1
|
Wang Y, Yin F, Li Z. Sulfonium-Tethered Peptide. Methods Mol Biol 2022; 2530:169-175. [PMID: 35761049 DOI: 10.1007/978-1-0716-2489-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Stapled peptides have received widespread attention in therapeutics due to the superior membrane penetration and in vivo stability. We have developed a series of methods including CIH, TD coupling, Met-Met, and Cys-Met bis-alkylation strategy to switch peptides' secondary structure and enhance their stability and cellular uptake. Here we focus on the peptide macrocyclization method of Met-Met and Cys-Met bis-alkylation strategy to generate more stable and permeable sulfonium-tethered peptides to avoid tedious synthesis, which can be utilized for drug delivery and further broad biological applications.
Collapse
Affiliation(s)
- Yuena Wang
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, People's Republic of China
| | - Feng Yin
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, People's Republic of China
| | - Zigang Li
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, People's Republic of China.
| |
Collapse
|
2
|
Pal S, Banerjee S, Kumar A, Prabhakaran EN. H-Bond Surrogate-Stabilized Shortest Single-Turn α-Helices: sp 2 Constraints and Residue Preferences for the Highest α-Helicities. ACS OMEGA 2020; 5:13902-13912. [PMID: 32566857 PMCID: PMC7301546 DOI: 10.1021/acsomega.0c01277] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/20/2020] [Indexed: 05/08/2023]
Abstract
Short α-helical sequences of proteins fail to maintain their native conformation when taken out of their protein context. Several covalent constraints have been designed, including the covalent H-bond surrogate (HBS)-where a peptide backbone i + 4 → i H-bond is replaced by a covalent surrogate-to nucleate α-helix in short sequences (>7 < 15 amino acids). But constraining the shortest sequences (four amino acids) into a single α-helical turn is still a significant challenge. Here, we introduce an HBS model that can be placed in unstructured tetrapeptides without excising any of its residues, and that biases them predominantly into remarkably stable single α-helical turns in varying solvents, pH values, and temperatures. Circular dichroism (CD), Fourier transform infrared (FT-IR) absorption, one-dimensional (1D)-NMR, two-dimensional (2D)-NMR spectral and computational analyses of the HBS-constrained tetrapeptide analogues reveal that (a) the number of sp2 atoms in the HBS-constrained backbone influences their predominance and rigidity in the α-helical conformation; and (b) residue preferences at the unnatural HBS-constrained positions influence their α-helicities, with Moc[GFA]G-OMe (1a) showing the highest known α-helicity (θn→π*MRE ∼-25.3 × 103 deg cm2 dmol-1 at 228 nm) for a single α-helical turn. Current findings benefit chemical biological applications desiring predictable access to single α-helical turns in tetrapeptides.
Collapse
|
3
|
Qin W, Xie M, Qin X, Fang Q, Yin F, Li Z. Recent advances in peptidomimetics antagonists targeting estrogen receptor α-coactivator interaction in cancer therapy. Bioorg Med Chem Lett 2018; 28:2827-2836. [DOI: 10.1016/j.bmcl.2018.05.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/25/2018] [Accepted: 05/30/2018] [Indexed: 02/07/2023]
|
4
|
Jiang Y, Hu K, Shi X, Tang Q, Wang Z, Ye X, Li Z. Switching substitution groups on the in-tether chiral centre influences backbone peptides' permeability and target binding affinity. Org Biomol Chem 2018; 15:541-544. [PMID: 27929189 DOI: 10.1039/c6ob02289h] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Different substitution groups on the in-tether chiral centre of chirality-induced helical peptides (CIH peptides) showed distinguishable effects on the peptides' cellular uptakes and binding affinities with the estrogen receptor α(ER-α). This study proves that in-tether chiral centres are a valuable modification site for constructing peptide ligands with preferable biophysical properties.
Collapse
Affiliation(s)
- Yixiang Jiang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Kuan Hu
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Xiaodong Shi
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Qingzhuang Tang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - ZiChen Wang
- Shenzhen Middle School, Shenzhen 518001, China
| | - Xiyang Ye
- Department of Gynecology, Shenzhen People's Hospital, Shenzhen 518055, China
| | - Zigang Li
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
5
|
Lin H, Jiang Y, Zhang Q, Hu K, Li Z. An in-tether sulfilimine chiral center induces helicity in short peptides. Chem Commun (Camb) 2018; 52:10389-91. [PMID: 27480995 DOI: 10.1039/c6cc04508a] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A precisely positioned sulfilimine chiral center in the tether of a stabilized peptide would determine the peptide's secondary structure. Peptide sulfilimines could be prepared by a facile chloramine T oxidation and the two resulting peptide diastereomers showed significant differences in their secondary structures, which were supported by circular dichroism spectroscopy and NMR.
Collapse
Affiliation(s)
- Huacan Lin
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Yixiang Jiang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Qingzhou Zhang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Kuan Hu
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Zigang Li
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
6
|
Holub JM. Small Scaffolds, Big Potential: Developing Miniature Proteins as Therapeutic Agents. Drug Dev Res 2017; 78:268-282. [PMID: 28799168 DOI: 10.1002/ddr.21408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/26/2017] [Indexed: 12/14/2022]
Abstract
Preclinical Research Miniature proteins are a class of oligopeptide characterized by their short sequence lengths and ability to adopt well-folded, three-dimensional structures. Because of their biomimetic nature and synthetic tractability, miniature proteins have been used to study a range of biochemical processes including fast protein folding, signal transduction, catalysis and molecular transport. Recently, miniature proteins have been gaining traction as potential therapeutic agents because their small size and ability to fold into defined tertiary structures facilitates their development as protein-based drugs. This research overview discusses emerging developments involving the use of miniature proteins as scaffolds to design novel therapeutics for the treatment and study of human disease. Specifically, this review will explore strategies to: (i) stabilize miniature protein tertiary structure; (ii) optimize biomolecular recognition by grafting functional epitopes onto miniature protein scaffolds; and (iii) enhance cytosolic delivery of miniature proteins through the use of cationic motifs that facilitate endosomal escape. These objectives are discussed not only to address challenges in developing effective miniature protein-based drugs, but also to highlight the tremendous potential miniature proteins hold for combating and understanding human disease. Drug Dev Res 78 : 268-282, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Justin M Holub
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
7
|
Tan WL, Wong KH, Lei J, Sakai N, Tan HW, Hilgenfeld R, Tam JP. Lybatides from Lycium barbarum Contain An Unusual Cystine-stapled Helical Peptide Scaffold. Sci Rep 2017; 7:5194. [PMID: 28701689 PMCID: PMC5507927 DOI: 10.1038/s41598-017-05037-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/22/2017] [Indexed: 12/27/2022] Open
Abstract
Cysteine-rich peptides (CRPs) of 2–6 kDa are generally thermally and proteolytically stable because of their multiple cross-bracing disulfide bonds. Here, we report the discovery and characterization of two novel cystine-stapled CRPs, designated lybatide 1 and 2 (lyba1 and lyba2), from the cortex of Lycium barbarum root. Lybatides, 32 to 33 amino acids in length, are hyperstable and display a novel disulfide connectivity with a cysteine motif of C-C-C-C-CC-CC which contains two pairs of adjacent cysteines (-CC-CC). X-ray structure analysis revealed the presence of a single cystine-stabilized (α + π)-helix in lyba2, a rare feature of CRPs. Together, our results suggest that lybatides, one of the smallest four-disulfide-constrained plant CRPs, is a new family of CRPs. Additionally, this study provides new insights into the molecular diversity of plant cysteine-rich peptides and the unusual lybatide scaffold could be developed as a useful template for peptide engineering and therapeutic development.
Collapse
Affiliation(s)
- Wei Liang Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Ka H Wong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jian Lei
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.,German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, University of Lübeck, Lübeck, Germany
| | - Naoki Sakai
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Hong Wei Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Rolf Hilgenfeld
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.,German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, University of Lübeck, Lübeck, Germany
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
8
|
Hu K, Geng H, Zhang Q, Liu Q, Xie M, Sun C, Li W, Lin H, Jiang F, Wang T, Wu YD, Li Z. An In-tether Chiral Center Modulates the Helicity, Cell Permeability, and Target Binding Affinity of a Peptide. Angew Chem Int Ed Engl 2016; 55:8013-7. [PMID: 27167181 DOI: 10.1002/anie.201602806] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Indexed: 11/11/2022]
Abstract
The addition of a precisely positioned chiral center in the tether of a constrained peptide is reported, yielding two separable peptide diastereomers with significantly different helicity, as supported by circular dichroism (CD) and NMR spectroscopy. Single crystal X-ray diffraction analysis suggests that the absolute configuration of the in-tether chiral center in helical form is R, which is in agreement with theoretical simulations. The relationship between the secondary structure of the short peptides and their biochemical/biophysical properties remains elusive, largely because of the lack of proper controls. The present strategy provides the only method for investigating the influence of solely conformational differences upon the biochemical/biophysical properties of peptides. The significant differences in permeability and target binding affinity between the peptide diastereomers demonstrate the importance of helical conformation.
Collapse
Affiliation(s)
- Kuan Hu
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Hao Geng
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Qingzhou Zhang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Qisong Liu
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Mingsheng Xie
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Chengjie Sun
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Wenjun Li
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Huacan Lin
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Fan Jiang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Tao Wang
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Yun-Dong Wu
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Zigang Li
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
9
|
Hu K, Geng H, Zhang Q, Liu Q, Xie M, Sun C, Li W, Lin H, Jiang F, Wang T, Wu YD, Li Z. An In-tether Chiral Center Modulates the Helicity, Cell Permeability, and Target Binding Affinity of a Peptide. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602806] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kuan Hu
- School of Chemical Biology and Biotechnology; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| | - Hao Geng
- School of Chemical Biology and Biotechnology; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| | - Qingzhou Zhang
- School of Chemical Biology and Biotechnology; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| | - Qisong Liu
- School of Chemical Biology and Biotechnology; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| | - Mingsheng Xie
- School of Chemical Biology and Biotechnology; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| | - Chengjie Sun
- School of Chemical Biology and Biotechnology; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| | - Wenjun Li
- School of Chemical Biology and Biotechnology; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| | - Huacan Lin
- School of Chemical Biology and Biotechnology; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| | - Fan Jiang
- School of Chemical Biology and Biotechnology; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| | - Tao Wang
- Department of Biology; Southern University of Science and Technology; Shenzhen 518055 China
| | - Yun-Dong Wu
- School of Chemical Biology and Biotechnology; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| | - Zigang Li
- School of Chemical Biology and Biotechnology; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| |
Collapse
|
10
|
Zhang Y, Deng C, Liu S, Wu J, Chen Z, Li C, Lu W. Active Targeting of Tumors through Conformational Epitope Imprinting. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201412114] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Zhang Y, Deng C, Liu S, Wu J, Chen Z, Li C, Lu W. Active Targeting of Tumors through Conformational Epitope Imprinting. Angew Chem Int Ed Engl 2015; 54:5157-60. [DOI: 10.1002/anie.201412114] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Indexed: 12/18/2022]
|
12
|
Hilinski GJ, Kim YW, Hong J, Kutchukian PS, Crenshaw CM, Berkovitch SS, Chang A, Ham S, Verdine GL. Stitched α-helical peptides via bis ring-closing metathesis. J Am Chem Soc 2014; 136:12314-22. [PMID: 25105213 DOI: 10.1021/ja505141j] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Conformationally stabilized α-helical peptides are capable of inhibiting disease-relevant intracellular or extracellular protein-protein interactions in vivo. We have previously reported that the employment of ring-closing metathesis to introduce a single all-hydrocarbon staple along one face of an α-helical peptide greatly increases α-helical content, binding affinity to a target protein, cell penetration through active transport, and resistance to proteolytic degradation. In an effort to improve upon this technology for stabilizing a peptide in a bioactive α-helical conformation, we report the discovery of an efficient and selective bis ring-closing metathesis reaction leading to peptides bearing multiple contiguous staples connected by a central spiro ring junction. Circular dichroism spectroscopy, NMR, and computational analyses have been used to investigate the conformation of these "stitched" peptides, which are shown to exhibit remarkable thermal stabilities. Likewise, trypsin proteolysis assays confirm the achievement of a structural rigidity unmatched by peptides bearing a single staple. Furthermore, fluorescence-activated cell sorting (FACS) and confocal microscopy assays demonstrate that stitched peptides display superior cell penetrating ability compared to their stapled counterparts, suggesting that this technology may be useful not only in the context of enhancing the drug-like properties of α-helical peptides but also in producing potent agents for the intracellular delivery of proteins and oligonucleotides.
Collapse
Affiliation(s)
- Gerard J Hilinski
- Department of Chemistry and Chemical Biology and Department of Stem Cell and Regenerative Biology, Harvard University , Cambridge, Massachusetts 02138, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hurevich M, Ratner-Hurevich M, Tal-Gan Y, Shalev DE, Ben-Sasson SZ, Gilon C. Backbone cyclic helix mimetic of chemokine (C-C motif) receptor 2: a rational approach for inhibiting dimerization of G protein-coupled receptors. Bioorg Med Chem 2013; 21:3958-66. [PMID: 23706536 DOI: 10.1016/j.bmc.2013.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 02/28/2013] [Accepted: 03/01/2013] [Indexed: 10/27/2022]
Abstract
The transmembrane helical bundle of G protein-coupled receptors (GPCRs) dimerize through helix-helix interactions in response to inflammatory stimulation. A strategy was developed to target the helical dimerization site of GPCRs by peptidomimetics with drug like properties. The concept was demonstrated by selecting a potent backbone cyclic helix mimetic from a library that derived from the dimerization region of chemokine (C-C motif) receptor 2 (CCR2) that is a key player in Multiple Sclerosis. We showed that CCR2 based backbone cyclic peptide having a stable helix structure inhibits specific CCR2-mediated chemotactic migration.
Collapse
Affiliation(s)
- Mattan Hurevich
- Institute of Chemistry, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | | | | | | | | | | |
Collapse
|
14
|
Li C, Pazgier M, Liu M, Lu WY, Lu W. Apamin as a template for structure-based rational design of potent peptide activators of p53. Angew Chem Int Ed Engl 2010; 48:8712-5. [PMID: 19827079 DOI: 10.1002/anie.200904550] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chong Li
- Institute of Human Virology, University of Maryland School of Medicine, 725 W. Lombard St., Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
15
|
Apamin as a Template for Structure-Based Rational Design of Potent Peptide Activators of p53. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200904550] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Karbat I, Kahn R, Cohen L, Ilan N, Gilles N, Corzo G, Froy O, Gur M, Albrecht G, Heinemann SH, Gordon D, Gurevitz M. The unique pharmacology of the scorpion α-like toxin Lqh3 is associated with its flexible C-tail. FEBS J 2007; 274:1918-31. [PMID: 17355257 DOI: 10.1111/j.1742-4658.2007.05737.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The affinity of scorpion alpha-toxins for various voltage-gated sodium channels (Na(v)s) differs considerably despite similar structures and activities. It has been proposed that key bioactive residues of the five-residue-turn (residues 8-12) and the C-tail form the NC domain, whose topology is dictated by a cis or trans peptide-bond conformation between residues 9 and 10, which correlates with the potency on insect or mammalian Na(v)s. We examined this hypothesis using Lqh3, an alpha-like toxin from Leiurus quinquestriatus hebraeus that is highly active in insects and mammalian brain. Lqh3 exhibits slower association kinetics to Na(v)s compared with other alpha-toxins and its binding to insect Na(v)s is pH-dependent. Mutagenesis of Lqh3 revealed a bi-partite bioactive surface, composed of the Core and NC domains, as found in other alpha-toxins. Yet, substitutions at the five-residue turn and stabilization of the 9-10 bond in the cis conformation did not affect the activity. However, substitution of hydrogen-bond donors/acceptors at the NC domain reduced the pH-dependency of toxin binding, while retaining its high potency at Drosophila Na(v)s expressed in Xenopus oocytes. Based on these results and the conformational flexibility and rearrangement of intramolecular hydrogen-bonds at the NC domain, evident from the known solution structure, we suggest that acidic pH or specific mutations at the NC domain favor toxin conformations with high affinity for the receptor by stabilizing the bound toxin-receptor complex. Moreover, the C-tail flexibility may account for the slower association rates and suggests a novel mechanism of dynamic conformer selection during toxin binding, enabling alpha-like toxins to affect a broad range of Na(v)s.
Collapse
Affiliation(s)
- Izhar Karbat
- Department of Plant Sciences, George S.Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Le-Nguyen D, Chiche L, Hoh F, Martin-Eauclaire MF, Dumas C, Nishi Y, Kobayashi Y, Aumelas A. Role of Asn2 and Glu7 residues in the oxidative folding and on the conformation of theN-terminal loop of apamin. Biopolymers 2007; 86:447-62. [PMID: 17486576 DOI: 10.1002/bip.20755] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The X-ray structure of [N-acetyl]-apamin has been solved at 0.95 A resolution. It consists of an 1-7 N-terminal loop stabilized by an Asn-beta-turn motif (2-5 residues) and a helical structure spanning the 9-18 residues tightly linked together by two disulfide bonds. However, neither this accurate X-ray nor the available solution structures allowed us to rationally explain the unusual downfield shifts observed for the Asn(2) and Glu(7) amide signals upon Glu(7) carboxylic group ionization. Thus, apamin and its [N-acetyl], [Glu(7)Gln], [Glu(7)Asp], and [Asn(2)Abu] analogues and submitted to NMR structural studies as a function of pH. We first demonstrated that the Glu(7) carboxylate group is responsible for the large downfield shifts of the Asn(2) and Glu(7) amide signals. Then, molecular dynamics (MD) simulations suggested unexpected interactions between the carboxylate group and the Asn(2) and Glu(7) amide protons as well as the N-terminal alpha-amino group, through subtle conformational changes that do not alter the global fold of apamin. In addition, a structural study of the [Asn(2)Abu] analogue, revealed an essential role of Asn(2) in the beta-turn stability and the cis/trans isomerization of the Ala(5)-Pro(6) amide bond. Interestingly, this proline isomerization was shown to also depend on the ionization state of the Glu(7) carboxyl group. However, neither destabilization of the beta-turn nor proline isomerization drastically altered the helical structure that contains the residues essential for binding. Altogether, the Asn(2) and Glu(7) residues appeared essential for the N-terminal loop conformation and thus for the selective formation of the native disulfide bonds but not for the activity.
Collapse
Affiliation(s)
- Dung Le-Nguyen
- Centre de Pharmacologie et Biotechnologie pour la Santé-CNRS FRE 3009, Faculté de Pharmacie, Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Iqbalsyah TM, Moutevelis E, Warwicker J, Errington N, Doig AJ. The CXXC motif at the N terminus of an alpha-helical peptide. Protein Sci 2006; 15:1945-50. [PMID: 16877711 PMCID: PMC2242585 DOI: 10.1110/ps.062271506] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
An active site containing a CXXC motif is always found in the thiol-disulphide oxidoreductase superfamily. A survey of crystal structures revealed that the CXXC motif had a very high local propensity (26.3 +/- 6.2) for the N termini of alpha-helices. A helical peptide with the sequence CAAC at the N terminus was synthesized to examine the helix-stabilizing capacity of the CXXC motif. Circular dichroism was used to confirm the helical nature of the peptide and study behavior under titration with various species. With DTT, a redox potential of E(o) = -230 mV was measured, indicating that the isolated peptide is reducing in nature and similar to native human thioredoxin. The pK(a) values of the individual Cys residues could not be separated in the titration of the reduced state, giving a single transition with an apparent pK(a) of 6.74 (+/-0.06). In the oxidized state, the N-terminal pK(a) is 5.96 (+/-0.05). Analysis of results with the modified helix-coil theory indicated that the disulfide bond stabilized the alpha-helical structure by 0.5 kcal/mol. Reducing the disulfide destabilizes the helix by 0.9 kcal/mol.
Collapse
Affiliation(s)
- Teuku M Iqbalsyah
- Manchester Interdisciplinary Biocentre, The University of Manchester, UK
| | | | | | | | | |
Collapse
|
19
|
Nicoll AJ, Weston CJ, Cureton C, Ludwig C, Dancea F, Spencer N, Smart OS, Günther UL, Allemann RK. De novo design of a stable N-terminal helical foldamer. Org Biomol Chem 2005; 3:4310-5. [PMID: 16327890 DOI: 10.1039/b513891d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A peptide NTH-18 was synthesized in which a N-terminal helix is stabilised by two crossed disulfide bonds to a C-terminal extension. The design was inspired by the structure of the neurotoxic peptide apamin, which has previously been used to stabilise helices in miniature enzymes. CD- and NMR-spectroscopy indicated that NTH-18 adopted a fold similar to that found in apamin. However, the arrangement of the elements of secondary structures was inverted relative to apamin; a N-terminal alpha-helix was connected by a reverse turn to a C-terminal extension of non-canonical secondary structure. NTH-18 displayed significant stability to heat and changes of pH. The high definition of the N-terminal end of the alpha-helix of NTH-18 should make this peptide a useful vehicle to stabilise alpha-helices in proteins with applications in protein engineering and molecular recognition.
Collapse
Affiliation(s)
- Andrew J Nicoll
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Weston CJ, Cureton CH, Calvert MJ, Smart OS, Allemann RK. A Stable Miniature Protein with Oxaloacetate Decarboxylase Activity. Chembiochem 2004; 5:1075-80. [PMID: 15300830 DOI: 10.1002/cbic.200300805] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An 18-residue miniature enzyme, Apoxaldie-1, has been designed, based on the known structure of the neurotoxic peptide apamin. Three lysine residues were introduced on the solvent-exposed face of the apamin alpha-helix to serve as an active site for decarboxylation of oxaloacetate. The oxidised form of Apoxaldie-1, in which two disulfide bonds stabilise the alpha-helix, formed spontaneously. CD spectroscopy measurements revealed that, in its oxidised form, Apoxaldie-1 adopted a stably folded structure, which was lost upon reduction of the disulfide bonds. Despite its small size and the absence of a designed binding pocket, Apoxaldie-1 displayed saturation kinetics in its oxidised form and catalysed the decarboxylation of oxaloacetate at a rate that was almost four orders of magnitude faster than that observed with n-butylamine. This rivals the performance of the best synthetic oxaloacetate decarboxylases reported to date. Unlike those, however, Apoxaldie-1 displayed significant stability. It maintained its secondary structure at temperatures in excess of 75 degrees C, in the presence of high concentrations of guanidinium chloride and at pH values as low as 2.2. Apamin-based catalysts have potential for the generation of miniature peptides that display activity under nonphysiological conditions.
Collapse
Affiliation(s)
- Chris J Weston
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | |
Collapse
|
21
|
Pflum MKH. Grafting miniature DNA binding proteins. CHEMISTRY & BIOLOGY 2004; 11:3-4. [PMID: 15112983 DOI: 10.1016/j.chembiol.2004.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Miniature proteins serve as leads for biological and medicinal applications by positioning all amino acids necessary for biomolecular recognition on a compact protein structure. Protein grafting was recently used to create miniature helical proteins with high DNA binding affinity and specificity.
Collapse
Affiliation(s)
- Mary Kay H Pflum
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| |
Collapse
|
22
|
Turner EC, Cureton CH, Weston CJ, Smart OS, Allemann RK. Controlling the DNA Binding Specificity of bHLH Proteins through Intramolecular Interactions. ACTA ACUST UNITED AC 2004; 11:69-77. [PMID: 15112996 DOI: 10.1016/j.chembiol.2003.12.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Revised: 10/28/2003] [Accepted: 10/28/2003] [Indexed: 11/20/2022]
Abstract
Reversible control of the conformation of proteins was employed to probe the relationship between flexibility and specificity of the basic helix-loop-helix protein MyoD. A fusion protein (apaMyoD) was designed where the basic DNA binding helix of MyoD was stablized by an amino-terminal extension with a sequence derived from the bee venom peptide apamin. The disulfide-stabilized helix from apamin served as a nucleus for a helix that extended for a further ten residues, thereby holding apaMyoD's DNA recognition helix in a predominantly alpha-helical conformation. The thermal stability of the DNA complexes of apaMyoD was increased by 13 degrees C relative to MyoD-bHLH. Measurements of the fluorescence anisotropy change on DNA binding indicated that apaMyoD bound to E-box-containing DNA sequences with enhanced affinity relative to MyoD-bHLH. Consequently, the DNA binding specificity of apaMyoD was increased 10-fold.
Collapse
Affiliation(s)
- Elizebeth C Turner
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | | | | | | | | |
Collapse
|
23
|
Kumita JR, Flint DG, Smart OS, Woolley GA. Photo-control of peptide helix content by an azobenzene cross-linker: steric interactions with underlying residues are not critical. Protein Eng Des Sel 2002; 15:561-9. [PMID: 12200538 DOI: 10.1093/protein/15.7.561] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Photo-control of protein conformation could prove useful for probing function in diverse biological systems. Recently, we reported photo-switching of helix content in a short peptide containing an azobenzene cross-linker between cysteine residues at positions i and i + 7 in the sequence. In the original sequence, underlying residues at positions i + 3 and i + 4 were made bulky as preliminary modelling suggested that this would enhance photo-control of helix content. To test this hypothesis, peptides with Val, Aib; Ile, Aib; and Ala, Ala at positions i + 3 and i + 4 were synthesized, cross-linked and characterized. Before cross-linking, the peptides show distinct conformational behaviours: two with differing helix/coil mixtures whereas the other has a circular dichroism (CD) spectrum characteristic of beta-sheet and a tendency to aggregate. However, upon cross-linking the peptides have very similar CD spectra: predominantly random coil in the dark but predominantly helical upon irradiation. These results refute the original hypothesis. Steric interactions between the linker and underlying residues do not appear to be critical for photo-switching behaviour. When the cross-linking bridge is lengthened by replacing the i, i + 7 cysteine residues with homocysteine, a lower degree of photo-control of helicity is observed. Furthermore, a non-cross-linking version of the azobenzene reagent is shown not to produce any photo-control of helicity. We conclude that the intramolecular cross-link is essential for photo-switching and that it should be applicable to a wide range of peptides and proteins.
Collapse
Affiliation(s)
- Janet R Kumita
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto M5S 3H6, Canada
| | | | | | | |
Collapse
|
24
|
Bastos M, Pease JH, Wemmer DE, Murphy KP, Connelly PR. Thermodynamics of the helix-coil transition: Binding of S15 and a hybrid sequence, disulfide stabilized peptide to the S-protein. Proteins 2001; 42:523-30. [PMID: 11170206 DOI: 10.1002/1097-0134(20010301)42:4<523::aid-prot100>3.0.co;2-b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pancreatic ribonuclease A may be cleaved to produce two fragments: the S-peptide (residues 1-20) and the S-protein (residues 21-124). The S-peptide, or a truncated version designated as the S15 peptide (residues 1-15), combines with the S-protein to produce catalytically active complexes. The conformation of these peptides and many of their analogues is predominantly random coil at room temperature; however, they populate a significant fraction of helical form at low temperature under certain solution conditions. Moreover, they adopt a helical conformation when bound to the S-protein. A hybrid sequence, disulfide-stabilized peptide (ApaS-25), designed to stabilize the helical structure of the S-peptide in solution, also combines with the S-protein to yield a catalytically active complex. We have performed high-precision titration microcalorimetric measurements to determine the free energy, enthalpy, entropy, and heat capacity changes for the binding of ApaS-25 to S-protein within the temperature range 5-25 degrees C. The thermodynamic parameters for both the complex formation reactions and the helix-to-coil transition also were calculated, using a structure-based approach, by calculating changes in accessible surface area and using published empirical parameters. A simple thermodynamic model is presented in an attempt to account for the differences between the binding of ApaS-25 and the S-peptide. From this model, the thermodynamic parameters of the helix-to-coil transition of S15 can be calculated.
Collapse
Affiliation(s)
- M Bastos
- CIQ(UP) Department of Chemistry, Faculty of Sciences, University of Porto, Portugal.
| | | | | | | | | |
Collapse
|
25
|
Pegoraro S, Fiori S, Cramer J, Rudolph-Böhner S, Moroder L. The disulfide-coupled folding pathway of apamin as derived from diselenide-quenched analogs and intermediates. Protein Sci 1999; 8:1605-13. [PMID: 10452604 PMCID: PMC2144427 DOI: 10.1110/ps.8.8.1605] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The sequence of apamin, an 18 residue bee venom toxin, encloses all the information required for the correct disulfide-coupled folding into the cystine-stabilized alpha-helical motif. Three apamin analogs, each containing a pair of selenocysteine residues replacing the related cysteines, were synthesized to mimic the three possible apamin isomers with two crossed, parallel, or consecutive disulfides, respectively. Refolding experiments clearly revealed that the redox potential of selenocysteine prevails over the sequence encoded structural information for proper folding of apamin. Thus, selenocysteine can be used as a new device to generate productive and nonproductive folding intermediates of peptides and proteins. In fact, disulfides are selectively reduced in presence of the diselenide and the conformational features derived from these intermediates as well as from the three-dimensional (3D) structures of the selenocysteine-containing analogs with their nonnatural networks of diselenide/disulfide bridges allowed to gain further insight into the subtle driving forces for the correct folding of apamin that mainly derive from local conformational preferences.
Collapse
Affiliation(s)
- S Pegoraro
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | | | | | |
Collapse
|
26
|
Coyle JE, Jaeger J, Gross M, Robinson CV, Radford SE. Structural and mechanistic consequences of polypeptide binding by GroEL. FOLDING & DESIGN 1998; 2:R93-104. [PMID: 9427006 DOI: 10.1016/s1359-0278(97)00046-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The remarkable ability of the chaperonin GroEL to recognise a diverse range of non-native states of proteins constitutes one of the most fascinating molecular recognition events in protein chemistry. Recent structural studies have revealed a possible model for substrate binding by GroEL and a high-resolution image of the GroEL-GroES folding machinery has provided important new insights into our understanding of the mechanism of action of this chaperonin. Studies with a variety of model substrates reveal that the binding of substrate proteins to GroEL is not just a passive event, but can result in significant changes in the structure and stability of the bound polypeptide. The potential impact of this on the mechanism of chaperonin-assisted folding is not fully understood, but provides exciting scope for further experiment.
Collapse
Affiliation(s)
- J E Coyle
- School of Biochemistry and Molecular Biology, University of Leeds, UK
| | | | | | | | | |
Collapse
|
27
|
Volkman BF, Wemmer DE. Deletion of a single amino acid changes the folding of an apamin hybrid sequence peptide to that of endothelin. Biopolymers 1997; 41:451-60. [PMID: 9080780 DOI: 10.1002/(sici)1097-0282(19970405)41:4<451::aid-bip9>3.0.co;2-l] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The solution conformations of a hybrid sequence peptide related to the bee venom peptide apamin have been determined using two-dimensional 1H-nmr. Apamin is an 18 amino acid peptide containing a C-terminal helix that is stabilized by two disulfide bonds. The deletion of one residue (K4) of the N-terminal "scaffold" region of the apamin sequence results in a helical peptide, but with a change in the pairing of cysteines to form the disulfide cross links. The new disulfide arrangement is analogous to that of the vasoconstrictor peptide endothelin. Two sets of nmr resonances were observed for the apamin-deletion (AD) peptide, due to cistrans isomerism at the A4-P5 peptide bond. The cis isomer of the AD peptide contains a tight turn in residues 3-6, which is required for formation of the alpha-helix in residues 7-15. Nuclear Overhauser effects observed for the trans AD peptide are not consistent with any single unique fold, indicating the presence of conformational averaging when the peptide adopts the trans form. Distance geometry calculations on the cis AD peptide reveal an alpha-helical structure that appears to be more like that of apamin than the crystal structure of human endothelin, despite the reversal of the disulfide pattern in the AD peptide from that of apamin to that of endothelin.
Collapse
Affiliation(s)
- B F Volkman
- Department of Chemistry, University of California, Berkeley, California, USA
| | | |
Collapse
|
28
|
Brazil BT, Cleland JL, McDowell RS, Skelton NJ, Paris K, Horowitz PM. Model peptide studies demonstrate that amphipathic secondary structures can be recognized by the chaperonin GroEL (cpn60). J Biol Chem 1997; 272:5105-11. [PMID: 9030576 DOI: 10.1074/jbc.272.8.5105] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The molecular chaperone cpn60 binds many unfolded proteins and facilitates their proper folding. Synthetic peptides have been used to probe the question of how cpn60 might recognize such a diverse set of unfolded proteins. Three hybrid peptides were synthesized encompassing portions of the bee venom peptide, apamin, and the sequence KWLAESVRAGK from an amphipathic helix in the NH2-terminal region of bovine rhodanese. Two disulfides connecting cysteine residues hold the peptides in stable helical conformations with unobstructed faces oriented away from the disulfides. Peptides were designed to present either a hydrophobic or hydrophilic face of the amphipathic helix that is similar to the one near the amino terminus of rhodanese. Aggregation of these peptides was detected by measuring 1,1'-bis(4-anilino)napthalene-5,5'-disulfonic acid (bisANS) fluorescence at increasing peptide concentrations, and aggregation was not apparent below 2 microM. Thus, all experiments with the peptides were performed at a concentration of 1 microM. Reducing agents cause these helical peptides to form random coils. Fluorescence anisotropy measurements of fluorescein-labeled peptide with the exposed hydrophobic face yielded a Kd = approximately 106 microM for binding to cpn60, whereas there was no detectable binding of the reduced form. The peptide with the exposed hydrophilic face did not bind to cpn60 in either the oxidized or reduced states. Fluorescence experiments utilizing bisANS as a probe showed that binding of the helical hydrophobic peptide could induce the exposure of hydrophobic surfaces on cpn60, whereas the same peptide in its random coil form had no effect. Thus, binding to cpn60 is favored by a secondary structure that organizes and exposes a hydrophobic surface, a feature found in amphipathic helices. Further, the binding of a hydrophobic surface to cpn60 can induce further exposure of complementary surfaces on cpn60 complexes, thus amplifying interactions available for target proteins.
Collapse
Affiliation(s)
- B T Brazil
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78284-7760, USA
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
We describe a computer algorithm to predict native structures of proteins and peptides from their primary sequences, their known native radii of gyration, and their known disulfide bonding patterns, starting from random conformations. Proteins are represented as simplified real-space main chains with single-bead side chains. Nonlocal interactions are taken from structural database-derived statistical potentials, as in an earlier treatment. Local interactions are taken from simulations of (phi, psi) energy surfaces for each amino acid generated using the Biosym Discover program. Conformational searching is done by a genetic algorithm-based method. Reasonable structures are obtained for melittin (a 26-mer), avian pancreatic polypeptide inhibitor (a 36-mer), crambin (a 46-mer), apamin (an 18-mer), tachyplesin (a 17-mer), C-peptide of ribonuclease A (a 13-mer), and four different designed helical peptides. A hydrogen bond interaction was tested and found to be generally unnecessary for helical peptides, but it helps fold some sheet regions in these structures. For the few longer chains we tested, the method appears not to converge. In those cases, it appears to recover native-like secondary structures, but gets incorrect tertiary folds.
Collapse
Affiliation(s)
- S Sun
- Structural Biochemistry Program, Frederick Biomedical Supercomputing Center, National Cancer Institute, Frederick Cancer Research and Development Center, Maryland 21702, USA
| |
Collapse
|
30
|
Abstract
An analysis of the sequences of scyllatoxin and charybdotoxin suggested that it would be possible to design a core peptide sequence which would still fold to give the beta-hairpin and helix seen in the toxins, but which would eliminate one disulfide and connecting residues. The core sequence was modeled, then synthesized and purified. The cysteines oxidize in air to give the same disulfide pairings as seen in the parent toxins as the major product. The three-dimensional structure of the core sequence peptide, termed Max, was determined using proton NMR spectroscopy and found to be identical in secondary structure to the toxins. However differences were found in the relative orientation of the beta-hairpin and helix. The use of this structural motif, found in many insect toxins, as a disulfide framework for exploring sequence/structure/activity relationships is discussed.
Collapse
Affiliation(s)
- M D Pagel
- Department of Chemistry, University of California, Berkeley 94720
| | | |
Collapse
|
31
|
Abstract
Helix propagation of the S-peptide sequence (residues 1-19 of ribonuclease A) in 2,2,2-trifluoroethanol (TFE) solutions has been investigated with CD and nmr Overhauser effect spectroscopies. In this study, the S-peptide helix is covalently initiated at the N-terminus through disulfide bonds to a helix scaffold derived from the N-terminal sequence of the bee venom peptide apamin. The entire S-peptide sequence of this hybrid sequence peptide becomes helical at high proportions of TFE. Residues 14-19 of the S-peptide are not helical in the free peptide in TFE, nor are they helical in ribonuclease A. The "helix stop" signal encoded by the S-peptide sequence near residue 13 does not persist at high TFE with this hybrid sequence peptide. The helix-stabilizing effects of TFE are due at least in part to facilitated propagation of an extant helix. This stabilizing effect appears to be a general solvation effect and not due to specific interaction of the helical peptide with TFE. Specifically these data support the idea that TFE destabilizes the coil state by less effective hydrogen bonding of the peptide amide to the solvent.
Collapse
Affiliation(s)
- R W Storrs
- Department of Chemistry, University of California, Berkeley 94720
| | | | | |
Collapse
|
32
|
Rohl CA, Scholtz JM, York EJ, Stewart JM, Baldwin RL. Kinetics of amide proton exchange in helical peptides of varying chain lengths. Interpretation by the Lifson-Roig equation. Biochemistry 1992; 31:1263-9. [PMID: 1310608 DOI: 10.1021/bi00120a001] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The kinetics of amide proton exchange (1H----2H) have been measured by proton nuclear magnetic resonance spectroscopy for a set of helical peptides with the generic formula Ac-(AAKAA)m Y-NH2 and with chain lengths varying from 6 to 51 residues. The integrated intensity of the amide resonances has been measured as a function of time in 2H2O at pH* 2.50. Exchange kinetics for these peptides can be modeled by applying the Lifson-Roig treatment for the helix-to-coil transition. The Lifson-Roig equation is used to compute the probability that each residue is helical, as defined by its backbone (phi, psi) angles. A recursion formula then is used to find the probability that the backbone amide proton of each residue is hydrogen bonded. The peptide helix can be treated as a homopolymer, and direct exchange from the helix can be neglected. The expression for the exchange kinetics contains only three unknown parameters: the rate constant for exchange of a non-hydrogen-bonded (random coil) backbone amide proton and the nucleation (v2) and propagation (w) parameters of the Lifson-Roig theory. The fit of the exchange curves to these three parameters is very good, and the values for v2 and w agree with those derived from circular dichroism studies of the thermally-induced unfolding of related peptides [Scholtz, J.M., Qian, H., York, E.J., Stewart, J.M., & Baldwin, R.L. (1991) Biopolymers (in press]).
Collapse
Affiliation(s)
- C A Rohl
- Department of Biochemistry, Stanford University School of Medicine, California 94305
| | | | | | | | | |
Collapse
|