, Hundsberger H, Klein C, Müller N, Önder K. Structural analysis and interaction studies of acyl-carrier protein (acpP) of Staphylococcus aureus, an extraordinarily thermally stable protein. Biol Chem 2017; 398:125-133. [PMID: 27467752 DOI: 10.1515/hsz-2016-0185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/22/2016] [Indexed: 11/15/2022]
Abstract
Acyl-carrier-protein (acpP) is an essential protein in fatty acid biosynthesis of Staphylococcus aureus [Cronan, J.E. and Thomas, J. (2009). Complex enzymes in microbial natural product biosynthesis, part B: polyketides, aminocoumarins and carbohydrates. METHOD Enzymol. 459, 395-433; Halavaty, A.S., Kim, Y., Minasov, G., Shuvalova, L., Dubrovska, I., Winsor, J., Zhou, M., Onopriyenko, O., Skarina, T., Papazisi, L., et al. (2012). Structural characterization and comparison of three acyl-carrier-protein synthases from pathogenic bacteria. Acta Crystallogr. Sect. D Biol. Crystallogr. 68, 1359-1370]. The inactive apo-form is converted to the active holo-enzyme by acyl-carrier protein synthase (acpS) through addition of a 4'-phosphopantetheine group from coenzyme A to a conserved serine residue of acpP [Flugel, R.S., Hwangbo, Y., Lambalot, R.H., Cronan, J.E., and Walsh, C.T. (2000). Holo-(acyl-carrier protein) synthase and phosphopantetheinyl transfer in Escherichia coli. J. Biol. Chem. 275, 959-968; Lambalot, R.H. and Walsh, C.T. (1995). Cloning, overproduction, and characterization of the Escherichia coli holo-acyl-carrier protein synthase. J. Biol. Chem. 270, 24658-24661]. Once activated, acpP acts as an anchor for the growing fatty acid chain. Structural data from X-ray crystallographic analysis reveals that, despite its small size (8 kDa), acpP adopts a distinct, mostly α-helical structure when complexed with acpS [Halavaty, A.S., Kim, Y., Minasov, G., Shuvalova, L., Dubrovska, I., Winsor, J., Zhou, M., Onopriyenko, O., Skarina, T., Papazisi, L., et al. (2012). Structural characterization and comparison of three acyl-carrier-protein synthases from pathogenic bacteria. Acta Crystallogr. Sect. D Biol. Crystallogr. 68, 1359-1370; Byers, D.M. and Gong, H. (2007). Acyl carrier protein: structure-function relationships in a conserved multifunctional protein family. Biochem. Cell Biol. 85, 649-662]. We expressed and purified recombinant, active S. aureus acpP from Escherichia coli and mimicked the beginning of fatty acid biosynthesis by employing an [14C]-acp loading assay. Surprisingly, acpP remained functional even after heat treatment at 95°C for up to 10 min. NMR data from 2D-HSQC experiments as well as interaction studies with acpS confirmed that acpP is structured and active both before and after heat treatment, with no significant differences between the two. Thus, our data suggest that S. aureus acpP is a highly stable protein capable of maintaining its structure at high temperatures.
Collapse
|
41
|
Yu S, Schuchardt M, Tölle M, van der Giet M, Zidek W, Dzubiella J, Ballauff M. Interaction of human serum albumin with uremic toxins: a thermodynamic study. RSC Adv 2017. [DOI: 10.1039/c7ra02838e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Interaction of uremic toxins with HSA is studied by ITC and understood in terms of thermodynamic driving forces.
Collapse
Affiliation(s)
- Shun Yu
- Soft Matter and Functional Materials
- Helmholtz-Zentrum Berlin
- 14109 Berlin
- Germany
- Helmholtz Virtual Institute “Multifunctional Biomaterials for Medicine”
| | - Mirjam Schuchardt
- Medizinische Klinik für Nephrologie
- Universitätsmedizin Berlin
- Campus Benjamin Franklin
- 12203 Berlin
- Germany
| | - Markus Tölle
- Medizinische Klinik für Nephrologie
- Universitätsmedizin Berlin
- Campus Benjamin Franklin
- 12203 Berlin
- Germany
| | - Markus van der Giet
- Medizinische Klinik für Nephrologie
- Universitätsmedizin Berlin
- Campus Benjamin Franklin
- 12203 Berlin
- Germany
| | - Walter Zidek
- Medizinische Klinik für Nephrologie
- Universitätsmedizin Berlin
- Campus Benjamin Franklin
- 12203 Berlin
- Germany
| | - Joachim Dzubiella
- Soft Matter and Functional Materials
- Helmholtz-Zentrum Berlin
- 14109 Berlin
- Germany
- Helmholtz Virtual Institute “Multifunctional Biomaterials for Medicine”
| | - Matthias Ballauff
- Soft Matter and Functional Materials
- Helmholtz-Zentrum Berlin
- 14109 Berlin
- Germany
- Helmholtz Virtual Institute “Multifunctional Biomaterials for Medicine”
| |
Collapse
|
42
|
Burova TV, Grinberg NV, Dubovik AS, Olenichenko EA, Orlov VN, Grinberg VY. Interpolyelectrolyte complexes of lysozyme with short poly[di(carboxylatophenoxy)phosphazene]. Binding energetics and protein conformational stability. POLYMER 2017. [DOI: 10.1016/j.polymer.2016.11.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
The Ebola Virus VP30-NP Interaction Is a Regulator of Viral RNA Synthesis. PLoS Pathog 2016; 12:e1005937. [PMID: 27755595 PMCID: PMC5068707 DOI: 10.1371/journal.ppat.1005937] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/14/2016] [Indexed: 12/20/2022] Open
Abstract
Filoviruses are capable of causing deadly hemorrhagic fevers. All nonsegmented negative-sense RNA-virus nucleocapsids are composed of a nucleoprotein (NP), a phosphoprotein (VP35) and a polymerase (L). However, the VP30 RNA-synthesis co-factor is unique to the filoviruses. The assembly, structure, and function of the filovirus RNA replication complex remain unclear. Here, we have characterized the interactions of Ebola, Sudan and Marburg virus VP30 with NP using in vitro biochemistry, structural biology and cell-based mini-replicon assays. We have found that the VP30 C-terminal domain interacts with a short peptide in the C-terminal region of NP. Further, we have solved crystal structures of the VP30-NP complex for both Ebola and Marburg viruses. These structures reveal that a conserved, proline-rich NP peptide binds a shallow hydrophobic cleft on the VP30 C-terminal domain. Structure-guided Ebola virus VP30 mutants have altered affinities for the NP peptide. Correlation of these VP30-NP affinities with the activity for each of these mutants in a cell-based mini-replicon assay suggests that the VP30-NP interaction plays both essential and inhibitory roles in Ebola virus RNA synthesis. Filoviruses use a system of proteins and RNA to regulate viral RNA genome transcription and replication. Here, we have determined crystal structures and the biological functions of the protein complex formed by the filovirus transcriptional activator, VP30, and the core component of the nucleocapsid machinery, NP. The complex of these two essential players represses Ebola virus RNA synthesis and may have played a role in the evolution of filoviruses to tune viral RNA synthesis activity to a level ideal for infection. This interaction is conserved across the filoviruses and may provide an opportunity for therapeutic development.
Collapse
|
44
|
Huggins DJ. Studying the role of cooperative hydration in stabilizing folded protein states. J Struct Biol 2016; 196:394-406. [PMID: 27633532 PMCID: PMC5131609 DOI: 10.1016/j.jsb.2016.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/03/2016] [Accepted: 09/07/2016] [Indexed: 01/19/2023]
Abstract
Understanding and modelling protein folding remains a key scientific and engineering challenge. Two key questions in protein folding are (1) why many proteins adopt a folded state and (2) how these proteins transition from the random coil ensemble to a folded state. In this paper we employ molecular dynamics simulations to address the first of these questions. Computational methods are well-placed to address this issue due to their ability to analyze systems at atomic-level resolution. Traditionally, the stability of folded proteins has been ascribed to the balance of two types of intermolecular interactions: hydrogen-bonding interactions and hydrophobic contacts. In this study, we explore a third type of intermolecular interaction: cooperative hydration of protein surface residues. To achieve this, we consider multiple independent simulations of the villin headpiece domain to quantify the contributions of different interactions to the energy of the native and fully extended states. In addition, we consider whether these findings are robust with respect to the protein forcefield, the water model, and the presence of salt. In all cases, we identify many cooperatively hydrated interactions that are transient but energetically favor the native state. Whilst further work on additional protein structures, forcefields, and water models is necessary, these results suggest a role for cooperative hydration in protein folding that should be explored further. Rational design of cooperative hydration on the protein surface could be a viable strategy for increasing protein stability.
Collapse
Affiliation(s)
- David J Huggins
- Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, 19 J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom; Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom.
| |
Collapse
|
45
|
Deshmukh SA, Solomon LA, Kamath G, Fry HC, Sankaranarayanan SKRS. Water ordering controls the dynamic equilibrium of micelle-fibre formation in self-assembly of peptide amphiphiles. Nat Commun 2016; 7:12367. [PMID: 27554944 PMCID: PMC4999504 DOI: 10.1038/ncomms12367] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 06/27/2016] [Indexed: 01/29/2023] Open
Abstract
Understanding the role of water in governing the kinetics of the self-assembly processes of amphiphilic peptides remains elusive. Here, we use a multistage atomistic-coarse-grained approach, complemented by circular dichroism/infrared spectroscopy and dynamic light scattering experiments to highlight the dual nature of water in driving the self-assembly of peptide amphiphiles (PAs). We show computationally that water cage formation and breakage near the hydrophobic groups control the fusion dynamics and aggregation of PAs in the micellar stage. Simulations also suggest that enhanced structural ordering of vicinal water near the hydrophilic amino acids shifts the equilibrium towards the fibre phase and stimulates structure and order during the PA assembly into nanofibres. Experiments validate our simulation findings; the measured infrared O–H bond stretching frequency is reminiscent of an ice-like bond which suggests that the solvated water becomes increasingly ordered with time in the assembled peptide network, thus shedding light on the role of water in a self-assembly process. The role of water in the kinetics of the self-assembly process of amphiphilic peptides still remains unknown. Sankaranarayanan et al. have shown through computational study that water has a dual nature when dictating the mechanism and dynamics of self-assembly of peptide amphiphiles.
Collapse
Affiliation(s)
- Sanket A Deshmukh
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Lee A Solomon
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Ganesh Kamath
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - H Christopher Fry
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | | |
Collapse
|
46
|
Abstract
On the basis of many literature measurements, a critical overview is given on essential noncovalent interactions in synthetic supramolecular complexes, accompanied by analyses with selected proteins. The methods, which can be applied to derive binding increments for single noncovalent interactions, start with the evaluation of consistency and additivity with a sufficiently large number of different host-guest complexes by applying linear free energy relations. Other strategies involve the use of double mutant cycles, of molecular balances, of dynamic combinatorial libraries, and of crystal structures. Promises and limitations of these strategies are discussed. Most of the analyses stem from solution studies, but a few also from gas phase. The empirically derived interactions are then presented on the basis of selected complexes with respect to ion pairing, hydrogen bonding, electrostatic contributions, halogen bonding, π-π-stacking, dispersive forces, cation-π and anion-π interactions, and contributions from the hydrophobic effect. Cooperativity in host-guest complexes as well as in self-assembly, and entropy factors are briefly highlighted. Tables with typical values for single noncovalent free energies and polarity parameters are in the Supporting Information.
Collapse
Affiliation(s)
- Frank Biedermann
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Hans-Jörg Schneider
- FR Organische Chemie der Universität des Saarlandes , D-66041 Saarbrücken, Germany
| |
Collapse
|
47
|
Harris RC, Pettitt BM. Reconciling the understanding of 'hydrophobicity' with physics-based models of proteins. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:083003. [PMID: 26836518 PMCID: PMC5370576 DOI: 10.1088/0953-8984/28/8/083003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The idea that a 'hydrophobic energy' drives protein folding, aggregation, and binding by favoring the sequestration of bulky residues from water into the protein interior is widespread. The solvation free energies (ΔGsolv) of small nonpolar solutes increase with surface area (A), and the free energies of creating macroscopic cavities in water increase linearly with A. These observations seem to imply that there is a hydrophobic component (ΔGhyd) of ΔGsolv that increases linearly with A, and this assumption is widely used in implicit solvent models. However, some explicit-solvent molecular dynamics studies appear to contradict these ideas. For example, one definition (ΔG(LJ)) of ΔGhyd is that it is the free energy of turning on the Lennard-Jones (LJ) interactions between the solute and solvent. However, ΔG(LJ) decreases with A for alanine and glycine peptides. Here we argue that these apparent contradictions can be reconciled by defining ΔGhyd to be a near hard core insertion energy (ΔGrep), as in the partitioning proposed by Weeks, Chandler, and Andersen. However, recent results have shown that ΔGrep is not a simple function of geometric properties of the molecule, such as A and the molecular volume, and that the free energy of turning on the attractive part of the LJ potential cannot be computed from first-order perturbation theory for proteins. The theories that have been developed from these assumptions to predict ΔGhyd are therefore inadequate for proteins.
Collapse
Affiliation(s)
- Robert C Harris
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-0304, USA
| | | |
Collapse
|
48
|
van Dijk E, Varilly P, Knowles TPJ, Frenkel D, Abeln S. Consistent Treatment of Hydrophobicity in Protein Lattice Models Accounts for Cold Denaturation. PHYSICAL REVIEW LETTERS 2016; 116:078101. [PMID: 26943560 DOI: 10.1103/physrevlett.116.078101] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Indexed: 05/04/2023]
Abstract
The hydrophobic effect stabilizes the native structure of proteins by minimizing the unfavorable interactions between hydrophobic residues and water through the formation of a hydrophobic core. Here, we include the entropic and enthalpic contributions of the hydrophobic effect explicitly in an implicit solvent model. This allows us to capture two important effects: a length-scale dependence and a temperature dependence for the solvation of a hydrophobic particle. This consistent treatment of the hydrophobic effect explains cold denaturation and heat capacity measurements of solvated proteins.
Collapse
Affiliation(s)
- Erik van Dijk
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
- Centre for Integrative Bioinformatics (IBIVU), Vrije Universiteit, De Boelelaan 1081A, 1081 HV Amsterdam, Netherlands
| | - Patrick Varilly
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Daan Frenkel
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Sanne Abeln
- Centre for Integrative Bioinformatics (IBIVU), Vrije Universiteit, De Boelelaan 1081A, 1081 HV Amsterdam, Netherlands
| |
Collapse
|
49
|
Jackson MB. The Hydrophobic Effect in Solute Partitioning and Interfacial Tension. Sci Rep 2016; 6:19265. [PMID: 26813712 PMCID: PMC4728684 DOI: 10.1038/srep19265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/22/2015] [Indexed: 11/09/2022] Open
Abstract
Studies of the partitioning of hydrophobic solutes between water and nonpolar solvents provide estimates for the energy cost of creating hydrophobic-water contacts. This energy is a factor of three lower than the work of adhesion derived from interfacial tension measurements. This discrepancy noted by Tanford in 1979 is widely viewed as a serious challenge to our understanding of hydrophobic interactions. However, the interfacial energy of a water-alkane interface depends on chain length. A simple analysis of published data shows that the loss of rotational freedom of an alkane chain at an interface accounts quantitatively for the length-dependent contribution to interfacial tension, leaving a length-independent contribution very close to the free energy of transfer per unit of solvent accessible surface area. This analysis thus clarifies the discrepancy between the thermodynamic and interfacial tension measurements of hydrophobic interaction energy. Alkanes do not loose rotational freedom when transferred between two different liquid phases but they do at an interface. This reconciles the difference between microscopic and macroscopic measurements. Like the partitioning free energy, the work of adhesion also has a large entropy and small enthalpy at 20 oC.
Collapse
Affiliation(s)
- Meyer B Jackson
- Department of Neuroscience University of Wisconsin - Madison, 1111 Highland Ave, Madison, WI 53705
| |
Collapse
|
50
|
MacRaild CA, Richards JS, Anders RF, Norton RS. Antibody Recognition of Disordered Antigens. Structure 2015; 24:148-157. [PMID: 26712277 DOI: 10.1016/j.str.2015.10.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/12/2015] [Accepted: 10/28/2015] [Indexed: 11/16/2022]
Abstract
Disordered proteins are important antigens in a range of infectious diseases. Little is known, however, about the molecular details of recognition of disordered antigens by their cognate antibodies. Using a large dataset of protein antigens, we show that disordered epitopes are as likely to be recognized by antibodies as ordered epitopes. Moreover, the affinity with which antigens are recognized is, unexpectedly, only weakly dependent on the degree of disorder within the epitope. Structurally defined complexes of ordered and disordered protein antigens with their cognate antibodies reveal that disordered epitopes are smaller than their ordered counterparts, but are more efficient in their interactions with antibody. Our results demonstrate that disordered antigens are bona fide targets of antibody recognition, and that recognition of disordered epitopes is particularly sensitive to epitope variation, a finding with implications for the effects of disorder on the specificity of molecular recognition more generally.
Collapse
Affiliation(s)
- Christopher A MacRaild
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| | - Jack S Richards
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC 3004, Australia
| | - Robin F Anders
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|