1
|
Chen J, Kovacs JM, Peng H, Rits-Volloch S, Lu J, Park D, Zablowsky E, Seaman MS, Chen B. HIV-1 ENVELOPE. Effect of the cytoplasmic domain on antigenic characteristics of HIV-1 envelope glycoprotein. Science 2015; 349:191-5. [PMID: 26113642 DOI: 10.1126/science.aaa9804] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/08/2015] [Indexed: 12/20/2022]
Abstract
A major goal for HIV-1 vaccine development is the production of an immunogen to mimic native, functional HIV-1 envelope trimeric spikes (Env) on the virion surface. We lack a reliable description of a native, functional trimer, however, because of inherent instability and heterogeneity in most preparations. We describe here two conformationally homogeneous Envs derived from difficult-to-neutralize primary isolates. All their non-neutralizing epitopes are fully concealed and independent of their proteolytic processing. Most broadly neutralizing antibodies (bnAbs) recognize these native trimers. Truncation of their cytoplasmic tail has little effect on membrane fusion, but it diminishes binding to trimer-specific bnAbs while exposing non-neutralizing epitopes. These results yield a more accurate antigenic picture than hitherto possible of a genuinely untriggered and functional HIV-1 Env; they can guide effective vaccine development.
Collapse
Affiliation(s)
- Jia Chen
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA. Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA
| | - James M Kovacs
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA. Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA
| | - Hanqin Peng
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jianming Lu
- Codex BioSolutions, Inc., 401 Professional Drive, Gaithersburg, MD 20879, USA
| | - Donghyun Park
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Elise Zablowsky
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Bing Chen
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA. Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Immunogenic Display of Purified Chemically Cross-Linked HIV-1 Spikes. J Virol 2015; 89:6725-45. [PMID: 25878116 DOI: 10.1128/jvi.03738-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/11/2015] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED HIV-1 envelope glycoprotein (Env) spikes are prime vaccine candidates, at least in principle, but suffer from instability, molecular heterogeneity and a low copy number on virions. We anticipated that chemical cross-linking of HIV-1 would allow purification and molecular characterization of trimeric Env spikes, as well as high copy number immunization. Broadly neutralizing antibodies bound tightly to all major quaternary epitopes on cross-linked spikes. Covalent cross-linking of the trimer also stabilized broadly neutralizing epitopes, although surprisingly some individual epitopes were still somewhat sensitive to heat or reducing agent. Immunodepletion using non-neutralizing antibodies to gp120 and gp41 was an effective method for removing non-native-like Env. Cross-linked spikes, purified via an engineered C-terminal tag, were shown by negative stain EM to have well-ordered, trilobed structure. An immunization was performed comparing a boost with Env spikes on virions to spikes cross-linked and captured onto nanoparticles, each following a gp160 DNA prime. Although differences in neutralization did not reach statistical significance, cross-linked Env spikes elicited a more diverse and sporadically neutralizing antibody response against Tier 1b and 2 isolates when displayed on nanoparticles, despite attenuated binding titers to gp120 and V3 crown peptides. Our study demonstrates display of cross-linked trimeric Env spikes on nanoparticles, while showing a level of control over antigenicity, purity and density of virion-associated Env, which may have relevance for Env based vaccine strategies for HIV-1. IMPORTANCE The envelope spike (Env) is the target of HIV-1 neutralizing antibodies, which a successful vaccine will need to elicit. However, native Env on virions is innately labile, as well as heterogeneously and sparsely displayed. We therefore stabilized Env spikes using a chemical cross-linker and removed non-native Env by immunodepletion with non-neutralizing antibodies. Fixed native spikes were recognized by all classes of known broadly neutralizing antibodies but not by non-neutralizing antibodies and displayed on nanoparticles in high copy number. An immunization experiment in rabbits revealed that cross-linking Env reduced its overall immunogenicity; however, high-copy display on nanoparticles enabled boosting of antibodies that sporadically neutralized some relatively resistant HIV-1 isolates, albeit at a low titer. This study describes the purification of stable and antigenically correct Env spikes from virions that can be used as immunogens.
Collapse
|
3
|
Herschhorn A, Gu C, Espy N, Richard J, Finzi A, Sodroski JG. A broad HIV-1 inhibitor blocks envelope glycoprotein transitions critical for entry. Nat Chem Biol 2014; 10:845-52. [PMID: 25174000 PMCID: PMC4231716 DOI: 10.1038/nchembio.1623] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 07/18/2014] [Indexed: 11/19/2022]
Abstract
Binding to the primary receptor, CD4, triggers conformational changes in the metastable envelope glycoprotein (Env) trimer (gp1203/gp413) of human immunodeficiency virus (HIV-1) that are important for virus entry into host cells. These changes include an “opening” of the trimer, creation of a binding site for the CCR5 coreceptor, and formation/exposure of a gp41 coiled coil. Here we identify a new compound, 18A (1), that specifically inhibits the entry of a wide range of HIV-1 isolates. 18A does not interfere with CD4 or CCR5 binding, but inhibits the CD4-induced disruption of quaternary structures at the trimer apex and the formation/exposure of the gp41 HR1 coiled coil. Analysis of HIV-1 variants exhibiting increased or reduced sensitivity to 18A suggests that the inhibitor can distinguish distinct conformational states of gp120 in the unliganded Env trimer. The broad-range activity and observed hypersensitivity of resistant mutants to antibody neutralization support further investigation of 18A.
Collapse
Affiliation(s)
- Alon Herschhorn
- 1] Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [2] Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher Gu
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Nicole Espy
- 1] Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [2] Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan Richard
- 1] Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montreal, Quebec, Canada. [2] Department of Microbiology, Infectiology and Immunology ,Université de Montréal, Montreal, Quebec, Canada
| | - Andrés Finzi
- 1] Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montreal, Quebec, Canada. [2] Department of Microbiology, Infectiology and Immunology ,Université de Montréal, Montreal, Quebec, Canada. [3] Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Joseph G Sodroski
- 1] Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [2] Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA. [3] Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
4
|
West AP, Scharf L, Scheid JF, Klein F, Bjorkman PJ, Nussenzweig MC. Structural insights on the role of antibodies in HIV-1 vaccine and therapy. Cell 2014; 156:633-48. [PMID: 24529371 DOI: 10.1016/j.cell.2014.01.052] [Citation(s) in RCA: 267] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Indexed: 11/30/2022]
Abstract
Despite 30 years of effort, there is no effective vaccine for HIV-1. However, antibodies can prevent HIV-1 infection in humanized mice and macaques when passively transferred. New single-cell-based methods have uncovered many broad and potent donor-derived antibodies, and structural studies have revealed the molecular bases for their activities. The new data suggest why such antibodies are difficult to elicit and inform HIV-1 vaccine development efforts. In addition to protecting against infection, the newly identified antibodies can suppress active infections in mice and macaques, suggesting they could be valuable additions to anti-HIV-1 therapies and to strategies to eradicate HIV-1 infection.
Collapse
Affiliation(s)
- Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.
| | - Louise Scharf
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Johannes F Scheid
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Florian Klein
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
5
|
Conformation-dependent recognition of HIV gp120 by designed ankyrin repeat proteins provides access to novel HIV entry inhibitors. J Virol 2013; 87:5868-81. [PMID: 23487463 DOI: 10.1128/jvi.00152-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we applied the designed ankyrin repeat protein (DARPin) technology to develop novel gp120-directed binding molecules with HIV entry-inhibiting capacity. DARPins are interesting molecules for HIV envelope inhibitor design, as their high-affinity binding differs from that of antibodies. DARPins in general prefer epitopes with a defined folded structure. We probed whether this capacity favors the selection of novel gp120-reactive molecules with specificities in epitope recognition and inhibitory activity that differ from those found among neutralizing antibodies. The preference of DARPins for defined structures was notable in our selections, since of the four gp120 modifications probed as selection targets, gp120 arrested by CD4 ligation proved the most successful. Of note, all the gp120-specific DARPin clones with HIV-neutralizing activity isolated recognized their target domains in a conformation-dependent manner. This was particularly pronounced for the V3 loop-specific DARPin 5m3_D12. In stark contrast to V3-specific antibodies, 5m3_D12 preferentially recognized the V3 loop in a specific conformation, as probed by structurally arrested V3 mimetic peptides, but bound linear V3 peptides only very weakly. Most notably, this conformation-dependent V3 recognition allowed 5m3_D12 to bypass the V1V2 shielding of several tier 2 HIV isolates and to neutralize these viruses. These data provide a proof of concept that the DARPin technology holds promise for the development of HIV entry inhibitors with a unique mechanism of action.
Collapse
|
6
|
Leaman DP, Zwick MB. Increased functional stability and homogeneity of viral envelope spikes through directed evolution. PLoS Pathog 2013; 9:e1003184. [PMID: 23468626 PMCID: PMC3585149 DOI: 10.1371/journal.ppat.1003184] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 12/21/2012] [Indexed: 11/19/2022] Open
Abstract
The functional HIV-1 envelope glycoprotein (Env) trimer, the target of anti-HIV-1 neutralizing antibodies (Abs), is innately labile and coexists with non-native forms of Env. This lability and heterogeneity in Env has been associated with its tendency to elicit non-neutralizing Abs. Here, we use directed evolution to overcome instability and heterogeneity of a primary Env spike. HIV-1 virions were subjected to iterative cycles of destabilization followed by replication to select for Envs with enhanced stability. Two separate pools of stable Env variants with distinct sequence changes were selected using this method. Clones isolated from these viral pools could withstand heat, denaturants and other destabilizing conditions. Seven mutations in Env were associated with increased trimer stability, primarily in the heptad repeat regions of gp41, but also in V1 of gp120. Combining the seven mutations generated a variant Env with superior homogeneity and stability. This variant spike moreover showed resistance to proteolysis and to dissociation by detergent. Heterogeneity within the functional population of hyper-stable Envs was also reduced, as evidenced by a relative decrease in a proportion of virus that is resistant to the neutralizing Ab, PG9. The latter result may reflect a change in glycans on the stabilized Envs. The stabilizing mutations also increased the proportion of secreted gp140 existing in a trimeric conformation. Finally, several Env-stabilizing substitutions could stabilize Env spikes from HIV-1 clades A, B and C. Spike stabilizing mutations may be useful in the development of Env immunogens that stably retain native, trimeric structure. A vaccine is needed to prevent HIV/AIDS but eliciting potent neutralizing antibodies (Abs) against primary isolates has been a major stumbling block. The target of HIV-1 neutralizing antibodies is the native envelope glycoprotein (Env) trimer that is displayed on the surface of the virus. Virion associated Env typically elicits antibodies that cannot neutralize primary viruses. However, because native Env trimers can dissociate and coexist with non-fusogenic forms of Env interpreting these results are difficult. Here, we used directed evolution to select for virions that display native Env with increased stability and homogeneity. HIV-1 virions were subjected to increasingly harsh treatments that destabilize Env trimers, and the variants that survived each treatment were expanded. We could identify seven different mutations in Env that increased its stability of function in the face of multiple destabilizing treatments. When these mutations were combined, the resulting mutant Env trimers were far more stable than the original Env protein. Incorporating trimer-stabilizing mutations into Env-based immunogens should facilitate vaccine research by mitigating the confounding effects of non-native byproducts of Env decay. A similar approach may be used on other pathogens with potential vaccine targets that are difficult to isolate and maintain in a native form.
Collapse
Affiliation(s)
- Daniel P. Leaman
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Michael B. Zwick
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
7
|
Diverse specificity and effector function among human antibodies to HIV-1 envelope glycoprotein epitopes exposed by CD4 binding. Proc Natl Acad Sci U S A 2013; 110:E69-78. [PMID: 23237851 PMCID: PMC3538257 DOI: 10.1073/pnas.1217609110] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The HIV-1 envelope glycoprotein (Env) undergoes conformational transitions consequent to CD4 binding and coreceptor engagement during viral entry. The physical steps in this process are becoming defined, but less is known about their significance as targets of antibodies potentially protective against HIV-1 infection. Here we probe the functional significance of transitional epitope exposure by characterizing 41 human mAbs specific for epitopes exposed on trimeric Env after CD4 engagement. These mAbs recognize three epitope clusters: cluster A, the gp120 face occluded by gp41 in trimeric Env; cluster B, a region proximal to the coreceptor-binding site (CoRBS) and involving the V1/V2 domain; and cluster C, the coreceptor-binding site. The mAbs were evaluated functionally by antibody-dependent, cell-mediated cytotoxicity (ADCC) and for neutralization of Tiers 1 and 2 pseudoviruses. All three clusters included mAbs mediating ADCC. However, there was a strong potency bias for cluster A, which harbors at least three potent ADCC epitopes whose cognate mAbs have electropositive paratopes. Cluster A epitopes are functional ADCC targets during viral entry in an assay format using virion-sensitized target cells. In contrast, only cluster C contained epitopes that were recognized by neutralizing mAbs. There was significant diversity in breadth and potency that correlated with epitope fine specificity. In contrast, ADCC potency had no relationship with neutralization potency or breadth for any epitope cluster. Thus, Fc-mediated effector function and neutralization coselect with specificity in anti-Env antibody responses, but the nature of selection is distinct for these two antiviral activities.
Collapse
|
8
|
Delhalle S, Schmit JC, Chevigné A. Phages and HIV-1: from display to interplay. Int J Mol Sci 2012; 13:4727-4794. [PMID: 22606007 PMCID: PMC3344243 DOI: 10.3390/ijms13044727] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 03/26/2012] [Accepted: 03/30/2012] [Indexed: 11/16/2022] Open
Abstract
The complex hide-and-seek game between HIV-1 and the host immune system has impaired the development of an efficient vaccine. In addition, the high variability of the virus impedes the long-term control of viral replication by small antiviral drugs. For more than 20 years, phage display technology has been intensively used in the field of HIV-1 to explore the epitope landscape recognized by monoclonal and polyclonal HIV-1-specific antibodies, thereby providing precious data about immunodominant and neutralizing epitopes. In parallel, biopanning experiments with various combinatorial or antibody fragment libraries were conducted on viral targets as well as host receptors to identify HIV-1 inhibitors. Besides these applications, phage display technology has been applied to characterize the enzymatic specificity of the HIV-1 protease. Phage particles also represent valuable alternative carriers displaying various HIV-1 antigens to the immune system and eliciting antiviral responses. This review presents and summarizes the different studies conducted with regard to the nature of phage libraries, target display mode and biopanning procedures.
Collapse
Affiliation(s)
- Sylvie Delhalle
- Laboratory of Retrovirology, CRP-Sante, 84, Val Fleuri, L-1526 Luxembourg, Luxembourg; E-Mails: (J.-C.S.); (A.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +352-26970211; Fax: +352-26970221
| | - Jean-Claude Schmit
- Laboratory of Retrovirology, CRP-Sante, 84, Val Fleuri, L-1526 Luxembourg, Luxembourg; E-Mails: (J.-C.S.); (A.C.)
- Service National des Maladies Infectieuses, Centre Hospitalier Luxembourg, 4, rue E. Barblé, L-1210 Luxembourg, Luxembourg
| | - Andy Chevigné
- Laboratory of Retrovirology, CRP-Sante, 84, Val Fleuri, L-1526 Luxembourg, Luxembourg; E-Mails: (J.-C.S.); (A.C.)
| |
Collapse
|
9
|
Abstract
Rag2(-/-) gamma(C)(-/-) mice transplanted with human hematopoietic stem cells (DKO-hu-HSC mice) mimic aspects of human infection with human immunodeficiency virus type 1 (HIV-1), including sustained viral replication and CD4(+) T-cell decline. However, the extent of HIV-1 evolution during long-term infection in these humanized mice, a key feature of the natural infection, has not been assessed fully. In this study, we examined the types of genotypic and phenotypic changes in the viral env gene that occur in the viral populations of DKO-hu-HSC mice infected with the CCR5-tropic isolate HIV-1(JRCSF) for up to 44 weeks. The mean rate of divergence of viral populations in mice was similar to that observed in a cohort of humans during a similar period of infection. Many amino acid substitutions were common across mice, including losses of N-linked glycosylation sites and substitutions in the CD4 binding site and in CD4-induced epitopes, indicating common selective pressures between mice. In addition, env variants evolved sensitivity to antibodies directed at V3, suggesting a more open conformation for Env. This phenotypic change was associated with increased CD4 binding efficiency and was attributed to specific amino acid substitutions. In one mouse, env variants emerged that exhibited a CXCR4-tropic phenotype. These sequences were compartmentalized in the mesenteric lymph node. In summary, viral populations in these mice exhibited dynamic behavior that included sequence evolution, compartmentalization, and the appearance of distinct phenotypic changes. Thus, humanized mice offer a useful model for studying evolutionary processes of HIV-1 in a complex host environment.
Collapse
|
10
|
Granados-González V, Piedrahita LD, Martínez M, Genin C, Riffard S, Urcuqui-Inchima S. [Role of the HIV-1 gp120 V1/V2 domains in the induction of neutralizing antibodies]. Enferm Infecc Microbiol Clin 2009; 27:523-30. [PMID: 19409660 DOI: 10.1016/j.eimc.2008.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 02/11/2008] [Indexed: 11/25/2022]
Abstract
The development of a preventive vaccine against human immunodeficiency virus type-1 (HIV-1) provides hope for control of the pandemic over the coming years. Nevertheless, it is clear that one of the greatest difficulties in achieving this vaccine is the high mutation rate of the virus, which enables it to evade the host's immune response. The production of neutralizing antibodies (NAb) against the HIV-1 envelope proteins is believed to play an important role in controlling the infection and in providing effective protection following vaccination. Several studies have shown that the V1/V2 domain of the HIV-1 gp120 envelope protein is involved in viral tropism during infection, in masking conserved neutralizing epitopes, in the conformational changes occurring after coreceptor binding, and in NAb induction. Nonetheless, this domain has been poorly investigated. However, because the V1/V2 domain is highly glycosylated, numerous studies have determined the influence of carbohydrates on NAb production. The present review focuses on the importance of NAb directed against epitopes of the variable regions, mainly V1/V2, their importance in protecting against HIV-1 infection, and the role these regions play in evading the immune response. Lastly, we will discuss the importance of NAb in the search for an effective vaccine against HIV-1.
Collapse
Affiliation(s)
- Viviana Granados-González
- Groupe Immunité des Muqueuses et Agents Pathogènes, University of Saint Etienne, Saint Etienne, Francia.
| | | | | | | | | | | |
Collapse
|
11
|
Neutralizing activity of antibodies to the V3 loop region of HIV-1 gp120 relative to their epitope fine specificity. Virology 2008; 381:251-60. [PMID: 18822440 DOI: 10.1016/j.virol.2008.08.032] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 08/12/2008] [Accepted: 08/15/2008] [Indexed: 11/23/2022]
Abstract
The V3 loop of HIV-1 gp120 is considered occluded on many primary viruses. However, virus sensitivity to neutralization by different V3 mAbs often varies, indicating that access to V3 is not restricted equally for all antibodies. Here, we have sought to gain a better understanding of these restrictions by determining the neutralizing activities of 7 V3 mAbs (19b, 39F, CO11, F2A3, F530, LA21, and LE311) against 15 subtype B primary isolates and relating these activities to the fine specificity of the mAbs. Not surprisingly, we found that most mAbs neutralized the same 2-3 viruses, with only mAb F530 able to neutralize 2 additional viruses not neutralized by the other mAbs. Epitope mapping revealed that positively-charged residues in or near the V3 stem are important for the binding of all the mAbs and that most mAbs seem to require the Pro residue that forms the GPGR beta hairpin turn in the V3 tip for binding. Based on the mapping, we determined that V3 sequence variation accounted for neutralization resistance of approximately half the viruses tested. Comparison of these results to those of select V3 mAbs with overall better neutralizing activities in the light of structural information illustrates how an antibody's mode of interaction with V3, driven by contact residue requirements, may restrict the antibody from accessing its epitope on different viruses. Based on the data we propose an angle of interaction with V3 that is less stringent on access for antibodies with cross-neutralizing activity compared to antibodies that neutralize relatively fewer viruses.
Collapse
|
12
|
HIV-1/AIDS vaccine development: are we in the darkness before the dawn? Chin Med J (Engl) 2008. [DOI: 10.1097/00029330-200805020-00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
13
|
Selvarajah S, Puffer BA, Lee FH, Zhu P, Li Y, Wyatt R, Roux KH, Doms RW, Burton DR. Focused dampening of antibody response to the immunodominant variable loops by engineered soluble gp140. AIDS Res Hum Retroviruses 2008; 24:301-14. [PMID: 18284327 DOI: 10.1089/aid.2007.0158] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Immunization studies with modified gp120 monomers using a hyperglycosylation strategy, in which undesired epitopes are masked by the selective incorporation of N-linked glycans, were described in a previous paper (Selvarajah S, et al., J Virol 2000;79:12148-12163). In this report, we applied the hyperglycosylation strategy to soluble uncleaved gp140 trimers to improve the antigenic and immunogenic profile in the context of a trimeric conformation of the immunogen. The JR-FL gp140 gene was added upstream of a soluble trimerization domain of chicken cartilage matrix (CART) protein and expressed predominantly as a trimer and called gp140-CART wild-type. In the hyperglycosylated gp140-CART mCHO(V) mutant, four extra sugar attachment motifs on the variable loops helped mask epitope recognition by monoclonal antibodies specific to the variable loops. The gp140-CART mCHO(V) mutant and gp140-CART wild-type soluble trimer protein were used to immunize rabbits. The gp140-CART mCHO(V) immune sera had reduced antibody response to the variable loops compared to gp140-CART wild-type immune sera as shown by peptide reactivity, competition assays, and the reduced ability of sera to neutralize SF162 virus (a variable loop neutralization-sensitive virus). The antibody response to the CD4 binding site was retained in the gp140-CART mCHO(V) mutant immune sera similar to gp140-CART wild-type immune sera. The results demonstrate that the strategy of hyperglycosylation is clearly useful in the context of a compact form of Env immunogen such as the soluble gp140 trimer in dampening responses to variable loops while maintaining responses to an important epitope, the CD4 binding site. However, the results also show that in order to elicit broadly neutralizing antibodies that target conserved epitopes, the soluble gp140 trimer immunogen template will require further modifications.
Collapse
Affiliation(s)
- Suganya Selvarajah
- Departments of Immunology and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Bridget A. Puffer
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Fang-Hua Lee
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Ping Zhu
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306
| | - Yuxing Li
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Richard Wyatt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Kenneth H. Roux
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306
| | - Robert W. Doms
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Dennis R. Burton
- Departments of Immunology and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
14
|
Sheppard NC, Davies SL, Jeffs SA, Vieira SM, Sattentau QJ. Production and characterization of high-affinity human monoclonal antibodies to human immunodeficiency virus type 1 envelope glycoproteins in a mouse model expressing human immunoglobulins. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 14:157-67. [PMID: 17167037 PMCID: PMC1797789 DOI: 10.1128/cvi.00274-06] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Human (Hu) monoclonal antibodies (MAbs) against the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Env) are useful tools in the structural and functional analysis of Env, are under development both as potential prophylaxis and as therapy for established HIV-1 infection, and have crucial roles in guiding the design of preventative vaccines. Despite representing more than 50% of infections globally, no MAbs have been generated in any species against C clade HIV-1 Env. To generate HuMAbs to a novel Chinese C clade Env vaccine candidate (primary isolate strain HIV-1(97CN54)), we used BAB5 mice that express a human immunoglobulin (Ig) M antibody repertoire in place of endogenous murine immunoglobulins. When immunized with HIV-1(97CN54) Env, these mice developed antigen-specific IgM antibodies. Hybridoma fusions using splenocytes from these mice enabled the isolation of two Env-specific IgM HuMAbs: N3C5 and N03B11. N3C5 bound to HIV-1 Env from clades A and C, whereas N03B11 bound two geographically distant clade C isolates but not Env from other clades. These HuMAbs bind conformational epitopes within the immunodominant region of the gp41 ectodomain. N3C5 weakly neutralized the autologous isolate in the absence of complement and weakly enhanced infection in the presence of complement. N03B11 has no effect on infectivity in either the presence or the absence of complement. These novel HuMAbs are useful reagents for the study of HIV-1 Env relevant to the global pandemic, and mice producing human immunoglobulin present a tool for the production of such antibodies.
Collapse
Affiliation(s)
- Neil C Sheppard
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom.
| | | | | | | | | |
Collapse
|
15
|
de Brito A, Komninakis SCV, Novoa P, de Oliveira RM, Fonseca LAM, Duarte AJS, Casseb J. Women infected with HIV type 1 Brazilian variant, subtype B (B'-GWGR motif) have slower progression to AIDS, compared with patients infected with subtype B (B-GPGR motif). Clin Infect Dis 2006; 43:1476-81. [PMID: 17083025 DOI: 10.1086/508875] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Accepted: 08/07/2006] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION The Brazilian variant of human immunodeficiency virus (HIV) type 1 (HIV-1) subtype B (serotype B'-GWGR) has a tryptophan replacing a proline in position 328 of the HIV-1 envelope, a feature that may induce a different HIV disease progression. We aimed to evaluate the role of the B subtypes of HIV-1 (serotypes B-GPGR and B'-GWGR) on HIV disease progression. METHODS A total of 137 HIV-infected individuals who had been admitted to the hospital were tested with an anti-V3 serologic assay, using peptides representing 2 HIV-1 subtype B strains, MN and SF2, and 2 Brazilian variant B'-GWGR strains, BR1 and BR2. RESULTS Of 137 serum samples tested with the anti-V3 serologic assay, 4 (3%) yielded indeterminate results, 74 (54%; from 25 women and 49 men) were found to be B-GPGR, and 59 (43%; from 20 women and 39 men) were found to be the B'-GWGR variant. In general, a longer interval from the first known positive HIV test result to an AIDS-defining event was observed in the B'-GWGR group than in the B-GPGR group (21 vs. 7 months). The CD4+ T cell counts were higher in the B'-GWGR group (median CD4+ T cell count, 65 vs. 31 cells/mm3; P=.01), and women infected with the B'-GWGR variant were less likely to die than were men infected with the same variant (P=.01). The median viral load in the B'-GWGR group was 3.395 copies/mL, compared with 39.350 copies/mL in the B-GPGR group (P=.01). CONCLUSIONS Taken together, our results indicate that B'-GWGR-infected women may have more-favorable outcomes than B-GPGR-infected subjects.
Collapse
Affiliation(s)
- Adriana de Brito
- Laboratory of Allergy and Clinical and Experimental Immunology, University of São Paulo Medical School, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
16
|
Selvarajah S, Puffer B, Pantophlet R, Law M, Doms RW, Burton DR. Comparing antigenicity and immunogenicity of engineered gp120. J Virol 2005; 79:12148-63. [PMID: 16160142 PMCID: PMC1211546 DOI: 10.1128/jvi.79.19.12148-12163.2005] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have engineered monomeric gp120 in such a way as to favorably present the conserved epitope for the broadly neutralizing antibody b12 while lowering the exposure of epitopes recognized by some weakly neutralizing and nonneutralizing antibodies. The work presented here describes the immune response in rabbits immunized with two prototype, engineered gp120s to explore the relationship between antigenicity and immunogenicity for these mutants. The GDMR gp120 mutant (residues 473 to 476 on gp120 altered from GDMR to AAAA) has a series of substitutions on the edge of the CD4 binding site (CD4bs), and the mCHO gp120 mutant has seven extra glycans relative to the wild-type protein. Importantly, serum mapping showed that both mutants did not elicit antibodies against a number of epitopes that had been targeted for dampening. The sera from rabbits immunized with the GDMR gp120 mutant neutralized some primary viruses at levels somewhat better than the wild-type gp120 immune sera as a result of an increased elicitation of anti-V3 antibodies. Unlike wild-type gp120 immune sera, GDMR gp120 immune sera failed to neutralize HXBc2, a T-cell line adapted (TCLA) virus. This was associated with loss of CD4bs/CD4-induced antibodies that neutralize TCLA but not primary viruses. The mCHO gp120 immune sera did not neutralize primary viruses to any significant degree, reflecting the masking of epitopes of even weakly neutralizing antibodies without eliciting b12-like antibodies. These results show that antibody responses to multiple epitopes on gp120 can be dampened. More precise focusing to a neutralizing epitope will likely require several iterations comparing antigenicity and immunogenicity of engineered proteins.
Collapse
Affiliation(s)
- Suganya Selvarajah
- The Scripps Research Institute, Department of Immunology, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
17
|
Yang X, Kurteva S, Lee S, Sodroski J. Stoichiometry of antibody neutralization of human immunodeficiency virus type 1. J Virol 2005; 79:3500-8. [PMID: 15731244 PMCID: PMC1075697 DOI: 10.1128/jvi.79.6.3500-3508.2005] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The human immunodeficiency virus envelope glycoproteins function as trimers on the viral surface, where they are targeted by neutralizing antibodies. Different monoclonal antibodies neutralize human immunodeficiency virus type 1 (HIV-1) infectivity by binding to structurally and functionally distinct moieties on the envelope glycoprotein trimer. By measuring antibody neutralization of viruses with mixtures of neutralization-sensitive and neutralization-resistant envelope glycoproteins, we demonstrate that the HIV-1 envelope glycoprotein trimer is inactivated by the binding of a single antibody molecule. Virus neutralization requires essentially all of the functional trimers to be occupied by at least one antibody. This model applies to antibodies differing in neutralizing potency and to virus isolates with various neutralization sensitivities. Understanding these requirements for HIV-1 neutralization by antibodies will assist in establishing goals for an effective AIDS vaccine.
Collapse
Affiliation(s)
- Xinzhen Yang
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, JFB-609, 44 Binney St., Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
18
|
Yang X, Tomov V, Kurteva S, Wang L, Ren X, Gorny MK, Zolla-Pazner S, Sodroski J. Characterization of the outer domain of the gp120 glycoprotein from human immunodeficiency virus type 1. J Virol 2004; 78:12975-86. [PMID: 15542649 PMCID: PMC525028 DOI: 10.1128/jvi.78.23.12975-12986.2004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The core of the gp120 glycoprotein from human immunodeficiency virus type 1 (HIV-1) is comprised of three major structural domains: the outer domain, the inner domain, and the bridging sheet. The outer domain is exposed on the HIV-1 envelope glycoprotein trimer and contains binding surfaces for neutralizing antibodies such as 2G12, immunoglobulin G1b12, and anti-V3 antibodies. We expressed the outer domain of HIV-1(YU2) gp120 as an independent protein, termed OD1. OD1 efficiently bound 2G12 and a large number of anti-V3 antibodies, indicating its structural integrity. Immunochemical studies with OD1 indicated that antibody responses against the outer domain of the HIV-1 gp120 envelope glycoprotein are rare in HIV-1-infected human sera that potently neutralize the virus. Surprisingly, such outer-domain-directed antibody responses are commonly elicited by immunization with recombinant monomeric gp120. Immunization with soluble, stabilized HIV-1 envelope glycoprotein trimers elicited antibody responses that more closely resembled those in the sera of HIV-1-infected individuals. These results underscore the qualitatively different humoral immune responses elicited during natural infection and after gp120 vaccination and help to explain the failure of gp120 as an effective vaccine.
Collapse
Affiliation(s)
- Xinzhen Yang
- Dana-Farber Cancer Institute, 44 Binney St., JFB 824, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
As with most pathogens, HIV-1 induces a polyclonal antibody response to a wide array of epitopes on different viral proteins. Studies of polyclonal sera have helped to identify several epitopes on HIV-1 envelope glycoproteins that induce protective antibodies. Antibodies to several constant regions of the virus envelope induce neutralizing antibodies, but because of the poor immunogenicity of some of these epitopes, the rare structure of neutralizing antibodies to these epitopes, or the preponderance of antibodies to particular epitopes that are non-neutralizing rather than neutralizing, targeting each of these epitopes with vaccine constructs presents difficult challenges. Antibodies to variable regions of gp120, such as V1, V2 and V3, have long been considered irrelevant to vaccine design. However, there are conserved features in the stem of the V1/V2 loop and in the V3 loop that have crucial functions in virus infectivity and explain how antibodies to these regions can be crossreactive. These conserved elements within the variable regions might therefore be relevant targets for vaccines. HIV-1 strains exist that are not neutralized by monoclonal antibodies but are neutralized by pooled sera from HIV-1+ individuals. This indicates that there might be neutralizing epitopes that have not yet been identified. Present vaccine protocols induce antibodies to many epitopes rather than focusing the immune response on epitopes that will induce protective antibodies. Given that several neutralizing epitopes in gp120 and gp41 have been identified, it might be advantageous to direct the antibody response to these protective epitopes. It is highly unlikely that a single construct will protect against all subtypes of HIV-1. Given the continuing evolution of the virus and the spread of subtypes throughout the world, the question is how to choose which strains, and how many, need to be represented in a vaccine to give maximum protection.
During the past 20 years, the pendulum of opinion in the HIV-1 vaccine field has swung between two extremes, initially favouring the induction of antibodies only, and subsequently favouring the induction of cell-mediated immune responses only. At present, the consensus seems to be that induction of both humoral and cellular immunity by an HIV-1 vaccine will be required to achieve maximum protection. One obstacle to the development of an effective HIV-1 vaccine has been the difficulty in inducing broadly reactive, potent antibodies with protective functions. Defining epitopes and designing immunogens that will induce these antibodies is one of the main challenges that now confronts the HIV-1 vaccine field.
Collapse
Affiliation(s)
- Susan Zolla-Pazner
- New York Veterans Affairs Medical Center and NYU School of Medicine, New York 10016, USA.
| |
Collapse
|
20
|
Zwick MB, Kelleher R, Jensen R, Labrijn AF, Wang M, Quinnan GV, Parren PWHI, Burton DR. A novel human antibody against human immunodeficiency virus type 1 gp120 is V1, V2, and V3 loop dependent and helps delimit the epitope of the broadly neutralizing antibody immunoglobulin G1 b12. J Virol 2003; 77:6965-78. [PMID: 12768015 PMCID: PMC156200 DOI: 10.1128/jvi.77.12.6965-6978.2003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The V1/V2 and V3 loops are proximal to the CD4 binding site (CD4bs) of human immunodeficiency virus type 1 (HIV-1) gp120 and undergo conformational change upon CD4 receptor engagement by the HIV-1 envelope spike. Nearly all of the reported monoclonal antibodies (MAbs) against the CD4bs exhibit a very limited capacity to neutralize HIV-1. However, one such human MAb, immunoglobulin G1 (IgG1) b12, is uniquely able to neutralize primary isolates across subtypes with considerable potency. The molecular basis for the anti-HIV-1 activity of b12 is not fully understood but is relevant to vaccine design. Here we describe a novel human MAb, 4KG5, whose binding to monomeric gp120 is moderately enhanced by IgG1 b12. In sharp contrast, 4KG5 binding to gp120 is inhibited by soluble CD4 (sCD4) and by all other (n = 14) anti-CD4bs MAbs tested. 4KG5 is unable to recognize gp120 in which either V1, V2, or V3 has been deleted, and MAbs against the V2 or V3 loops inhibit the binding of 4KG5 to gp120. Moreover, 4KG5 is able to inhibit the binding of the CD4-induced MAbs 17b and X5 in the absence of sCD4, whereas 17b and X5 only weakly inhibit the binding of 4KG5 to gp120. Mutagenesis of gp120 provides further evidence of a discontinuous epitope of 4KG5 that is formed by the V1/V2 loop, the V3 loop, and a portion of the bridging sheet (C4). 4KG5 was isolated as a single-chain Fv from a phage display library constructed from the bone marrow of an HIV-1-seropositive subject (FDA2) whose serum neutralizes HIV-1 across subtypes. Despite its source, we observed no significant neutralization with 4KG5 against the autologous (R2) virus and several other strains of HIV-1. The results suggest a model in which antibody access to the CD4bs on the envelope spike of HIV-1 is restricted by the orientation and/or dynamics of the V1/V2 and V3 loops, and b12 avoids these restrictions.
Collapse
Affiliation(s)
- Michael B Zwick
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Pantophlet R, Wilson IA, Burton DR. Hyperglycosylated mutants of human immunodeficiency virus (HIV) type 1 monomeric gp120 as novel antigens for HIV vaccine design. J Virol 2003; 77:5889-901. [PMID: 12719582 PMCID: PMC154011 DOI: 10.1128/jvi.77.10.5889-5901.2003] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability to induce broadly neutralizing antibodies should be a key component of any forthcoming vaccine against human immunodeficiency virus type 1. One potential vaccine candidate, monomeric gp120, has generally failed to elicit such antibodies. We postulated that gp120 might be a better immunogen if it could be engineered to preferentially bind known broadly neutralizing antibodies. In a first study, we found that four alanine substitutions on the perimeter of the so-called Phe-43 cavity of gp120 could reduce binding of weakly neutralizing CD4-binding site antibodies (R. Pantophlet, E. O. Saphire, P. Poignard, P. W. H. I. Parren, I. A. Wilson, and D. R. Burton, J. Virol. 77:642-658, 2003), while slightly enhancing binding of the potent, broadly neutralizing antibody b12. In the present study, we sought to reduce or abolish the binding of a wider range of nonneutralizing antibodies, by incorporating extra N-glycosylation motifs at select positions into the hypervariable loops and the gp120 core. A hyperglycosylated mutant containing seven extra glycosylation sequons (consensus sequences) and the four alanine substitutions described above did not bind an extensive panel of nonneutralizing and weakly neutralizing antibodies, including a polyclonal immunoglobulin preparation (HIVIG) of low neutralizing potency. Binding of b12, at lowered affinity, and of four antibodies to the C1 and C5 regions was maintained. Removal of N- and C-terminal residues in the C1 and C5 regions, respectively, reduced or abolished binding of the four antibodies, but this also adversely affected b12 binding. The hyperglycosylated mutant and its analogues described here are novel antigens that may provide a new approach to eliciting antibodies with b12-like neutralizing properties.
Collapse
Affiliation(s)
- Ralph Pantophlet
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
22
|
Hoffmann C, Blechschmidt D, Krüger R, Karas M, Griesinger C. Mass spectrometric sequencing of individual peptides from combinatorial libraries via specific generation of chain-terminated sequences. JOURNAL OF COMBINATORIAL CHEMISTRY 2002; 4:79-86. [PMID: 11831885 DOI: 10.1021/cc010057x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Combinatorial peptide libraries are a versatile tool for drug discovery. On-bead assays identify reactive peptides by enzyme-catalyzed staining and, usually, sequencing by Edman degradation. Unfortunately, the latter method is expensive and time-consuming and requires free N termini of the peptides. A method of rapid and unambiguous peptide sequencing by utilizing synthesis-implemented generation of termination sequences with subsequent matrix-assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometric analysis is introduced here. The required capped sequences are determined and optimized for a specific peptide library by a computer algorithm implemented in the program Biblio. A total of 99.7% of the sequences of a heptapeptide library sample could be decoded utilizing a single bead for each spectrum. To synthesize these libraries, an optimized capping approach has been introduced.
Collapse
Affiliation(s)
- Christian Hoffmann
- Institute of Organic Chemistry, University of Frankfurt, Marie-Curie-Strasse 11, D-60439 Frankfurt am Main, Germany.
| | | | | | | | | |
Collapse
|
23
|
Lockey TD, Slobod KS, Caver TE, D'Costa S, Owens RJ, McClure HM, Compans RW, Hurwitz JL. Multi-envelope HIV vaccine safety and immunogenicity in small animals and chimpanzees. Immunol Res 2000; 21:7-21. [PMID: 10803879 DOI: 10.1385/ir:21:1:7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A significant obstacle to HIV vaccine development lies in the remarkable diversity of envelope proteins, the major targets of neutralizing antibody. That envelope diversity must be targeted is demonstrated by results from nonhuman primate studies in which single-envelope vaccines have protected against homologous, but rarely against heterologous virus challenges. Similarly, in clinical trials, single-envelope vaccines have failed to prevent break-through infections when challenge viruses were inevitably mismatched with the vaccine. To protect humans from infection by any isolate of HIV, we have prepared vaccine cocktails combining multiple envelopes from distinct viral isolates. We have tested several vehicles for vaccine delivery in small animals and have shown that successive immunizations with envelope, presented first as a DNA recombinant, then as a vaccinia virus (VV) recombinant, and finally as purified protein elicited strong neutralizing antibody responses. We have also tested the VV recombinant vaccine in chimpanzees. Pairs of animals received either single- or multi-envelope VV recombinant vaccines administered by the subcutaneous route. Results showed that the multi-envelope vaccine was safe, immunogenic, and superior to the single-envelope vaccine in eliciting HIV-specific antibody measurable in a standard clinical, immune assay. The promise of this system has led to the initiation of clinical trials, with which the hypothesis that cocktail vaccines will prevent human HIV infections may ultimately be tested.
Collapse
Affiliation(s)
- T D Lockey
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38101, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Wizemann H, Weiland F, Pfaff E, von Brunn A. Polyhistidine-tagged hepatitis B core particles as carriers of HIV-1/gp120 epitopes of different HIV-1 subtypes. Biol Chem 2000; 381:231-43. [PMID: 10782994 DOI: 10.1515/bc.2000.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The hepatitis B core antigen is a widely accepted carrier particle to enhance the immunogenicity of foreign epitopes. From electron cryomicroscopy, the immunodominant region between amino acid positions 79 to 81 is known to protrude from the surface of the shells. It can be replaced by heterologous sequences without interfering with the particle-forming capacity in many cases. Here we have introduced various V3 sequences of the envelope protein of different subtypes (A, B, O) of HIV-1/gp120 in order to enhance their immunogenicity and broaden the immune response against the virus. To improve purification efficiency and solubility of the E. coli-expressed hybrids, six histidine residues were fused to amino acid 156. An adjustable purification scheme was utilised including denaturation, Ni(2+)-NTA affinity chromatography and particle renaturation under high salt conditions, resulting in highly pure antigen preparations. The hybrids reacted specifically with sera of HIV-1-infected patients. They further induced an autologous, subtype-specific anti-HIV-1 antibody response superior to that of Keyhole limpet-haemocyanine-coupled peptides.
Collapse
Affiliation(s)
- H Wizemann
- Max-von-Pettenkofer-Institut, Lehrstuhl Virologie, Genzentrum, München Germany
| | | | | | | |
Collapse
|
25
|
Abstract
HIV vaccine development has been hampered by the inability of conventional immunogens to elicit antibodies capable of neutralizing primary isolates of the virus. Recent studies using 'fusion-competent' immunogens that capture transitional intermediate structures of the functioning envelope protein suggest that this goal may now be achievable.
Collapse
Affiliation(s)
- J H Nunberg
- Montana Biotechnology Center, The University of Montana, Missoula, MT 59812, USA
| | | | | | | |
Collapse
|
26
|
Sullivan N, Sun Y, Sattentau Q, Thali M, Wu D, Denisova G, Gershoni J, Robinson J, Moore J, Sodroski J. CD4-Induced conformational changes in the human immunodeficiency virus type 1 gp120 glycoprotein: consequences for virus entry and neutralization. J Virol 1998; 72:4694-703. [PMID: 9573233 PMCID: PMC109994 DOI: 10.1128/jvi.72.6.4694-4703.1998] [Citation(s) in RCA: 244] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) entry into target cells involves sequential binding of the gp120 exterior envelope glycoprotein to CD4 and to specific chemokine receptors. Soluble CD4 (sCD4) is thought to mimic membrane-anchored CD4, and its binding alters the conformation of the HIV-1 envelope glycoproteins. Two cross-competing monoclonal antibodies, 17b and CG10, that recognize CD4-inducible gp120 epitopes and that block gp120-chemokine receptor binding were used to investigate the nature and functional significance of gp120 conformational changes initiated by CD4 binding. Envelope glycoproteins derived from both T-cell line-adapted and primary HIV-1 isolates exhibited increased binding of the 17b antibody in the presence of sCD4. CD4-induced exposure of the 17b epitope on the oligomeric envelope glycoprotein complex occurred over a wide range of temperatures and involved movement of the gp120 V1/V2 variable loops. Amino acid changes that reduced the efficiency of 17b epitope exposure following CD4 binding invariably compromised the ability of the HIV-1 envelope glycoproteins to form syncytia or to support virus entry. Comparison of the CD4 dependence and neutralization efficiencies of the 17b and CG10 antibodies suggested that the epitopes for these antibodies are minimally accessible following attachment of gp120 to cell surface CD4. These results underscore the functional importance of these CD4-induced changes in gp120 conformation and illustrate viral strategies for sequestering chemokine receptor-binding regions from the humoral immune response.
Collapse
Affiliation(s)
- N Sullivan
- Division of Human Retrovirology, Dana-Farber Cancer Institute, Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Durali D, Morvan J, Letourneur F, Schmitt D, Guegan N, Dalod M, Saragosti S, Sicard D, Levy JP, Gomard E. Cross-reactions between the cytotoxic T-lymphocyte responses of human immunodeficiency virus-infected African and European patients. J Virol 1998; 72:3547-53. [PMID: 9557634 PMCID: PMC109574 DOI: 10.1128/jvi.72.5.3547-3553.1998] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The great variability of protein sequences from human immunodeficiency virus (HIV) type 1 (HIV-1) isolates represents a major obstacle to the development of an effective vaccine against this virus. The surface protein (Env), which is the predominant target of neutralizing antibodies, is particularly variable. Here we examine the impact of variability among different HIV-1 subtypes (clades) on cytotoxic T-lymphocyte (CTL) activities, the other major component of the antiviral immune response. CTLs are produced not only against Env but also against other structural proteins, as well as some regulatory proteins. The genetic subtypes of HIV-1 were determined for Env and Gag from several patients infected either in France or in Africa. The cross-reactivities of the CTLs were tested with target cells expressing selected proteins from HIV-1 isolates of clade A or B or from HIV type 2 isolates. All African patients were infected with viruses belonging to clade A for Env and for Gag, except for one patient who was infected with a clade A Env-clade G Gag recombinant virus. All patients infected in France were infected with clade B viruses. The CTL responses obtained from all the African and all the French individuals tested showed frequent cross-reactions with proteins of the heterologous clade. Epitopes conserved between the viruses of clades A and B appeared especially frequent in Gag p24, Gag p18, integrase, and the central region of Nef. Cross-reactivity also existed among Gag epitopes of clades A, B, and G, as shown by the results for the patient infected with the clade A Env-clade G Gag recombinant virus. These results show that CTLs raised against viral antigens from different clades are able to cross-react, emphasizing the possibility of obtaining cross-immunizations for this part of the immune response in vaccinated individuals.
Collapse
Affiliation(s)
- D Durali
- Laboratoire d'Immunologie des Pathologies Infectieuses et Tumorales, Unité INSERM 445, Université René Descartes, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Boots LJ, McKenna PM, Arnold BA, Keller PM, Gorny MK, Zolla-Pazner S, Robinson JE, Conley AJ. Anti-human immunodeficiency virus type 1 human monoclonal antibodies that bind discontinuous epitopes in the viral glycoproteins can identify mimotopes from recombinant phage peptide display libraries. AIDS Res Hum Retroviruses 1997; 13:1549-59. [PMID: 9430247 DOI: 10.1089/aid.1997.13.1549] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A phage display library screening approach was used to identify peptide sequences that could bind to anti-HIV-1 MAbs whose binding specificities are complex. Most of the antibodies used recognize discontinuous epitopes in gp120 and one recognizes gp41. Both a 15-mer and a 21-mer display library (each with a complexity of greater than 60 x 10[6]) and two constrained, V3 region-biased libraries, all expressed as recombinant pIII protein of filamentous phage, were used. The unmapped anti-gp120 human MAb A32 recognized a set of related linear sequences and repeatedly identified a single phage sequence that could form a cyclic disulfide structure. Selection methods were also developed so that phage could be obtained by competition selection in the presence of antibody bound to native, monomeric gp120 antigen (used with MAb IgG1b12 and the anti-gp120 V3 region MAb 447-52D) or gp120 variable region 3 synthetic peptides (used with anti-gp120 V3 region MAb 19b). The potent, virus-neutralizing MAb IgG1b12 recognized numerous sequences and, when used in competition with gp120, recognized only one sequence. These studies extend the range of antibody determinant studies that can be performed with display phage libraries, demonstrate a workable experimental strategy for use of competition ligands to discriminate among phage mimotopes, and provide a large number of mimotopes that bind potent virus-neutralizing MAbs for HIV-1 vaccine studies.
Collapse
Affiliation(s)
- L J Boots
- Department of Antiviral Research, Merck Research Laboratories, West Point, Pennsylvania 19486, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Verrier FC, Charneau P, Altmeyer R, Laurent S, Borman AM, Girard M. Antibodies to several conformation-dependent epitopes of gp120/gp41 inhibit CCR-5-dependent cell-to-cell fusion mediated by the native envelope glycoprotein of a primary macrophage-tropic HIV-1 isolate. Proc Natl Acad Sci U S A 1997; 94:9326-31. [PMID: 9256481 PMCID: PMC23181 DOI: 10.1073/pnas.94.17.9326] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/1997] [Indexed: 02/05/2023] Open
Abstract
The beta-chemokine receptor CCR-5 is essential for the efficient entry of primary macrophage-tropic HIV-1 isolates into CD4(+) target cells. To study CCR-5-dependent cell-to-cell fusion, we have developed an assay system based on the infection of CD4(+) CCR-5(+) HeLa cells with a Semliki Forest virus recombinant expressing the gp120/gp41 envelope (Env) from a primary clade B HIV-1 isolate (BX08), or from a laboratory T cell line-adapted strain (LAI). In this system, gp120/gp41 of the "nonsyncytium-inducing," primary, macrophage-tropic HIV-1BX08 isolate, was at least as fusogenic as that of the "syncytium-inducing" HIV-1LAI strain. BX08 Env-mediated fusion was inhibited by the beta-chemokines RANTES (regulated upon activation, normal T cell expressed and secreted) and macrophage inflammatory proteins 1beta (MIP-1beta) and by antibodies to CD4, whereas LAI Env-mediated fusion was insensitive to these beta-chemokines. In contrast soluble CD4 significantly reduced LAI, but not BX08 Env-mediated fusion, suggesting that the primary isolate Env glycoprotein has a reduced affinity for CD4. The domains in gp120/gp41 involved in the interaction with the CD4 and CCR-5 molecules were probed using monoclonal antibodies. For the antibodies tested here, the greatest inhibition of fusion was observed with those directed to conformation-dependent, rather than linear epitopes. Efficient inhibition of fusion was not restricted to epitopes in any one domain of gp120/gp41. The assay was sufficiently sensitive to distinguish between antibody- and beta-chemokine-mediated fusion inhibition using serum samples from patient BX08, suggesting that the system may be useful for screening human sera for the presence of biologically significant antibodies.
Collapse
Affiliation(s)
- F C Verrier
- Département de Virologie Moléculaire, Institut Pasteur, Paris, France
| | | | | | | | | | | |
Collapse
|
30
|
Fouts TR, Binley JM, Trkola A, Robinson JE, Moore JP. Neutralization of the human immunodeficiency virus type 1 primary isolate JR-FL by human monoclonal antibodies correlates with antibody binding to the oligomeric form of the envelope glycoprotein complex. J Virol 1997; 71:2779-85. [PMID: 9060632 PMCID: PMC191401 DOI: 10.1128/jvi.71.4.2779-2785.1997] [Citation(s) in RCA: 198] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To test whether antibodies that are neutralizing or nonneutralizing for human immunodeficiency virus type 1 (HIV-1) primary isolates can be distinguished by their affinities for the oligomeric envelope glycoproteins, we selected HIV-1(JR-FL) as a model primary virus and a panel of 13 human monoclonal antibodies (MAbs) and evaluated three parameters: (i) half-maximal binding to recombinant monomeric envelope, gp120(JR-FL); (ii) half-maximal binding to oligomeric envelope of HIV-1(JR-FL) expressed on the surface of transfected 293 cells; and (iii) neutralization of HIV-1(JR-FL) in a peripheral blood mononuclear cell-based neutralization assay. Two conclusions can be drawn from these experiments. First, we confirm that antibody interactions with monomeric gp120 do not predict primary virus neutralization. Second, we show that neutralization correlates qualitatively with the relative affinity of an antibody for the oligomeric envelope glycoproteins, at least for HIV-1(JR-FL).
Collapse
Affiliation(s)
- T R Fouts
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
31
|
Conley AJ, Kessler JA, Boots LJ, McKenna PM, Schleif WA, Emini EA, Mark GE, Katinger H, Cobb EK, Lunceford SM, Rouse SR, Murthy KK. The consequence of passive administration of an anti-human immunodeficiency virus type 1 neutralizing monoclonal antibody before challenge of chimpanzees with a primary virus isolate. J Virol 1996; 70:6751-8. [PMID: 8794312 PMCID: PMC190718 DOI: 10.1128/jvi.70.10.6751-6758.1996] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The anti-gp41 virus neutralizing monoclonal antibody 2F5 was infused into chimpanzees, which were then given an intravenous challenge with a primary human immunodeficiency virus type I (HIV-1) isolate. In two control animals, the infection was established immediately, as evidenced by positive cell-associated DNA PCR and serum RNA PCR tests within 1 week, seroconversion by 4 weeks, and development of lymphadenopathy in this acute phase. Serum RNA PCR tests were negative in one of the two antibody-infused animals until week 8 and in the other antibody-infused animal until week 12; both animals seroconverted at week 14. The peak of measurable virus-specific serum RNA was delayed until week 16 in one antibody-infused animal. Virus-specific RNA in the other animal did not reach levels comparable to those in the other animals through 1 year of follow-up studies. Virus was isolated from the week 16 blood sample from one infused animal. Virus was not isolated from peripheral blood of the second animal but was isolated from lymph node cells taken at week 36. The infection of untreated chimpanzees with this primary isolate appears robust. Use of this isolate should widen the scope of possible experiments in the chimpanzee model. This antibody infusion study indicates that neutralizing antibody, when present at the time of challenge, affects the timing and level of infection and remains influential after it can no longer be detected in the peripheral circulation. It is possible that preexisting, neutralizing antibodies (passively administered or actively elicited) affect the course of acute-phase virus replication in humans. It remains to be established whether these immunologically mediated early effects will influence the course of HIV-1 disease.
Collapse
Affiliation(s)
- A J Conley
- Department of Antiviral Research, Merck Research Laboratories, West Point, Pennsylvania 19486, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Gauduin MC, Allaway GP, Maddon PJ, Barbas CF, Burton DR, Koup RA. Effective ex vivo neutralization of human immunodeficiency virus type 1 in plasma by recombinant immunoglobulin molecules. J Virol 1996; 70:2586-92. [PMID: 8642690 PMCID: PMC190106 DOI: 10.1128/jvi.70.4.2586-2592.1996] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We tested the ability of human monoclonal antibodies (immunoglobulin G1b12 [IgG1b12] and 19b) and CD4-based molecules (CD4-IgG2 and soluble CD4 [sCD4]) to neutralize human immunodeficiency virus type 1 directly from the plasma of seropositive donors in an ex vivo neutralization assay. IgG1b12 and CD4-IgG2, at concentrations from 1 to 25 micrograms/ml, were found to be effective at reducing the HIV-1 titer in most plasma samples. When viruses recovered from plasma samples were expanded to produce virus stocks, no correlation between the neutralization sensitivities to IgG1b12 and CD4-IgG2 of the in vitro passaged stocks and those of the ex vivo neutralizations performed directly on the plasma was observed. These differences could be due to changes in neutralization sensitivity that occur after one passage of the virus in vitro, or they could be related to the presence of complement or antibodies in the plasma. Furthermore, differences in expression of adhesion molecules on plasma-derived and phytohemagglutinin-activated peripheral blood mononuclear cell-derived viruses could be involved. These studies suggest that IgG1b12 and CD4-IgG2 have broad and potent neutralizing activity in both in vitro and ex vivo neutralization assays and should be considered for use as potential immunoprophylactic or therapeutic agents.
Collapse
Affiliation(s)
- M C Gauduin
- Aaron Diamond AIDS Research Center, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
33
|
Nehete PN, Johnson PC, Schapiro SJ, Arlinghaus RB, Sastry KJ. Cross-reactive T-cell proliferative responses to V3 peptides corresponding to different geographical HIV-1 isolates in HIV-seropositive individuals. J Clin Immunol 1996; 16:115-24. [PMID: 8690775 DOI: 10.1007/bf01540958] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have investigated the proliferative response of peripheral blood mononuclear cells from individuals infected with human immunodeficiency virus type 1 (HIV-1) to synthetic peptides from the third variable loop region (V3) in the envelope protein gp120. We tested a total of 14 peptides, corresponding to 14 HIV-1 isolates belonging to four geographical locations (clades U, A, B, and D). Although differences in relative level of responses exist between individual peptides and patients, the proliferation in response to all 14 V3 peptides was significantly greater than that to unrelated control peptides. Additionally, we observed that proliferative responses of blood cells from the 10 HIV-seropositive individuals studied from the clade B region to peptides from within clades U, A, B, and D were not significantly different, indicating the cross-reactive nature of the V3-specific cell-mediated immune responses. Even though the majority of patients also exhibited antibody responses against several V3 peptides, serum samples from 50% of clade B patients exhibited antibody cross-reactivity, while proliferative responses to V3 peptides from more than one clade were observed in 80% of patients. Importantly, in two patients, decreased CD4+ cell numbers, an important surrogate marker of disease progression, significantly correlated with loss of V3 peptide-specific proliferative responses but not antibody responses. These results have important implications toward evaluating the utility of V3 peptides for designing therapeutic and/or vaccine reagents against HIV-1.
Collapse
Affiliation(s)
- P N Nehete
- Department of Veterinary Sciences, University of Texas M.D. Anderson Cancer Center, Bastrop 78602, USA
| | | | | | | | | |
Collapse
|
34
|
Trkola A, Purtscher M, Muster T, Ballaun C, Buchacher A, Sullivan N, Srinivasan K, Sodroski J, Moore JP, Katinger H. Human monoclonal antibody 2G12 defines a distinctive neutralization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1. J Virol 1996; 70:1100-8. [PMID: 8551569 PMCID: PMC189917 DOI: 10.1128/jvi.70.2.1100-1108.1996] [Citation(s) in RCA: 916] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have isolated and characterized human monoclonal antibody 2G12 to the gp120 surface glycoprotein of human immunodeficiency virus type 1 (HIV-1). This antibody potently and broadly neutralizes primary and T-cell line-adapted clade B strains of HIV-1 in a peripheral blood mononuclear cell-based assay and inhibits syncytium formation in the AA-2 cell line. Furthermore, 2G12 possesses neutralizing activity against strains from clade A but not from clade E. Complement- and antibody-dependent cellular cytotoxicity-activating functions of 2G12 were also defined. The gp120 epitope recognized by 2G12 was found to be distinctive; binding of 2G12 to LAI recombinant gp120 was abolished by amino acid substitutions removing N-linked carbohydrates in the C2, C3, V4, and C4 regions of gp120. This gp120 mutant recognition pattern has not previously been observed, indicating that the 2G12 epitope is unusual. consistent with this, antibodies able to block 2G12 binding to recombinant gp120 were not detected in significant quantities in 16 HIV-positive human serum samples.
Collapse
Affiliation(s)
- A Trkola
- Aaron Diamond AIDS Research Center, New York University School of Medicine, New York 10016, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Girard M, Meignier B, Barré-Sinoussi F, Kieny MP, Matthews T, Muchmore E, Nara PL, Wei Q, Rimsky L, Weinhold K. Vaccine-induced protection of chimpanzees against infection by a heterologous human immunodeficiency virus type 1. J Virol 1995; 69:6239-48. [PMID: 7666524 PMCID: PMC189521 DOI: 10.1128/jvi.69.10.6239-6248.1995] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The extraordinary genetic diversity of human immunodeficiency virus type 1 (HIV-1) is a major problem to overcome in the development of an effective vaccine. In the most reliable animal model of HIV-1 infection, chimpanzees were immunized with various combinations of HIV-1 antigens, which were derived primarily from the surface glycoprotein, gp160, of HIV-1 strains LAI and MN. The immunogens also included a live recombinant canarypox virus expressing a gp160-MN protein. In one experiment, two chimpanzees were immunized multiple times; one animal received antigens derived only from HIV-1LAI, and the second animal received antigens from both HIV-1LAI and HIV-1MN. In another experiment, four chimpanzees were immunized in parallel a total of five times over 18 months; two animals received purified gp160 and V3-MN peptides, whereas the other two animals received the recombinant canarypox virus and gp160. At 3 months after the final booster, all immunized and naive control chimpanzees were challenged by intravenous inoculation of HIV-1SF2; therefore, the study represented an intrasubtype B heterologous virus challenge. Virologic and serologic follow-up showed that the controls and the two chimpanzees immunized with the live recombinant canarypox virus became infected, whereas the other animals that were immunized with gp160 and V3-MN peptides were protected from infection. Evaluation of both cellular and humoral HIV-specific immune responses at the time of infectious HIV-1 challenge identified the following as possible correlates of protection: antibody titers to the V3 loop of MN and neutralizing antibody titers to HIV-1MN or HIV-1LAI, but not to HIV-1SF2. The results of this study indicate that vaccine-mediated protection against intravenous infection with heterologous HIV-1 strains of the same subtype is possible with some immunogens.
Collapse
|
36
|
|
37
|
Lee CN, Robinson J, Mazzara G, Cheng YL, Essex M, Lee TH. Contribution of hypervariable domains to the conformation of a broadly neutralizing glycoprotein 120 epitope. AIDS Res Hum Retroviruses 1995; 11:777-81. [PMID: 7546903 DOI: 10.1089/aid.1995.11.777] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Three of the five hypervariable domains (V1-V3) of human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 have previously been shown to be dispensable for antigenic epitopes recognized by broadly neutralizing monoclonal antibodies. In this study, the influence of the V4 and V5 domains on an epitope recognized by a broadly neutralizing human monoclonal antibody, 1.5e, was investigated. In contrast with the V1, V2, and V3 domains of gp120, the V4 and V5 domains were found to be critical for binding to both CD4 and 1.5e. Our results suggest that V4 and V5 are in structurally less flexible regions of gp120 than V1, V2, and V3 and raises the question of whether variable domains V4 and V5 are also indispensable for other broadly neutralizing antibodies in the same class as 1.5e.
Collapse
Affiliation(s)
- C N Lee
- Department of Cancer Biology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
38
|
Husson RN, Lan Y, Kojima E, Venzon D, Mitsuya H, McIntosh K. Vertical transmission of human immunodeficiency virus type 1: autologous neutralizing antibody, virus load, and virus phenotype. J Pediatr 1995; 126:865-71. [PMID: 7776085 DOI: 10.1016/s0022-3476(95)70198-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE To evaluate immunologic and virologic correlates of vertical transmission of human immunodeficiency virus type 1 (HIV-1). DESIGN Case-control study. PATIENTS Women who were prospectively enrolled in a natural history study of HIV-1 infection in women and infants. Sixteen HIV-1-infected women whose infants became infected were matched by CD4+ cell percentage and use of zidovudine during pregnancy with women whose infants did not become infected. MEASUREMENTS Maternal autologous neutralizing antibody, virus load determined by RNA-polymerase chain reaction (RNA-PCR), and virus phenotype. RESULTS Most women in both groups had low titers of autologous neutralizing antibody, and no difference in neutralizing titers was observed (range, < 4 to 181 in both groups). The HIV-1 copy number in maternal plasma was not significantly different in the two groups but was inversely correlated with maternal CD4+ cell percentage (p < 0.005). Five women in the transmitting group and four in the non-transmitting group had syncytium-inducing (SI) phenotype virus. Two infected infants had SI phenotype virus. The SI phenotype virus was associated with a greater HIV-1 copy number in maternal plasma (p < 0.05) and an increase in the mortality rate for the infants (p < 0.01). CONCLUSIONS In women matched for CD4+ cell percentage, low titers of autologous neutralizing antibody, high virus load, and SI phenotype virus were not associated with an increased risk of transmission of HIV-1 to their infants.
Collapse
Affiliation(s)
- R N Husson
- Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
39
|
Powell MF, Eastman DJ, Lim A, Lucas C, Peterson M, Vennari J, Weissburg RP, Wrin T, Kensil CR, Newman MJ. Effect of adjuvants on immunogenicity of MN recombinant glycoprotein 120 in guinea pigs. AIDS Res Hum Retroviruses 1995; 11:203-9. [PMID: 7742035 DOI: 10.1089/aid.1995.11.203] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The immunogenicity of recombinant gp120 from the MN strain of HIV-1, a candidate HIV-1 vaccine, was evaluated in guinea pigs using adjuvant formulations with different physical and chemical properties. The adjuvants tested included Freund's adjuvant (FA), alum, and the novel adjuvant QS-21. These studies demonstrated that QS-21 provides a number of advantages compared to the two other adjuvants tested. QS-21 formulations accelerated the production of antibodies to MN rgp120 and elicited complete seroconversion after a single immunization. QS-21 shifted the antigen dose-response curve for antibody production by as much as three orders of magnitude, enabling a more economical use of antigen. Antibody titers to MN rgp120 and to the principal neutralizing determinant in the V3 domain were higher in animals receiving QS-21 formulations than in animals immunized with the other adjuvants, and correlated well with higher virus neutralization titers in an in vitro assay. These results support the testing of QS-21 in future clinical trials of candidate HIV-1 vaccines.
Collapse
Affiliation(s)
- M F Powell
- Department of Pharmaceutical Research, Genentech, Inc., South San Francisco, California 94080, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Pincus SH, Tolstikov VV. Anti-human immunodeficiency virus immunoconjugates. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1995; 32:205-47. [PMID: 7748796 DOI: 10.1016/s1054-3589(08)61014-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- S H Pincus
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA
| | | |
Collapse
|
41
|
Moore JP, Cao Y, Qing L, Sattentau QJ, Pyati J, Koduri R, Robinson J, Barbas CF, Burton DR, Ho DD. Primary isolates of human immunodeficiency virus type 1 are relatively resistant to neutralization by monoclonal antibodies to gp120, and their neutralization is not predicted by studies with monomeric gp120. J Virol 1995; 69:101-9. [PMID: 7527081 PMCID: PMC188553 DOI: 10.1128/jvi.69.1.101-109.1995] [Citation(s) in RCA: 344] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A panel of anti-gp120 human monoclonal antibodies (HuMAbs), CD4-IgG, and sera from people infected with human immunodeficiency virus type 1 (HIV-1) was tested for neutralization of nine primary HIV-1 isolates, one molecularly cloned primary strain (JR-CSF), and two strains (IIIB and MN) adapted for growth in transformed T-cell lines. All the viruses were grown in mitogen-stimulated peripheral blood mononuclear cells and were tested for their ability to infect these cells in the presence and absence of the reagents mentioned above. In general, the primary isolates were relatively resistant to neutralization by the MAbs tested, compared with the T-cell line-adapted strains. However, one HuMAb, IgG1b12, was able to neutralize most of the primary isolates at concentrations of < or = 1 microgram/ml. Usually, the inability of a HuMAb to neutralize a primary isolate was not due merely to the absence of the antibody epitope from the virus; the majority of the HuMAbs bound with high affinity to monomeric gp120 molecules derived from various strains but neutralized the viruses inefficiently. We infer therefore that the mechanism of resistance of primary isolates to most neutralizing antibodies is complex, and we suggest that it involves an inaccessibility of antibody binding sites in the context of the native glycoprotein complex on the virion. Such a mechanism would parallel that which was previously postulated for soluble CD4 resistance. We conclude that studies of HIV-1 neutralization that rely on strains adapted to growth in transformed T-cell lines yield the misleading impression that HIV-1 is readily neutralized. The more relevant primary HIV-1 isolates are relatively resistant to neutralization, although these isolates can be potently neutralized by a subset of human polyclonal or monoclonal antibodies.
Collapse
Affiliation(s)
- J P Moore
- Aaron Diamond AIDS Research Center, New York University School of Medicine, New York 10016
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Moore JP, Trkola A, Korber B, Boots LJ, Kessler JA, McCutchan FE, Mascola J, Ho DD, Robinson J, Conley AJ. A human monoclonal antibody to a complex epitope in the V3 region of gp120 of human immunodeficiency virus type 1 has broad reactivity within and outside clade B. J Virol 1995; 69:122-30. [PMID: 7527082 PMCID: PMC188555 DOI: 10.1128/jvi.69.1.122-130.1995] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have used virus neutralization and antibody-binding techniques to define the epitope for a human monoclonal antibody, designated 19b, within the V3 region of the gp120 surface glycoprotein of human immunodeficiency virus type 1. Unusually, the 19b epitope encompasses residues on both flanks of the V3 loop. However, 19b binding to gp120 is independent of sequences at the crown of the V3 loop, provided that they are compatible with the formation of a type II beta turn that is presumably necessary to juxtapose the antigenic residues on the V3 flanks. By comparing the V3 sequences of virus gp120s able and unable to bind 19b, we were able to define the canonical 19b epitope as -I----G--FY-T, where residues at the positions indicated by the gaps do not contribute directly to the 19b-binding site. A few conservative substitutions at the more critical residues are also compatible with 19b binding. Inspection of V3 sequences in the human immunodeficiency virus database indicated that the canonical 19b epitope is well conserved among isolates from the North American-European clade B and also among clade E isolates from Thailand and clade F isolates from Brazil. A minority of gp120s from clades A and C also possess the 19b epitope. Consistent with the theoretical predictions of its cross-clade reactivity, 19b was found to bind to gp120s from clades A, B, C, E, and F in immunoassays. However, 19b was not able to reduce the infectivity of primary viruses from clades A, E, and F that were predicted to possess the 19b epitope and only modestly reduced the infectivity of a clade C virus at low input virus concentrations. Cross-clade neutralization via V3-directed antibodies may, therefore, be difficult, even if the antibodies show broad reactivities in binding assays and the viruses theoretically possess the relevant binding site.
Collapse
Affiliation(s)
- J P Moore
- Aaron Diamond AIDS Research Center, New York University School of Medicine, New York 10016
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Moore JP, McCutchan FE, Poon SW, Mascola J, Liu J, Cao Y, Ho DD. Exploration of antigenic variation in gp120 from clades A through F of human immunodeficiency virus type 1 by using monoclonal antibodies. J Virol 1994; 68:8350-64. [PMID: 7525988 PMCID: PMC237304 DOI: 10.1128/jvi.68.12.8350-8364.1994] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The reactivities of a panel of 14 monoclonal antibodies (MAbs) with monomeric gp120 derived from 67 isolates of human immunodeficiency virus type 1 of clades A through F were assessed by using an antigen-capture enzyme-linked immunosorbent assay. The MAbs used were all raised against gp120 or gp120 peptides from clade B viruses and were directed at a range of epitopes relevant to human immunodeficiency virus type 1 neutralization: the V2 and V3 loops, discontinuous epitopes overlapping the CD4-binding site, and two other discontinuous epitopes. Four of the five V3 MAbs showed modest cross-reactivity within clade B but very limited reactivity with gp120s from other clades. These reactivity patterns are consistent with the known primary sequence requirements for the binding of these MAbs. One V3 human MAb (19b), however, was much more broadly reactive than the others, binding to 19 of 29 clade B and 10 of 12 clade E gp120s. The 19b epitope is confined to the flanks of the V3 loop, and these sequences are relatively conserved in clade B and E viruses. In contrast to the limited reactivity of V3 MAbs, CD4-binding site MAbs were much more broadly reactive across clades, two of these MAbs (205-46-9 and 21h) being virtually pan-reactive across clades A through F. Another human MAb (A-32) to a discontinuous epitope was also pan-reactive. The CD4-binding site is strongly conserved between clades; but when considering the epitopes near the CD4-binding site, clade D gp120 appears to be the most closely related to clade B and clade E appears to be the least related. A tentative rank order for these epitopes is B/D-A/C-E/F. V2 MAbs reacted sporadically within and between clades, and no clear pattern was observable. While results from binding assays do not predict neutralization serotypes, they suggest that there may be antigenic subtypes related, but not identical, to the genetic subtypes.
Collapse
Affiliation(s)
- J P Moore
- Aaron Diamond AIDS Research Center, New York University School of Medicine, New York 10016
| | | | | | | | | | | | | |
Collapse
|
44
|
van der Donk EM, Schutten M, Osterhaus AD, van der Heijden RW. Molecular characterization of variable heavy and light chain regions of five HIV type 1-specific human monoclonal antibodies. AIDS Res Hum Retroviruses 1994; 10:1639-49. [PMID: 7888223 DOI: 10.1089/aid.1994.10.1639] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have reported the generation and characterization of four HIV-1 neutralizing human monoclonal antibodies. Three antibodies recognize a conformational epitope within the CD4-binding site of HIV-1 gp120 and one recognizes a linear epitope located within the hypervariable V3 domain of gp120. In the present study we report the nucleotide sequences of the cDNAs encoding the variable regions of the heavy and light chains of these antibodies. Molecular characteristics, closet germline genes, and the putative extent of somatic mutation are presented. Two of the four heavy chain variable (VH) regions are derived from the VH1 gene family, one from the VH3 gene family, and one from the VH5 gene family. In addition, the VH chain of a previously described human monoclonal antibody, directed against HIV-1 gp41, is derived from the VH3 gene family. The degree of nucleotide variation between these five antibodies and their closest germline counterparts ranges from 4 to 12%, mainly located in the complementarity-determining regions. Significant nucleotide sequence homology with previously described germline diversity (D) genes could be found for only two of five antibody D segments. Joining (JH) gene segments utilized are JH4 or JH6. Two light chain variable (VL) regions are derived from a VK1 gene segment, one from a V kappa 4, one from a V lambda 2, and one from a lambda 6 gene segment.
Collapse
Affiliation(s)
- E M van der Donk
- Department of Virology, Erasmus University, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
45
|
Gorny MK, Moore JP, Conley AJ, Karwowska S, Sodroski J, Williams C, Burda S, Boots LJ, Zolla-Pazner S. Human anti-V2 monoclonal antibody that neutralizes primary but not laboratory isolates of human immunodeficiency virus type 1. J Virol 1994; 68:8312-20. [PMID: 7525987 PMCID: PMC237300 DOI: 10.1128/jvi.68.12.8312-8320.1994] [Citation(s) in RCA: 173] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A human immunoglobulin G1 lambda monoclonal antibody (MAb), 697-D, was developed that recognizes the V2 region of human immunodeficiency virus type 1 (HIV-1) gp120. Substitutions at amino acid positions 176/177, 179/180, 183/184, and 192 to 194 in the V2 loop of gp120 each completely abolished the binding capacity of 697-D in an enzyme-linked immunosorbent assay format. Competition analysis with three different neutralizing murine anti-V2 MAbs confirmed the specificity of 697-D. The 697-D epitope is primarily conformation dependent, although there was weak reactivity of the MAb with a V2 peptide spanning residues 161 to 180. Treatment of recombinant gp120 HIVIIIB with sodium metaperiodate, which oxidizes carbohydrates, abolished the binding of the MAb, showing the dependence of the epitope on intact carbohydrates. The broad reactivity of 697-D was displayed by its binding to the gp120 molecules from four of four laboratory isolates and five of five primary isolates. The MAb 697-D neutralized three out of four primary isolates but failed to neutralize any of four laboratory strains of HIV-1. 697-D and a human anti-V3 MAb, 447-52-D, displayed similar potency in neutralizing primary isolates, indicating that the V2 region of gp120, like the V3 region and the CD4-binding domain, can induce potent neutralizing antibodies against HIV-1 in humans.
Collapse
Affiliation(s)
- M K Gorny
- New York University Medical Center, New York
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Fraisier C, Ebersold A, Blomberg J, Desgranges C. Primary in vitro immunization with multimeric synthetic peptides of HIV-1 envelope glycoproteins: generation of neutralizing human monoclonal antibodies. J Immunol Methods 1994; 176:9-22. [PMID: 7963597 DOI: 10.1016/0022-1759(94)90346-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Peripheral blood lymphocytes from healthy HIV-1 seronegative donors were immunized in vitro with the following synthetic peptides: (i) an octameric poly-L-lysine conjugated peptide of the HIV-1MN V3 loop and (ii) a resin bound synthetic peptide aa642-665 of HIV-1 gp41. Lymphoblastoid cell lines (LCL) were obtained by immortalization with Epstein-Barr virus (EBV). We produced four LCL secreting human monoclonal antibodies (HuMoAbs) of the IgM isotype: three were directed against the V3 domain (FC10, FC81 and CF41) and one against aa642-665 (CA45C). Two of these HuMoAbs (FC81 and CA45C) reacted to viral surface antigen on HIV-1-infected cells. All the HuMoAbs inhibited 40-53% of cell fusion induced by HIV-1-infected H9 cells at 5 micrograms/ml. They also neutralized, at lower concentrations, cell-free infection with HIV-1MN, HIV-1IIIB and four primary clinical HIV-1 isolates. No enhancing activity of the HuMoAbs in the presence of complement was observed. The results presented here show the feasibility of generating neutralizing human monoclonal antibodies against HIV-1 by primary in vitro immunization with selected synthetic peptides of HIV-1 envelope glycoproteins. This approach has provided tools for further studies of synergistic neutralization assays, and generated potential immunoglobulin candidates for passive immunotherapy.
Collapse
Affiliation(s)
- C Fraisier
- INSERM U271, Unité de Recherche sur les Hépatites, le SIDA et les Rétrovirus humains, Lyon, France
| | | | | | | |
Collapse
|
47
|
Kang CY, Hariharan K, Nara PL, Sodroski J, Moore JP. Immunization with a soluble CD4-gp120 complex preferentially induces neutralizing anti-human immunodeficiency virus type 1 antibodies directed to conformation-dependent epitopes of gp120. J Virol 1994; 68:5854-62. [PMID: 7520095 PMCID: PMC236990 DOI: 10.1128/jvi.68.9.5854-5862.1994] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Preservation of the conformation of recombinant gp120 in an adjuvant, enabling it to elicit conformation-dependent, epitope-specific, broadly neutralizing antibodies, may be critical for the development of any gp120-based human immunodeficiency virus type 1 (HIV-1) vaccine. It was hypothesized that recombinant gp120 complexed with recombinant CD4 could stabilize the conformation-dependent neutralizing epitopes and effectively deliver them to the immune system. Therefore, a soluble CD4-gp120 complex in Syntex adjuvant formulation was tested with mice for its ability to induce neutralizing anti-gp120 antibody responses. Seventeen monoclonal antibodies (MAbs) were generated and characterized. Immunochemical studies, neutralization assays, and mapping studies with gp120 mutants indicated that the 17 MAbs fell into three groups. Four of them were directed to what is probably a conformational epitope involving the C1 domain and did not possess virus-neutralizing activities. Another four MAbs bound to V3 peptide 302-321 and exhibited cross-reactive gp120 binding and relatively weak virus-neutralizing activities. These MAbs were very sensitive to amino acid substitutions, not only in the V3 regions but also in the base of the V1/V2 loop, implying a conformational constraint on the epitope. The last group of nine MAbs recognized conformation-dependent epitopes near the CD4 binding site of gp120 and inhibited the gp120-soluble CD4 interaction. Four of these nine MAbs showed broadly neutralizing activities against multiple laboratory-adapted strains of HIV-1, three of them neutralized only HIVIIIB, and the two lower-affinity MAbs did not neutralize any strain tested. Collectively, the results from this study indicate that immunization with the CD4-gp120 complex can elicit antibodies to conformationally sensitive gp120 epitopes, with some of the antibodies having broadly neutralizing activities. We suggest that immunization with CD4-gp120 complexes may be worth evaluating further for the development of an AIDS vaccine.
Collapse
Affiliation(s)
- C Y Kang
- IDEC Pharmaceuticals Corporation, San Diego, California 92121
| | | | | | | | | |
Collapse
|
48
|
Moore JP, Cao Y, Ho DD, Koup RA. Development of the anti-gp120 antibody response during seroconversion to human immunodeficiency virus type 1. J Virol 1994; 68:5142-55. [PMID: 8035514 PMCID: PMC236458 DOI: 10.1128/jvi.68.8.5142-5155.1994] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have studied the development of the antibody response to the surface glycoprotein gp120 of human immunodeficiency virus type 1 in three individuals who presented with primary human immunodeficiency virus type 1 infection syndrome. Serum anti-gp120 antibodies were first detected 4 to 23 days after presentation, after p24 antigen and infectious-virus titers in the peripheral blood had declined manyfold from their highest values. Whether anti-gp120 antibodies present at undetectable levels are involved in clearance of viremia remains unresolved. Among the earliest detectable anti-gp120 antibodies were those to conformationally sensitive epitopes; these antibodies were able to block the binding of gp120 monomers to soluble CD4 or to a human monoclonal antibody to a discontinuous epitope overlapping the CD4-binding site. Some of these antibodies were type specific to a degree, in that they were more effective at blocking ligand binding to autologous gp120 than to heterologous gp120. However, the appearance of these antibodies did not correlate with that of antibodies able to neutralize the autologous virus in vitro by a peripheral blood mononuclear cell-based assay. Antibodies to the V3 loop were detected at about the same time as, or slightly later than, those to the CD4-binding site. There was a weak correlation between the presence of antibodies to the V3 loop and autologous virus-neutralizing activity in two of three individuals studied. However, serum from the third individual contained V3 antibodies but lacked the ability to neutralize the autologous virus in vitro, even immediately after seroconversion. Thus, no simple, universal correlate of autologous virus-neutralizing activity in a peripheral blood mononuclear cell-based assay is apparent from in vitro assays that rely on detecting antibody interactions with monomeric gp120 or fragments thereof.
Collapse
Affiliation(s)
- J P Moore
- Aaron Diamond AIDS Research Center, New York University School of Medicine, New York 10016
| | | | | | | |
Collapse
|
49
|
Conley AJ, Kessler JA, Boots LJ, Tung JS, Arnold BA, Keller PM, Shaw AR, Emini EA. Neutralization of divergent human immunodeficiency virus type 1 variants and primary isolates by IAM-41-2F5, an anti-gp41 human monoclonal antibody. Proc Natl Acad Sci U S A 1994; 91:3348-52. [PMID: 7512731 PMCID: PMC43574 DOI: 10.1073/pnas.91.8.3348] [Citation(s) in RCA: 177] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The antiviral characteristics of monoclonal antibody IAM-41-2F5 (2F5) were determined in cell culture. The antibody had been previously shown to bind a specific sequence, ELDKWA, within the external domain of the gp41 envelope glycoprotein human immunodeficiency virus type 1 (HIV-1). Selection by 2F5 of recombinant phage from an epitope library confirmed the identification of the antibody's binding determinant. The antibody was found to be capable of neutralizing a broad range of lymphoid cell culture-adapted HIV-1 variants as well as HIV-1 primary isolates. Sequence analysis of the latter showed that neutralization was related to the presence of the antibody binding site. From kinetic measurements using an epitope-containing peptide or gp41, the half-time of dissociation for 2F5 was determined to be 122 min for the peptide and 156 min for gp41. The region of gp41 expressing this sequence exhibits greater conservation among HIV-1 isolates than do the variable domains of gp120.
Collapse
Affiliation(s)
- A J Conley
- Department of Antiviral Research, Merck Research Laboratories, West Point, PA 19486
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Kodama T, Mori K, Kawahara T, Ringler DJ, Desrosiers RC. Analysis of simian immunodeficiency virus sequence variation in tissues of rhesus macaques with simian AIDS. J Virol 1993; 67:6522-34. [PMID: 8411355 PMCID: PMC238089 DOI: 10.1128/jvi.67.11.6522-6534.1993] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
One rhesus macaque displayed severe encephalomyelitis and another displayed severe enterocolitis following infection with molecularly cloned simian immunodeficiency virus (SIV) strain SIVmac239. Little or no free anti-SIV antibody developed in these two macaques, and they died relatively quickly (4 to 6 months) after infection. Manifestation of the tissue-specific disease in these macaques was associated with the emergence of variants with high replicative capacity for macrophages and primary infection of tissue macrophages. The nature of sequence variation in the central region (vif, vpr, and vpx), the env gene, and the nef long terminal repeat (LTR) region in brain, colon, and other tissues was examined to see whether specific genetic changes were associated with SIV replication in brain or gut. Sequence analysis revealed strong conservation of the intergenic central region, nef, and the LTR. However, analysis of env sequences in these two macaques and one other revealed significant, interesting patterns of sequence variation. (i) Changes in env that were found previously to contribute to the replicative ability of SIVmac for macrophages in culture were present in the tissues of these animals. (ii) The greatest variability was located in the regions between V1 and V2 and from "V3" through C3 in gp120, which are different in location from the variable regions observed previously in animals with strong antibody responses and long-term persistent infection. (iii) The predominant sequence change of D-->N at position 385 in C3 is most surprising, since this change in both SIV and human immunodeficiency virus type 1 has been associated with dramatically diminished affinity for CD4 and replication in vitro. (iv) The nature of sequence changes at some positions (146, 178, 345, 385, and "V3") suggests that viral replication in brain and gut may be facilitated by specific sequence changes in env in addition to those that impart a general ability to replicate well in macrophages. These results demonstrate that complex selective pressures, including immune responses and varying cell and tissue specificity, can influence the nature of sequence changes in env.
Collapse
Affiliation(s)
- T Kodama
- Division of Primate Medicine, Oregon Regional Primate Research Center, Medical Research Foundation of Oregon, Beaverton 97006
| | | | | | | | | |
Collapse
|