1
|
Stephenson KAJ, Dhanji SR, Pakzad-Vaezi K. Is there a predisposition to uveitis in Turner syndrome? Ophthalmic Genet 2025; 46:297-300. [PMID: 40038093 DOI: 10.1080/13816810.2025.2473970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
INTRODUCTION Autoimmunity is prevalent in Turner syndrome (TS) though uveitis is rarely reported. A definite link between TS and uveitis is not yet established. METHODS We report two cases of uveitis with a history of TS and review the literature regarding TS, uveitis and autoimmunity. RESULTS TS-associated uveitis is acute (100%), non-hypertensive (100%) anterior uveitis (87.5%) that usually responds to topical therapy without unexpected long-term visual sequelae. Systemic treatment is uncommonly required as relapses are infrequent. CONCLUSION Reported cases of uveitis in TS were acute/symptomatic, normotensive and both unilateral and bilateral cases have been described. Systemic causes including infectious (e.g. syphilis, tuberculosis), noninfectious (e.g. sarcoidosis, HLA-B27) and specific syndromes (e.g. tubulointerstitial nephritis with uveitis, juvenile idiopathic arthritis) should be sought. Systemic immunosuppression was not needed in most cases as a good response to topical therapy was typical. There are baseline risks in TS (e.g. further growth limitation in children, baseline increased risk of solid tumors, diabetes mellitus), which should be considered before commencing systemic corticosteroids or immunosuppressants.
Collapse
Affiliation(s)
- Kirk A J Stephenson
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shanil R Dhanji
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kaivon Pakzad-Vaezi
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Wu Y, Wu D, Lan Y, Lan S, Li D, Zheng Z, Wang H, Ma L. Case report: Sex-specific characteristics of epilepsy phenotypes associated with Xp22.31 deletion: a case report and review. Front Genet 2023; 14:1025390. [PMID: 37347056 PMCID: PMC10280017 DOI: 10.3389/fgene.2023.1025390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 05/23/2023] [Indexed: 06/23/2023] Open
Abstract
Deletion in the Xp22.31 region is increasingly suggested to be involved in the etiology of epilepsy. Little is known regarding the genomic and clinical delineations of X-linked epilepsy in the Chinese population or the sex-stratified difference in epilepsy characteristics associated with deletions in the Xp22.31 region. In this study, we reported two siblings with a 1.69 Mb maternally inherited microdeletion at Xp22.31 involving the genes VCX3A, HDHD1, STS, VCX, VCX2, and PNPLA4 presenting with easily controlled focal epilepsy and language delay with mild ichthyosis in a Chinese family with a traceable 4-generation history of skin ichthyosis. Both brain magnetic resonance imaging results were normal, while EEG revealed epileptic abnormalities. We further performed an exhaustive literature search, documenting 25 patients with epilepsy with gene defects in Xp22.31, and summarized the epilepsy heterogeneities between sexes. Males harboring the Xp22.31 deletion mainly manifested with child-onset, easily controlled focal epilepsy accompanied by X-linked ichthyosis; the deletions were mostly X-linked recessive, with copy number variants (CNVs) in the classic region of deletion (863.38 kb-2 Mb). In contrast, epilepsy in females tended to be earlier-onset, and relatively refractory, with pathogenic CNV sizes varying over a larger range (859 kb-56.36 Mb); the alterations were infrequently inherited and almost combined with additional CNVs. A candidate region encompassing STS, HDHD1, and MIR4767 was the likely pathogenic epilepsy-associated region. This study filled in the knowledge gap regarding the genomic and clinical delineations of X-linked recessive epilepsy in the Chinese population and extends the understanding of the sex-specific characteristics of Xp22.31 deletion in regard to epilepsy.
Collapse
Affiliation(s)
- Yi Wu
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Dan Wu
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Yulong Lan
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Shaocong Lan
- Department of clinical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Duo Li
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Zexin Zheng
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Hongwu Wang
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Lian Ma
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Hematology and Oncology, Shenzhen Children’s Hospital of China Medical University, Shenzhen, China
- Shenzhen Public Service Platform of Molecular Medicine in Pediatric Hematology and Oncology, Shenzhen, China
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University (The Women and Children’s Hospital of Guangzhou Medical University), Guangzhou, China
| |
Collapse
|
3
|
Fischer J, Hotz A, Komlosi K. Syndromic ichthyoses. MED GENET-BERLIN 2023; 35:23-32. [PMID: 38835422 PMCID: PMC10842576 DOI: 10.1515/medgen-2023-2006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Inherited ichthyoses are classified as Mendelian disorders of cornification (MEDOC), which are further defined on the basis of clinical and genetic features and can be divided into non-syndromic and syndromic forms. To date, mutations in more than 30 genes are known to result in various types of syndromic ichthyoses, which, in addition to mostly generalised scaling and hyperkeratosis of the skin, also show additional organ involvement. The syndromic ichthyoses are generally very rare and are classified based on the mode of inheritance, and can be further subdivided according to the predominant symptoms. In our review we provide a concise overview of the most prevalent syndromic forms of ichthyosis within each subgroup. We emphasize the importance of the clinical assessment of complex syndromes even in the era of genetic testing as a first-tier diagnostic and specifically the need to actively assess potential organ involvement in patients with ichthyosis, thereby enabling efficient diagnostic and therapeutic approaches and timely access to specialized centers for rare disorders of cornifications. As part of the Freiburg Center for Rare Diseases a Center for Cornification Disorders was recently established with collaboration of the Institute of Human Genetics and the Department of Dermatology. An early diagnosis of syndromes will be of direct benefit to the patient regarding interventional and therapeutic measures e. g. in syndromes with cardiac or metabolic involvement and allows informed reproductive options and access to prenatal and preimplantation genetic diagnosis in the family.
Collapse
Affiliation(s)
- Judith Fischer
- University of FreiburgFaculty of MedicineFreiburgDeutschland
| | - Alrun Hotz
- University of FreiburgFaculty of MedicineFreiburgDeutschland
| | - Katalin Komlosi
- University of FreiburgFaculty of MedicineFreiburgDeutschland
| |
Collapse
|
4
|
Young J. Exome Sequencing as a Tool for Detecting Point Mutations and Deletions in Patients With Hypogonadotropic Hypogonadism. J Clin Endocrinol Metab 2022; 107:e4254-e4255. [PMID: 35727719 DOI: 10.1210/clinem/dgac377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Jacques Young
- Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Department of Reproductive Endocrinology and INSERM U1185, Bicêtre Hospital, F-94275, Le Kremlin-Bicêtre, France
| |
Collapse
|
5
|
Stamou MI, Brand H, Wang M, Wong I, Lippincott MF, Plummer L, Crowley WF, Talkowski M, Seminara S, Balasubramanian R. Prevalence and Phenotypic Effects of Copy Number Variants in Isolated Hypogonadotropic Hypogonadism. J Clin Endocrinol Metab 2022; 107:2228-2242. [PMID: 35574646 PMCID: PMC9282252 DOI: 10.1210/clinem/dgac300] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Indexed: 12/24/2022]
Abstract
CONTEXT The genetic architecture of isolated hypogonadotropic hypogonadism (IHH) has not been completely defined. OBJECTIVE To determine the role of copy number variants (CNVs) in IHH pathogenicity and define their phenotypic spectrum. METHODS Exome sequencing (ES) data in IHH probands (n = 1394) (Kallmann syndrome [IHH with anosmia; KS], n = 706; normosmic IHH [nIHH], n = 688) and family members (n = 1092) at the Reproductive Endocrine Unit and the Center for Genomic Medicine of Massachusetts General Hospital were analyzed for CNVs and single nucleotide variants (SNVs)/indels in 62 known IHH genes. IHH subjects without SNVs/indels in known genes were considered "unsolved." Phenotypes associated with CNVs were evaluated through review of patient medical records. A total of 29 CNVs in 13 genes were detected (overall IHH cohort prevalence: ~2%). Almost all (28/29) CNVs occurred in unsolved IHH cases. While some genes (eg, ANOS1 and FGFR1) frequently harbor both CNVs and SNVs/indels, the mutational spectrum of others (eg, CHD7) was restricted to SNVs/indels. Syndromic phenotypes were seen in 83% and 63% of IHH subjects with multigenic and single gene CNVs, respectively. CONCLUSION CNVs in known genes contribute to ~2% of IHH pathogenesis. Predictably, multigenic contiguous CNVs resulted in syndromic phenotypes. Syndromic phenotypes resulting from single gene CNVs validate pleiotropy of some IHH genes. Genome sequencing approaches are now needed to identify novel genes and/or other elusive variants (eg, noncoding/complex structural variants) that may explain the remaining missing etiology of IHH.
Collapse
Affiliation(s)
- Maria I Stamou
- Reproductive Endocrine Unit, Massachusetts General Hospital and the Center for Reproductive Medicine, Boston, MA 02141, USA
| | - Harrison Brand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02141, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02141, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 02141, USA
| | - Mei Wang
- Reproductive Endocrine Unit, Massachusetts General Hospital and the Center for Reproductive Medicine, Boston, MA 02141, USA
| | - Isaac Wong
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02141, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02141, USA
| | - Margaret F Lippincott
- Reproductive Endocrine Unit, Massachusetts General Hospital and the Center for Reproductive Medicine, Boston, MA 02141, USA
| | - Lacey Plummer
- Reproductive Endocrine Unit, Massachusetts General Hospital and the Center for Reproductive Medicine, Boston, MA 02141, USA
| | - William F Crowley
- Endocrine Division, Massachusetts General Hospital, Boston, MA 02141, USA
| | - Michael Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02141, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02141, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | - Stephanie Seminara
- Reproductive Endocrine Unit, Massachusetts General Hospital and the Center for Reproductive Medicine, Boston, MA 02141, USA
| | - Ravikumar Balasubramanian
- Reproductive Endocrine Unit, Massachusetts General Hospital and the Center for Reproductive Medicine, Boston, MA 02141, USA
| |
Collapse
|
6
|
Sait H, Srivastava P, Dabadghao P, Phadke SR. Kallmann Syndrome and X-linked Ichthyosis Caused by Translocation Between Chromosomes X and Y: A Case Report. J Reprod Infertil 2022; 22:302-306. [PMID: 34987993 PMCID: PMC8669406 DOI: 10.18502/jri.v22i4.7657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/15/2020] [Indexed: 11/24/2022] Open
Abstract
Background Xp22.3 region is characterized by low frequency of interspersed repeats and low GC content. Several clinically important genes including ANOS1 (KAL1) reside in this region. This gene was first identified due to translocation between chromosomes X and Y in a patient with Kallmann syndrome. Case Presentation A 20 year old male presented with complaints of delayed secondary sexual characteristics, impaired sense of smell, and poor scholastic performance. On examination, he had short stature (151 cm; <3rd centile). His sexual maturity corresponded to Tanner stage 3. Stretched penile length was 3.6 cm (<3rd centile). Right testis was undescended with low left testicular volume (12 ml). There was mild ichthyosis over abdomen and back. He had hyposmia, hoarse voice, and synkinesia. Investigations were suggestive of hypogonadotrophic hypogonadism. Karyotype revealed an extra chromosomal material on p arm of chromosome X (46,Xp+,Y). On cytogenetic microarray, deletion of 8.3 Mb on Xp22.33 region and duplication of 12.8 Mb on Yq11.22 region were identified. The breakpoint on X chromosome resulted in deletion of exons 7-14 of ANOS1 gene and complete STS, NLGN4X, ARSL (ARSE), SHOX, and VCX genes. Conclusion Patients diagnosed with Kallmann syndrome should receive careful clinical evaluation to detect presence of a contiguous gene syndrome.
Collapse
Affiliation(s)
- Haseena Sait
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Priyanka Srivastava
- Genetic Metabolic Unit, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Preeti Dabadghao
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Shubha R Phadke
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
7
|
Libotte F, Carpineto SL, Dello Russo C, Viola A, Margiotti K, Restaldi F, Novelli A, Mesoraca A, Giorlandino C. Cytogenetics and Molecular Investigations detect a Mosaic Variant of Turner Syndrome only Suspected by Non-Invasive Prenatal Testing: Two Case Reports with Negative Ultrasound Examinations. J Med Life 2021; 13:624-628. [PMID: 33456614 PMCID: PMC7803325 DOI: 10.25122/jml-2020-0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Prenatal testing has been moving towards non-invasive methods to determine fetal risk for genetic disorders. Numerous studies have focused the attention on common trisomies; although the detection rate (DR) for trisomy 21 is high (over 95%), the accuracy regarding the DR for trisomies 13 and 18 has come under scrutiny. The testing has been applied to sex chromosome aneuploidies, but many studies have shown that it is not as effective as it is for common trisomies. Although non-invasive prenatal test (NIPT) has become a standard screening procedure for all pregnant women, invasive sampling procedures remain important in confirming NIPT-positive findings. In the present study, we report discordant results of Turner syndrome (TS) mosaicism between NIPT and karyotyping. A 35-year-old pregnant woman underwent NIPT, and a probable risk for Xp deletion was indicated. Subsequently, amniocentesis was performed. The karyotype was identified as mos 45,X [28]/46,X,i(X)(q1.0)[5]. In the second case, a 33-year-old woman underwent amniocentesis after a positive NIPT that indicated a probable risk for monosomy X. The result was mos 45,X [8]/46,XY[8]. Since NIPT is a screening test, the possibility of false-positive or false-negative results should always be considered. We underline the importance of pre/post detailed counseling. Furthermore, women with abnormal NIPT results should undergo immediate amniocentesis that remains the only tool for a correct diagnosis of sex chromosome aneuploidies.
Collapse
Affiliation(s)
- Francesco Libotte
- Department of Genetics, Altamedica Fetal Medical Centre, Rome, Italy
| | | | | | - Antonella Viola
- Department of Genetics, Altamedica Fetal Medical Centre, Rome, Italy
| | - Katia Margiotti
- Department of Genetics, Altamedica Fetal Medical Centre, Rome, Italy
| | - Fabrizia Restaldi
- Department of Genetics, Bambino Gesù Children's Hospital, Rome, Italy
| | - Antonio Novelli
- Department of Genetics, Bambino Gesù Children's Hospital, Rome, Italy
| | - Alvaro Mesoraca
- Department of Genetics, Altamedica Fetal Medical Centre, Rome, Italy
| | - Claudio Giorlandino
- Department of Prenatal Diagnosis, Altamedica Fetal Medical Centre, Rome, Italy
| |
Collapse
|
8
|
Messina A, Pulli K, Santini S, Acierno J, Känsäkoski J, Cassatella D, Xu C, Casoni F, Malone SA, Ternier G, Conte D, Sidis Y, Tommiska J, Vaaralahti K, Dwyer A, Gothilf Y, Merlo GR, Santoni F, Niederländer NJ, Giacobini P, Raivio T, Pitteloud N. Neuron-Derived Neurotrophic Factor Is Mutated in Congenital Hypogonadotropic Hypogonadism. Am J Hum Genet 2020; 106:58-70. [PMID: 31883645 DOI: 10.1016/j.ajhg.2019.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/22/2019] [Indexed: 12/20/2022] Open
Abstract
Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic disorder characterized by infertility and the absence of puberty. Defects in GnRH neuron migration or altered GnRH secretion and/or action lead to a severe gonadotropin-releasing hormone (GnRH) deficiency. Given the close developmental association of GnRH neurons with the olfactory primary axons, CHH is often associated with anosmia or hyposmia, in which case it is defined as Kallmann syndrome (KS). The genetics of CHH are heterogeneous, and >40 genes are involved either alone or in combination. Several CHH-related genes controlling GnRH ontogeny encode proteins containing fibronectin-3 (FN3) domains, which are important for brain and neural development. Therefore, we hypothesized that defects in other FN3-superfamily genes would underlie CHH. Next-generation sequencing was performed for 240 CHH unrelated probands and filtered for rare, protein-truncating variants (PTVs) in FN3-superfamily genes. Compared to gnomAD controls the CHH cohort was statistically enriched for PTVs in neuron-derived neurotrophic factor (NDNF) (p = 1.40 × 10-6). Three heterozygous PTVs (p.Lys62∗, p.Tyr128Thrfs∗55, and p.Trp469∗, all absent from the gnomAD database) and an additional heterozygous missense mutation (p.Thr201Ser) were found in four KS probands. Notably, NDNF is expressed along the GnRH neuron migratory route in both mouse embryos and human fetuses and enhances GnRH neuron migration. Further, knock down of the zebrafish ortholog of NDNF resulted in altered GnRH migration. Finally, mice lacking Ndnf showed delayed GnRH neuron migration and altered olfactory axonal projections to the olfactory bulb; both results are consistent with a role of NDNF in GnRH neuron development. Altogether, our results highlight NDNF as a gene involved in the GnRH neuron migration implicated in KS.
Collapse
Affiliation(s)
- Andrea Messina
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Kristiina Pulli
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Sara Santini
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - James Acierno
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland; Università Vita-Salute San Raffaele, Via Olgettina 58, 20132, Milan, Italy
| | - Johanna Känsäkoski
- Department of Physiology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Daniele Cassatella
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland; Università Vita-Salute San Raffaele, Via Olgettina 58, 20132, Milan, Italy
| | - Cheng Xu
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Filippo Casoni
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Unité 1172 Lille, 59045 Lille, France; Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy, Milan 20132, Italy; Università Vita-Salute San Raffaele, Via Olgettina 58, 20132, Milan, Italy
| | - Samuel A Malone
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Unité 1172 Lille, 59045 Lille, France
| | - Gaetan Ternier
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Unité 1172 Lille, 59045 Lille, France
| | - Daniele Conte
- Department of Molecular Biotechnology and Health Science, University of Torino, 10126 Torino, Italy
| | - Yisrael Sidis
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Johanna Tommiska
- Department of Physiology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Kirsi Vaaralahti
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Andrew Dwyer
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Yoav Gothilf
- Department of Neurobiology, George S. Wise Faculty of Life Sciences and Sagol School of Neurosciences, University of Tel Aviv, Tel Aviv 69978, Israel
| | - Giorgio R Merlo
- Department of Molecular Biotechnology and Health Science, University of Torino, 10126 Torino, Italy
| | - Federico Santoni
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Nicolas J Niederländer
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Paolo Giacobini
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Unité 1172 Lille, 59045 Lille, France
| | - Taneli Raivio
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; Pediatric Research Center, New Children's Hospital, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Nelly Pitteloud
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland.
| |
Collapse
|
9
|
[Syndromes with scales and keratosis]. Hautarzt 2019; 70:497-505. [PMID: 31087125 DOI: 10.1007/s00105-019-4417-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Approximately 9000 different phenotypes are known in medicine. The definition phenotype includes both manifest diseases as well as features without any disease value and the pure genetic disposition to develop a disease (e.g. tumors or complex diseases); however, most phenotypes are rare monogenic hereditary diseases. Approximately 6400 of these phenotypes have so far been elucidated by molecular genetics and are caused by mutations in 4064 different genes. Of all genetic diseases, an estimated one third are associated with skin symptoms. Genodermatoses are the phenotypes predominantly related to the skin, of which approximately 600 are familiar to dermatologists. The syndromes with scaling and keratosis include cornification disorders where the symptoms are not limited to the skin. They are associated with skin symptoms such as ichthyosis, erythroderma and palmoplantar keratoderma but show additional symptoms from other organ groups. The typical combination of symptoms may be unique to a syndrome and therefore seminal for the diagnosis.
Collapse
|
10
|
Ramachandrappa S, Kulkarni A, Gandhi H, Ellis C, Hutt R, Roberts L, Hamid R, Papageorghiou A, Mansour S. SHOX haploinsufficiency presenting with isolated short long bones in the second and third trimester. Eur J Hum Genet 2018; 26:350-358. [PMID: 29330548 DOI: 10.1038/s41431-017-0080-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 10/16/2017] [Accepted: 10/24/2017] [Indexed: 12/20/2022] Open
Abstract
Haploinsufficiency of the transcription factor short stature homeobox (SHOX) manifests as a spectrum of clinical phenotypes, ranging from disproportionate short stature and Madelung deformity to isolated short stature. Here, we describe five infants with molecularly confirmed diagnoses of SHOX haploinsufficiency who presented in utero with short long bones during routine antenatal scanning from as early as 19 weeks gestation. Other foetal growth parameters were normal. The molecular basis of SHOX haploinsufficiency was distinct in each case. In four cases, SHOX haploinsufficiency was inherited from a previously undiagnosed parent. In our de novo case, SHOX haploinsufficiency reflected the formation of a derivative sex chromosome during paternal meiosis. Final adult height in the SHOX-deficient parents ranged from -1.9 to -1.2 SDS. All affected parents had disproportionately short limbs and two affected mothers had bilateral Madelung deformity. To our knowledge, SHOX haploinsufficiency has not previously been reported to present in utero. Our experience illustrates that SHOX deficiency should form part of the differential diagnosis of foetal short long bones and suggests a low threshold for genetic testing. This should be particularly targeted at, but not limited to, families with a history of features suggestive of SHOX deficiency. Data on the postnatal growth of our index cases is presented which demonstrates that antenatal presentation of SHOX haploinsufficiency is not indicative of severe postnatal growth restriction. Early identification of SHOX deficiency will enable accurate genetic counselling reflecting a good postnatal outcome and facilitate optimal initiation of growth hormone therapy.
Collapse
Affiliation(s)
- Shwetha Ramachandrappa
- South West Thames Regional Genetics Unit, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Abhijit Kulkarni
- South West Thames Regional Genetics Unit, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Hina Gandhi
- Department of Obstetrics and Gynaecology, Surrey and Sussex Healthcare NHS Trust, Canada Avenue, Redhill, RH1 5RH, UK
| | - Cheryl Ellis
- Department of Obstetrics and Gynaecology, Epsom and St Helier University Hospitals NHS Trust, Wrythe Lane, Carshalton, SM5 1AA, UK
| | - Renata Hutt
- Department of Obstetrics and Gynaecology, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, GU2 7XX, UK
| | - Lesley Roberts
- Department of Obstetrics and Gynaecology, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, GU2 7XX, UK
| | - Rosol Hamid
- Department of Obstetrics and Gynaecology, Croydon Health Services NHS Trust, London Road, Croydon, CR7 7YE, UK
| | - Aris Papageorghiou
- Fetal Medicine Unit, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Sahar Mansour
- South West Thames Regional Genetics Unit, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK.
| |
Collapse
|
11
|
Marchini A, Ogata T, Rappold GA. A Track Record on SHOX: From Basic Research to Complex Models and Therapy. Endocr Rev 2016; 37:417-48. [PMID: 27355317 PMCID: PMC4971310 DOI: 10.1210/er.2016-1036] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
SHOX deficiency is the most frequent genetic growth disorder associated with isolated and syndromic forms of short stature. Caused by mutations in the homeobox gene SHOX, its varied clinical manifestations include isolated short stature, Léri-Weill dyschondrosteosis, and Langer mesomelic dysplasia. In addition, SHOX deficiency contributes to the skeletal features in Turner syndrome. Causative SHOX mutations have allowed downstream pathology to be linked to defined molecular lesions. Expression levels of SHOX are tightly regulated, and almost half of the pathogenic mutations have affected enhancers. Clinical severity of SHOX deficiency varies between genders and ranges from normal stature to profound mesomelic skeletal dysplasia. Treatment options for children with SHOX deficiency are available. Two decades of research support the concept of SHOX as a transcription factor that integrates diverse aspects of bone development, growth plate biology, and apoptosis. Due to its absence in mouse, the animal models of choice have become chicken and zebrafish. These models, therefore, together with micromass cultures and primary cell lines, have been used to address SHOX function. Pathway and network analyses have identified interactors, target genes, and regulators. Here, we summarize recent data and give insight into the critical molecular and cellular functions of SHOX in the etiopathogenesis of short stature and limb development.
Collapse
Affiliation(s)
- Antonio Marchini
- Tumour Virology Division F010 (A.M.), German Cancer Research Center, 69120 Heidelberg, Germany; Department of Oncology (A.M.), Luxembourg Institute of Health 84, rue Val Fleuri L-1526, Luxembourg; Department of Pediatrics (T.O.), Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu 431-3192, Japan; and Department of Human Molecular Genetics (G.A.R.), Institute of Human Genetics, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Tsutomu Ogata
- Tumour Virology Division F010 (A.M.), German Cancer Research Center, 69120 Heidelberg, Germany; Department of Oncology (A.M.), Luxembourg Institute of Health 84, rue Val Fleuri L-1526, Luxembourg; Department of Pediatrics (T.O.), Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu 431-3192, Japan; and Department of Human Molecular Genetics (G.A.R.), Institute of Human Genetics, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Gudrun A Rappold
- Tumour Virology Division F010 (A.M.), German Cancer Research Center, 69120 Heidelberg, Germany; Department of Oncology (A.M.), Luxembourg Institute of Health 84, rue Val Fleuri L-1526, Luxembourg; Department of Pediatrics (T.O.), Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu 431-3192, Japan; and Department of Human Molecular Genetics (G.A.R.), Institute of Human Genetics, Heidelberg University Hospital, 69120 Heidelberg, Germany
| |
Collapse
|
12
|
Yuan B, Neira J, Gu S, Harel T, Liu P, Briceño I, Elsea SH, Gómez A, Potocki L, Lupski JR. Nonrecurrent PMP22-RAI1 contiguous gene deletions arise from replication-based mechanisms and result in Smith-Magenis syndrome with evident peripheral neuropathy. Hum Genet 2016; 135:1161-74. [PMID: 27386852 DOI: 10.1007/s00439-016-1703-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/21/2016] [Indexed: 11/29/2022]
Abstract
Hereditary neuropathy with liability to pressure palsies (HNPP) and Smith-Magenis syndrome (SMS) are genomic disorders associated with deletion copy number variants involving chromosome 17p12 and 17p11.2, respectively. Nonallelic homologous recombination (NAHR)-mediated recurrent deletions are responsible for the majority of HNPP and SMS cases; the rearrangement products encompass the key dosage-sensitive genes PMP22 and RAI1, respectively, and result in haploinsufficiency for these genes. Less frequently, nonrecurrent genomic rearrangements occur at this locus. Contiguous gene duplications encompassing both PMP22 and RAI1, i.e., PMP22-RAI1 duplications, have been investigated, and replication-based mechanisms rather than NAHR have been proposed for these rearrangements. In the current study, we report molecular and clinical characterizations of six subjects with the reciprocal phenomenon of deletions spanning both genes, i.e., PMP22-RAI1 deletions. Molecular studies utilizing high-resolution array comparative genomic hybridization and breakpoint junction sequencing identified mutational signatures that were suggestive of replication-based mechanisms. Systematic clinical studies revealed features consistent with SMS, including features of intellectual disability, speech and gross motor delays, behavioral problems and ocular abnormalities. Five out of six subjects presented clinical signs and/or objective electrophysiologic studies of peripheral neuropathy. Clinical profiling may improve the clinical management of this unique group of subjects, as the peripheral neuropathy can be more severe or of earlier onset as compared to SMS patients having the common recurrent deletion. Moreover, the current study, in combination with the previous report of PMP22-RAI1 duplications, contributes to the understanding of rare complex phenotypes involving multiple dosage-sensitive genes from a genetic mechanistic standpoint.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Juanita Neira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shen Gu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Tamar Harel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ignacio Briceño
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
- Instituto de Referencia Andino, Bogotá, Colombia
- Facultad de Medicina, Universidad de La Sabana, Chía, Colombia
| | - Sarah H Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Alberto Gómez
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
- Instituto de Referencia Andino, Bogotá, Colombia
| | - Lorraine Potocki
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Texas Children's Hospital, Houston, TX, 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Texas Children's Hospital, Houston, TX, 77030, USA.
| |
Collapse
|
13
|
Nistal M, Paniagua R, González-Peramato P, Reyes-Múgica M. Perspectives in Pediatric Pathology, Chapter 18. Hypogonadotropic Hypogonadisms. Pediatric and Pubertal Presentations. Pediatr Dev Pathol 2016; 19:291-309. [PMID: 27135528 DOI: 10.2350/16-04-1810-pb.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Manuel Nistal
- 1 Department of Pathology, Hospital La Paz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ricardo Paniagua
- 2 Department of Cell Biology, Universidad de Alcala, Madrid, Spain
| | | | - Miguel Reyes-Múgica
- 3 Department of Pathology, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| |
Collapse
|
14
|
Margari L, Colonna A, Craig F, Gentile M, Giannella G, Lamanna AL, Legrottaglie AR. Microphthalmia with Linear Skin Defects (MLS) associated with Autism Spectrum Disorder (ASD) in a patient with Familial 12.9Mb Terminal Xp deletion. BMC Pediatr 2014; 14:220. [PMID: 25182979 PMCID: PMC4236679 DOI: 10.1186/1471-2431-14-220] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 08/04/2014] [Indexed: 12/28/2022] Open
Abstract
Background Microphthalmia with linear skin defects (MLS) syndrome is a rare X-linked dominant male-lethal developmental disorder characterized by unilateral or bilateral microphthalmia and linear skin defects of the face and neck. Additional features affecting the eyes, heart, brain or genitourinary system can occur, corroborating the intra- and interfamilial phenotypic variability. The majority of patients display monosomy of the Xp22.2 region, where the holocytochrome c-type synthase (HCCS) gene is located. Case presentation We describe a 15-year-old-female affected by MLS syndrome and autism spectrum disorder (ASD). ASD has not previously been reported as a component of MLS. Our patient shows a large deletion of 12.9 Mb, involving Xp22.32-p22.2, which encompasses both the HCCS gene and autism X-linked genes. Conclusion Thus, patients with a large deletion at Xp22 might display MLS with ASD, due to the deletion of contiguous genes, although the highly variable phenotype of these patients could be influenced by several genetic mechanisms, including different tissue-specific X-inactivation and somatic mosaicism.
Collapse
Affiliation(s)
- Lucia Margari
- Child Neuropsychiatry Unit, Department of General Medicine, Neuroscience and Sensory Organs of the "Aldo Moro" University of Bari, Bari, Italy.
| | | | | | | | | | | | | |
Collapse
|
15
|
Xp22.3 interstitial deletion: A recognizable chromosomal abnormality encompassing VCX3A and STS genes in a patient with X-linked ichthyosis and mental retardation. Gene 2013; 527:578-83. [DOI: 10.1016/j.gene.2013.06.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 06/06/2013] [Accepted: 06/07/2013] [Indexed: 12/18/2022]
|
16
|
Garcia-Gonzalez D, Murcia-Belmonte V, Clemente D, De Castro F. Olfactory system and demyelination. Anat Rec (Hoboken) 2013; 296:1424-34. [PMID: 23904351 DOI: 10.1002/ar.22736] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 09/18/2012] [Accepted: 11/29/2012] [Indexed: 01/04/2023]
Abstract
Within the central nervous system, the olfactory system represents one of the most exciting scenarios since it presents relevant examples of long-life sustained neurogenesis and continuous axonal outgrowth from the olfactory epithelium with the subsequent plasticity phenomena in the olfactory bulb. The olfactory nerve is composed of nonmyelinated axons with interesting ontogenetic interpretations. However, the centripetal projections from the olfactory bulb are myelinated axons which project to more caudal areas along the lateral olfactory tract. In consequence, demyelination has not been considered as a possible cause of the olfactory symptoms in those diseases in which this sense is impaired. One prototypical example of an olfactory disease is Kallmann syndrome, in which different mutations give rise to combined anosmia and hypogonadotropic hypogonadism, together with different satellite symptoms. Anosmin-1 is the extracellular matrix glycoprotein altered in the X-linked form of this disease, which participates in cell adhesion and migration, and axonal outgrowth in the olfactory system and in other regions of the central nervous system. Recently, we have described a new patho-physiological role of this protein in the absence of spontaneous remyelination in multiple sclerosis. In the present review, we hypothesize about how both main and satellite neurological symptoms of Kallmann syndrome may be explained by alterations in the myelination. We revisit the relationship between the olfactory system and myelin highlighting that minor histological changes should not be forgotten as putative causes of olfactory malfunction.
Collapse
Affiliation(s)
- D Garcia-Gonzalez
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos-SESCAM, Toledo, Spain
| | | | | | | |
Collapse
|
17
|
Vreeburg M, Sallevelt SCEH, Stegmann APA, van Geel M, Detisch YJHA, Schrander-Stumpel CTRM, van Steensel MAM, Marcus-Soekarman D. Cutaneous clues for diagnosing X-chromosomal disorders. Clin Genet 2013; 85:328-35. [PMID: 23578112 DOI: 10.1111/cge.12162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/05/2013] [Accepted: 04/05/2013] [Indexed: 11/28/2022]
Abstract
In a multidisciplinary outpatient clinic for hereditary skin diseases and/or syndromes involving the skin, 7% (30 of 409) of patients were found to have an abnormality involving the X chromosome, a mutation in a gene located on the X chromosome or a clinical diagnosis of an X-linked monogenetic condition. The collaboration of a dermatologist and a clinical geneticist proves to be very valuable in recognizing and diagnosing these conditions. By combining their specific expertize in counselling an individual patient, X-linked diagnoses were recognized and could be confirmed by molecular and/or cytogenetic studies in 24 of 30 cases. Mosaicism plays an important role in many X-linked hereditary skin disorders. From our experience, we extracted clinical clues for specialists working in the field of genetics and/or dermatology for considering X-linked disorders involving the skin.
Collapse
|
18
|
Meczekalski B, Podfigurna-Stopa A, Smolarczyk R, Katulski K, Genazzani AR. Kallmann syndrome in women: from genes to diagnosis and treatment. Gynecol Endocrinol 2013; 29:296-300. [PMID: 23368665 DOI: 10.3109/09513590.2012.752459] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Kallmann syndrome (KS) can be characterized as genetic disorder marked by hypogonadotropic hypogonadism and anosmia. Franz Jozef Kallmann was the first who described this disease in 1944. He suggested, that this disease has hereditary background. At present, six genes are regarded as causal genes of KS. These genes can be listed in chronological order: KAL1, FGFR1, FGF8, CHD7, PROKR2 and PROK2. The sensitivity of molecular testing of KS is only about 30%. Diagnosis based on clinical findings is therefore such important. Cardinal features of patients with KS include hypogonadotropic hypogonadism and anosmia or hyposmia. Some non-reproductive, non-olfactory symptoms can also be present, depending on the genetic form of disease. Some patients with KS present midline cranial anomalies (cleft lip, cleft palate and imperfect fusion). Sometimes patients can also suffer from missing teeth (dental agenesis). Optic problems, such as colour blindness or optic atrophy also can occur in KS patients. Very characteristic symptom in KS patients is mirror movements of the upper limbs (imitation synkinesis for contralateral limbs). The type of treatment in women with KS depends on the goal of therapy. After the diagnosis of syndrome, the main goal of the treatment is to induce and maintain secondary sex characteristic (estrogen-progestin therapy). The further goal in some patients can be related to enable fertility (gonadotropin, gonadotropin-releasing hormone therapy).
Collapse
Affiliation(s)
- Blazej Meczekalski
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, Poznan, Poland.
| | | | | | | | | |
Collapse
|
19
|
Cho EH, Kim SY, Kim JK. A case of 9.7 Mb terminal Xp deletion including OA1 locus associated with contiguous gene syndrome. J Korean Med Sci 2012; 27:1273-7. [PMID: 23091330 PMCID: PMC3468769 DOI: 10.3346/jkms.2012.27.10.1273] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 06/26/2012] [Indexed: 11/20/2022] Open
Abstract
Terminal or interstitial deletions of Xp (Xp22.2→Xpter) in males have been recognized as a cause of contiguous gene syndromes showing variable association of apparently unrelated clinical manifestations such as Leri-Weill dyschondrosteosis (SHOX), chondrodysplasia punctata (CDPX1), mental retardation (NLGN4), ichthyosis (STS), Kallmann syndrome (KAL1), and ocular albinism (GPR143). Here we present a case of a 13.5 yr old boy and sister with a same terminal deletion of Xp22.2 resulting in the absence of genes from the telomere of Xp to GPR143 of Xp22. The boy manifested the findings of all of the disorders mentioned above. We began a testosterone enanthate monthly replacement therapy. His sister, 11 yr old, manifested only Leri-Weill dyschondrosteosis, and had engaged in growth hormone therapy for 3 yr. To the best of our knowledge, this is the first report of a male with a 9.7 Mb terminal Xp deletion including the OA1 locus in Korea.
Collapse
Affiliation(s)
- Eun-Hae Cho
- Greencross Reference Laboratory, Seoul, Korea
| | - Sook-Young Kim
- Department of Ophthalmology, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Jin-Kyung Kim
- Department of Pediatrics, Catholic University of Daegu School of Medicine, Daegu, Korea
| |
Collapse
|
20
|
Array-CGH characterization of a de novo t(X;Y)(p22;q11) in a female with short stature and mental retardation. Gene 2012; 504:107-10. [DOI: 10.1016/j.gene.2012.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/23/2012] [Accepted: 05/06/2012] [Indexed: 11/22/2022]
|
21
|
Steroid-resistant nephrotic syndrome associated with steroid sulfatase deficiency-x-linked recessive ichthyosis: a case report and review of literature. Eur J Pediatr 2012; 171:847-50. [PMID: 22419362 DOI: 10.1007/s00431-012-1712-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 02/28/2012] [Indexed: 02/07/2023]
Abstract
UNLABELLED Nephrotic syndrome associated with X-linked recessive ichthyosis due to steroid sulfatase deficiency has rarely been reported in English literature. We describe a 4 and a half-year-old boy presenting with steroid-resistant nephrotic syndrome (SRNS) with an underlying ichthyotic skin present since birth. Renal biopsy revealed minimal change disease. As many of the male members of the family also showed similar skin manifestations, genetic analysis was done on the patient, which revealed deletion of the steroid sulfatase (STS) gene spanning both the 3' as well as the 5'ends. The patient was thus diagnosed with SRNS associated with X-linked recessive ichthyosis. He was started on cyclosporine regimen, and remission was achieved in 5 weeks. We speculate that the deficiency of STS resulting in increased cholesterol sulfate accumulation interferes with the integrity of adherens junctions present between glomerular epithelial cells of the slit diaphragm, and this results in proteinuria and nephrotic syndrome. The nephrotic syndrome remitted with a calcineurin inhibitor medication. CONCLUSION We suggest that the deficiency of STS is another one in an increasing list of genetic causes of podocytopathy and nephrotic syndrome. Remission of proteinuria in such a case may be achieved with immunosuppressive medication.
Collapse
|
22
|
Bardoni B, Abekhoukh S, Zongaro S, Melko M. Intellectual disabilities, neuronal posttranscriptional RNA metabolism, and RNA-binding proteins: three actors for a complex scenario. PROGRESS IN BRAIN RESEARCH 2012; 197:29-51. [PMID: 22541287 DOI: 10.1016/b978-0-444-54299-1.00003-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intellectual disability (ID) is the most frequent cause of serious handicap in children and young adults and interests 2-3% of worldwide population, representing a serious problem from the medical, social, and economic points of view. The causes are very heterogeneous. Genes involved in ID have various functions altering different pathways important in neuronal function. Regulation of mRNA metabolism is particularly important in neurons for synaptic structure and function. Here, we review ID due to alteration of mRNA metabolism. Functional absence of some RNA-binding proteins--namely, FMRP, FMR2P, PQBP1, UFP3B, VCX-A--causes different forms of ID. These proteins are involved in different steps of RNA metabolism and, even if a detailed analysis of their RNA targets has been performed so far only for FMRP, it appears clear that they modulate some aspects (translation, stability, transport, and sublocalization) of a subset of RNAs coding for proteins, whose function must be relevant for neurons. Two other proteins, DYRK1A and CDKL5, involved in Down syndrome and Rett syndrome, respectively, have been shown to have an impact on splicing efficiency of specific mRNAs. Both proteins are kinases and their effect is indirect. Interestingly, both are localized in nuclear speckles, the nuclear domains where splicing factors are assembled, stocked, and recycled and influence their biogenesis and/or their organization.
Collapse
Affiliation(s)
- Barbara Bardoni
- Institute of Molecular and Cellular Pharmacology, CNRS-UMR6097, Université de Nice Sophia-Antipolis,Valbonne, France.
| | | | | | | |
Collapse
|
23
|
Liu P, Erez A, Nagamani SCS, Bi W, Carvalho CMB, Simmons AD, Wiszniewska J, Fang P, Eng PA, Cooper ML, Sutton VR, Roeder ER, Bodensteiner JB, Delgado MR, Prakash SK, Belmont JW, Stankiewicz P, Berg JS, Shinawi M, Patel A, Cheung SW, Lupski JR. Copy number gain at Xp22.31 includes complex duplication rearrangements and recurrent triplications. Hum Mol Genet 2011; 20:1975-88. [PMID: 21355048 DOI: 10.1093/hmg/ddr078] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Genomic instability is a feature of the human Xp22.31 region wherein deletions are associated with X-linked ichthyosis, mental retardation and attention deficit hyperactivity disorder. A putative homologous recombination hotspot motif is enriched in low copy repeats that mediate recurrent deletion at this locus. To date, few efforts have focused on copy number gain at Xp22.31. However, clinical testing revealed a high incidence of duplication of Xp22.31 in subjects ascertained and referred with neurobehavioral phenotypes. We systematically studied 61 unrelated subjects with rearrangements revealing gain in copy number, using multiple molecular assays. We detected not only the anticipated recurrent and simple nonrecurrent duplications, but also unexpectedly identified recurrent triplications and other complex rearrangements. Breakpoint analyses enabled us to surmise the mechanisms for many of these rearrangements. The clinical significance of the recurrent duplications and triplications were assessed using different approaches. We cannot find any evidence to support pathogenicity of the Xp22.31 duplication. However, our data suggest that the Xp22.31 duplication may serve as a risk factor for abnormal phenotypes. Our findings highlight the need for more robust Xp22.31 triplication detection in that such further gain may be more penetrant than the duplications. Our findings reveal the distribution of different mechanisms for genomic duplication rearrangements at a given locus, and provide insights into aspects of strand exchange events between paralogous sequences in the human genome.
Collapse
Affiliation(s)
- Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room 604B, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Craig WY, Roberson M, Palomaki GE, Shackleton CHL, Marcos J, Haddow JE. Prevalence of steroid sulfatase deficiency in California according to race and ethnicity. Prenat Diagn 2010; 30:893-8. [PMID: 20715120 DOI: 10.1002/pd.2588] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Estimate steroid sulfatase deficiency (STSD) prevalence among California's racial/ethnic groups using data from a previous study focused on prenatal detection of Smith-Lemli-Opitz syndrome (SLOS). SLOS and STSD both have low maternal serum unconjugated estriol (uE3) levels. METHODS Prevalence was estimated using three steps: listing clinically identified cases; modeling STSD frequency at three uE3 intervals using diagnostic urine steroid measurements; applying this model to determine frequency in pregnancies not providing urine. RESULTS Overall, 2151 of 777 088 pregnancies (0.28%) were screen positive; 1379 of these were explained and excluded. Fifty-four cases were diagnosed clinically among 707 remaining pregnancies with a male fetus. Urine steroid testing identified 74 additional STSD cases: 66 (89.2%) at uE3 values < 0.15 MoM, 8 (10.8%) at 0.15-0.20 MoM, and 0 (0%) at > 0.20 MoM. Modeling estimated 107.5 STSD cases among 370 pregnancies without urine samples. In males, STSD prevalence was highest among non-Hispanic Whites (1:1230) compared to Hispanics (1:1620) and Asians (1:1790), but differences were not significant. No STSD pregnancies were found among 65 screen positive Black women. CONCLUSION The overall prevalence estimate of 1:1500 males is consistent with published estimates and is reasonable for counseling, except among Black pregnancies where no reliable estimate could be made.
Collapse
Affiliation(s)
- Wendy Y Craig
- Foundation for Blood Research, Scarborough, ME 04070, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Horikoshi T, Kikuchi A, Tamaru S, Ono K, Kita M, Takagi K, Miyashita S, Kawame H, Shimokawa O, Harada N. Prenatal findings in a fetus with contiguous gene syndrome caused by deletion of Xp22.3 that includes locus for X-linked recessive type of chondrodysplasia punctata (CDPX1). J Obstet Gynaecol Res 2010; 36:671-5. [PMID: 20598055 DOI: 10.1111/j.1447-0756.2010.01193.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The X-linked recessive type of chondrodysplasia punctata (CDPX1) is a skeletal disorder that is characterized by stippled calcification at an epiphyseal nucleus and the surrounding soft tissue, short stature and an unusual face because of nasal hypoplasia. In most of the patients, this condition is noted after birth because of a characteristic face or respiratory problems. Here, we report a fetus with CDPX1. Two-dimensional ultrasound examination revealed unexplained polyhydramnios and a male fetus. Fetal biometry showed shortened long bones. Three-dimensional ultrasonography clearly demonstrated a hypoplastic nose with a depressed nasal bridge and contracture of wrists and fingers. Chromosome analysis of the amniotic fluid cells revealed the 46,Y,del(X)(p22.3) karyotype. Fluorescence in situ hybridization revealed a deletion of subtelomeric sequences at the Xpter and STS gene, but not a deletion of the KAL gene. The genomic copy number analysis demonstrated terminal deletion of 8.33 Mb that included SHOX, CSF2RA, XG, ARSE, NLGN4 and STS genes. We think that our case presents typical features of a fetus with this disorder and will be of great help in prenatal ultrasound diagnosis.
Collapse
Affiliation(s)
- Tsuguhiro Horikoshi
- Department of Obstetrics, Center for Perinatal Medicine, Nagano Children's Hospital, Azumino, Nagano, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bukvic N, Carri VD, Di Cosola ML, Pustorino G, Cesarano C, Chetta M, Santacroce R, Sarno M, Sessa F, Longo V, Novelli A, Gentile M, Margaglione M. Familial X;Y translocation with distinct phenotypic consequences: Characterization using FISH and array CGH. Am J Med Genet A 2010; 152A:1730-4. [PMID: 20578256 DOI: 10.1002/ajmg.a.33437] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
X;Y translocation is a relatively rare event in humans. Analyzed cytogenetically, the majority of these aberrations have breakpoints at Xp22 and Yq11. Females with t(X;Y)(p22;q11) are phenotypically normal except for short stature, while the males may have abnormalities. Aberrations that lead to nullisomy of the deleted region and complete loss of the respective genes have been recognized as a cause of variable contiguous gene syndromes in males. The phenotype depends on the extent and position of the deletion showing the variable association of apparently unrelated clinical manifestations such as ichthyosis, chondrodysplasia punctata, hypogonadotropic hypogonadism with anosmia, ocular albinism, short stature, and mental retardation. In addition, some patients have been reported with symptoms of attention deficit hyperactivity disorder. The extent of terminal Xp deletions is limited by the presence of male lethal genes in Xp22.2 at about 10-11 Mb from the telomere. The deletions in the majority of viable reported male patients extend to the STS ( approximately 7.0 Mb) or to the KAL1 ( approximately 8.5 Mb) loci. We present a clinical, cytogenetic, FISH, and array CGH study of a family with an Xp;Yq translocation. The chromosomal status is also discussed in the light of their phenotypic traits. The final karyotypes of the patients were designated as: Patient 1: 46,Y,der(X),t(X;Y)(p22;q12).ish der(X)(Xpter-,DXZ1+,Xqter+)mat.arr cgh Xp22.31p22.33(RP11-60P14 --> RP13-391G2)x0;arr cgh Yq11.221qter (RP11-235I1 --> RP11-270H4)x2.Patient 2: 46,X,der(X),t(X;Y)(p22;q12).ish der(X)(Xpter-,DXZ1+,Xqter+)mat.arr cgh Xp22.31p22.33(RP11-60P14 --> RP13-391G2)x1;arr cgh Yq11.221qter (RP11-235I1 --> RP11-270H4)x1.
Collapse
Affiliation(s)
- N Bukvic
- Genetica Medica, Dipartimento di Scienze Biomediche, Università degli Studi di Foggia, Foggia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Silveira LFG, Trarbach EB, Latronico AC. Genetics basis for GnRH-dependent pubertal disorders in humans. Mol Cell Endocrinol 2010; 324:30-8. [PMID: 20188792 DOI: 10.1016/j.mce.2010.02.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 02/12/2010] [Accepted: 02/17/2010] [Indexed: 12/20/2022]
Abstract
Human puberty is triggered by the reemergence of GnRH pulsatile secretion, with progressive activation of gonadal function. Several mutations have been identified in an increasing number of genes that influence the onset of puberty. Mutations in GNRH1, KISS1R and GNRHR genes cause normosmic IHH, interfering with the normal synthesis, secretion or action of GnRH. More recently, mutations in TAC3 and TACR3 genes, which encode neurokinin B and its receptor, have been implicated in normosmic IHH, although their precise functions in reproduction remain unclear. Mutations in KAL1, FGFR1, FGF8, PROK2 and PROKR2 are related to disruption of the development and migration of GnRH neurons, thereby resulting in Kallmann syndrome, a complex genetic condition characterized by isolated hypogonadotropic hypogonadism (IHH) and olfactory abnormalities. Furthermore, mutations in CHD7 gene, a major gene involved in the etiology of CHARGE syndrome, were also described in some patients with Kallmann syndrome and normosmic IHH. Notably, the evidence of association of some of the genes implicated with GnRH neurons development and migration with both Kallmann syndrome and normosmic IHH, blurring the simplest clinical distinction between ontogenic and purely functional defects in the axis. Digenic or oligogenic inheritance of IHH has also been described, illustrating the extraordinary genetic heterogeneity of IHH. Interestingly, rare gain-of-function mutations of the genes encoding the kisspeptin and its receptor were recently associated with central precocious puberty phenotype, indicating that the premature activation of the reproductive axis may be also caused by genetic mutations. These discoveries have yielded significant insights into the current knowledge of this important life transition.
Collapse
Affiliation(s)
- Leticia Ferreira Gontijo Silveira
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42 da Disciplina de Endocrinologia do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
28
|
Abstract
During the last quarter of the twentieth century, our knowledge about human genetic variation was limited mainly to the heterochromatin polymorphisms, large enough to be visible in the light microscope, and the single nucleotide polymorphisms (SNPs) identified by traditional PCR-based DNA sequencing. In the past five years, the rapid development and expanded use of microarray technologies, including oligonucleotide array comparative genomic hybridization and SNP genotyping arrays, as well as next-generation sequencing with “paired-end” methods, has enabled a whole-genome analysis with essentially unlimited resolution. The discovery of submicroscopic copy-number variations (CNVs) present in our genomes has changed dramatically our perspective on DNA structural variation and disease. It is now thought that CNVs encompass more total nucleotides and arise more frequently than SNPs. CNVs, to a larger extent than SNPs, have been shown to be responsible for human evolution, genetic diversity between individuals, and a rapidly increasing number of traits or susceptibility to traits; such conditions have been referred to as genomic disorders. In addition to well-known sporadic chromosomal microdeletion syndromes and Mendelian diseases, many common complex traits including autism and schizophrenia can result from CNVs. Both recombination- and replication-based mechanisms for CNV formation have been described.
Collapse
Affiliation(s)
| | - James R. Lupski
- Departments of Molecular and Human Genetics, Houston, Texas 77030
- Departments of Pediatrics, Baylor College of Medicine, Houston, Texas 77030
- Departments of Texas Children's Hospital, Houston, Texas 77030
| |
Collapse
|
29
|
Langlois S, Armstrong L, Gall K, Hulait G, Livingston J, Nelson T, Power P, Pugash D, Siciliano D, Steinraths M, Mattman A. Steroid sulfatase deficiency and contiguous gene deletion syndrome amongst pregnant patients with low serum unconjugated estriols. Prenat Diagn 2009; 29:966-74. [PMID: 19609942 DOI: 10.1002/pd.2326] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE To ascertain all prenatally diagnosed cases of Steroid Sulfatase (STS) deficiency in British Columbia between August 2002 and July 2007 to determine the incidence of this condition, the clinical and laboratory findings, and the risk of a contiguous gene deletion syndrome. METHODS We reviewed the medical records of these patients to obtain detailed information about the maternal serum screening results, family history, investigations performed, and outcome of the pregnancy. RESULTS Thirty pregnant patients were found to have a male fetus/infant with STS deficiency, giving a minimal estimated incidence of this condition of approximately 1 in 1513 males. In twenty nine cases, this condition was isolated. One patient was found to have a contiguous gene deletion syndrome. In cases of sporadic STS deficiency diagnosed prenatally, the frequency of contiguous gene deletion syndrome in this study was 1 out of 12 (8.3%). CONCLUSION The clinical, cytogenetic and molecular data on this series of prenatally diagnosed cases of STS deficiency indicates that this is a common condition and in cases with no family history, the risk of contiguous gene deletion syndrome is significant, and warrants additional molecular genetic investigations of the mother and/or fetus.
Collapse
Affiliation(s)
- Sylvie Langlois
- Medical Genetics, University of British Columbia, Vancouver, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Dosage-dependent severity of the phenotype in patients with mental retardation due to a recurrent copy-number gain at Xq28 mediated by an unusual recombination. Am J Hum Genet 2009; 85:809-22. [PMID: 20004760 DOI: 10.1016/j.ajhg.2009.10.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 10/19/2009] [Accepted: 10/22/2009] [Indexed: 12/22/2022] Open
Abstract
We report on the identification of a 0.3 Mb inherited recurrent but variable copy-number gain at Xq28 in affected males of four unrelated families with X-linked mental retardation (MR). All aberrations segregate with the disease in the families, and the carrier mothers show nonrandom X chromosome inactivation. Tiling Xq28-region-specific oligo array revealed that all aberrations start at the beginning of the low copy repeat LCR-K1, at position 153.20 Mb, and end just distal to LCR-L2, at 153.54 Mb. The copy-number gain always includes 18 annotated genes, of which RPL10, ATP6AP1 and GDI1 are highly expressed in brain. From these, GDI1 is the most likely candidate gene. Its copy number correlates with the severity of clinical features, because it is duplicated in one family with nonsyndromic moderate MR, is triplicated in males from two families with mild MR and additional features, and is present in five copies in a fourth family with a severe syndromic form of MR. Moreover, expression analysis revealed copy-number-dependent increased mRNA levels in affected patients compared to control individuals. Interestingly, analysis of the breakpoint regions suggests a recombination mechanism that involves two adjacent but different sets of low copy repeats. Taken together, our data strongly suggest that an increased expression of GDI1 results in impaired cognition in a dosage-dependent manner. Moreover, these data also imply that a copy-number gain of an individual gene present in the larger genomic aberration that leads to the severe MECP2 duplication syndrome can of itself result in a clinical phenotype as well.
Collapse
|
31
|
Marcos J, Craig WY, Palomaki GE, Kloza EM, Haddow JE, Roberson M, Bradley LA, Shackleton CHL. Maternal urine and serum steroid measurements to identify steroid sulfatase deficiency (STSD) in second trimester pregnancies. Prenat Diagn 2009; 29:771-80. [PMID: 19418464 DOI: 10.1002/pd.2284] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To document the performance of second trimester maternal urine and serum steroid measurements for detecting fetal steroid sulfatase deficiency (STSD). METHODS We studied detection rate and false positive rate (DR, FPR) of analytes in maternal urine [combinations of 16alpha-OH-dehydroepiandrosterone sulfate (16alpha-OH-DHEAS), 11beta-hydroxyandrosterone, total estriol] and serum [combinations of 16alpha-OH-DHEAS, 11beta-hydroxyandrosterone, total estriol, unconjugated estriol (uE3)]. Samples were obtained from pregnancies which were screen positive for Smith-Lemli-Opitz syndrome (SLOS). RESULTS Among 1 079 301 pregnancies, 3083 (0.29%) were screen positive for SLOS. Urine and/or serum samples were available from 917 viable pregnancies with known gender. We assigned likelihood ratios (LRs) to steroid measurements from male fetuses with known STSD and unaffected female fetuses. An LR > or = 100 was present in urine from 84 of 86 STSD pregnancies (98% DR, 95% CI 92-99), along with 0 of 198 pregnancies with normal female fetuses (0.0% FPR, CI 0-1.9). LRs were > or = 100 in 4 of 129 female fetuses with major abnormalities (3% FPR). In maternal serum, steroid measurements performed less effectively, achieving a 71% DR for STSD at a 1.6% FPR. CONCLUSION Maternal urine steroid measurements are effective for detecting STSD, including those with point mutations and those with full deletions.
Collapse
Affiliation(s)
- Josep Marcos
- Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Shinawi M, Patel A, Panichkul P, Zascavage R, Peters SU, Scaglia F. The Xp contiguous deletion syndrome and autism. Am J Med Genet A 2009; 149A:1138-48. [PMID: 19441126 DOI: 10.1002/ajmg.a.32833] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Xp22 nullisomy in males causes a phenotype consistent with the loss of one or more of the genes located in this chromosomal region. Females with similar Xp deletions rarely manifest the same phenotype. Here we describe a 10-year-old girl with a de novo interstitial deletion encompassing Xp22.2p22.32 who presented with autism, moderate mental retardation, and some dysmorphic features. The deletion was delineated by FISH and STR analyses, and the breakpoints were determined using the Agilent 244 K oligonucleotide array. We found that the 5.5 Mb deletion is located on the paternal X chromosome and encompasses 18 genes. Further molecular and cytogenetic analyses showed unfavorable skewing of X-inactivation of the maternal (intact) chromosome. The phenotype of our patient was compared with previously reported female patients with deletions encompassing the same chromosomal region. We discuss the potential role of the genes in the deleted region and X chromosome inactivation in the pathogenesis of the phenotypic abnormalities seen in our patient. Our findings suggest that the severity and the variability of the clinical findings are determined by the size and the parental origin of the deletions as well as the X-inactivation status.
Collapse
Affiliation(s)
- Marwan Shinawi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
33
|
Chen J, Wildhardt G, Zhong Z, Röth R, Weiss B, Steinberger D, Decker J, Blum WF, Rappold G. Enhancer deletions of the SHOX gene as a frequent cause of short stature: the essential role of a 250 kb downstream regulatory domain. J Med Genet 2009; 46:834-9. [PMID: 19578035 PMCID: PMC2778764 DOI: 10.1136/jmg.2009.067785] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Mutations and deletions of the homeobox transcription factor gene SHOX are known to cause short stature. The authors have analysed SHOX enhancer regions in a large cohort of short stature patients to study the importance of regulatory regions in developmentally relevant genes like SHOX. Methods: The authors tested for the presence of copy number variations in the pseudoautosomal region of the sex chromosomes in 735 individuals with idiopathic short stature and compared the results to 58 cases with Leri–Weill syndrome and 100 normal height controls, using fluorescence in situ hybridisation (FISH), single nucleotide polymorphism (SNP), microsatellites, and multiplex ligand dependent probe amplification (MLPA) analysis. Results: A total of 31/735 (4.2%) microdeletions were identified in the pseudoautosomal region in patients with idiopathic short stature; eight of these microdeletions (8/31; 26%) involved only enhancer sequences residing a considerable distance away from the gene. In 58 Leri–Weill syndrome patients, a total of 29 microdeletions were identified; almost half of these (13/29; 45%) involve enhancer sequences and leave the SHOX gene intact. These deletions were absent in 100 control persons. Conclusion: The authors conclude that enhancer deletions in the SHOX gene region are a relatively frequent cause of growth failure in patients with idiopathic short stature and Leri–Weill syndrome. The data highlights the growing recognition that regulatory sequences are of crucial importance in the genome when diagnosing and understanding the aetiology of disease.
Collapse
Affiliation(s)
- J Chen
- Department of Molecular Human Genetics, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
By 1959 it was recognized that the gene (or genes) responsible for initiating the human male phenotype were carried on the Y chromosome. But in subsequent years, few phenotypes were associated with the Y chromosome. Recently, using molecular techniques combined with classical genetics, the Y chromosome has been the focus of intensive and productive investigation. Some of the findings are unexpected and have extended our understanding of the functions of the human Y chromosome. The notion that the Y chromosome is largely devoid of genes is changing. At the present, over 20 Y chromosome genes or pseudogenes have been identified or cloned, a number that is rapidly increasing. A high proportion of Y chromosome sequences have been found to be related to X chromosome sequences: the assembly of a complete physical map of the Y chromosome euchromatic region (believed to carry all of the genes) has shown 25% of the region studied to have homology to the X chromosome.3 Several X-homologous genes are located in the X and Y chromosome pairing regions, an area predicted to have shared homology. Surprisingly, some of the Y-encoded genes that lie outside of the X and Y pairing region share high sequence similarity, and in at least one case, functional identity, with genes on the X chromosome.
Collapse
|
35
|
Chernykh VB, Vyatkina SV, Antonenko VG, Shilova NV, Zolotukhina TV, Kurilo LF, Chukhrova AL, Polyakov AV. Unique mosaic X/Y translocation/insertion in infant 45,X male. Am J Med Genet A 2008; 146A:3195-7. [PMID: 19012335 DOI: 10.1002/ajmg.a.32578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We report on a 45,X male with hydrocephaly, lobar holoprosencephaly and ichthyosis. In situ hybridization and molecular analysis have demonstrated the presence of a mosaic SRY-bearing derivative X chromosome that included Yp and heterochromatic Yq fragments.
Collapse
Affiliation(s)
- V B Chernykh
- Research Centre for Medical Genetics of Russian Academy of Medical Sciences, Russian Federation, Moscow, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Minsart AF, Van Onderbergen A, Jacques F, Kurt C, Gillerot Y. Indication of prenatal diagnosis in pregnancies complicated by undetectable second-trimester maternal serum estriol levels. J Prenat Med 2008; 2:27-30. [PMID: 22439024 PMCID: PMC3279090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
OBJECTIVES Undetectable maternal serum unconjugated estriol levels in the second-trimester screening test have been associated with congenital pathology and an adverse pregnancy outcome. We reviewed outcomes of pregnancies with undetectable levels of estriol (<0.25 ng/ml) in the triple-marker screening test and assessed the clinical value of this finding. METHODS We studied estriol values in 6,018 pregnant patients who underwent a triple-marker screening test during a seven-year period. RESULTS 26 women had estriol levels at or below the sensitivity of the assay. The most common explanations were dating errors, prematurity, growth restriction and X-linked ichthyosis. We also observed one fetal death at 16 weeks, one severe threatened fetal abortion, one case of multiple congenital anomalies and one case of isolated adrenocorticotropin hormone deficiency. There were 6 women remaining with unexplained undetectable estriol. CONCLUSION Undetectable maternal estriol values may indicate a severe fetal pathology and should lead to further investigations.
Collapse
|
37
|
Puusepp H, Zordania R, Paal M, Bartsch O, Ounap K. Girl with partial Turner syndrome and absence epilepsy. Pediatr Neurol 2008; 38:289-92. [PMID: 18358412 DOI: 10.1016/j.pediatrneurol.2007.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 09/17/2007] [Accepted: 11/20/2007] [Indexed: 11/30/2022]
Abstract
This report describes a 16-year-old girl with short stature (-5 standard deviations), normal puberty, panic attacks, absence epilepsy, some stigmata of Turner syndrome, and a Madelung deformity. Routine chromosomal analysis revealed a female karyotype with one abnormal chromosome X, with the suspicion of additional material on the short arm. With fluorescent in situ hybridization and array-multiplex amplifiable probe hybridization methodology, a complex aberration was detected, with a deletion of the distal part of Xp22.33 (including the short-stature homeobox gene) and a duplication of Xp22.32-p22.12 proximal to the deleted segment. The deletion in our patient involves the Xp22.33 region. Two genes in this region may contribute to the patient's phenotype: short-stature homeobox, and visuospatial/perceptual abilities. The duplication in our patient involves the Xp22.12-p22.32 region, which, according to the Online Mendelian Inheritance in Man database, contains at least 93 genes, 49 of which are of unknown function. It is difficult to conjecture which gene overexpression in this region may have contributed to the phenotype of our patient. To our knowledge, this small, complex chromosome X aberration was not described previously.
Collapse
Affiliation(s)
- Helen Puusepp
- Department of Pediatrics, University of Tartu, Tartu, Estonia
| | | | | | | | | |
Collapse
|
38
|
Kim SH, Hu Y, Cadman S, Bouloux P. Diversity in fibroblast growth factor receptor 1 regulation: learning from the investigation of Kallmann syndrome. J Neuroendocrinol 2008; 20:141-63. [PMID: 18034870 DOI: 10.1111/j.1365-2826.2007.01627.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The unravelling of the genetic basis of the hypogonadotrophic hypogonadal disorders, including Kallmann syndrome (KS), has led to renewed interest into the developmental biology of gonadotrophin-releasing hormone (GnRH) neurones and, more generally, into the molecular mechanisms of reproduction. KS is characterised by the association of GnRH deficiency with diminished olfaction. Until recently, only two KS-associated genes were known: KAL1 and KAL2. KAL1 encodes the cell membrane and extracellular matrix-associated secreted protein anosmin-1 which is implicated in the X-linked form of KS. Anosmin-1 shows high affinity binding to heparan sulphate (HS) and its function remains the focus of ongoing investigation, although a role in axonal guidance and neuronal migration, which are processes essential for normal GnRH ontogeny and olfactory bulb histogenesis, has been suggested. KAL2, identified as the fibroblast growth factor receptor 1 (FGFR1) gene, has now been recognised to be the underlying genetic defect for an autosomal dominant form of KS. The diverse signalling pathways initiated upon FGFR activation can elicit pleiotropic cellular responses depending on the cellular context. Signalling through FGFR requires HS for receptor dimerisation and ligand binding. Current evidence supports a HS-dependent interaction between anosmin-1 and FGFR1, where anosmin-1 serves as a co-ligand activator enhancing the signal activity, the finer details of whose mechanism remain the subject of intense investigation. Recently, mutations in the genes encoding prokineticin 2 (PK2) and prokineticin receptor 2 (PKR2) were reported in a cohort of KS patients, further reinforcing the view of KS as a multigenic trait involving divergent pathways. Here, we review the historical and current understandings of KS and discuss the latest findings from the molecular and cellular studies of the KS-associated proteins, and describe the evidence that suggests convergence of several of these pathways during normal GnRH and olfactory neuronal ontogeny.
Collapse
Affiliation(s)
- S-H Kim
- Centre for Neuroendocrinology, Royal Free and University College Medical School, University College London, London, UK.
| | | | | | | |
Collapse
|
39
|
Cuevas-Covarrubias SA, González-Huerta LM. Analysis of the VCX3A, VCX2 and VCX3B genes shows that VCX3A gene deletion is not sufficient to result in mental retardation in X-linked ichthyosis. Br J Dermatol 2007; 158:483-6. [PMID: 18076704 DOI: 10.1111/j.1365-2133.2007.08373.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND X-linked ichthyosis (XLI), an inborn error of metabolism, is due to steroid sulphatase (STS) deficiency. Most patients with XLI harbour complete deletion of the STS gene and flanking sequences. The presence of low copy number repeats on either side of the STS gene seems to have a major role in the high frequency of these deletions. Some patients with XLI with terminal deletions of Xp22.3 involving marker DXS1139 and the STS gene show mental retardation (MR); VCX3A is the only gene located on this critical region. OBJECTIVES To analyse the VCX3A, VCX, VCX2 and VCX3B genes in 80 unrelated Mexican patients with XLI with normal intelligence. METHODS STS activity was measured in the leucocytes using 7-[3H]-dehydroepiandrosterone sulphate as a substrate. Amplification of the regions from telomeric DXS89 to centromeric DXS1134 including both extremes of the STS and the VCX3A, VCX, VCX2 and VCX3B genes was performed using polymerase chain reaction. RESULTS No STS activity was detected in the patients with XLI (0.00 pmol mg(-1) protein h(-1)). We observed two different deletion patterns: the first group included 62 patients with deletion of VCX3A and VCX genes. The second group included 18 patients with breakpoints at several regions on either side of the STS gene not including the VCX3A gene. CONCLUSIONS These data indicate that more complex mechanisms, apart from possible VCX3A gene participation, are occurring in the genesis of MR in XLI, at least in the sample of Mexican patients analysed.
Collapse
Affiliation(s)
- S A Cuevas-Covarrubias
- Servicio de Genética, Hospital General de México, Facultad de Medicina, Universidad Nacional Autónoma de México, Dr Balmis 148, Col. Doctores C.P. 06726, México D.F., Mexico.
| | | |
Collapse
|
40
|
Mochel F, Missirian C, Reynaud R, Moncla A. Normal intelligence and social interactions in a male patient despite the deletion of NLGN4X and the VCX genes. Eur J Med Genet 2007; 51:68-73. [PMID: 18194880 DOI: 10.1016/j.ejmg.2007.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2007] [Accepted: 11/18/2007] [Indexed: 11/25/2022]
Abstract
Xp22.3 deletion in males can be associated with short stature (SHOX), chondrodysplasia punctata (ARSE), mental retardation (MRX49 locus), ichthyosis (STS), Kallmann syndrome (KAL1) and ocular albinism (OA1), according to the size of the deletion. Studies of terminal and interstitial deletions in male patients with a partial nullisomy of the X chromosome have led to the identification of the VCX-3A gene at the MRX49 locus on Xp22.3. The NLGN4X gene has then been identified less than 350 kb away from VCX-3A. Nonsense mutations in NLGN4X have been associated with autism and/or moderate mental retardation in males. We report a 17-year old male patient presenting with severe ichthyosis and Kallmann syndrome related to a 3.7 Mb interstitial Xp22.3 deletion, encompassing STS and KAL1 genes, respectively. However, despite the deletion of NLGN4X and all VCX genes, including VCX-3A, our patient did not manifest any learning disabilities or behavioural problems. Therefore, our case argues against a major role of NLGN4X and the VCX genes alone in cognitive development and/or communication processes.
Collapse
Affiliation(s)
- Fanny Mochel
- INSERM U679, Hôpital de la Salpêtrière, Paris, France
| | | | | | | |
Collapse
|
41
|
Lonardo F, Parenti G, Luquetti DV, Annunziata I, Della Monica M, Perone L, De Gregori M, Zuffardi O, Brunetti-Pierri N, Andria G, Scarano G. Contiguous gene syndrome due to an interstitial deletion in Xp22.3 in a boy with ichthyosis, chondrodysplasia punctata, mental retardation and ADHD. Eur J Med Genet 2007; 50:301-8. [PMID: 17591464 DOI: 10.1016/j.ejmg.2007.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2007] [Accepted: 04/24/2007] [Indexed: 11/26/2022]
Abstract
Microdeletions of Xp22.3 can result in contiguous gene syndromes, showing the variable association of apparently unrelated clinical manifestations such as ichthyosis, chondrodysplasia punctata, hypogonadotropic hypogonadism, anosmia, ocular albinism, short stature and mental retardation. We report on a boy with ichthyosis, dysmorphic features and mental retardation with ADHD. The patient was born at term after a pregnancy complicated by threatened abortion; decreased fetal movements and low estriol serum levels were reported during the last trimester. The boy was referred to us at the age of 13 years. He presented with aggressive and hyperactive behavior. He had dry hair, a flat face, bilateral lens opacities, a small nose with hypoplastic tip, alae nasi and nares, a high-arched palate with a very small cleft, mixed dentition with 7 unerupted permanent teeth, left sensorineural and right mixed hearing loss with a calcified plaque of the tympanic membrane, marked shortness of terminal phalanges of hands and feet, ichthyosis of trunk and limbs. The genomic interval between AFM248th5 and KAL1 was investigated. PCR analysis showed a deletion in Xp22.3, with the distal breakpoint between the marker AFM248th5 and PABX and the proximal one between DXS278 and KAL1. Array-CGH and FISH analysis confirmed the interstitial deletion (of about 5.5 Mb) and refined the breakpoints. We discuss the phenotype of our patient in relationship to the deleted segment and the possibility of mental retardation and ADHD genes in the region.
Collapse
Affiliation(s)
- Fortunato Lonardo
- U.O.C. di Genetica Medica, A.O.R.N. Gaetano Rummo, S.S. di Citogenetica Medica e Genetica Molecolare, Via dell'Angelo, 1, I-82100 Benevento, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Dupont C, Lebbar A, Teinturier C, Baverel F, Viot G, Le Tessier D, Le Bozec J, Cuisset L, Dupont JM. First reported case of intrachromosomal cryptic inv dup del Xp in a boy with developmental retardation. Am J Med Genet A 2007; 143A:1236-43. [PMID: 17497716 DOI: 10.1002/ajmg.a.31744] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We report here on a 6-year-old boy referred to the laboratory for karyotyping and SHOX microdeletion testing. The most significant clinical findings in this boy were small stature, Madelung deformity, facial dysmorphism, mild mental retardation and behavioral problems. R-, G- and RTBG-banding chromosome analysis showed a normal male karyotype. Fine molecular characterization, by FISH, of terminal Xp microdeletion revealed an associated partial duplication. Further refinement of the molecular analysis indicated an inverted duplication of the Xp22.31-Xp22.32 (13.7 Mb) region including the STS, VCX-A and KAL1 genes, associated with a terminal Xp deletion Xp22.33-Xpter (3.6 Mb) encompassing the SHOX and ARSE genes. Such rearrangements have been characterized for other chromosomal pairs, but this is the first reported male patient involving the short arm of the X chromosome. Molecular analysis of the maternal and patient's microsatellite markers showed interchromatid mispairing leading to non-allelic homologous recombination to be the most likely mechanism underlying this rearrangement. This case highlights the importance of clinically driven FISH investigations in order to uncover cryptic micro-rearrangements.
Collapse
Affiliation(s)
- Celine Dupont
- AP-HP, Hôpital Cochin, Service Histologie Embryologie Cytogénétique, Université Paris-Descartes, Faculté de Médecine, Unité INSERM U709, Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Macarov M, Zeigler M, Newman JP, Strich D, Sury V, Tennenbaum A, Meiner V. Deletions of VCX-A and NLGN4: a variable phenotype including normal intellect. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2007; 51:329-33. [PMID: 17391250 DOI: 10.1111/j.1365-2788.2006.00880.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
BACKGROUND Patients with Xp22.3 interstitial and terminal deletions have been shown to be affected by intellectual disability (ID) or autism. Previously, VCX-A (variably charged protein X-A), located at Xp22.3, was introduced as a gene for ID and its presence was suggested to be sufficient to maintain normal mental development. Recent reports suggest that mutations in NLGN4 (neuroligin 4), located at that same region, are involved in autistic disorders and ID. METHODS In the current case study, we clinically and molecularly describe a pedigree of three generations affected by contiguous gene syndrome that includes features of X-linked ichthyosis and Kallmann syndrome. RESULTS Molecular analysis revealed the presence of an interstitial deletion spanning approximately 4.5Mb at Xp22.3. The centromeric breakpoint was localized between markers DXS1467 and DXS8051, proximal to KAL-1. The telomeric breakpoint was localized between markers DXS89 and DXS1060, distal to NLGN4. The deletion of VCX-A and NLGN4 in this family prompted us to examine the cognitive functions of our two adult patients using comprehensive intellectual and neurocognitive assessment. Normal intellectual function was found in one patient and mild ID was revealed in the other. Neither patient met any Diagnostic and Statistical Manual of Mental Disorder, Fourth Edition criteria for a pervasive developmental disorder such as autism. CONCLUSIONS These findings suggest that deletion of VCX-A and NLGN4 can result in variable phenotypic features and that normal mental development can be achieved despite this deletion, emphasizing the importance of environmental factors and possible modifier genes.
Collapse
Affiliation(s)
- M Macarov
- Department of Human Genetics, Hebrew University-Hadassah Medical School and Hadassah University Hospital, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
44
|
Melichar VO, Guth S, Hellebrand H, Meindl A, von der Hardt K, Kraus C, Trautmann U, Rascher W, Rauch A, Zenker M. A male infant with a 9.6 Mb terminal Xp deletion including theOA1 locus: Limit of viability of Xp deletions in males. Am J Med Genet A 2007; 143A:135-41. [PMID: 17163525 DOI: 10.1002/ajmg.a.31451] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Males with deletions of or within Xp22.3-pter display variable contiguous gene syndromes including manifestations of Léri-Weill syndrome, chondrodysplasia punctata, mental retardation, ichthyosis, Kallmann syndrome, and ocular albinism. Herein, we report on a male infant with a large, cytogenetically visible, terminal Xp deletion defined by extensive FISH and STS marker analysis to encompass 9.6 Mb, and findings of all of the disorders mentioned above. His deletion approximates the largest Xp terminal deletion ever reported in a male individual. Since the extent of terminal Xp deletions viable in males is limited by the position of male lethal genes in Xp22.2 at about 10-11 Mb from the telomere, this patient falls into the category of the most severe male terminal Xp deletion phenotype.
Collapse
Affiliation(s)
- Volker O Melichar
- Department of Pediatrics, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Deletion of distal promoter of VCXA in a patient with X-linked ichthyosis associated with borderline mental retardation. J Dermatol Sci 2006; 45:31-6. [PMID: 17113756 DOI: 10.1016/j.jdermsci.2006.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 09/28/2006] [Accepted: 10/10/2006] [Indexed: 11/28/2022]
Abstract
BACKGROUND X-linked ichthyosis (XLI) is caused by deficiency of steroid sulfatase (STS) activity. About 90% XLI patients have large deletions involving the entire STS gene and flanking regions. Recently, VCXA, which is located approximately 0.7Mb telomeric to the STS gene, was reported as a candidate gene for mental retardation (MR) in patients with XLI. OBJECTIVE To delineate the X-chromosomal deletion of a XLI patient with borderline mental retardation. METHODS We carried out FISH analysis to show that the whole STS gene is deleted, and PCR analysis for fine-scale deletion mapping. RESULTS The deleted segment is approximately 1.6Mb in size, and includes the entire STS and VCXB1 genes. VCXA itself is intact, but its promoter is deleted. CONCLUSION A deletion that includes the VCXA promoter is associated with borderline mental retardation in a patient with XLI.
Collapse
|
46
|
Shanske AL, Puri M, Marshall B, Saenger P. Unique Deletion in Exon 5 of SHOX Gene in a Patient with Idiopathic Short Stature. Horm Res Paediatr 2006; 67:61-6. [PMID: 17028440 DOI: 10.1159/000096087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Accepted: 06/20/2006] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIM It is known that haploinsufficiency for the SHOX gene (short-stature homeobox gene on the X chromosome) is responsible for short stature in Turner syndrome and Leri-Weill dyschondrogenesis, and it has been reported that it is responsible for upwards of 1 in 50 cases of idiopathic short stature. SHOX haploinsufficiency is also associated with various radiographic abnormalities, such as coarse trabecular pattern, short metacarpals/metatarsals with metaphyseal flaring, altered osseous alignment at the wrist, radial/tibial bowing, triangularization of the radial head, abnormal tuberosity of the humerus, and an abnormal femoral neck. Shortening and bowing of the radius and dorsal dislocation of the distal ulna characterize the Madelung deformity. These characteristic findings led us to do a study assessing the predictive value of certain radiographic features in association with genetic markers of idiopathic short stature. METHODS Here we describe a case of a Hispanic male with idiopathic short stature and Madelung deformity with a novel mutation in the SHOX gene. RESULTS Additional studies revealed a strong family history of short stature and the same SHOX mutation segregating from the mother. CONCLUSION This case resulted in the description of a novel mutation in exon 5 (M202delA) and suggests the importance of screening for SHOX mutations in patients with idiopathic short stature with subtle radiographic abnormalities, including the components of the Madelung deformity in their bone age films.
Collapse
Affiliation(s)
- Alan L Shanske
- Center for Craniofacial Disorders, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY 10467, USA.
| | | | | | | |
Collapse
|
47
|
Blaschke RJ, Rappold G. The pseudoautosomal regions, SHOX and disease. Curr Opin Genet Dev 2006; 16:233-9. [PMID: 16650979 DOI: 10.1016/j.gde.2006.04.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Accepted: 04/18/2006] [Indexed: 12/12/2022]
Abstract
The pseudoautosomal regions represent blocks of sequence identity between the mammalian sex chromosomes. In humans, they reside at the ends of the X and Y chromosomes and encompass roughly 2.7 Mb (PAR1) and 0.33 Mb (PAR2). As a major asset of recently available sequence data, our view of their structural characteristics could be refined considerably. While PAR2 resembles the overall sequence composition of the X chromosome and exhibits only slightly elevated recombination rates, PAR1 is characterized by a significantly higher GC content and a completely different repeat structure. In addition, it exhibits one of the highest recombination frequencies throughout the entire human genome and, probably as a consequence of its structural features, displays a significantly faster rate of evolution. It therefore represents an exceptional model to explore the correlation between meiotic recombination and evolutionary forces such as gene mutation and conversion. At least twenty-nine genes lie within the human pseudoautosomal regions, and these genes exhibit 'autosomal' rather than sex-specific inheritance. All genes within PAR1 escape X inactivation and are therefore candidates for the etiology of haploinsufficiency disorders including Turner syndrome (45,X). However, the only known disease gene within the pseudoautosomal regions is the SHORT STATURE HOMEBOX (SHOX) gene, functional loss of which is causally related to various short stature conditions and disturbed bone development. Recent analyses have furthermore revealed that the phosphorylation-sensitive function of SHOX is directly involved in chondrocyte differentiation and maturation.
Collapse
Affiliation(s)
- Rüdiger Jörg Blaschke
- Department of Human Molecular Genetics, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | | |
Collapse
|
48
|
Chocholska S, Rossier E, Barbi G, Kehrer-Sawatzki H. Molecular cytogenetic analysis of a familial interstitial deletion Xp22.2-22.3 with a highly variable phenotype in female carriers. Am J Med Genet A 2006; 140:604-10. [PMID: 16470742 DOI: 10.1002/ajmg.a.31145] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We describe a familial interstitial deletion of 7.7-Mb involving Xp22.2-22.3. The deletion was transmitted from an asymptomatic mother to her two children with severe developmental delay, no speech development and autistic behavior. Assessment of the deletion boundaries by FISH and PCR analyses indicated that the deletions encompasses 27 genes. Several of these genes are associated with known disorders, like KAL1 (Kallmann syndrome), steroid sulfatase (STS) (X-linked ichtyosis), and arylsulfatase E (ARSE) (chondrodysplasia punctata). The deletion also includes all four VCX genes (VCX-A, VCX-B1, VCX-B, and VCX-C) and the neuroligin 4 (NLGN4) gene. VCX-A deficiency has been shown previously to be associated with mental retardation and NLGN4 mutations lead to mental retardation in conjunction with autism. Functional deficiency of both MRX genes, VCX-A and NLGN4, are most likely associated with the impaired cognitive development of the patients described here. The phenotype associated with the Xp deletion was highly variable in female carriers and might be attributed to unfavorable X inactivation. However, all the 27 genes included in the deleted interval escape X inactivation and are expressed at variable levels from the normal X chromosome. Thus, the overall X inactivation pattern and inter-individual expression variability of the genes in distal Xp might be determinants of the phenotype associated with the deletion.
Collapse
|
49
|
Rodríguez Dehli AC, Rivas Crespo MF, Jiménez Treviño S. Hipocrecimiento y hallazgos en la radiología para la edad ósea. An Pediatr (Barc) 2006; 64:293-5. [PMID: 16527108 DOI: 10.1157/13085528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- A C Rodríguez Dehli
- Servicio de Pediatría, Hospital Universitario Central de Asturias, Oviedo, Spain.
| | | | | |
Collapse
|
50
|
Ross J, Roeltgen D, Zinn A. Cognition and the sex chromosomes: studies in Turner syndrome. HORMONE RESEARCH 2006; 65:47-56. [PMID: 16397401 DOI: 10.1159/000090698] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Turner syndrome (TS) is a human genetic disorder involving females who lack all or part of one X chromosome. The complex phenotype includes ovarian failure, a characteristic neurocognitive profile and typical physical features. TS features are associated not only with complete monosomy X but also with partial deletions of either the short (Xp) or long (Xq) arm (partial monosomy X). Impaired visual-spatial/perceptual abilities are characteristic of TS children and adults of varying races and socioeconomic status, but global developmental delay is uncommon. The cognitive phenotype generally includes normal verbal function with relatively impaired visual-spatial ability, attention, working memory, and spatially dependent executive function. The constellation of neurocognitive deficits observed in TS is most likely multifactorial and related to a complex interaction between genetic abnormalities and hormonal deficiencies. Furthermore, other determinants, including an additional genetic mechanism, imprinting, may also contribute to cognitive deficits associated with monosomy X. As a relatively common genetic disorder with well-defined manifestations, TS presents an opportunity to investigate genetic and hormonal factors that influence female cognitive development. TS is an excellent model for such studies because of its prevalence, the well-characterized phenotype, and the wealth of molecular resources available for the X chromosome. In the current review, we summarize the hormonal and genetic factors that may contribute to the TS neurocognitive phenotype. The hormonal determinants of cognition in TS are related to estrogen and androgen deficiency. Our genetic hypothesis is that haploinsufficiency for gene/genes on the short arm of the X chromosome (Xp) is responsible for the hallmark features of the TS cognitive phenotype. Careful clinical and molecular characterization of adult subjects missing part of Xp links the TS phenotype of impaired visual spatial/perceptual ability to specific distal Xp chromosome regions. We demonstrate that small, nonmosaic deletion of the distal short arm of the X chromosome in adult women is associated with the same hallmark cognitive profile seen in adult women with TS. Future studies will elucidate the cognitive deficits and the underlying etiology. These results should allow us to begin to design cognitive interventions that might lessen those deficits in the TS population.
Collapse
Affiliation(s)
- Judith Ross
- Department of Pediatrics, Thomas Jefferson University, A.I. duPont Hospital for Children, Philadelphia, PA 19107, USA.
| | | | | |
Collapse
|