1
|
Ding W, Gu J, Xu W, Wu J, Huang Y, Zhang S, Lin S. The Biosynthesis and Applications of Protein Lipidation. Chem Rev 2024; 124:12176-12212. [PMID: 39441663 DOI: 10.1021/acs.chemrev.4c00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Protein lipidation dramatically affects protein structure, localization, and trafficking via remodeling protein-membrane and protein-protein interactions through hydrophobic lipid moieties. Understanding the biosynthesis of lipidated proteins, whether natural ones or mimetics, is crucial for reconstructing, validating, and studying the molecular mechanisms and biological functions of protein lipidation. In this Perspective, we first provide an overview of the natural enzymatic biosynthetic pathways of protein lipidation in mammalian cells, focusing on the enzymatic machineries and their chemical linkages. We then discuss strategies to biosynthesize protein lipidation in mammalian cells by engineering modification machineries and substrates. Additionally, we explore site-specific protein lipidation biosynthesis in vitro via enzyme-mediated ligations and in vivo primarily through genetic code expansion strategies. We also discuss the use of small molecule tools to modulate the process of protein lipidation biosynthesis. Finally, we provide concluding remarks and discuss future directions for the biosynthesis and applications of protein lipidation.
Collapse
Affiliation(s)
- Wenlong Ding
- Life Sciences Institute, Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310058, China
- Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
| | - Jiayu Gu
- Department of Medical Oncology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wenyuan Xu
- Life Sciences Institute, Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310058, China
| | - Jing Wu
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiwen Huang
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuai Zhang
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Shixian Lin
- Life Sciences Institute, Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Shaoxing Institute, Zhejiang University, Shaoxing 321000, China
- Department of Medical Oncology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
2
|
Pilz M, Cavelius P, Qoura F, Awad D, Brück T. Lipopeptides development in cosmetics and pharmaceutical applications: A comprehensive review. Biotechnol Adv 2023; 67:108210. [PMID: 37460047 DOI: 10.1016/j.biotechadv.2023.108210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
Lipopeptides are surface active, natural products of bacteria, fungi and green-blue algae origin, having diverse structures and functionalities. In analogy, a number of chemical synthesis techniques generated new designer lipopeptides with desirable features and functions. Lipopetides are self-assembly guided, supramolecular compounds which have the capacity of high-density presentation of the functional epitopes at the surface of the nanostructures. This feature contributes to their successful application in several industry sectors, including food, feed, personal care, and pharmaceutics. In this comprehensive review, the novel class of ribosomally synthesized lipopeptides is introduced alongside the more commonly occuring non-ribosomal lipopeptides. We highlight key representatives of the most researched as well as recently described lipopeptide families, with emphasis on structural features, self-assembly and associated functions. The common biological, chemical and hybrid production routes of lipopeptides, including prominent analogues and derivatives are also discussed. Furthermore, genetic engineering strategies aimed at increasing lipopeptide yields, diversity and biological activity are summarized and exemplified. With respect to application, this work mainly details the potential of lipopeptides in personal care and cosmetics industry as cleansing agents, moisturizer, anti-aging/anti-wrinkling, skin whitening and preservative agents as well as the pharmaceutical industry as anitimicrobial agents, vaccines, immunotherapy, and cancer drugs. Given that this review addresses human applications, we conclude on the topic of safety of lipopeptide formulations and their sustainable production.
Collapse
Affiliation(s)
- Melania Pilz
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Philipp Cavelius
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Farah Qoura
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Dania Awad
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany.
| | - Thomas Brück
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany.
| |
Collapse
|
3
|
Sakamaki JI, Mizushima N. Cell biology of protein-lipid conjugation. Cell Struct Funct 2023; 48:99-112. [PMID: 37019684 PMCID: PMC10721952 DOI: 10.1247/csf.23016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Protein-lipid conjugation is a widespread modification involved in many biological processes. Various lipids, including fatty acids, isoprenoids, sterols, glycosylphosphatidylinositol, sphingolipids, and phospholipids, are covalently linked with proteins. These modifications direct proteins to intracellular membranes through the hydrophobic nature of lipids. Some of these membrane-binding processes are reversible through delipidation or by reducing the affinity to membranes. Many signaling molecules undergo lipid modification, and their membrane binding is important for proper signal transduction. The conjugation of proteins to lipids also influences the dynamics and function of organellar membranes. Dysregulation of lipidation has been associated with diseases such as neurodegenerative diseases. In this review, we first provide an overview of diverse forms of protein-lipid conjugation and then summarize the catalytic mechanisms, regulation, and roles of these modifications.Key words: lipid, lipidation, membrane, organelle, protein modification.
Collapse
Affiliation(s)
- Jun-ichi Sakamaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Wang QQ, He K, Aleem MT, Long S. Prenyl Transferases Regulate Secretory Protein Sorting and Parasite Morphology in Toxoplasma gondii. Int J Mol Sci 2023; 24:ijms24087172. [PMID: 37108334 PMCID: PMC10138696 DOI: 10.3390/ijms24087172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Protein prenylation is an important protein modification that is responsible for diverse physiological activities in eukaryotic cells. This modification is generally catalyzed by three types of prenyl transferases, which include farnesyl transferase (FT), geranylgeranyl transferase (GGT-1) and Rab geranylgeranyl transferase (GGT-2). Studies in malaria parasites showed that these parasites contain prenylated proteins, which are proposed to play multiple functions in parasites. However, the prenyl transferases have not been functionally characterized in parasites of subphylum Apicomplexa. Here, we functionally dissected functions of three of the prenyl transferases in the Apicomplexa model organism Toxoplasma gondii (T. gondii) using a plant auxin-inducible degron system. The homologous genes of the beta subunit of FT, GGT-1 and GGT-2 were endogenously tagged with AID at the C-terminus in the TIR1 parental line using a CRISPR-Cas9 approach. Upon depletion of these prenyl transferases, GGT-1 and GGT-2 had a strong defect on parasite replication. Fluorescent assay using diverse protein markers showed that the protein markers ROP5 and GRA7 were diffused in the parasites depleted with GGT-1 and GGT-2, while the mitochondrion was strongly affected in parasites depleted with GGT-1. Importantly, depletion of GGT-2 caused the stronger defect to the sorting of rhoptry protein and the parasite morphology. Furthermore, parasite motility was observed to be affected in parasites depleted with GGT-2. Taken together, this study functionally characterized the prenyl transferases, which contributed to an overall understanding of protein prenylation in T. gondii and potentially in other related parasites.
Collapse
Affiliation(s)
- Qiang-Qiang Wang
- National Key Laboratory of Veterinary Public Health Security, School of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Kai He
- National Key Laboratory of Veterinary Public Health Security, School of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Muhammad-Tahir Aleem
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, Cleveland, OH 44115, USA
| | - Shaojun Long
- National Key Laboratory of Veterinary Public Health Security, School of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Pisanti S, Rimondi E, Pozza E, Melloni E, Zauli E, Bifulco M, Martinelli R, Marcuzzi A. Prenylation Defects and Oxidative Stress Trigger the Main Consequences of Neuroinflammation Linked to Mevalonate Pathway Deregulation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159061. [PMID: 35897423 PMCID: PMC9332440 DOI: 10.3390/ijerph19159061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/10/2022]
Abstract
The cholesterol biosynthesis represents a crucial metabolic pathway for cellular homeostasis. The end products of this pathway are sterols, such as cholesterol, which are essential components of cell membranes, precursors of steroid hormones, bile acids, and other molecules such as ubiquinone. Furthermore, some intermediates of this metabolic system perform biological activity in specific cellular compartments, such as isoprenoid molecules that can modulate different signal proteins through the prenylation process. The defects of prenylation represent one of the main causes that promote the activation of inflammation. In particular, this mechanism, in association with oxidative stress, induces a dysfunction of the mitochondrial activity. The purpose of this review is to describe the pleiotropic role of prenylation in neuroinflammation and to highlight the consequence of the defects of prenylation.
Collapse
Affiliation(s)
- Simona Pisanti
- Department of Medicine, Surgery and Dentistry ′Scuola Medica Salernitana′, University of Salerno, 84081 Baronissi, Italy; (S.P.); (R.M.)
| | - Erika Rimondi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.P.); (E.Z.); (A.M.)
- LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (E.R.); (E.M.)
| | - Elena Pozza
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.P.); (E.Z.); (A.M.)
| | - Elisabetta Melloni
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.P.); (E.Z.); (A.M.)
- LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (E.R.); (E.M.)
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.P.); (E.Z.); (A.M.)
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Rosanna Martinelli
- Department of Medicine, Surgery and Dentistry ′Scuola Medica Salernitana′, University of Salerno, 84081 Baronissi, Italy; (S.P.); (R.M.)
| | - Annalisa Marcuzzi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.P.); (E.Z.); (A.M.)
| |
Collapse
|
6
|
Hanna CC, Kriegesmann J, Dowman LJ, Becker CFW, Payne RJ. Chemical Synthesis and Semisynthesis of Lipidated Proteins. Angew Chem Int Ed Engl 2022; 61:e202111266. [PMID: 34611966 PMCID: PMC9303669 DOI: 10.1002/anie.202111266] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Indexed: 11/24/2022]
Abstract
Lipidation is a ubiquitous modification of peptides and proteins that can occur either co- or post-translationally. An array of different lipid classes can adorn proteins and has been shown to influence a number of crucial biological activities, including the regulation of signaling, cell-cell adhesion events, and the anchoring of proteins to lipid rafts and phospholipid membranes. Whereas nature employs a range of enzymes to install lipid modifications onto proteins, the use of these for the chemoenzymatic generation of lipidated proteins is often inefficient or impractical. An alternative is to harness the power of modern synthetic and semisynthetic technologies to access lipid-modified proteins in a pure and homogeneously modified form. This Review aims to highlight significant advances in the development of lipidation and ligation chemistry and their implementation in the synthesis and semisynthesis of homogeneous lipidated proteins that have enabled the influence of these modifications on protein structure and function to be uncovered.
Collapse
Affiliation(s)
- Cameron C. Hanna
- School of ChemistryThe University of SydneySydneyNSW2006Australia
| | - Julia Kriegesmann
- Institute of Biological ChemistryFaculty of ChemistryUniversity of ViennaViennaAustria
| | - Luke J. Dowman
- School of ChemistryThe University of SydneySydneyNSW2006Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW2006Australia
| | | | - Richard J. Payne
- School of ChemistryThe University of SydneySydneyNSW2006Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW2006Australia
| |
Collapse
|
7
|
Hanna CC, Kriegesmann J, Dowman LJ, Becker CFW, Payne RJ. Chemische Synthese und Semisynthese von lipidierten Proteinen. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202111266. [PMID: 38504765 PMCID: PMC10947004 DOI: 10.1002/ange.202111266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Indexed: 11/11/2022]
Abstract
AbstractLipidierung ist eine ubiquitäre Modifikation von Peptiden und Proteinen, die entweder co‐ oder posttranslational auftreten kann. Für die Vielzahl von Lipidklassen wurde gezeigt, dass diese viele entscheidende biologische Aktivitäten, z. B. die Regulierung der Signalweiterleitung, Zell‐Zell‐Adhäsion sowie die Anlagerung von Proteinen an Lipid‐Rafts und Phospholipidmembranen, beeinflussen. Während die Natur Enzyme nutzt, um Lipidmodifikationen in Proteine einzubringen, ist ihre Nutzung für die chemoenzymatische Herstellung von lipidierten Proteinen häufig ineffizient. Eine Alternative ist die Kombination moderner synthetischer und semisynthetischer Techniken, um lipidierte Proteine in reiner und homogen modifizierter Form zu erhalten. Dieser Aufsatz erörtert Fortschritte in der Entwicklung der Lipidierungs‐ und Ligationschemie und deren Anwendung in der Synthese und Semisynthese homogen lipidierter Proteine, die es ermöglichen, den Einfluss dieser Modifikationen auf die Proteinstruktur und ‐funktion zu untersuchen.
Collapse
Affiliation(s)
- Cameron C. Hanna
- School of ChemistryThe University of SydneySydneyNSW2006Australien
| | - Julia Kriegesmann
- Institut für Biologische ChemieFakultät für ChemieUniversität WienWienÖsterreich
| | - Luke J. Dowman
- School of ChemistryThe University of SydneySydneyNSW2006Australien
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW2006Australien
| | | | - Richard J. Payne
- School of ChemistryThe University of SydneySydneyNSW2006Australien
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW2006Australien
| |
Collapse
|
8
|
Apken LH, Oeckinghaus A. The RAL signaling network: Cancer and beyond. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 361:21-105. [PMID: 34074494 DOI: 10.1016/bs.ircmb.2020.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The RAL proteins RALA and RALB belong to the superfamily of small RAS-like GTPases (guanosine triphosphatases). RAL GTPases function as molecular switches in cells by cycling through GDP- and GTP-bound states, a process which is regulated by several guanine exchange factors (GEFs) and two heterodimeric GTPase activating proteins (GAPs). Since their discovery in the 1980s, RALA and RALB have been established to exert isoform-specific functions in central cellular processes such as exocytosis, endocytosis, actin organization and gene expression. Consequently, it is not surprising that an increasing number of physiological functions are discovered to be controlled by RAL, including neuronal plasticity, immune response, and glucose and lipid homeostasis. The critical importance of RAL GTPases for oncogenic RAS-driven cellular transformation and tumorigenesis still attracts most research interest. Here, RAL proteins are key drivers of cell migration, metastasis, anchorage-independent proliferation, and survival. This chapter provides an overview of normal and pathological functions of RAL GTPases and summarizes the current knowledge on the involvement of RAL in human disease as well as current therapeutic targeting strategies. In particular, molecular mechanisms that specifically control RAL activity and RAL effector usage in different scenarios are outlined, putting a spotlight on the complexity of the RAL GTPase signaling network and the emerging theme of RAS-independent regulation and relevance of RAL.
Collapse
Affiliation(s)
- Lisa H Apken
- Institute of Molecular Tumor Biology, Faculty of Medicine, University of Münster, Münster, Germany
| | - Andrea Oeckinghaus
- Institute of Molecular Tumor Biology, Faculty of Medicine, University of Münster, Münster, Germany.
| |
Collapse
|
9
|
Klimpel A, Stillger K, Wiederstein JL, Krüger M, Neundorf I. Cell-permeable CaaX-peptides affect K-Ras downstream signaling and promote cell death in cancer cells. FEBS J 2020; 288:2911-2929. [PMID: 33112492 DOI: 10.1111/febs.15612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 08/17/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022]
Abstract
Cysteine prenylation is a post-translational modification that is used by nature to control crucial biological functions of proteins, such as membrane trafficking, signal transduction, and apoptosis. It mainly occurs in eukaryotic proteins at a C-terminal CaaX box and is mediated by prenyltransferases. Since the discovery of prenylated proteins, various tools have been developed to study the mechanisms of prenyltransferases, as well as to visualize and to identify prenylated proteins. Herein, we introduce cell-permeable peptides bearing a C-terminal CaaX motif based on Ras sequences. We demonstrate that intracellular accumulation of those peptides in different cells is controlled by the presence of their CaaX motif and that they specifically interact with intracellular prenyltransferases. As proof of concept, we further highlight their utilization to alter downstream signaling of Ras proteins, particularly of K-Ras-4B, in pancreatic cancer cells. Application of this strategy holds great promise to better understand and regulate post-translational cysteine prenylation.
Collapse
Affiliation(s)
- Annika Klimpel
- Institute for Biochemistry, University of Cologne, Germany
| | | | - Janica L Wiederstein
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Germany
| | - Ines Neundorf
- Institute for Biochemistry, University of Cologne, Germany
| |
Collapse
|
10
|
Sun Q, Xiong K, Yuan Y, Yu J, Yang L, Shen C, Su C, Lu Y. Inhibiting Fungal Echinocandin Resistance by Small-Molecule Disruption of Geranylgeranyltransferase Type I Activity. Antimicrob Agents Chemother 2020; 64:e02046-19. [PMID: 31791942 PMCID: PMC6985710 DOI: 10.1128/aac.02046-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/24/2019] [Indexed: 01/05/2023] Open
Abstract
Echinocandin resistance in Candida is a great concern, as the echinocandin drugs are recommended as first-line therapy for patients with invasive candidiasis. However, therapeutic efforts to thwart echinocandin resistance have been hampered by a lack of fungal specific drug targets. Here, we show that deleting CDC43, the β subunit of geranylgeranyltransferase type I (GGTase I), confers hypersensitivity to echinocandins, which renders GGTase I a tractable target in combatting echinocandin resistance. The membrane localization of Rho1, which is critical for (1,3)-β-d-glucan synthase Fks1 activation, is disrupted in the cdc43 mutant, resulting in decreased amounts of glucans in the cell wall, thereby exacerbating the cell wall stress upon caspofungin addition. Guided by this insight, we found that selective chemical inhibition of GGTase I by L-269289 potentiates echinocandin activity and renders echinocandin-resistant Candida albicans responsive to treatment in vitro and in animal models for disseminated infection. Furthermore, L-269289 and echinocandins also act in a synergistic manner for the treatment of Candida tropicalis and Candida parapsilosis Importantly, deletion of CDC43 is lethal in Candida glabrata L-269289 is active on its own to kill C. glabrata, and its fungicidal activity is enhanced when combined with caspofungin. Thus, targeting GGTase I has therapeutic potential to address the clinical challenge of echinocandin-resistant candidiasis.
Collapse
Affiliation(s)
- Qiangqiang Sun
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Kang Xiong
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuncong Yuan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jing Yu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lianjuan Yang
- Department of Mycology, Shanghai Dermatology Hospital, Shanghai, China
| | - Chao Shen
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Chang Su
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yang Lu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Protein Isoprenylation in Yeast Targets COOH-Terminal Sequences Not Adhering to the CaaX Consensus. Genetics 2018; 210:1301-1316. [PMID: 30257935 PMCID: PMC6283164 DOI: 10.1534/genetics.118.301454] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/20/2018] [Indexed: 12/20/2022] Open
Abstract
Protein isoprenylation targets a subset of COOH-terminal Cxxx tetrapeptide sequences that has been operationally defined as a CaaX motif. The specificity of the farnesyl transferase toward each of the possible 8000 combinations of Cxxx sequences, however, remains largely unresolved. In part, it has been difficult to consolidate results stemming from in vitro and in silico approaches that yield a wider array of prenylatable sequences relative to those known in vivo We have investigated whether this disconnect results from the multistep complexity of post-translational modification that occurs in vivo to CaaX proteins. For example, the Ras GTPases undergo isoprenylation followed by additional proteolysis and carboxymethylation events at the COOH-terminus. By contrast, Saccharomyces cerevisiae Hsp40 Ydj1p is isoprenylated but not subject to additional modification. In fact, additional modifications are detrimental to Ydj1p activity in vivo We have taken advantage of the properties of Ydj1p and a Ydj1p-dependent growth assay to identify sequences that permit Ydj1p isoprenylation in vivo while simultaneously selecting against nonprenylatable and more extensively modified sequences. The recovered sequences are largely nonoverlapping with those previously identified using an in vivo Ras-based yeast reporter. Moreover, most of the sequences are not readily predicted as isoprenylation targets by existing prediction algorithms. Our results reveal that the yeast CaaX-type prenyltransferases can utilize a range of sequence combinations that extend beyond the traditional constraints for CaaX proteins, which implies that more proteins may be isoprenylated than previously considered.
Collapse
|
12
|
Liu BS, Dai XY, Xia HW, Xu HJ, Tang QL, Gong QY, Nie YZ, Bi F. Geranylgeranyl transferase 1 inhibitor GGTI‑298 enhances the anticancer effect of gefitinib. Mol Med Rep 2018; 18:4023-4029. [PMID: 30106149 DOI: 10.3892/mmr.2018.9371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/11/2018] [Indexed: 02/05/2023] Open
Abstract
Dysregulation of epidermal growth factor receptor (EGFR) signaling is responsible for the resistance to EGFR tyrosine kinase inhibitors (TKIs), such as gefitinib and erlotinib, and is thereby associated with the progression of tumors in non‑small cell lung cancers (NSCLCs). Immunoblotting results revealed that geranylgeranyl transferase 1 inhibitor (GGTI)‑298, a geranylgeranyl transferase 1 inhibitor with potential antitumor effects, effectively inhibited the phosphorylation of EGFR and its downstream target protein kinase B (AKT). A combination of gefitinib and GGTI‑298 amplified the inhibition of the EGFR‑AKT signaling pathway. In addition, GGTI‑298 treatment produced a synergistic effect on the inhibition of proliferation as indicated by the combination index values of <1 when combined with gefitinib in the NSCLC cell lines HCC827 and A549. These synergistic effects were also observed to induce apoptosis and migration inhibition. Further mechanistic studies demonstrated that GGTI‑298 inhibited the activity of Ras homolog family member A (RhoA), and downregulation of RhoA with small interfering RNA impaired the phosphorylation of EGFR, which suggested that EGFR inhibition by GGTI‑298 may be exerted mainly through RhoA mediation. These results presented a novel, promising therapeutic strategy involving a combination of two drugs for targeting EGFR signaling in lung cancer.
Collapse
Affiliation(s)
- Bi-Sheng Liu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xin-Yu Dai
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hong-Wei Xia
- Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Huan-Ji Xu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qiu-Lin Tang
- Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qi-Yong Gong
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yong-Zhan Nie
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digest Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Feng Bi
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
13
|
Jeong A, Suazo KF, Wood WG, Distefano MD, Li L. Isoprenoids and protein prenylation: implications in the pathogenesis and therapeutic intervention of Alzheimer's disease. Crit Rev Biochem Mol Biol 2018; 53:279-310. [PMID: 29718780 PMCID: PMC6101676 DOI: 10.1080/10409238.2018.1458070] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mevalonate-isoprenoid-cholesterol biosynthesis pathway plays a key role in human health and disease. The importance of this pathway is underscored by the discovery that two major isoprenoids, farnesyl and geranylgeranyl pyrophosphate, are required to modify an array of proteins through a process known as protein prenylation, catalyzed by prenyltransferases. The lipophilic prenyl group facilitates the anchoring of proteins in cell membranes, mediating protein-protein interactions and signal transduction. Numerous essential intracellular proteins undergo prenylation, including most members of the small GTPase superfamily as well as heterotrimeric G proteins and nuclear lamins, and are involved in regulating a plethora of cellular processes and functions. Dysregulation of isoprenoids and protein prenylation is implicated in various disorders, including cardiovascular and cerebrovascular diseases, cancers, bone diseases, infectious diseases, progeria, and neurodegenerative diseases including Alzheimer's disease (AD). Therefore, isoprenoids and/or prenyltransferases have emerged as attractive targets for developing therapeutic agents. Here, we provide a general overview of isoprenoid synthesis, the process of protein prenylation and the complexity of prenylated proteins, and pharmacological agents that regulate isoprenoids and protein prenylation. Recent findings that connect isoprenoids/protein prenylation with AD are summarized and potential applications of new prenylomic technologies for uncovering the role of prenylated proteins in the pathogenesis of AD are discussed.
Collapse
Affiliation(s)
- Angela Jeong
- Departments of Experimental and Clinical Pharmacolog,University of Minnesota, Minneapolis, MN 55455
| | | | - W. Gibson Wood
- Departments of Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - Mark D. Distefano
- Departments of Chemistry,University of Minnesota, Minneapolis, MN 55455
| | - Ling Li
- Departments of Experimental and Clinical Pharmacolog,University of Minnesota, Minneapolis, MN 55455
- Departments of Pharmacology, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
14
|
Jiang H, Zhang X, Chen X, Aramsangtienchai P, Tong Z, Lin H. Protein Lipidation: Occurrence, Mechanisms, Biological Functions, and Enabling Technologies. Chem Rev 2018; 118:919-988. [PMID: 29292991 DOI: 10.1021/acs.chemrev.6b00750] [Citation(s) in RCA: 300] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein lipidation, including cysteine prenylation, N-terminal glycine myristoylation, cysteine palmitoylation, and serine and lysine fatty acylation, occurs in many proteins in eukaryotic cells and regulates numerous biological pathways, such as membrane trafficking, protein secretion, signal transduction, and apoptosis. We provide a comprehensive review of protein lipidation, including descriptions of proteins known to be modified and the functions of the modifications, the enzymes that control them, and the tools and technologies developed to study them. We also highlight key questions about protein lipidation that remain to be answered, the challenges associated with answering such questions, and possible solutions to overcome these challenges.
Collapse
Affiliation(s)
- Hong Jiang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiaoyu Zhang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiao Chen
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Pornpun Aramsangtienchai
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Zhen Tong
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|
15
|
Mi W, Lin Q, Childress C, Sudol M, Robishaw J, Berlot CH, Shabahang M, Yang W. Geranylgeranylation signals to the Hippo pathway for breast cancer cell proliferation and migration. Oncogene 2014; 34:3095-106. [PMID: 25109332 DOI: 10.1038/onc.2014.251] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/09/2014] [Accepted: 06/15/2014] [Indexed: 12/17/2022]
Abstract
Protein geranylgeranylation (GGylation) is an important biochemical process for many cellular signaling molecules. Previous studies have shown that GGylation is essential for cell survival in many types of cancer. However, the molecular mechanism mediating the cell survival effect remains elusive. In this report, we show that the Hippo pathway mediates GGylation-dependent cell proliferation and migration in breast cancer cells. Blockade of GGylation enhanced phosphorylation of Mst1/2 and Lats1, and inhibited YAP and TAZ activity and the Hippo-YAP/TAZ pathway-dependent transcription. The effect of GGylation blockade on inhibition of breast cancer cell proliferation and migration is dependent on the Hippo-YAP/TAZ signaling, in which YAP appears to regulate cell proliferation and TAZ to regulate cell migration. Furthermore, GGylation-dependent cell proliferation is correlated with the activity of YAP/TAZ in breast cancer cells. Finally, Gγ and RhoA are the GGylated proteins that may transduce GGylation signals to the Hippo-YAP/TAZ pathway. Taken together, our studies have demonstrated that the Hippo-YAP/TAZ pathway is essential for GGylation-dependent cancer cell proliferation and migration.
Collapse
Affiliation(s)
- W Mi
- Weis Center for Research, Danville, PA, USA
| | - Q Lin
- 1] Weis Center for Research, Danville, PA, USA [2] School of Medical Sciences and Laboratory Medicine, Jiangsu University, Zhenjiang, China
| | | | - M Sudol
- 1] Weis Center for Research, Danville, PA, USA [2] Department of Medicine, Mount Sinai Medical School, New York, NY, USA
| | - J Robishaw
- Weis Center for Research, Danville, PA, USA
| | - C H Berlot
- Weis Center for Research, Danville, PA, USA
| | - M Shabahang
- Department of General Surgery, Geisinger Clinic, Danville, PA, USA
| | - W Yang
- Weis Center for Research, Danville, PA, USA
| |
Collapse
|
16
|
Li Z, Sun C, Zhang T, Mo J, Shi Q, Zhang X, Yuan M, Chen L, Mao X, Yu R, Zhou X. Geranylgeranyltransferase I mediates BDNF-induced synaptogenesis. J Neurochem 2013; 125:698-712. [PMID: 23534605 DOI: 10.1111/jnc.12249] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Zhengwei Li
- The Graduate School; Xuzhou Medical College; Xuzhou Jiangsu China
| | - Chengdong Sun
- The Graduate School; Xuzhou Medical College; Xuzhou Jiangsu China
| | - Tao Zhang
- The Graduate School; Xuzhou Medical College; Xuzhou Jiangsu China
| | - Jianbing Mo
- The Graduate School; Xuzhou Medical College; Xuzhou Jiangsu China
| | - Qiong Shi
- Lab of Neurosurgery; Xuzhou Medical College; Xuzhou Jiangsu China
- Department of Neurosurgery; Affiliated Hospital of Xuzhou Medical College; Xuzhou Jiangsu China
- Key Laboratory of Brain Disease Biology; Affiliated Hospital of Xuzhou Medical College; Xuzhou Jiangsu China
| | - Xianfeng Zhang
- The Graduate School; Xuzhou Medical College; Xuzhou Jiangsu China
| | - Maochun Yuan
- The Graduate School; Xuzhou Medical College; Xuzhou Jiangsu China
| | - Long Chen
- The Graduate School; Xuzhou Medical College; Xuzhou Jiangsu China
| | - Xueqiang Mao
- The Graduate School; Xuzhou Medical College; Xuzhou Jiangsu China
| | - Rutong Yu
- Lab of Neurosurgery; Xuzhou Medical College; Xuzhou Jiangsu China
- Department of Neurosurgery; Affiliated Hospital of Xuzhou Medical College; Xuzhou Jiangsu China
- Key Laboratory of Brain Disease Biology; Affiliated Hospital of Xuzhou Medical College; Xuzhou Jiangsu China
| | - Xiuping Zhou
- Lab of Neurosurgery; Xuzhou Medical College; Xuzhou Jiangsu China
- Department of Neurosurgery; Affiliated Hospital of Xuzhou Medical College; Xuzhou Jiangsu China
- Key Laboratory of Brain Disease Biology; Affiliated Hospital of Xuzhou Medical College; Xuzhou Jiangsu China
| |
Collapse
|
17
|
Rehni AK, Singh TG. Pharmacological modulation of geranylgeranyltransferase and farnesyltransferase attenuates opioid withdrawal in vivo and in vitro. Neuropharmacology 2013; 71:19-26. [PMID: 23415632 DOI: 10.1016/j.neuropharm.2013.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/15/2013] [Accepted: 01/20/2013] [Indexed: 11/29/2022]
Abstract
Geranylgeranyltransferase and farnesyltransferase I, are noted to mediate a number of signal transduction cascades which are known to be involved in the causation of opioid withdrawal syndrome. GGTI-2133 and FTI-276 are selective modulators of geranylgeranyltransferase and farnesyltransferase subtype 1 respectively. Therefore, the present study investigated the effect of GGTI-2133 and FTI-276 on propagation of morphine dependence and resultant withdrawal signs in vivo, in sub-chronic morphine mouse model, and in vitro, in isolated rat ileum. Morphine was administered twice daily for 5 days following which a single day 6 injection of naloxone (8 mg/kg, i.p.) precipitated opioid withdrawal syndrome in mice. Withdrawal syndrome was quantitatively assessed in terms of withdrawal severity score and the frequency of jumping, rearing, fore paw licking & circling. Naloxone induced contraction in morphine withdrawn isolated rat ileum was employed as an in vitro model of opioid withdrawal syndrome. An isobolographic study design was employed to assess a potential synergistic activity between GGTI-2133 and FTI-276. GGTI-2133 and FTI-276 dose dependently attenuated naloxone induced morphine withdrawal syndrome both in vivo and in vitro. GGTI-2133 was also observed to exert a synergistic interaction with FTI-276. It is concluded that GGTI-2133 and FTI-276 attenuate the propagation of morphine dependence and reduce withdrawal signs possibly by a geranylgeranyl transferase; farnesyltransferase activation pathway linked mechanisms potentially in an interdependent manner.
Collapse
Affiliation(s)
- Ashish K Rehni
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh Patiala National Highway, Rajpura, Patiala 147002 Punjab, India.
| | | |
Collapse
|
18
|
Zhou X, Qian J, Hua L, Shi Q, Liu Z, Xu Y, Sang B, Mo J, Yu R. Geranylgeranyltransferase I promotes human glioma cell growth through Rac1 membrane association and activation. J Mol Neurosci 2012; 49:130-9. [PMID: 23073905 DOI: 10.1007/s12031-012-9905-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 10/08/2012] [Indexed: 11/30/2022]
Abstract
Geranylgeranyltransferase I (GGTase-I) is responsible for the posttranslational lipidation of several signaling proteins such as RhoA, Rac1, and Cdc42, which contribute to tumor development and metastasis. However, the role of GGTase-I in the progression of human glioma is largely unknown. Here, we provide the evidence that Rac1 mediates the effects of GGTase-I on the proliferation and apoptosis in human glioma cells. We found that GGTase-I was abundantly expressed in human primary glioma tissues. Inhibition or downregulation of GGTase-I markedly decreased the proliferation of glioma cells and induced their apoptosis, while overexpression of GGTase-I promoted cell growth in vitro. Inactivation of GGTase-I eliminated geranylgeranylation of RhoA and Rac1, prevented them from targeting to the plasma membrane, and inhibited Rac1 activity. Furthermore, overexpressing wild type or constitutively active Rac1 stimulated glioma cell growth, similar to the effect of GGTase-I overexpression. Importantly, overexpressing dominant-negative Rac1 or Rac1 with the prenylation site deleted or mutated abrogated GGTase-I-induced proliferation in glioma cells. These results confirm the view that geranylgeranylation is essential to the activity and localization of Rho family proteins and suggest that Rac1 is required for GGTase-I-mediated glioma growth.
Collapse
Affiliation(s)
- Xiuping Zhou
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical College, 99 West Huai-hai Road, Xuzhou, Jiangsu 221002, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wotske M, Wu Y, Wolters DA. Liquid Chromatographic Analysis and Mass Spectrometric Identification of Farnesylated Peptides. Anal Chem 2012; 84:6848-55. [DOI: 10.1021/ac301437m] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Marina Wotske
- Department of Analytical Chemistry, Ruhr-University of Bochum, Bochum, Germany
| | - Yaowen Wu
- Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund,
Germany
| | - Dirk A. Wolters
- Department of Analytical Chemistry, Ruhr-University of Bochum, Bochum, Germany
| |
Collapse
|
20
|
Zhou XP, Luo ZG. Regulation of protein prenyltransferase in central neurons. Commun Integr Biol 2011; 2:138-40. [PMID: 19704911 DOI: 10.4161/cib.7819] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 01/12/2009] [Indexed: 11/19/2022] Open
Abstract
Geranylgeranyltransferase I (GGT) is a protein prenyltransferase that mediates lipid modification of some proteins such as Rho family small GTPases. Since the activation of Rho GTPases mediates tumorgenesis and metastasis, GGT has become an attractive target for anti-tumor drug design. Although GGT is extensively expressed in the brain, the function of GGT in central nervous system (CNS) is totally unknown. We have previously shown that GGT was involved in neuromuscular synaptogenesis. In this study, we report that neuronal activity- and brain-derived neurotropic factor (BDNF)-dependent dendritic morphogenesis requires activation of GGT. Furthermore, GGT was activated by depolarization or BDNF in cultured neurons or in hippocampus of the mice under novelty exploration test, suggesting that neuronal activity activates GGT in vitro and in vivo. In this addendum, we further discuss the significance of this study and the possible implication to the field.
Collapse
Affiliation(s)
- Xiu-Ping Zhou
- Institute of Neuroscience; State Key Laboratory of Neuroscience; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai, China
| | | |
Collapse
|
21
|
Ayong L, DaSilva T, Mauser J, Allen CM, Chakrabarti D. Evidence for prenylation-dependent targeting of a Ykt6 SNARE in Plasmodium falciparum. Mol Biochem Parasitol 2011; 175:162-8. [DOI: 10.1016/j.molbiopara.2010.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 11/01/2010] [Accepted: 11/05/2010] [Indexed: 10/18/2022]
|
22
|
Chiba Y, Sato S, Misawa M. Upregulation of geranylgeranyltransferase I in bronchial smooth muscle of mouse experimental asthma: its inhibition by lovastatin. J Smooth Muscle Res 2010; 46:57-64. [PMID: 20383034 DOI: 10.1540/jsmr.46.57] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
RhoA has been recognized as an important protein for bronchial smooth muscle (BSM) contraction and hyperresponsiveness, and its activation is also regulated by geranylgeranyltransferase I (GGTase I). In the present study, the effects of repeated antigen exposure on the expression of GGTase I were determined in mouse BSMs. Male BALB/c mice were sensitized and repeatedly challenged with ovalbumin antigen. Animals were also treated with lovastatin (4 mg/kg/day, i.p.) once a day prior to and during the antigen inhalation period. Western blot analyses revealed that GGTase I was upregulated in BSMs of the antigen-challenged mice. The systemic treatment with lovastatin attenuated the upregulation of GGTase I induced by antigen exposure. Interestingly, lovastatin also significantly reduced the protein expression of GGTase I in BSMs of control animals. We thus concluded that an upregulation of GGTase I in BSM might be, at least in part, involved in the development of antigen-induced airway hyperresponsiveness. Lovastatin might have therapeutic potential to ameliorate airway hyperresponsiveness in allergic bronchial asthma.
Collapse
Affiliation(s)
- Yoshihiko Chiba
- Department of Pharmacology, School of Pharmacy, Hoshi University, Japan.
| | | | | |
Collapse
|
23
|
Hougland JL, Lamphear CL, Scott SA, Gibbs RA, Fierke CA. Context-dependent substrate recognition by protein farnesyltransferase. Biochemistry 2010; 48:1691-701. [PMID: 19199818 DOI: 10.1021/bi801710g] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Prenylation is a posttranslational modification whereby C-terminal lipidation leads to protein localization to membranes. A C-terminal "Ca(1)a(2)X" sequence has been proposed as the recognition motif for two prenylation enzymes, protein farnesyltransferase (FTase) and protein geranylgeranyltransferase type I. To define the parameters involved in recognition of the a(2) residue, we performed structure-activity analysis which indicates that FTase discriminates between peptide substrates based on both the hydrophobicity and steric volume of the side chain at the a(2) position. For nonpolar side chains, the dependence of the reactivity on side chain volume at this position forms a pyramidal pattern with a maximal activity near the steric volume of valine. This discrimination occurs at a step in the kinetic mechanism that is at or before the farnesylation step. Furthermore, a(2) selectivity is also affected by the identity of the adjacent X residue, leading to context-dependent substrate recognition. Context-dependent a(2) selectivity suggests that FTase recognizes the sequence downstream of the conserved cysteine as a set of two or three cooperative, interconnected recognition elements as opposed to three independent amino acids. These findings expand the pool of proposed FTase substrates in cells. A better understanding of the molecular recognition of substrates performed by FTase will aid in both designing new FTase inhibitors as therapeutic agents and characterizing proteins involved in prenylation-dependent cellular pathways.
Collapse
Affiliation(s)
- James L Hougland
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
24
|
Wu KY, Zhou XP, Luo ZG. Geranylgeranyltransferase I is essential for dendritic development of cerebellar Purkinje cells. Mol Brain 2010; 3:18. [PMID: 20540740 PMCID: PMC2902468 DOI: 10.1186/1756-6606-3-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 06/11/2010] [Indexed: 11/16/2022] Open
Abstract
Background During cerebellar development, Purkinje cells (PCs) form the most elaborate dendritic trees among neurons in the brain, but the mechanism regulating PC arborization remains largely unknown. Geranylgeranyltransferase I (GGT) is a prenyltransferase that is responsible for lipid modification of several signaling proteins, such as Rho family small GTPase Rac1, which has been shown to be involved in neuronal morphogenesis. Here we show that GGT plays an important role in dendritic development of PCs. Results We found that GGT was abundantly expressed in the developing rat cerebellum, in particular molecular layer (ML), the region enriched with PC dendrites. Inhibition or down-regulation of GGT using small interference RNA (siRNA) inhibited dendritic development of PCs. In contrast, up-regulation of GGT promoted dendritic arborization of PCs. Furthermore, neuronal depolarization induced by high K+ or treatment with brain-derived neurotrophic factor (BDNF) promoted membrane association of Rac1 and dendritic development of PCs in cultured cerebellar slices. The effect of BDNF or high K+ was inhibited by inhibition or down-regulation of GGT. Conclusion Our results indicate that GGT plays an important role in Purkinje cell development, and suggest a novel role of GGT in neuronal morphogenesis in vivo.
Collapse
Affiliation(s)
- Kong-Yan Wu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | |
Collapse
|
25
|
Luo Z. Synapse formation and remodeling. SCIENCE CHINA-LIFE SCIENCES 2010; 53:315-321. [PMID: 20596925 DOI: 10.1007/s11427-010-0069-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 01/19/2010] [Indexed: 10/19/2022]
Abstract
Synapses are specialized structures that mediate information flow between neurons and target cells, and thus are the basis for neuronal system to execute various functions, including learning and memory. There are around 10(11) neurons in the human brain, with each neuron receiving thousands of synaptic inputs, either excitatory or inhibitory. A synapse is an asymmetric structure that is composed of pre-synaptic axon terminals, synaptic cleft, and postsynaptic compartments. Synapse formation involves a number of cell adhesion molecules, extracellular factors, and intracellular signaling or structural proteins. After the establishment of synaptic connections, synapses undergo structural or functional changes, known as synaptic plasticity which is believed to be regulated by neuronal activity and a variety of secreted factors. This review summarizes recent progress in the field of synapse development, with particular emphasis on the work carried out in China during the past 10 years (1999-2009).
Collapse
Affiliation(s)
- ZhenGe Luo
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
26
|
Le Calvez PB, Scott CJ, Migaud ME. Multisubstrate adduct inhibitors: drug design and biological tools. J Enzyme Inhib Med Chem 2010; 24:1291-318. [PMID: 19912064 DOI: 10.3109/14756360902843809] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In drug discovery, different methods exist to create new inhibitors possessing satisfactory biological activity. The multisubstrate adduct inhibitor (MAI) approach is one of these methods, which consists of a covalent combination between analogs of the substrate and the cofactor or of the multiple substrates used by the target enzyme. Adopted as the first line of investigation for many enzymes, this method has brought insights into the enzymatic mechanism, structure, and inhibitory requirements. In this review, the MAI approach, applied to different classes of enzyme, is reported from the point of view of biological activity.
Collapse
|
27
|
Hougland JL, Hicks KA, Hartman HL, Kelly RA, Watt TJ, Fierke CA. Identification of novel peptide substrates for protein farnesyltransferase reveals two substrate classes with distinct sequence selectivities. J Mol Biol 2010; 395:176-90. [PMID: 19878682 PMCID: PMC2916699 DOI: 10.1016/j.jmb.2009.10.038] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 10/15/2009] [Accepted: 10/16/2009] [Indexed: 10/20/2022]
Abstract
Prenylation is a posttranslational modification essential for the proper localization and function of many proteins. Farnesylation, the attachment of a 15-carbon farnesyl group near the C-terminus of protein substrates, is catalyzed by protein farnesyltransferase (FTase). Farnesylation has received significant interest as a target for pharmaceutical development, and farnesyltransferase inhibitors are in clinical trials as cancer therapeutics. However, as the total complement of prenylated proteins is unknown, the FTase substrates responsible for farnesyltransferase inhibitor efficacy are not yet understood. Identifying novel prenylated proteins within the human proteome constitutes an important step towards understanding prenylation-dependent cellular processes. Based on sequence preferences for FTase derived from analysis of known farnesylated proteins, we selected and screened a library of small peptides representing the C-termini of 213 human proteins for activity with FTase. We identified 77 novel FTase substrates that exhibit multiple-turnover (MTO) reactivity within this library; our library also contained 85 peptides that can be farnesylated by FTase only under single-turnover (STO) conditions. Based on these results, a second library was designed that yielded an additional 29 novel MTO FTase substrates and 45 STO substrates. The two classes of substrates exhibit different specificity requirements. Efficient MTO reactivity correlates with the presence of a nonpolar amino acid at the a(2) position and a Phe, Met, or Gln at the terminal X residue, consistent with the proposed Ca(1)a(2)X sequence model. In contrast, the sequences of the STO substrates vary significantly more at both the a(2) and the X residues and are not well described by current farnesylation algorithms. These results improve the definition of prenyltransferase substrate specificity, test the efficacy of substrate algorithms, and provide valuable information about therapeutic targets. Finally, these data illuminate the potential for in vivo regulation of prenylation through modulation of STO versus MTO peptide reactivity with FTase.
Collapse
Affiliation(s)
- James L. Hougland
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Katherine A. Hicks
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Heather L. Hartman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Rebekah A. Kelly
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Terry J. Watt
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Carol A. Fierke
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
28
|
Lamango NS, Duverna R, Zhang W, Ablordeppey SY. Porcine Liver Carboxylesterase Requires Polyisoprenylation for High Affinity Binding to Cysteinyl Substrates. ACTA ACUST UNITED AC 2009; 2:12-27. [PMID: 20664805 DOI: 10.2174/1874940200902010012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The polyisoprenylation pathway enzymes have been the focus of numerous studies to better understand the roles of polyisoprenylated proteins in eukaryotic cells and to identify novel targets against diseases such as cancer. The final step of the pathway is a reversible reaction catalyzed by isoprenyl carboxylmethyl transferase (icmt) whose products are then hydrolyzed by polyisoprenylated methylated protein methyl esterase (PMPMEase). Unlike the other pathway enzymes, the esterase has received little attention. We recently purified PMPMEase from porcine liver using an S-polyisoprenylated cysteine methyl ester substrate-dependent screening assay. However, no data is available showing its relative interaction with structurally diverse substrates. As such, its role as the putative endogenous PMPMEase has not been demonstrated. A series of substrates with S-alkyl substituents ranging from 2 to 20 carbons, including the two moieties found in polyisoprenylated proteins, were synthesized. Enzyme kinetics analysis revealed a 33-fold increase in affinity (K(M) values) from ethyl- (C-2, 505+/-63 microM), prenyl- (C-5, 294+/-25 microM), trans-geranyl- (C-10, 87+/-12 microM), trans, trans-farnesyl- (C-15, 29+/-2.2 microM) to all trans-geranylgeranyl- (C-20-, 15+/-2.7 microM) based analogs. Comparative molecular field analysis of the data yielded a cross-validated q(2) of 0.863+/-0.365 and a final R(2) of 0.995. Since the substrates with the S-trans, trans-farnesyl and S-all trans-geranylgeranyl moieties that occur in proteins show the highest affinity towards PMPMEase and are not hydrolyzed by the cholinesterases, the results suggest that polyisoprenylated proteins are the endogenous substrates of this esterase. The results suggest design strategies for high affinity and selective inhibitors of PMPMEase.
Collapse
Affiliation(s)
- Nazarius S Lamango
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | | | | | | |
Collapse
|
29
|
Jabbour E, Kantarjian H, Cortes J. Clinical Activity of Farnesyl Transferase Inhibitors in Hematologic Malignancies: Possible Mechanisms of Action. Leuk Lymphoma 2009; 45:2187-95. [PMID: 15512806 DOI: 10.1080/10428190412331272677] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Farnesyl transferase inhibitors (FTIs) are a novel class of anti-cancer agents that competitively inhibit farnesyl protein transferase (FTase). Initially developed to inhibit the prenylation necessary for Ras activation, their mechanism of action seems to be more complex, involving other proteins unrelated to Ras. FTIs have been developed and tested across a wide range of human cancers. At least 3 agents within this family have been investigated in hematologic malignancies. These are tipifarnib (R115777, Zarnestra), lonafarnib (SCH66336, Sarasar), both of which are orally administered, and BMS-214662, which is given intravenously. Preliminary results from clinical trials demonstrate enzyme target inhibition, a favorable toxicity profile and promising efficacy. Ongoing studies will better determine their mechanism of action and the role of combination with other agents, defining their place in the therapeutic arsenal of hematologic disorders.
Collapse
Affiliation(s)
- Elias Jabbour
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
30
|
TrkB-mediated activation of geranylgeranyltransferase I promotes dendritic morphogenesis. Proc Natl Acad Sci U S A 2008; 105:17181-6. [PMID: 18957540 DOI: 10.1073/pnas.0800846105] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dendrite morphogenesis is regulated by neuronal activity or neurotrophins, which may function by activating intrinsic signaling proteins, including Rho family GTPases. Here we report that activity- and brain-derived neurotrophic factor (BDNF)-dependent dendritic morphogenesis requires activation of geranylgeranyltransferase I (GGT), a prenyltransferase that mediates lipid modification of Rho GTPases. Dendritic arborization in cultured hippocampal neurons was promoted by over-expression of GGT, and reduced by inhibition or down-regulation of GGT. Furthermore, GGT was activated by neuronal depolarization or BDNF, both of which promote dendritic arborization, in cultured hippocampal neurons. Moreover, exploration of a novel environment caused activation of GGT in the mice hippocampus, suggesting that neural activity activates GGT in vivo. Interestingly, GGT was physically associated with tropomyosin-related kinase B (TrkB), the receptor for BDNF, and this association was enhanced by depolarization. Disrupting the GGT-TrkB interaction or down-regulating GGT activity attenuated depolarization- or BDNF-induced dendrite development. Finally, the GGT effect on dendrite arborization was prevented by over-expressing Rac1 with the prenylation site deleted or mutated. Thus depolarization- or BDNF-dependent dendrite development may be mediated by GGT-induced prenylation of Rho GTPases.
Collapse
|
31
|
Graham SL. Review Oncologic, Endocrine & Metabolic: Inhibitors of protein farnesylation: A new approach to cancer chemotherapy. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.5.12.1269] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
32
|
Abstract
The RAS gene product is normally a membrane-localized G protein (N-Ras, K-Ras and H-Ras) of 21 kDa classically described as a molecular off/on switch. It is inactive when bound to guanosine diphosphate and active when bound to GTP. When mutated, the gene produces an abnormal protein resistant to GTP hydrolysis by GTPase, resulting in a constitutively active GTP-bound protein that stimulates a critical network of signal transduction pathways that lead to cellular proliferation, survival and differentiation. At least three downstream effector pathways have been described, including Raf/MEK/ERK, PI3K/AKT and RalGDS, but they are not completely understood. Ras pathways are also important downstream effectors of several receptor tyrosine kinases localized in the cell membrane, most notably the BCR-ABL fusion protein seen in patients with Philadelphia chromosome positive chronic myelogenous leukemia. An important consideration in designing strategies to block Ras stimulatory effect is that Ras proteins are synthesized in the cytosol, but require post-translational modifications and attachment to anchor proteins or membrane binding sites in the cell membrane to be biologically active. Farnesyl transferase inhibitors (FTIs) are probably the best-studied class of Ras inhibitors in hematologic malignancies. They block the enzyme farnesyl-transferase (FTase), which is essential for post-translational modification. However, it has been observed that the Ras proteins also can be geranylgeranylated in the presence of FTIs, thus allowing membrane localization and activation, which limits their effectiveness. It is now hypothesized that their mechanism of action may be through FTase inhibition involving other signal transduction pathways. S-trans, trans-farnesylthiosalicylic acid, which was first designed as a prenylated protein methyltransferase inhibitor, has shown in vitro activity against all activated Ras proteins by dislodging them from their membrane-anchoring sites. Here, Ras biology, its signaling pathways and its implications as a therapeutic target in hematologic malignancies are reviewed.
Collapse
Affiliation(s)
- Yesid Alvarado
- University of Texas MD Anderson Cancer Center, Department of Leukemia, Box 428, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | | |
Collapse
|
33
|
Sjogren AKM, Andersson KM, Liu M, Cutts BA, Karlsson C, Wahlstrom AM, Dalin M, Weinbaum C, Casey PJ, Tarkowski A, Swolin B, Young SG, Bergo MO. GGTase-I deficiency reduces tumor formation and improves survival in mice with K-RAS-induced lung cancer. J Clin Invest 2007; 117:1294-304. [PMID: 17476360 PMCID: PMC1857236 DOI: 10.1172/jci30868] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 01/30/2007] [Indexed: 11/17/2022] Open
Abstract
Protein geranylgeranyltransferase type I (GGTase-I) is responsible for the posttranslational lipidation of CAAX proteins such as RHOA, RAC1, and cell division cycle 42 (CDC42). Inhibition of GGTase-I has been suggested as a strategy to treat cancer and a host of other diseases. Although several GGTase-I inhibitors (GGTIs) have been synthesized, they have very different properties, and the effects of GGTIs and GGTase-I deficiency are unclear. One concern is that inhibiting GGTase-I might lead to severe toxicity. In this study, we determined the effects of GGTase-I deficiency on cell viability and K-RAS-induced cancer development in mice. Inactivating the gene for the critical beta subunit of GGTase-I eliminated GGTase-I activity, disrupted the actin cytoskeleton, reduced cell migration, and blocked the proliferation of fibroblasts expressing oncogenic K-RAS. Moreover, the absence of GGTase-I activity reduced lung tumor formation, eliminated myeloproliferative phenotypes, and increased survival of mice in which expression of oncogenic K-RAS was switched on in lung cells and myeloid cells. Interestingly, several cell types remained viable in the absence of GGTase-I, and myelopoiesis appeared to function normally. These findings suggest that inhibiting GGTase-I may be a useful strategy to treat K-RAS-induced malignancies.
Collapse
Affiliation(s)
- Anna-Karin M. Sjogren
- Wallenberg Laboratory, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, People’s Republic of China.
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Department of Rheumatology and Inflammation Research and
Department of Clinical Chemistry and Transfusion Medicine, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Medicine, Division of Cardiology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Karin M.E. Andersson
- Wallenberg Laboratory, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, People’s Republic of China.
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Department of Rheumatology and Inflammation Research and
Department of Clinical Chemistry and Transfusion Medicine, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Medicine, Division of Cardiology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Meng Liu
- Wallenberg Laboratory, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, People’s Republic of China.
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Department of Rheumatology and Inflammation Research and
Department of Clinical Chemistry and Transfusion Medicine, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Medicine, Division of Cardiology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Briony A. Cutts
- Wallenberg Laboratory, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, People’s Republic of China.
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Department of Rheumatology and Inflammation Research and
Department of Clinical Chemistry and Transfusion Medicine, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Medicine, Division of Cardiology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Christin Karlsson
- Wallenberg Laboratory, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, People’s Republic of China.
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Department of Rheumatology and Inflammation Research and
Department of Clinical Chemistry and Transfusion Medicine, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Medicine, Division of Cardiology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Annika M. Wahlstrom
- Wallenberg Laboratory, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, People’s Republic of China.
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Department of Rheumatology and Inflammation Research and
Department of Clinical Chemistry and Transfusion Medicine, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Medicine, Division of Cardiology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Martin Dalin
- Wallenberg Laboratory, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, People’s Republic of China.
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Department of Rheumatology and Inflammation Research and
Department of Clinical Chemistry and Transfusion Medicine, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Medicine, Division of Cardiology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Carolyn Weinbaum
- Wallenberg Laboratory, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, People’s Republic of China.
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Department of Rheumatology and Inflammation Research and
Department of Clinical Chemistry and Transfusion Medicine, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Medicine, Division of Cardiology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Patrick J. Casey
- Wallenberg Laboratory, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, People’s Republic of China.
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Department of Rheumatology and Inflammation Research and
Department of Clinical Chemistry and Transfusion Medicine, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Medicine, Division of Cardiology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Andrej Tarkowski
- Wallenberg Laboratory, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, People’s Republic of China.
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Department of Rheumatology and Inflammation Research and
Department of Clinical Chemistry and Transfusion Medicine, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Medicine, Division of Cardiology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Birgitta Swolin
- Wallenberg Laboratory, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, People’s Republic of China.
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Department of Rheumatology and Inflammation Research and
Department of Clinical Chemistry and Transfusion Medicine, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Medicine, Division of Cardiology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Stephen G. Young
- Wallenberg Laboratory, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, People’s Republic of China.
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Department of Rheumatology and Inflammation Research and
Department of Clinical Chemistry and Transfusion Medicine, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Medicine, Division of Cardiology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Martin O. Bergo
- Wallenberg Laboratory, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, People’s Republic of China.
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Department of Rheumatology and Inflammation Research and
Department of Clinical Chemistry and Transfusion Medicine, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Department of Medicine, Division of Cardiology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|
34
|
Suzuki T, Ito M, Ezure T, Shikata M, Ando E, Utsumi T, Tsunasawa S, Nishimura O. Protein prenylation in an insect cell-free protein synthesis system and identification of products by mass spectrometry. Proteomics 2007; 7:1942-50. [PMID: 17514686 DOI: 10.1002/pmic.200700237] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To evaluate the ability of an insect cell-free protein synthesis system to carry out proper protein prenylation, several CAIX (X indicates any C-terminal amino acid) sequences were introduced into the C-terminus of truncated human gelsolin (tGelsolin). Tryptic digests of these mutant proteins were analyzed by MALDI-TOF MS and MALDI-quadrupole-IT-TOF MS. The results indicated that the insect cell-free protein synthesis system possesses both farnesyltransferase (FTase) and geranylgeranyltransferase (GGTase) I, as is the case of the rabbit reticulocyte lysate system. The C-terminal amino acid sequence requirements for protein prenylation in this system showed high similarity to those observed in rat prenyltransferases. In the case of rhoC, which is a natural geranylgeranylated protein, it was found that it could serve as a substrate for both prenyltransferases in the presence of either farnesyl or geranylgeranyl pyrophosphate, whereas geranylgeranylation was only observed when both prenyl pyrophosphates were added to the in vitro translation reaction mixture. Thus, a combination of the cell-free protein synthesis system with MS is an effective strategy to analyze protein prenylation.
Collapse
Affiliation(s)
- Takashi Suzuki
- Life Science Laboratory, Analytical and Measuring Instruments Division, Shimadzu Corporation, Kyoto, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Patel CA, Rattan S. RhoA Prenylation Inhibitor Produces Relaxation of Tonic Smooth Muscle of Internal Anal Sphincter. J Pharmacol Exp Ther 2007; 321:501-8. [PMID: 17322025 DOI: 10.1124/jpet.107.119339] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RhoA prenylation is a critical step for the translocation of RhoA to the membrane and its activation in response to agonist-induced sustained contraction of the smooth muscle. However, the effect and role of RhoA prenylation in the spontaneously tonic smooth muscle, such as internal anal sphincter (IAS), is not known. Present studies determined RhoA prenylation and its association with the basal tone in the IAS before and after the RhoA prenylation inhibitor, geranylgeranyl transferase inhibitor GGTI-297 [N-4-[2(R)-amino-3-mercaptopropyl]amino-2-naphthylbenzoyl-(L)-leucine,TFA]. Western blot analyses of cytosolic and membrane fractions determined the effects of RhoA prenylation inhibition on the cellular distribution of the RhoA. Additional studies were performed to determine the relationship between RhoA prenylation and Rho kinase (ROCK) activity. GGTI-297 decreased prenylation of RhoA, decreased ROCK activity, and caused a corresponding fall in the IAS tone. These inhibitory effects following RhoA prenylation blockade were demonstrated to be directly on the spontaneously contracted IAS smooth muscle cells. Western blot analysis revealed high levels of RhoA in the IAS smooth muscle cellular membrane in the basal state, and GGTI-297 shifted the RhoA localization to the cytosol. RhoA prenylation may play an important role in the translocation of RhoA to the smooth muscle cell membrane leading to its activation and for the maintenance of basal tone in the IAS.
Collapse
Affiliation(s)
- Chirag A Patel
- Department of Medicine, Division of Gastroenterology and Hepatology, Jefferson Medical College, Thomas Jefferson University, 1025 Walnut Street, Philadelphia, PA 19107, USA
| | | |
Collapse
|
36
|
Gelb MH, Brunsveld L, Hrycyna CA, Michaelis S, Tamanoi F, Van Voorhis WC, Waldmann H. Therapeutic intervention based on protein prenylation and associated modifications. Nat Chem Biol 2006; 2:518-28. [PMID: 16983387 PMCID: PMC2892741 DOI: 10.1038/nchembio818] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In eukaryotic cells, a specific set of proteins are modified by C-terminal attachment of 15-carbon farnesyl groups or 20-carbon geranylgeranyl groups that function both as anchors for fixing proteins to membranes and as molecular handles for facilitating binding of these lipidated proteins to other proteins. Additional modification of these prenylated proteins includes C-terminal proteolysis and methylation, and attachment of a 16-carbon palmitoyl group; these modifications augment membrane anchoring and alter the dynamics of movement of proteins between different cellular membrane compartments. The enzymes in the protein prenylation pathway have been isolated and characterized. Blocking protein prenylation is proving to be therapeutically useful for the treatment of certain cancers, infection by protozoan parasites and the rare genetic disease Hutchinson-Gilford progeria syndrome.
Collapse
Affiliation(s)
- Michael H Gelb
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Protein Prenylation: An (Almost) Comprehensive Overview on Discovery History, Enzymology, and Significance in Physiology and Disease. MONATSHEFTE FUR CHEMIE 2006. [DOI: 10.1007/s00706-006-0534-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
38
|
Clerici F, Contini A, Corsini A, Ferri N, Grzesiak S, Pellegrino S, Sala A, Yokoyama K. Isothiazoles. Part XV. A mild and efficient synthesis of new antiproliferative 5-sulfanylsubstituted 3-alkylaminoisothiazole 1,1-dioxides. Eur J Med Chem 2006; 41:675-82. [PMID: 16540206 DOI: 10.1016/j.ejmech.2006.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2006] [Indexed: 10/24/2022]
Abstract
5-Sulfanyl-3-alkylaminoisothiazole dioxide derivatives have been identified as a new class of potent inhibitors of rat aortic myocite proliferation. They were prepared by applying a simple methodology able to introduce a heteroatom on C-5 of the 3-alkylaminoisothiazole dioxide system. 3-Aminosubstituted-5-chloroisothiazole dioxides react smoothly not only with S-nucleophiles but also with N- and O-nucleophiles affording the corresponding 5-heterosubstituted isothiazole dioxides through an addition-elimination reaction. The behavior of 3-alkylamino-4-bromo-isothiazole 1,1-dioxide with S-, N- and O-nucleophiles affording the same products has also been described. On the contrary, the 3-amino-4,5-unsubstituted isothiazole dioxide system reacts easily only with sulfur nucleophiles affording the corresponding 4,5-dihydro-5-sulfanylderivatives through a simple Michael addition reaction.
Collapse
Affiliation(s)
- F Clerici
- Istituto di Chimica Organica A. Marchesini, Facoltà di Farmacia, Università di Milano, via Venezian 21, 20133 Milano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Lane KT, Beese LS. Thematic review series: lipid posttranslational modifications. Structural biology of protein farnesyltransferase and geranylgeranyltransferase type I. J Lipid Res 2006; 47:681-99. [PMID: 16477080 DOI: 10.1194/jlr.r600002-jlr200] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
More than 100 proteins necessary for eukaryotic cell growth, differentiation, and morphology require posttranslational modification by the covalent attachment of an isoprenoid lipid (prenylation). Prenylated proteins include members of the Ras, Rab, and Rho families, lamins, CENPE and CENPF, and the gamma subunit of many small heterotrimeric G proteins. This modification is catalyzed by the protein prenyltransferases: protein farnesyltransferase (FTase), protein geranylgeranyltransferase type I (GGTase-I), and GGTase-II (or RabGGTase). In this review, we examine the structural biology of FTase and GGTase-I (the CaaX prenyltransferases) to establish a framework for understanding the molecular basis of substrate specificity and mechanism. These enzymes have been identified in a number of species, including mammals, fungi, plants, and protists. Prenyltransferase structures include complexes that represent the major steps along the reaction path, as well as a number of complexes with clinically relevant inhibitors. Such complexes may assist in the design of inhibitors that could lead to treatments for cancer, viral infection, and a number of deadly parasitic diseases.
Collapse
Affiliation(s)
- Kimberly T Lane
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
40
|
Basso AD, Kirschmeier P, Bishop WR. Thematic review series: Lipid Posttranslational Modifications. Farnesyl transferase inhibitors. J Lipid Res 2006; 47:15-31. [PMID: 16278491 DOI: 10.1194/jlr.r500012-jlr200] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Some proteins undergo posttranslational modification by the addition of an isoprenyl lipid (farnesyl- or geranylgeranyl-isoprenoid) to a cysteine residue proximal to the C terminus. Protein isoprenylation promotes membrane association and contributes to protein-protein interactions. Farnesylated proteins include small GTPases, tyrosine phosphatases, nuclear lamina, cochaperones, and centromere-associated proteins. Prenylation is required for the transforming activity of Ras. Because of the high frequency of Ras mutations in cancer, farnesyl transferase inhibitors (FTIs) were investigated as a means to antagonize Ras function. Evaluation of FTIs led to the finding that both K- and N-Ras are alternatively modified by geranylgeranyl prenyltransferase-1 in FTI-treated cells. Geranylgeranylated forms of Ras retain the ability to associate with the plasma membrane and activate substrates. Despite this, FTIs are effective at inhibiting the growth of human tumor cells in vitro, suggesting that activity is dependent on blocking the farnesylation of other proteins. FTIs also inhibit the in vivo growth of human tumor xenografts and sensitize these models to chemotherapeutics, most notably taxanes. Several FTIs have entered clinical trials for various cancer indications. In some clinical settings, primarily hematologic malignancies, FTIs have displayed evidence of single-agent activity. Clinical studies in progress are exploring the antitumor activity of FTIs as single agents and in combination. This review will summarize the basic biology of FTIs, their antitumor activity in preclinical models, and the current status of clinical studies with these agents.
Collapse
Affiliation(s)
- Andrea D Basso
- Schering-Plough Research Institute, Kenilworth, NJ 07033, USA.
| | | | | |
Collapse
|
41
|
Ferri N, Clerici F, Yokoyama K, Pocar D, Corsini A. Isothiazole dioxide derivative 6n inhibits vascular smooth muscle cell proliferation and protein farnesylation. Biochem Pharmacol 2005; 70:1735-43. [PMID: 16257390 DOI: 10.1016/j.bcp.2005.09.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 09/15/2005] [Accepted: 09/21/2005] [Indexed: 11/21/2022]
Abstract
Isothiazole dioxides have been shown to inhibit Trypanosoma brucei protein farnesyltransferase (PFTase) in isolated enzyme, but elicited only a minor effect on mammalian PFTase. In the present study we have evaluated the effect of 3-diethylamino-4-(4-methoxyphenyl)-isothiazole 1,1-dioxides with different substituents at C5, on rat PFTase and protein geranylgeranyltransferase-I (PGGTase-I) with the final aims to improve the potency against mammalian PFTase and to identify new compounds with antiproliferative properties. For these purposes, in vitro and cell culture models have been utilized. The results showed that isothiazole dioxides with C4-C5 double bond and sulfaryl substituted at the C5 position but none of the dihydro-derivatives, were able to inhibit in vitro PFTase in a concentration dependent manner (IC50 ranging from 8.56 to 1015 microM). Among those, compound 6n (C5; methyl-S) displayed 500-fold higher inhibitory potency on PFTase than PGGTase-I. Compound 6n was shown to affect rat smooth muscle cell (SMC) proliferation at concentrations similar (IC50 = 61.4 microM) to those required to inhibit [3H]-farnesol incorporation into cellular proteins (-44.1% at 100 microM). Finally, compound 6n interferes with rat SMC proliferation by blocking the progression of G0/G1 phase without inducing apoptosis, as assessed by [3H]-thymidine incorporation assay and flow cytometry analysis. Taken together, we described a new PFTase inhibitor containing the isothiazole dioxide moiety that affects mammalian protein farnesylation and SMC proliferation by inhibiting G0/G1 phase of the cell cycle.
Collapse
Affiliation(s)
- Nicola Ferri
- Department of Pharmacological Sciences, University of Milan, Milan 20133, Italy.
| | | | | | | | | |
Collapse
|
42
|
El Oualid F, van den Elst H, Leroy IM, Pieterman E, Cohen LH, Burm BEA, Overkleeft HS, van der Marel GA, Overhand M. A combinatorial approach toward the generation of ambiphilic peptide-based inhibitors of protein:geranylgeranyl transferase-1. ACTA ACUST UNITED AC 2005; 7:703-13. [PMID: 16153065 DOI: 10.1021/cc0500203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A combinatorial synthesis of oligopeptide analogues and their evaluation as protein:geranylgeranyl transferase inhibitors is presented. The combinatorial strategy is based on the random mutation, in each new generation, of one of any of the four amino acid building blocks of which the most effective compounds of the previous generation are assembled. In this way, a progressive improvement of the average inhibitory activity was observed until the fifth generation. The most active inhibitors were found to inhibit PGGT-1 in the low micromolar range (IC(50): 3.8-8.1 microM).
Collapse
Affiliation(s)
- Farid El Oualid
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA 2300 RA Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ferri N, Paoletti R, Corsini A. Lipid-modified proteins as biomarkers for cardiovascular disease: a review. Biomarkers 2005; 10:219-37. [PMID: 16191483 DOI: 10.1080/13547500500216660] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Lipid-modified proteins are classified based on the identity of the attached lipid, a post- or co-translational modification required for their biological function. At least five different lipid modifications of cysteines, glycines and other residues on the COOH- and NH(2)-terminal domains have been described. Cysteine residues may be modified by the addition of a 16-carbon saturated fatty acyl group by a labile thioester bond (palmitoylation) or by prenylation processes that catalyze the formation of thioether bond with mevalonate derived isoprenoids, farnesol and geranylgeraniol. The NH(2)-terminal glycine residues may undergo a quite distinct process involving the formation of an amide bond with a 14-carbon saturated acyl group (myristoylation), while glycine residues in the COOH-terminal may be covalently attached with a cholesterol moiety by an ester bond. Finally, cell surface proteins can be anchored to the membrane through the addition of glycosylphosphatidylinositol moiety. Several lines of evidence suggest that lipid-modified proteins are directly involved in different steps of the development of lesions of atherosclerosis, from leukocyte recruitment to plaque rupture, and their expression or lipid modification are likely altered during atherogenesis. This review will briefly summarize the different enzymatic pathways of lipid modification and propose a series of lipid-modified proteins that can be used as biomarkers for cardiovascular disease.
Collapse
Affiliation(s)
- N Ferri
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | | | | |
Collapse
|
44
|
Basso AD, Mirza A, Liu G, Long BJ, Bishop WR, Kirschmeier P. The farnesyl transferase inhibitor (FTI) SCH66336 (lonafarnib) inhibits Rheb farnesylation and mTOR signaling. Role in FTI enhancement of taxane and tamoxifen anti-tumor activity. J Biol Chem 2005; 280:31101-8. [PMID: 16006564 DOI: 10.1074/jbc.m503763200] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Lonafarnib (SCH66336) is a farnesyl transferase inhibitor (FTI) that inhibits the post-translational lipid modification of H-Ras and other farnesylated proteins. K- and N-Ras are also substrates of farnesyl transferase; however, upon treatment with FTIs, they are alternatively prenylated by geranylgeranyl transferase-1. Despite the failure to abrogate prenylation of K- and N-Ras, growth of many tumors in preclinical models is inhibited by FTIs. This suggests that the anti-proliferative action of FTIs is dependent on blocking the farnesylation of other proteins. Rheb (Ras homologue enriched in brain) is a farnesylated small GTPase that positively regulates mTOR (mammalian target of rapamycin) signaling. We found that Rheb and Rheb2 mRNA were elevated in various tumor cell lines relative to normal cells. Peptides derived from the carboxyl termini of human Rheb and Rheb2 are in vitro substrates for farnesyl transferase but not geranylgeranyl transferase-1. Rheb prenylation in cell culture was completely inhibited by SCH66336, indicating a lack of alternative prenylation. SCH66336 treatment also inhibited the phosphorylation of S6 ribosomal protein, a downstream target of Rheb and mTOR signaling. SCH66336 did not inhibit S6 phosphorylation in cells expressing Rheb-CSVL, a mutant construct of Rheb designed to be geranylgeranylated. Importantly, expression of Rheb-CSVL also abrogated SCH66336 enhancement of tamoxifen- and docetaxel-induced apoptosis in MCF-7 breast cancer cells and ES-2 ovarian cancer cells, respectively. Further, inhibition of Rheb signaling by rapamycin treatment, small interfering RNA, or dominant negative Rheb enhanced tamoxifen- and docetaxel-induced apoptosis, similar to FTI treatment. These studies demonstrated that Rheb is modified by farnesylation, is not a substrate for alternative prenylation, and plays a role in SCH66336 enhancement of the anti-tumor response to other chemotherapeutics.
Collapse
Affiliation(s)
- Andrea D Basso
- Department of Tumor Biology, Schering-Plough Research Institute, Kenilwort, New Jersey 07033, USA
| | | | | | | | | | | |
Collapse
|
45
|
Tong H, Holstein SA, Hohl RJ. Simultaneous determination of farnesyl and geranylgeranyl pyrophosphate levels in cultured cells. Anal Biochem 2005; 336:51-9. [PMID: 15582558 DOI: 10.1016/j.ab.2004.09.024] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2004] [Indexed: 11/21/2022]
Abstract
A sensitive, nonradioactive analytical method has been developed to simultaneously determine the concentrations of farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) in cultured cells. Following extraction, enzyme assays involving recombinant farnesyl protein transferase or geranylgeranyl protein transferase I are performed to conjugate FPP or GGPP to dansylated peptides. The reaction products are then separated and quantified by high-performance liquid chromatography coupled to a fluorescence detector at the excitation wavelength 335 nm and the emission wavelength 528 nm. The retention times for farnesyl-peptide and geranylgeranyl-peptide are 8.4 and 16.9 min, respectively. The lower limit of detection is 5 pg of FPP or GGPP ( approximately 0.01 pmol). A linear response has been established over a range of 5-1000 pg ( approximately 0.01-2 pmol) with good reproducibility. The method has been used to determine the levels of FPP (0.125+/-0.010 pmol/10(6)cells) and GGPP (0.145+/-0.008 pmol/10(6)cells) in NIH3T3 cells. Furthermore, changes in FPP and GGPP levels following treatment of cells with isoprenoid biosynthetic pathway inhibitors were measured. This method is suitable for the determination of the concentrations of FPP and GGPP in any cell type or tissue.
Collapse
Affiliation(s)
- Huaxiang Tong
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
46
|
Mazières J, Tillement V, Allal C, Clanet C, Bobin L, Chen Z, Sebti SM, Favre G, Pradines A. Geranylgeranylated, but not farnesylated, RhoB suppresses Ras transformation of NIH-3T3 cells. Exp Cell Res 2005; 304:354-64. [PMID: 15748883 DOI: 10.1016/j.yexcr.2004.10.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 10/19/2004] [Accepted: 10/25/2004] [Indexed: 10/26/2022]
Abstract
RhoB is a low molecular weight GTPase that is both farnesylated (RhoB-F) and geranylgeranylated (RhoB-GG) in cells. Based on data from rodent cell models, it has been suggested that RhoB displays differential effects on cell transformation, according to the nature of its prenylation. To test directly this hypothesis, we generated GTPase-deficient RhoB mutants that are exclusively either farnesylated or geranylgeranylated. We show that in Ras-transformed murine NIH-3T3 cells, RhoB-F enhances, whereas RhoB-GG and RhoB (F/GG) suppresses anchorage-dependent and -independent cell growth as well as tumor growth in nude mice. We then demonstrate that Ras constitutive activation of the tumor survival pathways Akt and NF-kappa B are blocked by RhoB-GG, but not by RhoB-F, providing further support for the opposing role of RhoB-F and RhoB-GG in Ras malignant transformation in NIH-3T3 cells. In addition, both RhoB (F/GG) and RhoB-GG induce apoptosis in Ras-transformed NIH-3T3 cells whereas RhoB-F has no effect. Our data demonstrate that RhoB-F and RhoB-GG which differ only by a 5-carbon isoprene behave differently in rodent cells highlighting the important role of prenyl groups in protein function and emphasize the potency of RhoB to regulate negatively the oncogenic signal.
Collapse
Affiliation(s)
- Julien Mazières
- Département Innovation Thérapeutique et Oncologie Moléculaire, Centre de Physiopathologie Toulouse Purpan INSERM U563, Institut Claudius Regaud, 20-24 rue du Pont Saint-Pierre, 31052 Toulouse cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Current systemic cytotoxic therapies for cancer are limited by their nonspecific mechanism of action, unwanted toxicities on normal tissues and short-term efficacy due to the emergence of drug resistance. However, identification of the molecular abnormalities in cancer, in particular the key proteins involved in abnormal cell growth, has resulted in various signal transduction inhibitor drugs being developed as new treatment strategies against the disease. Protein farnesyltransferase inhibitors (FTIs) were originally designed to target the Ras signal transduction pathway, although it is now clear that several other intracellular proteins are dependent on post-translational farnesylation (addition of a 15-carbon farnesyl moiety) for their function. Preclinical data revealed that although FTIs inhibit the growth of ras-transformed cells, they are also potent inhibitors of a wide range of cancer cell lines, many of which contain wild type ras. While understanding the mechanism of action of FTIs remains an important research goal, three different FTIs have entered clinical development. Several Phase I trials with each drug have explored different schedules for prolonged administration, and dose-limiting toxicities (DLTs) have varied from myelosuppression, gastrointestinal toxicity and neuropathy. Evidence for anticancer efficacy has come from a number of Phase II studies, not necessarily in tumour types containing ras mutations, which were the initial target for these drugs. Perhaps the most promising use for FTIs will be in combination with conventional cytotoxic drugs, based on preclinical data suggesting synergy, particularly with the taxanes. Clinical combination studies are in progress, and larger Phase II/III clinical trials are planned to see if FTIs can add to the efficacy of conventional therapies.
Collapse
Affiliation(s)
- Julia E Head
- Section of Medicine, Institute of Cancer Research, Sutton, Surrey, SM2 5PT, UK
| | | |
Collapse
|
48
|
Affiliation(s)
- Alex A Adjei
- Division of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
49
|
Reid TS, Terry KL, Casey PJ, Beese LS. Crystallographic Analysis of CaaX Prenyltransferases Complexed with Substrates Defines Rules of Protein Substrate Selectivity. J Mol Biol 2004; 343:417-33. [PMID: 15451670 DOI: 10.1016/j.jmb.2004.08.056] [Citation(s) in RCA: 192] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Revised: 08/13/2004] [Accepted: 08/18/2004] [Indexed: 11/26/2022]
Abstract
Post-translational modifications are essential for the proper function of many proteins in the cell. The attachment of an isoprenoid lipid (a process termed prenylation) by protein farnesyltransferase (FTase) or geranylgeranyltransferase type I (GGTase-I) is essential for the function of many signal transduction proteins involved in growth, differentiation, and oncogenesis. FTase and GGTase-I (also called the CaaX prenyltransferases) recognize protein substrates with a C-terminal tetrapeptide recognition motif called the Ca1a2X box. These enzymes possess distinct but overlapping protein substrate specificity that is determined primarily by the sequence identity of the Ca1a2X motif. To determine how the identity of the Ca1a2X motif residues and sequence upstream of this motif affect substrate binding, we have solved crystal structures of FTase and GGTase-I complexed with a total of eight cognate and cross-reactive substrate peptides, including those derived from the C termini of the oncoproteins K-Ras4B, H-Ras and TC21. These structures suggest that all peptide substrates adopt a common binding mode in the FTase and GGTase-I active site. Unexpectedly, while the X residue of the Ca1a2X motif binds in the same location for all GGTase-I substrates, the X residue of FTase substrates can bind in one of two different sites. Together, these structures outline a series of rules that govern substrate peptide selectivity; these rules were utilized to classify known protein substrates of CaaX prenyltransferases and to generate a list of hypothetical substrates within the human genome.
Collapse
Affiliation(s)
- T Scott Reid
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
50
|
Kho Y, Kim SC, Jiang C, Barma D, Kwon SW, Cheng J, Jaunbergs J, Weinbaum C, Tamanoi F, Falck J, Zhao Y. A tagging-via-substrate technology for detection and proteomics of farnesylated proteins. Proc Natl Acad Sci U S A 2004; 101:12479-84. [PMID: 15308774 PMCID: PMC515085 DOI: 10.1073/pnas.0403413101] [Citation(s) in RCA: 264] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A recently developed proteomics strategy, designated tagging-via-substrate (TAS) approach, is described for the detection and proteomic analysis of farnesylated proteins. TAS technology involves metabolic incorporation of a synthetic azido-farnesyl analog and chemoselective derivatization of azido-farnesyl-modified proteins by an elegant version of Staudinger reaction, pioneered by the Bertozzi group, using a biotinylated phosphine capture reagent. The resulting protein conjugates can be specifically detected and/or affinity-purified by streptavidin-linked horseradish peroxidase or agarose beads, respectively. Thus, the technology enables global profiling of farnesylated proteins by enriching farnesylated proteins and reducing the complexity of farnesylation subproteome. Azido-farnesylated proteins maintain the properties of protein farnesylation, including promoting membrane association, Ras-dependent mitogen-activated protein kinase kinase activation, and inhibition of lovastatin-induced apoptosis. A proteomic analysis of farnesylated proteins by TAS technology revealed 18 farnesylated proteins, including those with potentially novel farnesylation motifs, suggesting that future use of this method is likely to yield novel insight into protein farnesylation. TAS technology can be extended to other posttranslational modifications, such as geranylgeranylation and myristoylation, thus providing powerful tools for detection, quantification, and proteomic analysis of posttranslationally modified proteins.
Collapse
Affiliation(s)
- Yoonjung Kho
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|