1
|
Wang YG, Liu AQ, Khan Y, Zhang Y, Wang CC, Song YL, Du JH, Sima YH, Qiu JF, Xu SQ. The JNK signalling pathway gene BmJun is involved in the regulation of egg quality and production in the silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2024. [PMID: 39539200 DOI: 10.1111/imb.12975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
The Jun N-terminal kinase (JNK) signalling pathway has a key role in tissue remodelling during insect metamorphosis by regulating programmed cell death. However, multiple members of the JNK pathway in Lepidoptera remain uncharacterized. In this study, two key genes of the JNK pathway, BmJun and BmFos, were cloned from the silkworm Bombyx mori, a lepidopteran model insect, and their effects on reproductive development were investigated. BmJun and BmFos encode 239 and 380 amino acids, respectively. Both proteins have typical basic leucine zipper domains and form a BmJUN-BmFOS dimer activator protein to exert transcriptional regulation. During the wandering stage of silkworm development, interference in BmJun expression had no effect on pupation, whereas B. mori vitellogenin (BmVg) expression, which is essential for egg development, was suppressed in the fat body and egg laying was significantly reduced. Additionally, numerous eggs appeared shrivelled and deformed, suggesting that they were nutritionally stunted. Inhibition of the JNK pathway caused abnormal pupal metamorphosis, an increase in shrivelled, unfertilized eggs, a decrease in fat body synthesis, and accumulation of BmVg in the ovaries of female B. mori. The results indicated that BmJUN and BmFOS can form an AP-1 dimer. Interfering with BmJun or inhibiting the phosphorylation of BmJUN leads to a reduction in the synthesis of BmVg in the fat body and its accumulation in the ovaries, thereby affecting the quality and production of the progeny eggs. These findings suggest that regulating Jun in the JNK pathway could be a potential way to inhibit female reproduction in Lepidoptera.
Collapse
Affiliation(s)
- Yu-Guo Wang
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - An-Qi Liu
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yasir Khan
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Yi Zhang
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Chen-Chen Wang
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Yao-Le Song
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Jiang-Han Du
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Yang-Hu Sima
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Jian-Feng Qiu
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Shi-Qing Xu
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| |
Collapse
|
2
|
Drewell RA, Klonaros D, Dresch JM. Transcription factor expression landscape in Drosophila embryonic cell lines. BMC Genomics 2024; 25:307. [PMID: 38521929 PMCID: PMC10960990 DOI: 10.1186/s12864-024-10241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Transcription factor (TF) proteins are a key component of the gene regulatory networks that control cellular fates and function. TFs bind DNA regulatory elements in a sequence-specific manner and modulate target gene expression through combinatorial interactions with each other, cofactors, and chromatin-modifying proteins. Large-scale studies over the last two decades have helped shed light on the complex network of TFs that regulate development in Drosophila melanogaster. RESULTS Here, we present a detailed characterization of expression of all known and predicted Drosophila TFs in two well-established embryonic cell lines, Kc167 and S2 cells. Using deep coverage RNA sequencing approaches we investigate the transcriptional profile of all 707 TF coding genes in both cell types. Only 103 TFs have no detectable expression in either cell line and 493 TFs have a read count of 5 or greater in at least one of the cell lines. The 493 TFs belong to 54 different DNA-binding domain families, with significant enrichment of those in the zf-C2H2 family. We identified 123 differentially expressed genes, with 57 expressed at significantly higher levels in Kc167 cells than S2 cells, and 66 expressed at significantly lower levels in Kc167 cells than S2 cells. Network mapping reveals that many of these TFs are crucial components of regulatory networks involved in cell proliferation, cell-cell signaling pathways, and eye development. CONCLUSIONS We produced a reference TF coding gene expression dataset in the extensively studied Drosophila Kc167 and S2 embryonic cell lines, and gained insight into the TF regulatory networks that control the activity of these cells.
Collapse
Affiliation(s)
- Robert A Drewell
- Biology Department, Clark University, 950 Main Street, Worcester, MA, 01610, USA.
| | - Daniel Klonaros
- Biology Department, Clark University, 950 Main Street, Worcester, MA, 01610, USA
| | - Jacqueline M Dresch
- Biology Department, Clark University, 950 Main Street, Worcester, MA, 01610, USA
| |
Collapse
|
3
|
Ma Y, Zeng W, Ba Y, Luo Q, Ou Y, Liu R, Ma J, Tang Y, Hu J, Wang H, Tang X, Mu Y, Li Q, Chen Y, Ran Y, Xiang Z, Xu H. A single-cell transcriptomic atlas characterizes the silk-producing organ in the silkworm. Nat Commun 2022; 13:3316. [PMID: 35680954 PMCID: PMC9184679 DOI: 10.1038/s41467-022-31003-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/30/2022] [Indexed: 01/07/2023] Open
Abstract
The silk gland of the domesticated silkworm Bombyx mori, is a remarkable organ that produces vast amounts of silk with exceptional properties. Little is known about which silk gland cells execute silk protein synthesis and its precise spatiotemporal control. Here, we use single-cell RNA sequencing to build a comprehensive cell atlas of the silkworm silk gland, consisting of 14,972 high-quality cells representing 10 distinct cell types, in three early developmental stages. We annotate all 10 cell types and determine their distributions in each region of the silk gland. Additionally, we decode the developmental trajectory and gene expression status of silk gland cells. Finally, we discover marker genes involved in the regulation of silk gland development and silk protein synthesis. Altogether, this work reveals the heterogeneity of silkworm silk gland cells and their gene expression dynamics, affording a deeper understanding of silk-producing organs at the single-cell level.
Collapse
Affiliation(s)
- Yan Ma
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Wenhui Zeng
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Yongbing Ba
- Shanghai OE Biotech. Co., Ltd., Shanghai, 201212, China
| | - Qin Luo
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Yao Ou
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Rongpeng Liu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Jingwen Ma
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Yiyun Tang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Jie Hu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Haomiao Wang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Xuan Tang
- Shanghai OE Biotech. Co., Ltd., Shanghai, 201212, China
| | - Yuanyuan Mu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Qingjun Li
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Yuqin Chen
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Yiting Ran
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Hanfu Xu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
4
|
Jauregui-Lozano J, Hall H, Stanhope SC, Bakhle K, Marlin MM, Weake VM. The Clock:Cycle complex is a major transcriptional regulator of Drosophila photoreceptors that protects the eye from retinal degeneration and oxidative stress. PLoS Genet 2022; 18:e1010021. [PMID: 35100266 PMCID: PMC8830735 DOI: 10.1371/journal.pgen.1010021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/10/2022] [Accepted: 01/08/2022] [Indexed: 12/28/2022] Open
Abstract
The aging eye experiences physiological changes that include decreased visual function and increased risk of retinal degeneration. Although there are transcriptomic signatures in the aging retina that correlate with these physiological changes, the gene regulatory mechanisms that contribute to cellular homeostasis during aging remain to be determined. Here, we integrated ATAC-seq and RNA-seq data to identify 57 transcription factors that showed differential activity in aging Drosophila photoreceptors. These 57 age-regulated transcription factors include two circadian regulators, Clock and Cycle, that showed sustained increased activity during aging. When we disrupted the Clock:Cycle complex by expressing a dominant negative version of Clock (ClkDN) in adult photoreceptors, we observed changes in expression of 15-20% of genes including key components of the phototransduction machinery and many eye-specific transcription factors. Using ATAC-seq, we showed that expression of ClkDN in photoreceptors leads to changes in activity of 37 transcription factors and causes a progressive decrease in global levels of chromatin accessibility in photoreceptors. Supporting a key role for Clock-dependent transcription in the eye, expression of ClkDN in photoreceptors also induced light-dependent retinal degeneration and increased oxidative stress, independent of light exposure. Together, our data suggests that the circadian regulators Clock and Cycle act as neuroprotective factors in the aging eye by directing gene regulatory networks that maintain expression of the phototransduction machinery and counteract oxidative stress.
Collapse
Affiliation(s)
- Juan Jauregui-Lozano
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Hana Hall
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, United States of America
| | - Sarah C. Stanhope
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Kimaya Bakhle
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Makayla M. Marlin
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Vikki M. Weake
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
5
|
MAPK-Activated Transcription Factor PxJun Suppresses PxABCB1 Expression and Confers Resistance to Bacillus thuringiensis Cry1Ac Toxin in Plutella xylostella (L.). Appl Environ Microbiol 2021; 87:e0046621. [PMID: 33893113 DOI: 10.1128/aem.00466-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Deciphering the molecular mechanisms underlying insect resistance to Cry toxins produced by Bacillus thuringiensis (Bt) is pivotal for the sustainable utilization of Bt biopesticides and transgenic Bt crops. Previously, we identified that mitogen-activated protein kinase (MAPK)-mediated reduced expression of the PxABCB1 gene is associated with Bt Cry1Ac resistance in the diamondback moth, Plutella xylostella (L.). However, the underlying transcriptional regulation mechanism remains enigmatic. Here, the PxABCB1 promoter in Cry1Ac-susceptible and Cry1Ac-resistant P. xylostella strains was cloned and analyzed and found to contain a putative Jun binding site (JBS). A dual-luciferase reporter assay and yeast one-hybrid assay demonstrated that the transcription factor PxJun repressed PxABCB1 expression by interacting with this JBS. The expression levels of PxJun were increased in the midguts of all resistant strains compared to the susceptible strain. Silencing of PxJun expression significantly elevated PxABCB1 expression and Cry1Ac susceptibility in the resistant NIL-R strain, and silencing of PxMAP4K4 expression decreased PxJun expression and also increased PxABCB1 expression. These results indicate that MAPK-activated PxJun suppresses PxABCB1 expression to confer Cry1Ac resistance in P. xylostella, deepening our understanding of the transcriptional regulation of midgut Cry receptor genes and the molecular basis of insect resistance to Bt Cry toxins. IMPORTANCE The transcriptional regulation mechanisms underlying reduced expression of Bt toxin receptor genes in Bt-resistant insects remain elusive. This study unveils that a transcription factor PxJun activated by the MAPK signaling pathway represses PxABCB1 expression and confers Cry1Ac resistance in P. xylostella. Our results provide new insights into the transcriptional regulation mechanisms of midgut Cry receptor genes and deepen our understanding of the molecular basis of insect resistance to Bt Cry toxins. To our knowledge, this study identified the first transcription factor that can be involved in the transcriptional regulation mechanisms of midgut Cry receptor genes in Bt-resistant insects.
Collapse
|
6
|
Monsanto-Hearne V, Asad S, Asgari S, Johnson KN. Drosophila microRNA modulates viral replication by targeting a homologue of mammalian cJun. J Gen Virol 2017; 98:1904-1912. [DOI: 10.1099/jgv.0.000831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Verna Monsanto-Hearne
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sultan Asad
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sassan Asgari
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Karyn N. Johnson
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
7
|
Jones G, Srivastava A. Understanding Lunasin’s biology and potential as a cancer therapeutic by utilizing Drosophila genetics. Exp Biol Med (Maywood) 2014; 239:519-28. [DOI: 10.1177/1535370214522180] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Soy contains many bioactive molecules known to elicit anticancer effects. One such peptide, Lunasin, has been shown to selectively act on newly transformed cells while having no cytotoxic effect on non-tumorigenic or established cancer cell lines. While this effect on in vitro systems is promising, Lunasin’s efficacy in an in vivo system is yet to be assessed. In this review, we discuss the state of knowledge with respect to Lunasin and then review some of the powerful genetic tools available in Drosophila. The availability of a sophisticated genetic tool box makes Drosophila an excellent genetic model well suited to studying the biology of Lunasin and its effect on tumor progression in an in vivo model organism.
Collapse
Affiliation(s)
- Gillian Jones
- Department of Biology and Biotechnology Center, Western Kentucky University, KY 42101, USA
| | - Ajay Srivastava
- Department of Biology and Biotechnology Center, Western Kentucky University, KY 42101, USA
| |
Collapse
|
8
|
Davis MM, Primrose DA, Hodgetts RB. A member of the p38 mitogen-activated protein kinase family is responsible for transcriptional induction of Dopa decarboxylase in the epidermis of Drosophila melanogaster during the innate immune response. Mol Cell Biol 2008; 28:4883-95. [PMID: 18519585 PMCID: PMC2493365 DOI: 10.1128/mcb.02074-07] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 01/02/2008] [Accepted: 05/22/2008] [Indexed: 11/20/2022] Open
Abstract
Drosophila innate immunity is controlled primarily by the activation of IMD (immune deficiency) or Toll signaling leading to the production of antimicrobial peptides (AMPs). IMD signaling also activates the JUN N-terminal kinase (JNK) cascade, which is responsible for immune induction of non-antimicrobial peptide immune gene transcription though the transcription factor AP-1. Transcription of the Dopa decarboxylase (Ddc) gene is induced in response to gram-negative and gram-positive septic injury, but not aseptic wounding. Transcription is induced throughout the epidermis and not specifically at the site of infection. Ddc transcripts are detectible within 2 h and remain high for several hours following infection with either gram-negative or gram-positive bacteria. Using Ddc-green fluorescent protein (GFP) reporter gene constructs, we show that a conserved consensus AP-1 binding site upstream of the Ddc transcription start site is required for induction. However, neither the Toll, IMD, nor JNK pathway is involved. Rather, Ddc transcription depends on a previously uncharacterized member of the p38 mitogen-activated protein kinase family, p38c. We propose that the involvement of DDC in a new pathway involved in Drosophila immunity increases the levels of dopamine, which is metabolized to produce reactive quinones that exert an antimicrobial effect on invading bacteria.
Collapse
Affiliation(s)
- Monica M Davis
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | | | |
Collapse
|
9
|
Deppmann CD, Alvania RS, Taparowsky EJ. Cross-species annotation of basic leucine zipper factor interactions: Insight into the evolution of closed interaction networks. Mol Biol Evol 2006; 23:1480-92. [PMID: 16731568 DOI: 10.1093/molbev/msl022] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dimeric basic leucine zipper (bZIP) factors constitute one of the most important classes of enhancer-type transcription factors. In vertebrates, bZIP factors are involved in many cellular processes, including cell survival, learning and memory, cancer progression, lipid metabolism, and a variety of developmental processes. These factors have the ability to homodimerize and heterodimerize in a specific and predictable manner, resulting in hundreds of dimers with unique effects on transcription. In recent years, several studies have described dimerization preferences for bZIP factors from different species, including Homo sapiens, Drosophila melanogaster, Arabidopsis thaliana, and Saccharomyces cerevisiae. Here, these findings are summarized as novel, graphical representations of closed, interacting protein networks. These representations combine phylogenetic information, DNA-binding properties, and dimerization preference. Beyond summarizing bZIP dimerization preferences within selected species, we have included annotation for a solitary bZIP factor found in the primitive eukaryote, Giardia lamblia, a possible evolutionary precursor to the complex networks of bZIP factors encoded by other genomes. Finally, we discuss the fundamental similarities and differences between dimerization networks within the context of bZIP factor evolution.
Collapse
|
10
|
Udomsinprasert R, Bogoyevitch M, Ketterman A. Reciprocal regulation of glutathione S-transferase spliceforms and the Drosophila c-Jun N-terminal kinase pathway components. Biochem J 2005; 383:483-90. [PMID: 15250826 PMCID: PMC1133741 DOI: 10.1042/bj20040519] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In mammalian systems, detoxification enzymes of the GST (glutathione S-transferase) family regulate JNK (c-Jun N-terminal kinase) signal transduction by interaction with JNK itself or other proteins upstream in the JNK pathway. In the present study, we have studied GSTs and their interaction with components of the JNK pathway from Diptera. We have evaluated the effects of four Delta class Anopheles dirus GSTs, GSTD1-1, GSTD2-2, GSTD3-3 and GSTD4-4, on the activity of full-length recombinant Drosophila HEP (mitogen-activated protein kinase kinase 7; where HEP stands for hemipterous) and the Drosophila JNK, as well as the reciprocal effect of these kinases on GST activity. Interestingly, even though these four GSTs are alternatively spliced products of the same gene and share >60% identity, they exerted different effects on JNK activity. GSTD1-1 inhibited JNK activity, whereas the other three GST isoforms activated JNK. GSTD2-2, GSTD3-3 and GSTD4-4 were inhibited 50-80% by HEP or JNK but GSTD1-1 was not inhibited by JNK. However, there were some similarities in the actions of HEP and JNK on these GSTs. For example, binding constants for HEP or JNK inhibiting a GST were similar (20-70 nM). Furthermore, after incubation of the GSTs with JNK, both JNK and the GSTs changed catalytic properties. The substrate specificities of both GSTs and JNK were also altered after their co-incubation. In addition, glutathione modulated the effects of JNK on GST activity. These results emphasize that different GST spliceforms possess different properties, both in their catalytic function and in their regulation of signalling through the JNK pathway.
Collapse
Affiliation(s)
- Rungrutai Udomsinprasert
- *Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus, Nakorn Pathom 73170, Thailand
| | - Marie A. Bogoyevitch
- †Cell Signalling Laboratory, Biochemistry and Molecular Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Albert J. Ketterman
- *Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus, Nakorn Pathom 73170, Thailand
- To whom correspondence should be addressed (email )
| |
Collapse
|
11
|
Meccariello R, Mathieu M, Cobellis G, Vallarino M, Bruzzone F, Fienga G, Pierantoni R, Fasano S. Jun localization in cytosolic and nuclear compartments in brain-pituitary system of the frog, Rana esculenta: an analysis carried out in parallel with GnRH molecular forms during the annual reproductive cycle. Gen Comp Endocrinol 2004; 135:310-23. [PMID: 14723883 DOI: 10.1016/j.ygcen.2003.09.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The presence of c-jun like mRNA was assessed in the brain of the frog, Rana esculenta, during the annual sexual cycle. In parallel, Jun protein and GnRH molecular form (mammalian and chicken II also indicated as GnRH1 and GnRH2, respectively) activity was studied in order to establish possible relationships. Northern blot analysis of total RNA reveals the presence of a 2.7 kb c-jun-like mRNA. Western blots, carried out on cytoplasmic and nuclear protein extracts, show the presence of Jun immunoreactive band of 39 kDa in brain and pituitary. Fluctuations of c-jun-like mRNA and Jun immunoreactive protein (cytoplasmic and nuclear) levels in brains during the year indicate relationships among transcription, translation, and nuclear activity. In particular, mRNA levels increase gradually from September until November when Jun protein concentration peaks in cytosolic extracts. Conversely, the nuclear protein reaches highest concentration in July when the cytosolic level shows low values. Immunocytochemical studies confirm the presence of Jun immunoreactivity in both cytoplasmic and nuclear compartments of several brain areas, including those primarily involved in gonadotropin discharge (e.g., anterior preoptic area and preoptic nucleus). GnRH molecular forms and Jun are colocalized in anterior preoptic area and preoptic nucleus. Moreover, during the period characterized by GnRH release, Jun levels strongly decrease in nuclei. Finally, we show that treatments with a GnRH analog (buserelin, Hoechst, Frankfurt) increase Jun levels in brain nuclear extracts.
Collapse
Affiliation(s)
- R Meccariello
- Dipartimento di Medicina Sperimentale, II Università di Napoli, Via Costantinopoli 16, 80138, Italy
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Cao A, Ramos-Martínez JI, Barcia R. In vitro effects of LPS, IL-2, PDGF and CRF on haemocytes of Mytilus galloprovincialis Lmk. FISH & SHELLFISH IMMUNOLOGY 2004; 16:215-225. [PMID: 15123325 DOI: 10.1016/s1050-4648(03)00080-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2002] [Revised: 05/01/2003] [Accepted: 05/28/2003] [Indexed: 05/24/2023]
Abstract
The cells in charge of the innate immune response in the marine mussel Mytilus galloprovincialis Lmk. are the haemocytes. These cells respond in different ways to agents such as lipopolysaccharide (LPS), interleukin-2 (IL-2), platelet-derived growth factor (PDGF) and corticotropin releasing factor (CRF). After stimulation of the haemocytes, the expression of molecules reactive with monoclonal antibodies raised to the alpha chain of the IL-2 receptor, present in their membrane, differed depending on the agent used. The same happened with regard to the levels of dopamine, adrenaline and noradrenaline released to the medium by the haemocytes. It should also be noted that no catecholamine release was detected and the level of expression of IL-2Ralpha showed no significant variation in cultured cells that had not been treated with inducers. These facts would indicate that most haemocytes were in the same starting condition at the moment that the stimulation was performed. Therefore, cultured haemocytes can be a highly reliable model in the study of the innate immune system.
Collapse
Affiliation(s)
- Asunción Cao
- Departamento de Bioquímica y Biología Molecular, Universidad de Santiago de Compostela, Facultad de Veterinaria, Campus de Lugo, E-27002 Lugo, Spain
| | | | | |
Collapse
|
13
|
Poels J, Vanden Broeck J. Insect basic leucine zipper proteins and their role in cyclic AMP-dependent regulation of gene expression. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 241:277-309. [PMID: 15548422 DOI: 10.1016/s0074-7696(04)41005-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The cAMP-protein kinase A (PKA) pathway is an important intracellular signal transduction cascade that can be activated by a large variety of stimuli. Activation or inhibition of this pathway will ultimately affect the transcriptional regulation of various genes through distinct responsive sites. In vertebrates, the best- characterized nuclear targets of PKA are the cyclic AMP response element-binding (CREB) proteins. It is now well established that CREB is not only regulated by PKA, but many other kinases can exert an effect as well. Since CREB-like proteins were also discovered in invertebrates, several studies unraveling their physiological functions in this category of metazoans have been performed. This review will mainly focus on the presence and regulation of CREB proteins in insects. Differences in transcriptional responses to the PKA pathway and other CREB-regulating stimuli between cells, tissues, and even organisms can be partially attributed to the presence of different CREB isoforms. In addition, the regulation of CREB appears to show some important differences between insects and vertebrates. Since CREB is a basic leucine zipper (bZip) protein, other insect members of this important family of transcriptional regulators will be briefly discussed as well.
Collapse
Affiliation(s)
- Jeroen Poels
- Laboratory for Developmental Physiology, Genomics and Proteomics, Catholic University Leuven, B-3000 Leuven, Belgium
| | | |
Collapse
|
14
|
Wang YN, Chang WC. Induction of disease-associated keratin 16 gene expression by epidermal growth factor is regulated through cooperation of transcription factors Sp1 and c-Jun. J Biol Chem 2003; 278:45848-57. [PMID: 12954631 DOI: 10.1074/jbc.m302630200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Overexpression of keratin 16 has been observed in keratinocytes in those skin diseases characterized by hyperproliferation such as psoriasis. Therefore, keratin 16 is usually referred to as a disease-associated keratin. In the present study, we found that epidermal growth factor (EGF) increased the expression of keratin 16 mRNA and protein synthesis in a time-dependent manner in HaCaT cells. Reporter assays revealed that the EGF response region was in the range of -162 to -114 bp. Disruption of the Sp1 site (-127 to -122 bp) and the AP1 site (-148 to -142 bp) of the keratin 16 promoter by site-directed mutagenesis significantly inhibited keratin 16 promoter activity induced by EGF. Furthermore, keratin 16 gene expression induced by Ras activation was also regulated in the same manner as the EGF response. By using the DNA affinity precipitation assay in HaCaT and SL2 cells, Sp1 directly interacted with the Sp1 site of the promoter, and c-Jun and c-Fos precipitated with the Sp1 oligonucleotide was attributable to the interaction between the Sp1 and AP1 proteins. Moreover, cotransfection assays revealed that Sp1 acted synergistically with c-Jun to activate keratin 16. The coactivators p300/CBP could collaborate with Sp1 and c-Jun in the activation of keratin 16 promoter, and EGF-induced promoter activation was blocked by the viral oncoprotein E1A. Taken together, these results suggest that Sp1 and AP1 sites in the essential promoter region are critical for EGF response, and Sp1 showed a functional cooperation with c-Jun and coactivators p300/CBP in driving the transcriptional regulation of EGF-induced keratin 16 gene expression.
Collapse
Affiliation(s)
- Ying-Nai Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | | |
Collapse
|
15
|
Cottage AJ, Edwards YJK, Elgar G. AP1 genes in Fugu indicate a divergent transcriptional control to that of mammals. Mamm Genome 2003; 14:514-25. [PMID: 12925884 DOI: 10.1007/s00335-002-3067-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2002] [Accepted: 04/10/2003] [Indexed: 10/26/2022]
Abstract
The draft genomic sequence of the Japanese puffer fish, Fugu rubripes, has now been announced. This is the first complete sequence of a teleost fish and the second available vertebrate sequence, the first being that of human. For the first time, whole-genome comparisons between two vertebrates can be undertaken. Early analysis has suggested that there may be surprising differences in gene regulation between human and fish. In mammals, a gene commonly has several functions, and this may not always be the case in fish. Many gene families comprise more members in fish than they do in mammals, possibly because each fish gene has evolved an individual function. Complexities of gene regulation in mammals has hampered studies of all biological processes from cell proliferation to cell death. Determining the activities of the AP1 transcription factor proteins has been non-trivial. The AP1 complex typically comprises two proteins, a Jun (c-Jun, JunB, and JunD) and a Fos (c-Fos, FosB, Fra1, and Fra2). These proteins can form both homodimers and heterodimers among-themselves and can interact with additional proteins; thus, dissecting their individual roles has been difficult. We have determined that Fugu has more Jun and Fos genes than mammals, and if each proves to have a separate function, then addressing the roles of the individual AP1 proteins in Fugu may be simpler than in human.
Collapse
Affiliation(s)
- Amanda J Cottage
- Medical Research Council, UK Human Genome Mapping Project Resource Centre, Hinxton, Cambridge, CB 10 1SB, UK
| | | | | |
Collapse
|
16
|
Fassler J, Landsman D, Acharya A, Moll JR, Bonovich M, Vinson C. B-ZIP proteins encoded by the Drosophila genome: evaluation of potential dimerization partners. Genome Res 2002; 12:1190-200. [PMID: 12176927 PMCID: PMC186634 DOI: 10.1101/gr.67902] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The basic region-leucine zipper (B-ZIP) (bZIP) protein motif dimerizes to bind specific DNA sequences. We have identified 27 B-ZIP proteins in the recently sequenced Drosophila melanogaster genome. The dimerization specificity of these 27 B-ZIP proteins was evaluated using two structural criteria: (1) the presence of attractive or repulsive interhelical g<-->e' electrostatic interactions and (2) the presence of polar or charged amino acids in the 'a' and 'd' positions of the hydrophobic interface. None of the B-ZIP proteins contain only aliphatic amino acids in the'a' and 'd' position. Only six of the Drosophila B-ZIP proteins contain a "canonical" hydrophobic interface like the yeast GCN4, and the mammalian JUN, ATF2, CREB, C/EBP, and PAR leucine zippers, characterized by asparagine in the second 'a' position. Twelve leucine zippers contain polar amino acids in the first, third, and fourth 'a' positions. Circular dichroism spectroscopy, used to monitor thermal denaturations of a heterodimerizing leucine zipper system containing either valine (V) or asparagine (N) in the 'a' position, indicates that the V-N interaction is 2.3 kcal/mole less stable than an N-N interaction and 5.3 kcal/mole less stable than a V-V interaction. Thus, we propose that the presence of polar amino acids in novel positions of the 'a' position of Drosophila B-ZIP proteins has led to leucine zippers that homodimerize rather than heterodimerize.
Collapse
Affiliation(s)
- Jan Fassler
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20814, USA
| | | | | | | | | | | |
Collapse
|
17
|
Chikatsu N, Nakamura Y, Sato H, Fujita T, Asano S, Motokura T. p53 mutations and tetraploids under r- and K-selection. Oncogene 2002; 21:3043-9. [PMID: 12082535 DOI: 10.1038/sj.onc.1205413] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2001] [Revised: 02/06/2002] [Accepted: 02/20/2002] [Indexed: 12/20/2022]
Abstract
Cotransfection of rat embryo fibroblasts with c-myc and activated H-ras oncogenes is one experimental model of the multistep oncogenesis associated with p53 mutations and aneuploidy. Using the model, we found that selection processes, e.g., r- and K-selection, affect emergence of p53 mutants and tetraploids. Culture optimum for logarithmic growth (r-selection) selected p53 mutants as they proliferated rapidly, while in confluent culture (K-selection) tetraploids emerged regardless of the p53 status. Transfection of the mutated p53 gene with dominant negative functions eradicated untransfected cells under both r- and K-selection. However, these p53 mutants can be eradicated under K-selection by cells with normal p53 function and that had been selected under prolonged K-selection. The presence of competitors and the type of selection should determine whether or not p53 mutants and/or tetraploids predominate. These observations strengthen the importance of selection processes in case of cancer.
Collapse
Affiliation(s)
- Norio Chikatsu
- Department of Internal Medicine, Faculty of Medicine, the University of Tokyo, 3-28-6 Mejirodai, Bunkyo-ku, Tokyo 112-8688, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Ottaviani E, Franchini A, Kletsas D. Platelet-derived growth factor and transforming growth factor-beta in invertebrate immune and neuroendocrine interactions: another sign of conservation in evolution. Comp Biochem Physiol C Toxicol Pharmacol 2001; 129:295-306. [PMID: 11489427 DOI: 10.1016/s1532-0456(01)00211-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Growth factor-like molecules have been found in various invertebrate species. In particular, we have reported the presence of platelet-derived growth factor (PDGF)-AB and transforming growth factor-beta (TGF-beta)1 immunoreactive molecules in molluscs, insects and annelids. Moreover, PDGF-AB and TGF-beta1 affect the main immune functions, such as phagocytosis, chemotaxis and cell motility. Changes in cell shape are induced via interactions of growth factors with their respective specific receptors. The extracellular signals are transduced by the activation of classical signal transduction pathways, such as those involving PKA and PKC, and pivotal transcription regulators, i.e. the Fos, Jun and SMAD proteins. The two growth factors intervene in stress responses by activating the CRH-ACTH-biogenic amine axis. Exogenous administration of PDGF-AB and TGF-beta1 in a molluscan wound provokes an accelerated migration of immunocytes and fibroblasts to the injured area, stimulating granulation tissue formation and wound re-epithelialization. These findings suggest that these molecules are ancestral and that their function is well conserved and crucial in the maintenance of invertebrate homeostasis.
Collapse
Affiliation(s)
- E Ottaviani
- Department of Animal Biology, University of Modena and Reggio Emilia, via Campi 213/D, 41100, Modena, Italy.
| | | | | |
Collapse
|
19
|
Muralikrishna B, Parnaik VK. SP3 and AP-1 mediate transcriptional activation of the lamin A proximal promoter. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:3736-43. [PMID: 11432740 DOI: 10.1046/j.1432-1327.2001.02281.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lamin A is a major component of the nuclear lamina that is expressed in various types of differentiated cells. We have analysed previously the putative promoter sequences of the gene and shown that the rat lamin A proximal promoter contains two essential motifs, a GC box that can bind to Sp1 and Sp3, and an AP-1 motif that can bind to c-Jun and c-Fos. In this study we have investigated the role of Sp1 and Sp3 in transactivation of the promoter. Functional analysis of the promoter in Drosophila SL2 cells has demonstrated that it is inactive in the absence of Sp proteins. Activation by expression of Sp3 is more pronounced than that by Sp1 although both proteins can bind to the GC box in vitro; activation clearly depends on an intact GC box as deduced from mutant analysis. Promoter activity in SL2 cells also requires an intact AP-1 motif, which can bind to endogenous Drosophila Jun and Fos proteins. Furthermore, overexpression of c-Jun and c-Fos results in fourfold activation of the promoter in PCC-4 embryonal carcinoma cells. Our demonstration that activation of the lamin A proximal promoter is mediated by Sp3 and AP-1 transcription factors affords a basis for further studies on the regulation of this important gene during development and disease.
Collapse
|
20
|
Abstract
In recent years, studies in the model organism Drosophila melanogaster have contributed significant insights into the molecular and developmental biology of the AP-1 transcription factors Jun and Fos. Powerful genetic and biochemical approaches uncovered a baffling complexity and variability of the signaling connections to and from AP-1. The range of biological processes that Jun and Fos regulate in this organism is equally multi-faceted. Regulatory interactions between AP-1 and JNK, ERK, TGFbeta, Notch or other signaling systems have been implicated in the control of a multitude of embryonic and adult events, including tissue closure processes, patterning of eye, gut and wing, as well as apoptosis. Here we review the information that has been gathered on Drosophila AP-1 in signal transduction and on the developmental and cellular functions controlled by AP-1-mediated signals in the fly. Lessons learned from the studies on AP-1 in Drosophila may contribute to our general understanding, beyond species boundaries, of this fundamental class of transcriptional regulators.
Collapse
Affiliation(s)
- L Kockel
- Department of Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts, MA 02115, USA
| | | | | |
Collapse
|
21
|
Abstract
The AP-1 transcription factor is composed of a mixture of homo- and hetero-dimers formed between Jun and Fos proteins. The different Jun and Fos family members vary significantly in their relative abundance and their interactions with additional proteins generating a complex network of transcriptional regulators. Thus, the functional activity of AP-1 in any given cell depends on the relative amount of specific Jun/Fos proteins which are expressed, as well as other potential interacting proteins. This diversity of AP-1 components has complicated our understanding of AP-1 function and resulted in a paucity of information about the precise role of individual AP-1 members in distinct cellular processes. We shall discuss recent studies which suggest that different Jun and Fos family members may have both opposite and overlapping functions in cellular proliferation and cell fate.
Collapse
Affiliation(s)
- F Mechta-Grigoriou
- Unité des virus oncogenes, CNRS URA 1644, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | |
Collapse
|
22
|
Guru SC, Prasad NB, Shin EJ, Hemavathy K, Lu J, Ip YT, Agarwal SK, Marx SJ, Spiegel AM, Collins FS, Oliver B, Chandrasekharappa SC. Characterization of a MEN1 ortholog from Drosophila melanogaster. Gene 2001; 263:31-8. [PMID: 11223240 DOI: 10.1016/s0378-1119(00)00562-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is a familial cancer syndrome characterized by tumors of the parathyroid, entero-pancreatic neuroendocrine and pituitary tissues and caused by inactivating mutations in the MEN1 gene. Menin, the 610-amino acid nuclear protein encoded by MEN1, binds to the transcription factor JunD and can repress JunD-induced transcription. We report here the identification of a MEN1 ortholog in Drosophila melanogaster, Menin1, that encodes a 763 amino acid protein sharing 46% identity with human menin. Additionally, 69% of the missense mutations and in-frame deletions reported in MEN1 patients appear in amino acid residues that are identical in the Drosophila and human protein, suggesting the importance of the conserved regions. Drosophila Menin1 gene transcripts use alternative polyadenylation sites resulting in 4.3 and 5-kb messages. The 4.3-kb transcript appears to be largely maternal, while the 5-kb transcript appears mainly zygotic. The binding of Drosophila menin to human JunD or Drosophila Jun could not be demonstrated by the yeast two-hybrid analysis. The identification of the MEN1 ortholog from Drosophila melanogaster will provide an opportunity to utilize Drosophila genetics to enhance our understanding of the function of human menin.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Northern
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Drosophila melanogaster/embryology
- Drosophila melanogaster/genetics
- Drosophila melanogaster/growth & development
- Embryo, Nonmammalian/metabolism
- Embryonic Development
- Exons
- Female
- Gene Expression Regulation, Developmental
- Genes, Insect/genetics
- Glutathione Transferase/genetics
- Glutathione Transferase/metabolism
- Humans
- In Situ Hybridization
- Introns
- Male
- Mice
- Molecular Sequence Data
- Neoplasm Proteins/genetics
- Proto-Oncogene Proteins
- Proto-Oncogene Proteins c-jun/genetics
- Proto-Oncogene Proteins c-jun/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Saccharomyces cerevisiae/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology
- Transcription, Genetic
- Two-Hybrid System Techniques
- Zebrafish
Collapse
Affiliation(s)
- S C Guru
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, 49 Convent Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Renucci M, Tirard A, Charpin P, Augier R, Strambi A. c-Fos-related antigens in the central nervous system of an insect, Acheta domesticus. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2000; 45:139-148. [PMID: 11223933 DOI: 10.1002/1520-6327(200012)45:4<139::aid-arch1>3.0.co;2-n] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Fos-related antigens (Fra) were detected in the nuclei of neurones in young adult Acheta domesticus female crickets by immunohistochemical analysis, using an antibody that recognizes the amino-acid sequence 127-152 of c-Fos protein. Specificity of Fra immunoreactivity was confirmed by Western blot analysis of nuclear extracts from neural tissues. A major immunoreactive doublet with an apparent molecular mass of 52,000/54,000 Da was detected in nuclear extracts. Immunostaining of the 52,000/54,000 Da doublet showed variations in intensity during the first 5 days following the imaginal molt. Staining was more intense between day 2 and day 4 when ecdysteroid titers were high. Expression of Fra was low in allatectomized (i.e., deprived of juvenile hormone and ecdysteroids) and ovariectomized (i.e., deprived of ecdysteroids) females as compared to control females. These results show the involvement of hormone-regulated process in expression of Fra. The effect of nociceptive stimulation on Fra expression was tested. Twenty minutes after removal of the ovipositor, a supplementary band with an apparent molecular mass of 70,000 Da appeared in the nuclear extracts, then decreased and disappeared totally after 45 min. Several other Fos-related antigens with different temporal patterns of expression were also detected.
Collapse
Affiliation(s)
- M Renucci
- CNRS, Laboratoire de Neurobiologie, Marseille, France.
| | | | | | | | | |
Collapse
|
24
|
Maruyama K, Tsukada T, Honda M, Nara-Ashizawa N, Noguchi K, Cheng J, Ohkura N, Sasaki K, Yamaguchi K. Complementary DNA structure and genomic organization of Drosophila menin. Mol Cell Endocrinol 2000; 168:135-40. [PMID: 11064160 DOI: 10.1016/s0303-7207(00)00307-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Menin is a protein product of a tumor supressor gene MEN1, mutations of which are responsible for multiple endocrine neoplasia type 1, an autosomal dominant familial cancer syndrome. We determined the nucleotide sequence of the Drosophila menin cDNA using RT-PCR and RACE, and confirmed it by direct sequencing of genomic DNA. Gene expression of Drosophila menin was detected by Northern blot analysis in adult and embryo as two types of transcripts, one identical in size to the cDNA, and the other larger but detected only in embryo. The Drosophila menin gene was composed of five exons in which the protein was encoded in exon 2 through 5, and spanned approximately 6.3 kb. The deduced amino acid (AA) sequence of Drosophila menin consisted of 751 AAs with a calculated molecular mass of 81.7 kDa, and showed 44-47% identity to human, rat, mouse and zebrafish menin over the entire length. Among the AA residue substitutions that have been reported as disease-associated missense mutations and single AA deletions, 53 out of 71 were completely conserved in Drosophila. The presence of menin ortholog in insect indicates that menin is an evolutionally conserved protein with a fundamental role in biological processes.
Collapse
Affiliation(s)
- K Maruyama
- Growth Factor Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, 104-0045, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Raabe T. The sevenless signaling pathway: variations of a common theme. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1496:151-63. [PMID: 10771085 DOI: 10.1016/s0167-4889(00)00020-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Many developmental processes are regulated by intercellular signaling mechanisms that employ the activation of receptor tyrosine kinases. One model system that has been particular useful in determining the role of receptor tyrosine kinase-mediated signaling processes in cell fate determination is the developing Drosophila eye. The specification of the R7 photoreceptor cell in each ommatidium of the developing Drosophila eye is dependent on activation of the Sevenless receptor tyrosine kinase. This review will focus on the genetic and biochemical approaches that have identified signaling molecules acting downstream of the Sevenless receptor tyrosine kinase which ultimately trigger differentiation of the R7 photoreceptor cell.
Collapse
Affiliation(s)
- T Raabe
- Department of Genetics, University of Würzburg, Biozentrum, Am Hubland, D-97074, Würzburg, Germany.
| |
Collapse
|
26
|
Xia X, Goldstein ES. Response of Djun and Dfos mRNA abundance to signal transduction pathways in cultured cells of Drosophila melanogaster. Mol Biol Rep 1999; 26:147-57. [PMID: 10532309 DOI: 10.1023/a:1006906419110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The mammalian proto-oncogenes c-jun and c-fos are situated at the end of multiple signal transduction pathways and activation of their products Jun and Fos, components of the transcription factor AP-1, are able to regulate gene transcription in response to extracellular stimuli. Djun and Dfos, the products of the Drosophila proto-oncongenes Djun and Dfos, are similar in size and sequence to their mammalian counterparts c-Jun and c-Fos and are related to their mammalian counterparts by their antigenic properties. However, very little is known about how they are regulated through signal transduction pathways. This paper has investigated the response of their mRNA abundance levels to three signal transduction pathways in Drosophila cultured cells. Various agonists and antagonists that stimulate and inhibit specific enzymes in the pathways have been tested. The results suggest that Djun and Dfos mRNA are continuously expressed and their abundance levels are transiently regulated by multiple signaling pathways, the peak response coming at 1-2 hours after perturbation. Dfos is more highly regulated than Djun which is only modulated. The receptor tyrosine kinase pathways positively regulate Dfos and Djun. The cAMP-mediated pathway positively regulates Dfos but negatively regulates Djun. The protein kinase C-activated pathway does not affect Djun whereas it negatively regulates Dfos.
Collapse
MESH Headings
- Animals
- Cells, Cultured/enzymology
- Cells, Cultured/physiology
- Culture Media, Conditioned/pharmacology
- Cyclic AMP/metabolism
- Cyclic AMP/physiology
- Drosophila/cytology
- Drosophila/genetics
- Drosophila/metabolism
- Drosophila/physiology
- Gene Expression Regulation, Developmental
- Genes, Insect/genetics
- Genes, Insect/physiology
- Genes, fos/genetics
- Genes, fos/physiology
- Genes, jun/genetics
- Genes, jun/physiology
- Insect Proteins/genetics
- Insect Proteins/physiology
- Phosphodiesterase Inhibitors/pharmacology
- Phosphoric Monoester Hydrolases/antagonists & inhibitors
- Phosphoric Monoester Hydrolases/genetics
- Phosphoric Monoester Hydrolases/pharmacology
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C/genetics
- Protein Kinase C/metabolism
- Protein Kinase C/pharmacology
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/pharmacology
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/physiology
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor Protein-Tyrosine Kinases/antagonists & inhibitors
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/pharmacology
- Receptor Protein-Tyrosine Kinases/physiology
- Signal Transduction/genetics
- Signal Transduction/physiology
Collapse
Affiliation(s)
- X Xia
- Department of Biology, Arizona State University, Tempe 85287-1501, USA
| | | |
Collapse
|
27
|
Ottaviani E, Malagoli D, Kletsas D. Platelet-derived growth factor and transforming growth factor-β induce shape changes in invertebrate immunocytes via multiple signalling pathways and provoke the expression of Fos-, Jun- and SMAD-family members. Comp Biochem Physiol B Biochem Mol Biol 1999. [DOI: 10.1016/s0305-0491(99)00012-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Raabe T. Genetic analysis of sevenless tyrosine kinase signaling in Drosophila. Curr Top Microbiol Immunol 1997; 228:343-61. [PMID: 9401212 DOI: 10.1007/978-3-642-80481-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- T Raabe
- Theodor Boveri Institut für Biowissenschaften, Lehrstuhl für Genetik, Universität Würzburg, Germany
| |
Collapse
|
29
|
Zeitlinger J, Kockel L, Peverali FA, Jackson DB, Mlodzik M, Bohmann D. Defective dorsal closure and loss of epidermal decapentaplegic expression in Drosophila fos mutants. EMBO J 1997; 16:7393-401. [PMID: 9405368 PMCID: PMC1170339 DOI: 10.1093/emboj/16.24.7393] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Drosophila kayak mutant embryos exhibit defects in dorsal closure, a morphogenetic cell sheet movement during embryogenesis. Here we show that kayak encodes D-Fos, the Drosophila homologue of the mammalian proto-oncogene product, c-Fos. D-Fos is shown to act in a similar manner to Drosophila Jun: in the cells of the leading edge it is required for the expression of the TGFbeta-like Decapentaplegic (Dpp) protein, which is believed to control the cell shape changes that take place during dorsal closure. Defects observed in mutant embryos, and adults with reduced Fos expression, are reminiscent of phenotypes caused by 'loss of function' mutations in the Drosophila JNKK homologue, hemipterous. These results indicate that D-Fos is required downstream of the Drosophila JNK signal transduction pathway, consistent with a role in heterodimerization with D-Jun, to activate downstream targets such as dpp.
Collapse
|
30
|
Abstract
The Drosophila homolog of c-Jun regulates epithelial cell shape changes during the process of dorsal closure in mid-embryogenesis. Here, mutations in the DFos gene are described. In dorsal closure, DFos cooperates with DJun by regulating the expression of dpp; Dpp acts as a relay signal that triggers cell shape changes and DFos expression in neighboring cells. In addition to the joint requirement of DFos and DJun during dorsal closure, DFos functions independently of DJun during early stages of embryogenesis. These findings demonstrate common and distinct roles of DFos and DJun during embryogenesis and suggest a conserved link between AP-1 (activating protein-1) and TGF-beta (transforming growth factor-beta) signaling during epithelial cell shape changes.
Collapse
Affiliation(s)
- J R Riesgo-Escovar
- Zoologisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | |
Collapse
|
31
|
Sluss HK, Davis RJ. Embryonic morphogenesis signaling pathway mediated by JNK targets the transcription factor JUN and the TGF-β homologuedecapentaplegic. J Cell Biochem 1997. [DOI: 10.1002/(sici)1097-4644(19971001)67:1<1::aid-jcb1>3.0.co;2-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Riesgo-Escovar JR, Hafen E. Drosophila Jun kinase regulates expression of decapentaplegic via the ETS-domain protein Aop and the AP-1 transcription factor DJun during dorsal closure. Genes Dev 1997; 11:1717-27. [PMID: 9224720 DOI: 10.1101/gad.11.13.1717] [Citation(s) in RCA: 165] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
During Drosophila embryogenesis, ectodermal cells of the lateral epithelium stretch in a coordinated fashion to internalize the amnioserosa cells and close the embryo dorsally. This process, dorsal closure, requires two signaling pathways: the Drosophila Jun-amino-terminal kinase (DJNK) pathway and the Dpp pathway. We have identified mutations in DJun and show that DJNK controls dorsal closure by activating DJun and inactivating the ETS repressor Aop/Yan by phosphorylation. DJun and Aop regulate dpp expression in the most dorsal row of cells. Secreted Dpp then instructs more ventrally located cells to stretch. Our results provide a causal link between the DJNK and Dpp pathways during dorsal closure. Interestingly, in vertebrates, transforming growth factor-beta and c-Jun regulate collagenase gene expression during wound healing, a process that also involves the closing of an epithelial sheath.
Collapse
|
33
|
Hou XS, Goldstein ES, Perrimon N. Drosophila Jun relays the Jun amino-terminal kinase signal transduction pathway to the Decapentaplegic signal transduction pathway in regulating epithelial cell sheet movement. Genes Dev 1997; 11:1728-37. [PMID: 9224721 DOI: 10.1101/gad.11.13.1728] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have characterized mutations in the Drosophila homolog of the mammalian proto-oncogene c-Jun gene (Djun). We demonstrate that DJUN in the embryo is a downstream target of the JNK signal transduction pathway during dorsal closure formation, and that the function of the JNK/DJUN pathway is to control the localized expression of decapentalegic (dpp), a member of the TGF-beta growth factor family. In contrast to previous observations, we find that both in the embryo and during photoreceptor cell determination, DJUN is not regulated by a pathway that involves MAPK.
Collapse
Affiliation(s)
- X S Hou
- Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
34
|
Wassarman DA, Therrien M. Ras1-Mediated Photoreceptor Development in Drosophila. ADVANCES IN DEVELOPMENTAL BIOLOGY (1992) 1997. [DOI: 10.1016/s1566-3116(08)60034-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
35
|
Sluss HK, Han Z, Barrett T, Goberdhan DC, Wilson C, Davis RJ, Ip YT. A JNK signal transduction pathway that mediates morphogenesis and an immune response in Drosophila. Genes Dev 1996; 10:2745-58. [PMID: 8946915 DOI: 10.1101/gad.10.21.2745] [Citation(s) in RCA: 332] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Drosophila MAP kinase DJNK is a homolog of the mammalian c-Jun amino-terminal kinase (JNK). Mutations in the DJNK gene correspond to the complementation group basket. DJNK is phosphorylated and activated by the Drosophila MAP kinase kinase HEP. Substrates of DJNK include the transcription factor DJun. DJNK participates in multiple physiological processes. Exposure to endotoxic lipopolysaccharide initiates an insect immune response and leads to DJNK activation. In addition, embryos lacking DJNK are defective in dorsal closure, a process in which the lateral epithelial cells migrate over the embryo and join at the dorsal midline. These data demonstrate that the DJNK signal transduction pathway mediates an immune response and morphogenesis in vivo.
Collapse
Affiliation(s)
- H K Sluss
- Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester 01605, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Gabay L, Scholz H, Golembo M, Klaes A, Shilo BZ, Klämbt C. EGF receptor signaling induces pointed P1 transcription and inactivates Yan protein in the Drosophila embryonic ventral ectoderm. Development 1996; 122:3355-62. [PMID: 8951052 DOI: 10.1242/dev.122.11.3355] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The induction of different cell fates along the dorsoventral axis of the Drosophila embryo requires a graded activity of the EGF receptor tyrosine kinase (DER). Here we have identified primary and secondary target genes of DER, which mediate the determination of discrete ventral cell fates. High levels of DER activation in the ventralmost cells trigger expression of the transcription factors encoded by ventral nervous system defective (vnd) and pointed P1 (pntPl). Concomitant with the induction of pntP1, high levels of DER activity lead to inactivation of the Yan protein, a transcriptional repressor of Pointed-target genes. These two antagonizing transcription factors subsequently control the expression of secondary target genes such as otd, argos and tartan. The simultaneous effects of the DER pathway on pntP1 induction and Yan inactivation may contribute to the definition of the border of the ventralmost cell fates.
Collapse
Affiliation(s)
- L Gabay
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
37
|
Uchimaru K, Endo K, Fujinuma H, Zukerberg L, Arnold A, Motokura T. Oncogenic collaboration of the cyclin D1 (PRAD1, bcl-1) gene with a mutated p53 and an activated ras oncogene in neoplastic transformation. Jpn J Cancer Res 1996; 87:459-65. [PMID: 8641982 PMCID: PMC5921129 DOI: 10.1111/j.1349-7006.1996.tb00246.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cyclin D1 is one of the key regulators in G1 progression in the cell cycle and is also a candidate oncogene (termed PRAD1 or bcl-1) in several types of human tumors. We report a collaboration of the cyclin D1 gene with ras and a mutated form of p53 (p53-mt) in neoplastic transformation. Transfection of cyclin D1 alone or in combination with ras or with p53-mt was not sufficient for focus formation of rat embryonic fibroblasts. However, focus formation induced by co-transfection of ras and p53-mt was enhanced in the presence of the cyclin D1-expression plasmid. Co-transfection of ras- and p53-mt-transformants with the cyclin D1-expression plasmid resulted in reduced serum dependency in vitro. Furthermore, the transformants expressing exogenous cyclin D1 grew faster than those without the cyclin D1 plasmid when injected into nude mice. These observations strengthen the significance of cyclin D1 overexpression through gene rearrangement or gene amplification observed in human tumors as a step in multistep oncogenesis; deregulated expression of cyclin D1 may reduce the requirement for growth factors and may stimulate in vivo growth.
Collapse
Affiliation(s)
- K Uchimaru
- Fourth Department of Internal Medicine, University of Tokyo, School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Tomarev SI, Duncan MK, Roth HJ, Cvekl A, Piatigorsky J. Convergent evolution of crystallin gene regulation in squid and chicken: the AP-1/ARE connection. J Mol Evol 1994; 39:134-43. [PMID: 7932777 DOI: 10.1007/bf00163802] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Previous experiments have shown that the minimal promoters required for function of the squid SL20-1 and SL11 crystallin genes in transfected rabbit lens epithelial cells contain an overlapping AP-1/antioxidant responsive element (ARE) upstream of the TATA box. This region resembles the PL-1 and PL-2 elements of the chicken beta B1-crystallin promoter which are essential for promoter function in transfected primary chicken lens epithelial cells. Here we demonstrate by site-directed mutagenesis that the AP-1/ARE sequence is essential for activity of the squid SL20-1 and SL11 promoters in transfected embryonic chicken lens cells and fibroblasts. Promoter activity was higher in transfected lens cells than in fibroblasts. Electrophoretic mobility shift and DNase protection experiments demonstrated the formation of numerous complexes between nuclear proteins of the embryonic chicken lens and the AP-1/ARE sequences of the squid SL20-1 and SL11 crystallin promoters. One of these complexes comigrated and cross-competed with that formed with the PL-1 element of the chicken beta B1-crystallin promoter. This complex formed with nuclear extracts from the lens, heart, brain, and skeletal muscle of embryonic chickens and was eliminated by competition with a consensus AP-1 sequence. The nonfunctional mutant AP-1/ARE sequences did not compete for complex formation. These data raise the intriguing possibility that entirely different, nonhomologous crystallin genes of the chicken and squid have convergently evolved a similar cis-acting regulatory element (AP-1/ARE) for high expression in the lens.
Collapse
Affiliation(s)
- S I Tomarev
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|
39
|
A cyclic AMP-responsive element-binding transcriptional activator in Drosophila melanogaster, dCREB-A, is a member of the leucine zipper family. Mol Cell Biol 1992. [PMID: 1508208 DOI: 10.1128/mcb.12.9.4123] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this report, we describe the isolation and initial characterization of a Drosophila protein, dCREB-A, that can bind the somatostatin cyclic AMP (cAMP)-responsive element and is capable of activating transcription in cell culture. Sequence analysis demonstrates that this protein is a member of the leucine zipper family of transcription factors. dCREB-A is unusual in that it contains six hydrophobic residue iterations in the zipper domain rather than the four or five commonly found in this group of proteins. The DNA-binding domain is more closely related to mammalian CREB than to the AP-1 factors in both sequence homology and specificity of cAMP-responsive element binding. In embryos, dCREB-A is expressed in the developing salivary gland. A more complex pattern of expression is detected in the adult; transcripts are found in the brain and optic lobe cell bodies, salivary gland, and midgut epithelial cells of the cardia. In females, dCREB-A is expressed in the ovarian columnar follicle cells, and in males, dCREB-A RNA is seen in the seminal vesicle, ejaculatory duct, and ejaculatory bulb. These results suggest that the dCREB-A transcription factor may be involved in fertility and neurological functions.
Collapse
|
40
|
Smolik SM, Rose RE, Goodman RH. A cyclic AMP-responsive element-binding transcriptional activator in Drosophila melanogaster, dCREB-A, is a member of the leucine zipper family. Mol Cell Biol 1992; 12:4123-31. [PMID: 1508208 PMCID: PMC360311 DOI: 10.1128/mcb.12.9.4123-4131.1992] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In this report, we describe the isolation and initial characterization of a Drosophila protein, dCREB-A, that can bind the somatostatin cyclic AMP (cAMP)-responsive element and is capable of activating transcription in cell culture. Sequence analysis demonstrates that this protein is a member of the leucine zipper family of transcription factors. dCREB-A is unusual in that it contains six hydrophobic residue iterations in the zipper domain rather than the four or five commonly found in this group of proteins. The DNA-binding domain is more closely related to mammalian CREB than to the AP-1 factors in both sequence homology and specificity of cAMP-responsive element binding. In embryos, dCREB-A is expressed in the developing salivary gland. A more complex pattern of expression is detected in the adult; transcripts are found in the brain and optic lobe cell bodies, salivary gland, and midgut epithelial cells of the cardia. In females, dCREB-A is expressed in the ovarian columnar follicle cells, and in males, dCREB-A RNA is seen in the seminal vesicle, ejaculatory duct, and ejaculatory bulb. These results suggest that the dCREB-A transcription factor may be involved in fertility and neurological functions.
Collapse
Affiliation(s)
- S M Smolik
- Department of Molecular and Medical Genetics, Oregon Health Sciences University, Portland 97201-3098
| | | | | |
Collapse
|
41
|
Co-localization of ecdysteroid receptors and c-fos-like protein in the brain of Manduca sexta larvae. ACTA ACUST UNITED AC 1991; 200:149-155. [DOI: 10.1007/bf00190234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/1991] [Accepted: 04/12/1991] [Indexed: 10/26/2022]
|