1
|
Ali A, Zhang Z, Gao T, Aleksic S, Gavathiotis E, Barzilai N, Milman S. Identification of functional rare coding variants in IGF-1 gene in humans with exceptional longevity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617885. [PMID: 39416202 PMCID: PMC11482895 DOI: 10.1101/2024.10.11.617885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Diminished signaling via insulin/insulin-like growth factor-1 (IGF-1) axis is associated with longevity in different model organisms. IGF-1 gene is highly conserved across species, with only few evolutionary changes identified in it. Despite its potential role in regulating lifespan, no coding variants in IGF-1 have been reported in human longevity cohorts to date. This study investigated the whole exome sequencing data from 2,487 individuals in a cohort of Ashkenazi Jewish centenarians, their offspring, and controls without familial longevity to identify functional IGF-1 coding variants. We identified two likely functional coding variants IGF-1:p.Ile91Leu and IGF-1:p.Ala118Thr in our longevity cohort. Notably, a centenarian specific novel variant IGF-1:p.Ile91Leu was located at the binding interface of IGF-1 - IGF-1R, whereas IGF-1:p.Ala118Thr was significantly associated with lower circulating levels of IGF-1. We performed extended all-atom molecular dynamics simulations to evaluate the impact of Ile91Leu on stability, binding dynamics and energetics of IGF-1 bound to IGF-1R. The IGF-1:p.Ile91Leu formed less stable interactions with IGF-1R's critical binding pocket residues and demonstrated lower binding affinity at the extracellular binding site compared to wild-type IGF-1. Our findings suggest that IGF-1:p.Ile91Leu and IGF-1:p.Ala118Thr variants attenuate IGF-1R activity by impairing IGF-1 binding and diminishing the circulatory levels of IGF-1, respectively. Consequently, diminished IGF-1 signaling resulting from these variants may contribute to exceptional longevity in humans.
Collapse
Affiliation(s)
- Amanat Ali
- Department of Medicine, Albert Einstein College of Medicine, NY, USA, 10461
- Institute for Aging Research and the Einstein-NSC, Albert Einstein College of Medicine, NY, USA, 10461
| | - Zhengdong Zhang
- Department of Genetics, Albert Einstein College of Medicine, NY, USA, 10461
- Institute for Aging Research and the Einstein-NSC, Albert Einstein College of Medicine, NY, USA, 10461
| | - Tina Gao
- Department of Medicine, Albert Einstein College of Medicine, NY, USA, 10461
- Institute for Aging Research and the Einstein-NSC, Albert Einstein College of Medicine, NY, USA, 10461
| | - Sandra Aleksic
- Department of Medicine, Albert Einstein College of Medicine, NY, USA, 10461
- Institute for Aging Research and the Einstein-NSC, Albert Einstein College of Medicine, NY, USA, 10461
| | - Evripidis Gavathiotis
- Department of Medicine, Albert Einstein College of Medicine, NY, USA, 10461
- Department of Biochemistry, Albert Einstein College of Medicine, NY, USA, 10461
- Institute for Aging Research and the Einstein-NSC, Albert Einstein College of Medicine, NY, USA, 10461
| | - Nir Barzilai
- Department of Medicine, Albert Einstein College of Medicine, NY, USA, 10461
- Department of Genetics, Albert Einstein College of Medicine, NY, USA, 10461
- Institute for Aging Research and the Einstein-NSC, Albert Einstein College of Medicine, NY, USA, 10461
| | - Sofiya Milman
- Department of Medicine, Albert Einstein College of Medicine, NY, USA, 10461
- Department of Genetics, Albert Einstein College of Medicine, NY, USA, 10461
- Institute for Aging Research and the Einstein-NSC, Albert Einstein College of Medicine, NY, USA, 10461
| |
Collapse
|
2
|
Nufer MI, Coates BS, Abel CA, O'Neill P, McCracken M, Jain D, Pierce CA, Glover J, Towles T, Reddy GVP, Perera OP. Anatomy of a pest control failure: introgression of cytochrome P450 337B3 alleles from invasive old-world bollworm into native corn earworm (Lepidoptera: Noctuidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:28. [PMID: 39348592 PMCID: PMC11441577 DOI: 10.1093/jisesa/ieae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/13/2024] [Accepted: 09/03/2024] [Indexed: 10/02/2024]
Abstract
The establishment of invasive species populations can threaten the ecological balance in naïve habitats and impact agricultural production practices. Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) (old-world bollworm, OWBW) and Helicoverpa zea (corn earworm, CEW) were geographically separated prior to the 2013 report of OWBW invasion into South America. Introgression of OWBW-specific cytochrome P450 337B3 (CYP337B3) gene into CEW was repeatedly detected across South America and the Caribbean. Two hybrids were documented from Texas in 2019. In this study, screening insects collected in Olathe, CO, USA, where a failure of pyrethroids to control CEW damage to conventional sweetcorn in 2023 detected 28.6% of insects with the OWBW-specific CYP337B3 marker. Nucleotide sequencing of the CYP337B3 gene identified 73.1% and 26.9% of insects carried CYP337B3v2 and CYP337B3v6 alleles, respectively, and 0.15 overall frequency of CYP337B3 alleles. Based on prior data for distinct phylogeographic origins of CYP337B3v2 and v6 alleles, our results indicate Olathe samples were derived from 2 different introductions: An uncertain source of the v6 allele that was initially reported in West Africa and possibly South American or Caribbean origin of the globally distributed v2 allele. One of the 1618 individuals screened also carried a ribosomal RNA internal transcribed spacer 1 derived from OWBW. Local selection pressures at the Olathe location imposed by repeated pyrethroid exposures are likely attributed to the prevalence of CYP337B3, where control practices hasten the accumulation of phenotypic resistance by adaptive introgression. Pyrethroid and other resistance factors carried by invasive OWBW may continue to impact CEW management tactics across the Americas.
Collapse
Affiliation(s)
- Marissa I Nufer
- Southern Insect Management Research Unit, USDA ARS, Stoneville, MS, USA
| | - Brad S Coates
- Corn Insects & Crop Genetics Research Unit, Science II, USDA-ARS, Ames, IA, USA
| | - Craig A Abel
- Corn Insects & Crop Genetics Research Unit, Science II, USDA-ARS, Ames, IA, USA
| | | | | | - Devendra Jain
- Southern Insect Management Research Unit, USDA ARS, Stoneville, MS, USA
- Department of Molecular Biology and Biotechnology, Maharana Pratap University for Agriculture and Technology, Udaipur, India
| | - Calvin A Pierce
- Southern Insect Management Research Unit, USDA ARS, Stoneville, MS, USA
| | - James Glover
- Southern Insect Management Research Unit, USDA ARS, Stoneville, MS, USA
| | - Tyler Towles
- Delta Research and Extension Center, Mississippi State University, Stoneville, MS, USA
| | - Gadi V P Reddy
- Southern Insect Management Research Unit, USDA ARS, Stoneville, MS, USA
| | | |
Collapse
|
3
|
Wiman E, Zattarin E, Aili D, Bengtsson T, Selegård R, Khalaf H. Development of novel broad-spectrum antimicrobial lipopeptides derived from plantaricin NC8 β. Sci Rep 2023; 13:4104. [PMID: 36914718 PMCID: PMC10011573 DOI: 10.1038/s41598-023-31185-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Bacterial resistance towards antibiotics is a major global health issue. Very few novel antimicrobial agents and therapies have been made available for clinical use during the past decades, despite an increasing need. Antimicrobial peptides have been intensely studied, many of which have shown great promise in vitro. We have previously demonstrated that the bacteriocin Plantaricin NC8 αβ (PLNC8 αβ) from Lactobacillus plantarum effectively inhibits Staphylococcus spp., and shows little to no cytotoxicity towards human keratinocytes. However, due to its limitations in inhibiting gram-negative species, the aim of the present study was to identify novel antimicrobial peptidomimetic compounds with an enhanced spectrum of activity, derived from the β peptide of PLNC8 αβ. We have rationally designed and synthesized a small library of lipopeptides with significantly improved antimicrobial activity towards both gram-positive and gram-negative bacteria, including the ESKAPE pathogens. The lipopeptides consist of 16 amino acids with a terminal fatty acid chain and assemble into micelles that effectively inhibit and kill bacteria by permeabilizing their cell membranes. They demonstrate low hemolytic activity and liposome model systems further confirm selectivity for bacterial lipid membranes. The combination of lipopeptides with different antibiotics enhanced the effects in a synergistic or additive manner. Our data suggest that the novel lipopeptides are promising as future antimicrobial agents, however additional experiments using relevant animal models are necessary to further validate their in vivo efficacy.
Collapse
Affiliation(s)
- Emanuel Wiman
- School of Medical Sciences, Faculty of Medicine and Health, Department of Microbiology, Immunology and Reproductive Science, Örebro University, Örebro, Sweden
| | - Elisa Zattarin
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - Daniel Aili
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - Torbjörn Bengtsson
- School of Medical Sciences, Faculty of Medicine and Health, Department of Microbiology, Immunology and Reproductive Science, Örebro University, Örebro, Sweden
| | - Robert Selegård
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden.
| | - Hazem Khalaf
- School of Medical Sciences, Faculty of Medicine and Health, Department of Microbiology, Immunology and Reproductive Science, Örebro University, Örebro, Sweden.
| |
Collapse
|
4
|
Hogan V, Johnson WE. Unique Structure and Distinctive Properties of the Ancient and Ubiquitous Gamma-Type Envelope Glycoprotein. Viruses 2023; 15:v15020274. [PMID: 36851488 PMCID: PMC9967133 DOI: 10.3390/v15020274] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
After the onset of the AIDS pandemic, HIV-1 (genus Lentivirus) became the predominant model for studying retrovirus Env glycoproteins and their role in entry. However, HIV Env is an inadequate model for understanding entry of viruses in the Alpharetrovirus, Gammaretrovirus and Deltaretrovirus genera. For example, oncogenic model system viruses such as Rous sarcoma virus (RSV, Alpharetrovirus), murine leukemia virus (MLV, Gammaretrovirus) and human T-cell leukemia viruses (HTLV-I and HTLV-II, Deltaretrovirus) encode Envs that are structurally and functionally distinct from HIV Env. We refer to these as Gamma-type Envs. Gamma-type Envs are probably the most widespread retroviral Envs in nature. They are found in exogenous and endogenous retroviruses representing a broad spectrum of vertebrate hosts including amphibians, birds, reptiles, mammals and fish. In endogenous form, gamma-type Envs have been evolutionarily coopted numerous times, most notably as placental syncytins (e.g., human SYNC1 and SYNC2). Remarkably, gamma-type Envs are also found outside of the Retroviridae. Gp2 proteins of filoviruses (e.g., Ebolavirus) and snake arenaviruses in the genus Reptarenavirus are gamma-type Env homologs, products of ancient recombination events involving viruses of different Baltimore classes. Distinctive hallmarks of gamma-type Envs include a labile disulfide bond linking the surface and transmembrane subunits, a multi-stage attachment and fusion mechanism, a highly conserved (but poorly understood) "immunosuppressive domain", and activation by the viral protease during virion maturation. Here, we synthesize work from diverse retrovirus model systems to illustrate these distinctive properties and to highlight avenues for further exploration of gamma-type Env structure and function.
Collapse
|
5
|
Gadush MV, Sautto GA, Chandrasekaran H, Bensussan A, Ross TM, Ippolito GC, Person MD. Template-Assisted De Novo Sequencing of SARS-CoV-2 and Influenza Monoclonal Antibodies by Mass Spectrometry. J Proteome Res 2022; 21:1616-1627. [PMID: 35653804 DOI: 10.1021/acs.jproteome.1c00913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we used multiple enzyme digestions, coupled with higher-energy collisional dissociation (HCD) and electron-transfer/higher-energy collision dissociation (EThcD) fragmentation to develop a mass-spectrometric (MS) method for determining the complete protein sequence of monoclonal antibodies (mAbs). The method was refined on an mAb of a known sequence, a SARS-CoV-1 antireceptor binding domain (RBD) spike monoclonal antibody. The data were searched using Supernovo to generate a complete template-assisted de novo sequence for this and two SARS-CoV-2 mAbs of known sequences resulting in correct sequences for the variable regions and correct distinction of Ile and Leu residues. We then used the method on a set of 25 antihemagglutinin (HA) influenza antibodies of unknown sequences and determined high confidence sequences for >99% of the complementarity determining regions (CDRs). The heavy-chain and light-chain genes were cloned and transfected into cells for recombinant expression followed by affinity purification. The recombinant mAbs displayed binding curves matching the original mAbs with specificity to the HA influenza antigen. Our findings indicate that this methodology results in almost complete antibody sequence coverage with high confidence results for CDR regions on diverse mAb sequences.
Collapse
Affiliation(s)
- Michelle V Gadush
- Center for Biomedical Research Support, Biological Mass Spectrometry Facility, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Giuseppe A Sautto
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia 30602, United States
| | - Hamssika Chandrasekaran
- Center for Biomedical Research Support, Biological Mass Spectrometry Facility, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Alena Bensussan
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia 30602, United States.,Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, United States
| | - Gregory C Ippolito
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Maria D Person
- Center for Biomedical Research Support, Biological Mass Spectrometry Facility, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
6
|
Domingo E, García-Crespo C, Perales C. Historical Perspective on the Discovery of the Quasispecies Concept. Annu Rev Virol 2021; 8:51-72. [PMID: 34586874 DOI: 10.1146/annurev-virology-091919-105900] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viral quasispecies are dynamic distributions of nonidentical but closely related mutant and recombinant viral genomes subjected to a continuous process of genetic variation, competition, and selection that may act as a unit of selection. The quasispecies concept owes its theoretical origins to a model for the origin of life as a collection of mutant RNA replicators. Independently, experimental evidence for the quasispecies concept was obtained from sampling of bacteriophage clones, which revealed that the viral populations consisted of many mutant genomes whose frequency varied with time of replication. Similar findings were made in animal and plant RNA viruses. Quasispecies became a theoretical framework to understand viral population dynamics and adaptability. The evidence came at a time when mutations were considered rare events in genetics, a perception that was to change dramatically in subsequent decades. Indeed, viral quasispecies was the conceptual forefront of a remarkable degree of biological diversity, now evident for cell populations and organisms, not only for viruses. Quasispecies dynamics unveiled complexities in the behavior of viral populations,with consequences for disease mechanisms and control strategies. This review addresses the origin of the quasispecies concept, its major implications on both viral evolution and antiviral strategies, and current and future prospects.
Collapse
Affiliation(s)
- Esteban Domingo
- Department of Interactions with the Environment, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carlos García-Crespo
- Department of Interactions with the Environment, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
| | - Celia Perales
- Department of Interactions with the Environment, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029 Madrid, Spain.,Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| |
Collapse
|
7
|
Kambakam S, Ngaki MN, Sahu BB, Kandel DR, Singh P, Sumit R, Swaminathan S, Muliyar-Krishna R, Bhattacharyya MK. Arabidopsis non-host resistance PSS30 gene enhances broad-spectrum disease resistance in the soybean cultivar Williams 82. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1432-1446. [PMID: 34171147 DOI: 10.1111/tpj.15392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 06/03/2021] [Accepted: 06/19/2021] [Indexed: 05/27/2023]
Abstract
Non-host resistance (NHR), which protects all members of a plant species from non-adapted or non-host plant pathogens, is the most common form of plant immunity. NHR provides the most durable and robust form of broad-spectrum immunity against non-adaptive pathogens pathogenic to other crop species. In a mutant screen for loss of Arabidopsis (Arabidopsis thaliana) NHR against the soybean (Glycine max (L.) Merr.) pathogen Phytophthora sojae, the Phytophthora sojae-susceptible 30 (pss30) mutant was identified. The pss30 mutant is also susceptible to the soybean pathogen Fusarium virguliforme. PSS30 encodes a folate transporter, AtFOLT1, which was previously localized to chloroplasts and implicated in the transport of folate from the cytosol to plastids. We show that two Arabidopsis folate biosynthesis mutants with reduced folate levels exhibit a loss of non-host immunity against P. sojae. As compared to the wild-type Col-0 ecotype, the steady-state folate levels are reduced in the pss1, atfolt1 and two folate biosynthesis mutants, suggesting that folate is required for non-host immunity. Overexpression of AtFOLT1 enhances immunity of transgenic soybean lines against two serious soybean pathogens, the fungal pathogen F. virguliforme and the soybean cyst nematode (SCN) Heterodera glycines. Transgenic lines showing enhanced SCN resistance also showed increased levels of folate accumulation. This study thus suggests that folate contributes to non-host plant immunity and that overexpression of a non-host resistance gene could be a suitable strategy for generating broad-spectrum disease resistance in crop plants.
Collapse
Affiliation(s)
- Sekhar Kambakam
- Department of Agronomy, Iowa State University, Ames, 50011, USA
| | | | - Binod B Sahu
- Department of Agronomy, Iowa State University, Ames, 50011, USA
| | - Devi R Kandel
- Department of Agronomy, Iowa State University, Ames, 50011, USA
| | - Prashant Singh
- Department of Agronomy, Iowa State University, Ames, 50011, USA
| | - Rishi Sumit
- Department of Agronomy, Iowa State University, Ames, 50011, USA
| | | | | | | |
Collapse
|
8
|
Moyer TB, Parsley NC, Sadecki PW, Schug WJ, Hicks LM. Leveraging orthogonal mass spectrometry based strategies for comprehensive sequencing and characterization of ribosomal antimicrobial peptide natural products. Nat Prod Rep 2021; 38:489-509. [PMID: 32929442 PMCID: PMC7956910 DOI: 10.1039/d0np00046a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: Up to July 2020Ribosomal antimicrobial peptide (AMP) natural products, also known as ribosomally synthesized and post-translationally modified peptides (RiPPs) or host defense peptides, demonstrate potent bioactivities and impressive complexity that complicate molecular and biological characterization. Tandem mass spectrometry (MS) has rapidly accelerated bioactive peptide sequencing efforts, yet standard workflows insufficiently address intrinsic AMP diversity. Herein, orthogonal approaches to accelerate comprehensive and accurate molecular characterization without the need for prior isolation are reviewed. Chemical derivatization, proteolysis (enzymatic and chemical cleavage), multistage MS fragmentation, and separation (liquid chromatography and ion mobility) strategies can provide complementary amino acid composition and post-translational modification data to constrain sequence solutions. Examination of two complex case studies, gomesin and styelin D, highlights the practical implementation of the proposed approaches. Finally, we emphasize the importance of heterogeneous AMP peptidoforms that confer varying biological function, an area that warrants significant further development.
Collapse
Affiliation(s)
- Tessa B Moyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | | | | | | | | |
Collapse
|
9
|
A unique variant of lymphocytic choriomeningitis virus that induces pheromone binding protein MUP: Critical role for CTL. Proc Natl Acad Sci U S A 2019; 116:18001-18008. [PMID: 31427525 DOI: 10.1073/pnas.1907070116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lymphocytic choriomeningitis virus (LCMV) WE variant 2.2 (v2.2) generated a high level of the major mouse urinary protein: MUP. Mice infected with LCMV WE v54, which differed from v2.2 by a single amino acid in the viral glycoprotein, failed to generate MUP above baseline levels found in uninfected controls. Variant 54 bound at 2.5 logs higher affinity to the LCMV receptor α-dystroglycan (α-DG) than v2.2 and entered α-DG-expressing but not α-DG-null cells. Variant 2.2 infected both α-DG-null or -expressing cells. Variant 54 infected more dendritic cells, generated a negligible CD8 T cell response, and caused a persistent infection, while v2.2 generated cytotoxic T lymphocytes (CTLs) and cleared virus within 10 days. By 20 days postinfection and through the 80-day observation period, significantly higher amounts of MUP were found in v2.2-infected mice. Production of MUP was dependent on virus-specific CTL as deletion of such cells aborted MUP production. Furthermore, MUP production was not elevated in v2.2 persistently infected mice unless virus was cleared following transfer of virus-specific CTL.
Collapse
|
10
|
Bagal D, Kast E, Cao P. Rapid Distinction of Leucine and Isoleucine in Monoclonal Antibodies Using Nanoflow LCMSn. Anal Chem 2016; 89:720-727. [DOI: 10.1021/acs.analchem.6b03261] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dhanashri Bagal
- Discovery Attribute Sciences, Amgen, South San
Francisco, California 94080, United States
| | - Eddie Kast
- Discovery Attribute Sciences, Amgen, South San
Francisco, California 94080, United States
| | - Ping Cao
- Discovery Attribute Sciences, Amgen, South San
Francisco, California 94080, United States
| |
Collapse
|
11
|
Poston CN, Higgs RE, You J, Gelfanova V, Hale JE, Knierman MD, Siegel R, Gutierrez JA. A quantitative tool to distinguish isobaric leucine and isoleucine residues for mass spectrometry-based de novo monoclonal antibody sequencing. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1228-1236. [PMID: 24845350 DOI: 10.1007/s13361-014-0892-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/05/2014] [Accepted: 03/10/2014] [Indexed: 06/03/2023]
Abstract
De novo sequencing by mass spectrometry (MS) allows for the determination of the complete amino acid (AA) sequence of a given protein based on the mass difference of detected ions from MS/MS fragmentation spectra. The technique relies on obtaining specific masses that can be attributed to characteristic theoretical masses of AAs. A major limitation of de novo sequencing by MS is the inability to distinguish between the isobaric residues leucine (Leu) and isoleucine (Ile). Incorrect identification of Ile as Leu or vice versa often results in loss of activity in recombinant antibodies. This functional ambiguity is commonly resolved with costly and time-consuming AA mutation and peptide sequencing experiments. Here, we describe a set of orthogonal biochemical protocols, which experimentally determine the identity of Ile or Leu residues in monoclonal antibodies (mAb) based on the selectivity that leucine aminopeptidase shows for n-terminal Leu residues and the cleavage preference for Leu by chymotrypsin. The resulting observations are combined with germline frequencies and incorporated into a logistic regression model, called Predictor for Xle Sites (PXleS) to provide a statistical likelihood for the identity of Leu at an ambiguous site. We demonstrate that PXleS can generate a probability for an Xle site in mAbs with 96% accuracy. The implementation of PXleS precludes the expression of several possible sequences and, therefore, reduces the overall time and resources required to go from spectra generation to a biologically active sequence for a mAb when an Ile or Leu residue is in question.
Collapse
Affiliation(s)
- Chloe N Poston
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Enveloped viruses penetrate their cell targets following the merging of their membrane with that of the cell. This fusion process is catalyzed by one or several viral glycoproteins incorporated on the membrane of the virus. These envelope glycoproteins (EnvGP) evolved in order to combine two features. First, they acquired a domain to bind to a specific cellular protein, named "receptor." Second, they developed, with the help of cellular proteins, a function of finely controlled fusion to optimize the replication and preserve the integrity of the cell, specific to the genus of the virus. Following the activation of the EnvGP either by binding to their receptors and/or sometimes the acid pH of the endosomes, many changes of conformation permit ultimately the action of a specific hydrophobic domain, the fusion peptide, which destabilizes the cell membrane and leads to the opening of the lipidic membrane. The comprehension of these mechanisms is essential to develop medicines of the therapeutic class of entry inhibitor like enfuvirtide (Fuzeon) against human immunodeficiency virus (HIV). In this chapter, we will summarize the different envelope glycoprotein structures that viruses develop to achieve membrane fusion and the entry of the virus. We will describe the different entry pathways and cellular proteins that viruses have subverted to allow infection of the cell and the receptors that are used. Finally, we will illustrate more precisely the recent discoveries that have been made within the field of the entry process, with a focus on the use of pseudoparticles. These pseudoparticles are suitable for high-throughput screenings that help in the development of natural or artificial inhibitors as new therapeutics of the class of entry inhibitors.
Collapse
Affiliation(s)
- François-Loic Cosset
- Université de Lyon, UCB-Lyon1, IFR128, Lyon, France,INSERM, U758, Lyon, France,Ecole Normale Supérieure de Lyon, Lyon, France
| | - Dimitri Lavillette
- Université de Lyon, UCB-Lyon1, IFR128, Lyon, France,INSERM, U758, Lyon, France,Ecole Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
13
|
Keriel A, Mahuteau-Betzer F, Jacquet C, Plays M, Grierson D, Sitbon M, Tazi J. Protection against retrovirus pathogenesis by SR protein inhibitors. PLoS One 2009; 4:e4533. [PMID: 19225570 PMCID: PMC2640060 DOI: 10.1371/journal.pone.0004533] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 12/12/2008] [Indexed: 11/18/2022] Open
Abstract
Indole derivatives compounds (IDC) are a new class of splicing inhibitors that have a selective action on exonic splicing enhancers (ESE)-dependent activity of individual serine-arginine-rich (SR) proteins. Some of these molecules have been shown to compromise assembly of HIV infectious particles in cell cultures by interfering with the activity of the SR protein SF2/ASF and by subsequently suppressing production of splicing-dependent retroviral accessory proteins. For all replication-competent retroviruses, a limiting requirement for infection and pathogenesis is the expression of the envelope glycoprotein which strictly depends on the host splicing machinery. Here, we have evaluated the efficiency of IDC on an animal model of retroviral pathogenesis using a fully replication-competent retrovirus. In this model, all newborn mice infected with a fully replicative murine leukemia virus (MLV) develop erythroleukemia within 6 to 8 weeks of age. We tested several IDC for their ability to interfere ex vivo with MLV splicing and virus spreading as well as for their protective effect in vivo. We show here that two of these IDC, IDC13 and IDC78, selectively altered splicing-dependent production of the retroviral envelope gene, thus inhibiting early viral replication in vivo, sufficiently to protect mice from MLV-induced pathogenesis. The apparent specificity and clinical safety observed here for both IDC13 and IDC78 strongly support further assessment of inhibitors of SR protein splicing factors as a new class of antiretroviral therapeutic agents.
Collapse
Affiliation(s)
- Anne Keriel
- Université Montpellier 2 Université Montpellier 1 CNRS, Institut de Génétique Moléculaire de Montpellier (IGMM), UMR5535, IFR122, Montpellier, France
| | - Florence Mahuteau-Betzer
- Laboratoire de Pharmaco-chimie, CNRS-Institut Curie, UMR 176 Bat 110 Centre Universitaire, Orsay, France
| | - Chantal Jacquet
- Université Montpellier 2 Université Montpellier 1 CNRS, Institut de Génétique Moléculaire de Montpellier (IGMM), UMR5535, IFR122, Montpellier, France
| | - Marc Plays
- Université Montpellier 2 Université Montpellier 1 CNRS, Institut de Génétique Moléculaire de Montpellier (IGMM), UMR5535, IFR122, Montpellier, France
| | - David Grierson
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marc Sitbon
- Université Montpellier 2 Université Montpellier 1 CNRS, Institut de Génétique Moléculaire de Montpellier (IGMM), UMR5535, IFR122, Montpellier, France
- * E-mail: (MS); (JT)
| | - Jamal Tazi
- Université Montpellier 2 Université Montpellier 1 CNRS, Institut de Génétique Moléculaire de Montpellier (IGMM), UMR5535, IFR122, Montpellier, France
- * E-mail: (MS); (JT)
| |
Collapse
|
14
|
Abstract
The characterization of virulence determinants of pathogenic agents is of utmost relevance for the design of disease control strategies. So far, two classes of virulence determinants have been characterized for viral populations: those imprinted in the nucleotide sequence of some specific genomic regions and those that depend on the complexity of the viral population as such. Here we provide evidence of a virulence determinant that depends neither on a genomic sequence nor on detectable differences in population complexity. Foot-and-mouth disease virus is lethal for C57BL/6 mice showing the highest viral load in pancreas. Virus isolated from pancreas after one passage in mice showed an attenuated phenotype, with no lethality even at the highest dose tested. By contrast, virus from sera of the same mice displayed a virulence similar to that of the parental wild-type clone and virus isolated from spleen displayed an intermediate phenotype. However, viral populations from pancreas, spleen, and serum showed indistinguishable consensus genomic nucleotide sequences and mutant spectrum complexities, as quantified according to the mutation frequencies of both entire genomic nucleotide sequences of biological clones. The results show that the populations with differing virulences cannot be distinguished either by the consensus sequence or by the average complexity of the mutant spectrum. Differential harvesting of virus generated by cell transfection of RNA from serum and pancreas failed to reveal genetic differences between subpopulations endowed with differing virulences. In addition to providing evidence of hidden virulence determinants, this study underlines the capacity of a clone of an RNA virus to rapidly diversify phenotypically in vivo.
Collapse
|
15
|
Takayama-Ito M, Ito N, Yamada K, Sugiyama M, Minamoto N. Multiple amino acids in the glycoprotein of rabies virus are responsible for pathogenicity in adult mice. Virus Res 2006; 115:169-75. [PMID: 16188341 DOI: 10.1016/j.virusres.2005.08.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 08/15/2005] [Accepted: 08/15/2005] [Indexed: 11/18/2022]
Abstract
We have reported that the region between amino acids 164 and 303 in the glycoprotein of rabies Nishigahara strain is important for lethality in adult mice. The region contains nine amino acid substitutions between the virulent Nishigahara and the avirulent RC-HL strains. In order to determine key residues for the pathogenicity, two chimeric strains and seven mutants were generated and examined for pathogenicities. The R(G 242/255/268) strain, in which amino acids at positions 242, 255, and 268 were replaced by those from the Nishigahara strain in the genomic backbone of the RC-HL strain, showed the same lethality as that of the Nishigahara strain in mice. Mutants in which one or two of these three amino acids were replaced by those from the Nishigahara strain did not revert to the lethality of the R(G 242/255/268) strain. These results demonstrate that at least these three amino acids are related to enhancement of pathogenicity. It is thought that multiple amino acids of the G protein are related to the pathogenicity of rabies viruses.
Collapse
|
16
|
Manel N, Battini JL, Sitbon M. Human T Cell Leukemia Virus Envelope Binding and Virus Entry Are Mediated by Distinct Domains of the Glucose Transporter GLUT1. J Biol Chem 2005; 280:29025-9. [PMID: 15955807 DOI: 10.1074/jbc.m504549200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The glucose transporter GLUT1, a member of the multimembrane-spanning facilitative nutrient transporter family, serves as a receptor for human T cell leukemia virus (HTLV) infection. Here, we show that the 7 amino acids of the extracellular loop 6 of GLUT1 (ECL6) placed in the context of the related GLUT3 transporter were sufficient for HTLV envelope binding. Glutamate residue 426 in ECL6 was identified as critical for binding. However, binding to ECL6 was not sufficient for HTLV envelope-driven infection. Infection required two additional determinants located in ECL1 and ECL5, which otherwise did not influence HTLV envelope binding. Moreover the single N-glycosylation chain located in ECL1 was not required for HTLV infection. Therefore, binding involves a discrete determinant in the carboxyl terminal ECL6, whereas post-binding events engage extracellular sequences in the amino and carboxyl terminus of GLUT1.
Collapse
Affiliation(s)
- Nicolas Manel
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, IFR 122, 1919 route de Mende, F-34293 Montpellier Cedex 5, France
| | | | | |
Collapse
|
17
|
Kim FJ, Manel N, Garrido EN, Valle C, Sitbon M, Battini JL. HTLV-1 and -2 envelope SU subdomains and critical determinants in receptor binding. Retrovirology 2004; 1:41. [PMID: 15575958 PMCID: PMC539286 DOI: 10.1186/1742-4690-1-41] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Accepted: 12/02/2004] [Indexed: 01/14/2023] Open
Abstract
Background Human T-cell leukemia virus (HTLV) -1 and -2 are deltaretroviruses that infect a wide range of cells. Glut1, the major vertebrate glucose transporter, has been shown to be the HTLV Env receptor. While it is well established that the extracellular surface component (SU) of the HTLV envelope glycoprotein (Env) harbors all of the determinants of interaction with the receptor, identification of SU subdomains that are necessary and sufficient for interaction with the receptor, as well as critical amino acids therein, remain to be precisely defined. Although highly divergent in the rest of their genomes, HTLV and murine leukemia virus (MLV) Env appear to be related and based on homologous motifs between the HTLV and MLV SU, we derived chimeric HTLV/MLV Env and soluble HTLV-1 and -2 truncated amino terminal SU subdomains. Results Using these SU constructs, we found that the 183 and 178 amino terminal residues of the HTLV-1 and -2 Env, respectively, were sufficient to efficiently bind target cells of different species. Binding resulted from bona fide interaction with the HTLV receptor as isolated SU subdomains specifically interfered with HTLV Env-mediated binding, cell fusion, and cell-free as well as cell-to-cell infection. Therefore, the HTLV receptor-binding domain (RBD) lies in the amino terminus of the SU, immediately upstream of a central immunodominant proline rich region (Env residues 180 to 205), that we show to be dispensible for receptor-binding and interference. Moreover, we identified a highly conserved tyrosine residue at position 114 of HTLV-1 Env, Tyr114, as critical for receptor-binding and subsequent interference to cell-to-cell fusion and infection. Finally, we observed that residues in the vicinity of Tyr114 have lesser impact on receptor binding and had various efficiency in interference to post-binding events. Conclusions The first 160 residues of the HTLV-1 and -2 mature cleaved SU fold as autonomous domains that contain all the determinants required for binding the HTLV receptor.
Collapse
Affiliation(s)
- Felix J Kim
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS-UMR5535, IFR122 1919 Rte de Mende, F-34293 Montpellier Cedex 5, France
- Current address: Memorial Sloan-Kettering Cancer Center 1275 York Ave, New York, NY, 10021, USA
| | - Nicolas Manel
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS-UMR5535, IFR122 1919 Rte de Mende, F-34293 Montpellier Cedex 5, France
| | - Edith N Garrido
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS-UMR5535, IFR122 1919 Rte de Mende, F-34293 Montpellier Cedex 5, France
| | - Carine Valle
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS-UMR5535, IFR122 1919 Rte de Mende, F-34293 Montpellier Cedex 5, France
| | - Marc Sitbon
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS-UMR5535, IFR122 1919 Rte de Mende, F-34293 Montpellier Cedex 5, France
| | - Jean-Luc Battini
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS-UMR5535, IFR122 1919 Rte de Mende, F-34293 Montpellier Cedex 5, France
| |
Collapse
|
18
|
Beasley DWC, Davis CT, Guzman H, Vanlandingham DL, Travassos da Rosa APA, Parsons RE, Higgs S, Tesh RB, Barrett ADT. Limited evolution of West Nile virus has occurred during its southwesterly spread in the United States. Virology 2003; 309:190-5. [PMID: 12758166 DOI: 10.1016/s0042-6822(03)00150-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Analysis of partial nucleotide sequences of nine West Nile virus strains isolated in southeast Texas during June-August 2002 revealed a maximum of 0.35% nucleotide variation from a New York 1999 strain. Two sequence subtypes were identified that differed from each other by approximately 0.5%, suggesting multiple introductions of virus to this area. Analysis of sequences from cloned PCR products for one strain revealed up to 0.6% divergence from the consensus sequence at the subpopulation level. The presence of unique patterns of small numbers of mutations in North American West Nile strains studied to date may suggest the absence of a strong selective pressure to drive the emergence of dominant variants.
Collapse
Affiliation(s)
- David W C Beasley
- WHO Collaborating Center for Tropical Diseases, Galveston, TX 77555-0609, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kim FJ, Seiliez I, Denesvre C, Lavillette D, Cosset FL, Sitbon M. Definition of an amino-terminal domain of the human T-cell leukemia virus type 1 envelope surface unit that extends the fusogenic range of an ecotropic murine leukemia virus. J Biol Chem 2000; 275:23417-20. [PMID: 10851227 DOI: 10.1074/jbc.c901002199] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Murine leukemia viruses (MuLV) and human T-cell leukemia viruses (HTLV) are phylogenetically highly divergent retroviruses with distinct envelope fusion properties. The MuLV envelope glycoprotein surface unit (SU) comprises a receptor-binding domain followed by a proline-rich region which modulates envelope conformational changes and fusogenicity. In contrast, the receptor-binding domain and SU organization of HTLV are undefined. Here, we describe an HTLV/MuLV envelope chimera in which the receptor-binding domain and proline-rich region of the ecotropic MuLV were replaced with the potentially corresponding domains of the HTLV-1 SU. This chimeric HTLV/MuLV envelope was processed, specifically interfered with HTLV-1 envelope-mediated fusion, and similar to MuLV envelopes, required cleavage of its cytoplasmic tail to exert significant fusogenic properties. Furthermore, the HTLV domain defined here broadened ecotropic MuLV envelope-induced fusion to human and simian cell lines.
Collapse
Affiliation(s)
- F J Kim
- Institut de Génétique Moléculaire de Montpellier, IFR24, CNRS-UMR5535, Paris, France
| | | | | | | | | | | |
Collapse
|
20
|
O'Reilly L, Roth MJ. Second-site changes affect viability of amphotropic/ecotropic chimeric enveloped murine leukemia viruses. J Virol 2000; 74:899-913. [PMID: 10623753 PMCID: PMC111611 DOI: 10.1128/jvi.74.2.899-913.2000] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chimeras were previously generated between the ecotropic (Moloney-MuLV) and amphotropic (4070A) SU and TM proteins of murine leukemia virus (MuLV). After passage in D17 cells, three chimeras with junctions in the C terminus of SU (AE5, AE6, and AE7), showed improved kinetics of viral spreading, suggesting that they had adapted. Sequencing of the viruses derived from the D17 cell lines revealed second-site changes within the env gene. Changes were detected in the receptor binding domain, the proline-rich region, the C terminus of SU, and the ectodomain of TM. Second-site changes were subcloned into the parental DNA, singly and in combination, and tested for viability. All viruses had maintained their original cloned mutations and junctions. Reconstruction and passage of AE7 or AE6 virus with single point mutations recovered the additional second-site changes identified in the parental population. The AE5 isolate required changes in the VRA, the VRC, the VRB-hinge region, and the C terminus of SU for efficient infection. Passage of virus, including the parental 4070A, in D17 cells resulted in a predominant G100R mutation within the receptor binding domain. Viruses were subjected to titer determination in three cell types, NIH 3T3, canine D17, and 293T. AE6 viruses with changes in the proline-rich region initially adapted for growth on D17 cells could infect all cell types tested. AE6-based chimeras with additional mutations in the C terminus of SU could infect D17 and 293T cells. Infection of NIH 3T3 cells was dependent on the proline-rich mutation. AE7-based chimeras encoding L538Q and G100R were impaired in infecting NIH 3T3 and 293T cells.
Collapse
Affiliation(s)
- L O'Reilly
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
21
|
Opstelten DJ, Wallin M, Garoff H. Moloney murine leukemia virus envelope protein subunits, gp70 and Pr15E, form a stable disulfide-linked complex. J Virol 1998; 72:6537-45. [PMID: 9658097 PMCID: PMC109824 DOI: 10.1128/jvi.72.8.6537-6545.1998] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The nature and stability of the interactions between the gp70 and Pr15E/p15E molecules of murine leukemia virus (MLV) have been disputed extensively. To resolve this controversy, we have performed quantitative biochemical analyses on gp70-Pr15E complexes formed after independent expression of the amphotropic and ecotropic Moloney MLV env genes in BHK-21 cells. We found that all cell-associated gp70 molecules are disulfide linked to Pr15E whereas only a small amount of free gp70 is released by the cells. The complexes were resistant to treatment with reducing agents in vivo, indicating that the presence and stability of the disulfide interaction between gp70 and Pr15E are not dependent on the cellular redox state. However, disulfide-bonded Env complexes were disrupted in lysates of nonalkylated cells in a time-, temperature-, and pH-dependent fashion. Disruption seemed not to be caused by a cellular factor but is probably due to a thiol-disulfide exchange reaction occurring within the Env complex after solubilization. The possibility that alkylating agents induce the formation of the intersubunit disulfide linkage was excluded by showing that disulfide-linked gp70-Pr15E complexes exist in freshly made lysates of nonalkylated cells and that disruption of the complexes can be prevented by lowering the pH. Together, these data establish that gp70 and Pr15E form a stable disulfide-linked complex in vivo.
Collapse
Affiliation(s)
- D J Opstelten
- Department for Biosciences at Novum, Karolinska Institute, S-141 57 Huddinge, Sweden.
| | | | | |
Collapse
|
22
|
Dai HY, Troseth GI, Gunleksrud M, Bruland T, Solberg LA, Aarset H, Kristiansen LI, Dalen A. Identification of genetic determinants responsible for the rapid immunosuppressive activity and the low leukemogenic potential of a variant of Friend leukemia virus, FIS-2. J Virol 1998; 72:1244-51. [PMID: 9445024 PMCID: PMC124602 DOI: 10.1128/jvi.72.2.1244-1251.1998] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
An immunosuppressive variant of Friend murine leukemia virus (F-MuLV), FIS-2, induces suppression of the primary antibody response against sheep erythrocytes (SRBC) in adult NMRI mice more efficiently than the prototype F-MuLV clone 57 (cl.57). It is, however, less potent than F-MuLV cl.57 in inducing erythroleukemia upon inoculation into newborn NMRI mice. Nucleotide sequence analysis shows a high degree of homology between the two viruses. Single point mutations are scattered over both the gag and the env encoding regions. The most notable mutations are the deletion of one direct repeat and a few single point mutations occurring in the binding sites for cellular transcriptional factors in the FIS-2 long terminal repeat region (LTR). To define the genetic determinants responsible for the pathogenic properties of FIS-2, we constructed six chimeras between FIS-2 and F-MuLV cl.57. Adult mice were infected with the chimeras, and their primary antibody responses against SRBC were investigated. The results showed that the fragment encompassing the FIS-2 env encoding region SU is responsible for the increased immunosuppressive activity in adult mice. A leukemogenicity assay was also performed by infecting newborn mice with the chimeras. Consistent with the previous studies, it showed that the deletion of one direct repeat in the FIS-2 LTR is responsible for the long latent period of erythroleukemia induced by FIS-2 in newborn-inoculated mice. However, studies of cell type-specific transcriptional activities of FIS-2 and F-MuLV cl.57 LTRs using LTR-chloramphenicol acetyltransferase constructs showed that the deletion of one direct repeat does not reduce the transcriptional activity of the FIS-2 LTR. The activity is either comparable to or higher than the transcriptional activity of the F-MuLV cl.57 LTR in the different cell lines that we used, even in an erythroleukemia cell line. It seems that the high transcriptional strength of the FIS-2 LTR is not sufficient to give FIS-2 a high leukemogenic effect. This suggestion is inconsistent with the previous suggestion that the transcriptional strength of an LTR in a given cell type is correlated with the leukemogenic potential in the corresponding tissue. In other words, these data indicate that the direct repeats in the F-MuLV LTR may play other roles besides transcriptional enhancer in the leukemogenesis of F-MuLV.
Collapse
Affiliation(s)
- H Y Dai
- Unigen Center for Molecular Biology, Norwegian University of Science and Technology, Trondheim.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Buesa-Gomez J, Teng MN, Oldstone CE, Oldstone MB, de la Torre JC. Variants able to cause growth hormone deficiency syndrome are present within the disease-nil WE strain of lymphocytic choriomeningitis virus. J Virol 1996; 70:8988-92. [PMID: 8971029 PMCID: PMC190997 DOI: 10.1128/jvi.70.12.8988-8992.1996] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Persistent infection of C3H/St mice with lymphocytic choriomeningitis virus (LCMV) strain Armstrong leads to disordered growth and hypoglycemia. Both host and viral determinants contribute to this growth hormone (GH) deficiency syndrome (GHDS). Development of the GHDS correlates with the virus's ability to replicate in the GH-producing cells and cause reduced levels of GH synthesis. LCMV strain WE infects few GH-producing cells and does not cause GHDS in C3H/St mice. We show here that clonal variants isolated from the GHDS-nil WE population are able to replicate at high levels in GH-producing cells and cause GHDS in C3H/St mice. These variants are stably maintained, but phenotypically silent, within the GHDS-nil WE population.
Collapse
Affiliation(s)
- J Buesa-Gomez
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
24
|
Teng MN, Borrow P, Oldstone MB, de la Torre JC. A single amino acid change in the glycoprotein of lymphocytic choriomeningitis virus is associated with the ability to cause growth hormone deficiency syndrome. J Virol 1996; 70:8438-43. [PMID: 8970965 PMCID: PMC190933 DOI: 10.1128/jvi.70.12.8438-8443.1996] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Persistent infection of C3H/St mice with certain strains of lymphocytic choriomeningitis virus (LCMV) causes a growth hormone (GH) deficiency syndrome (GHDS) manifested as growth retardation and hypoglycemia. Infected mice show high levels of viral replication in the GH-producing cells in the anterior pituitary leading to decreased synthesis of GH mRNA and protein despite the absence of detectable virus-induced cell structural damage. Virus clones isolated from the GHDS-negative LCMV WE strain can cause the disease, while others cannot. The genetic basis of this phenotypic difference is a nucleotide substitution resulting in a single amino acid difference in the viral glycoprotein. Reassortant studies indicate that the single amino acid substitution (Ser-153 to Phe) is sufficient to allow infection of the GH-producing cells and cause GHDS. These results show that a single change in the genome can affect viral pathogenicity by altering the tropism of the virus.
Collapse
Affiliation(s)
- M N Teng
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
25
|
Dockter J, Evans CF, Tishon A, Oldstone MB. Competitive selection in vivo by a cell for one variant over another: implications for RNA virus quasispecies in vivo. J Virol 1996; 70:1799-803. [PMID: 8627703 PMCID: PMC190006 DOI: 10.1128/jvi.70.3.1799-1803.1996] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Infidelity of genome applications of RNA viruses leads to the generation of viral quasispecies both in vitro and in vivo. However, the biological significance of such generated variants in vivo is largely unknown and controversial. To study this issue, we continued our evaluation of the tropism of a lymphocytic choriomeningitis virus (LCMV) variant termed clone 13 with its parental virus clonal pool ARM 53b (wild-type parent) for neuronal cells in vivo. Earlier in vivo and in vitro studies noted that the wild-type virus contained a Phe at glycoprotein (GP) residue 260 which correlated with neuron tropism compared with LCMV variants containing a Leu at residue 260 which showed selected tropism for cells of the immune system (C.F. Evans, P. Borrow, J. C. de la Torre, and M. B. A. Oldstone J. Virol. 68:7367-7373, 1994; L. Villarete, T. Somasundaram, and R. Ahmed, J. Virol 68:7490-7496, 1994). Here we (i) evaluated the ability of the viral variants with either a Phe or Leu at GP residue 260 to replicate in vivo in the spleen, liver, or brain, (ii) analyzed the ability of these viruses to compete against each other for cell (neuron)-specific selection following a single viral inoculation of different ratios of both viruses, and (iii) utilized genetic reassortants of both viruses to test their ability to replicate in neurons in vivo. We found that viral variants containing either a Phe or Leu at GP residue 260 were equally capable of replicating in neurons, but when inoculated together, neurons selected for the viral population containing Phe at GP residue 260 over viruses containing a Leu at this position. This was in contrast to selection in the liver and spleen that favored viruses with Leu and not Phe at GP residue 260. Analysis of inoculations with viral reassortants indicated that genes encoded on the short RNA (the GP and nucleoprotein, not the L [polymerase] and Z proteins that are encoded by the large RNA) were associated with neurotropism. Since the nucleoprotein sequences of wild-type Armstrong and clone 13 are identical, it is likely that specific cytoplasmic factors of the neurons play a fundamental role in the selection of virus with Phe at GP residue 260.
Collapse
Affiliation(s)
- J Dockter
- Department of Neuropharmacology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
26
|
de Noronha CM, Reinhart TA, Mullins JI. Generation and role of defective proviruses in cytopathic feline leukemia virus (FeLV-FAIDS) infections. J Virol 1996; 70:359-67. [PMID: 8523548 PMCID: PMC189825 DOI: 10.1128/jvi.70.1.359-367.1996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cytopathic feline leukemia virus (FeLV) infections of feline T-cell line (FeT-cell) cultures led to the accumulation and maintenance of threefold more proviruses with deletions within the polymerase gene (pol) than minimally cytopathic FeLV infections. Over 60% of the viral DNA from cytopathic infections bore deletions in pol. Characterization of DNA sequences adjoining the deletions revealed that the junctions were most often flanked by RNA splice donor and acceptor consensus motifs. A thymidine-to-cytidine mutation introduced at the +2 position of one RNA splice donor-like motif inhibited formation of the two most prevalent viral DNA species with deletions, confirming the origin of many proviruses with deletions from reverse transcription of aberrantly spliced viral RNA species. An example of deletion by misalignment was also characterized. Viral inocula obtained from cells recovered after cytopathic infections were attenuated in their ability to cause cytopathic effects (CPE) and were able to confer superinfection resistance to naïve FeT-cells, despite maintaining envelope gene (env) sequences with full cytopathic potential. This suggested that viral genomes with deletions, rather than being required for cytopathicity, play a role in protecting cells from CPE. Indeed, expression of a molecularly cloned provirus bearing one of the characterized deletions attenuated CPE in FeT-cells caused by superinfecting cytopathic virus.
Collapse
Affiliation(s)
- C M de Noronha
- Department of Cancer Biology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
27
|
Corbin A, Darlix JL. Functions of the 5' leader of murine leukemia virus genomic RNA in virion structure, viral replication and pathogenesis, and MLV-derived vectors. Biochimie 1996; 78:632-8. [PMID: 8955906 DOI: 10.1016/s0300-9084(96)80009-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Retroviruses are a family of widespread small animal viruses that can cause a variety of neoplastic and immunosuppressive diseases. Murine leukemia viruses (MuLV) have been used as model systems to investigate virion and genomic RNA structure, viral replication and variability, and pathogenesis. Detailed knowledge of the genetic structure of MuLV and of the viral life cycle has led to the development of MuLV-derived retroviral vectors for gene transfer with potential applications in human gene therapy. In this review we have summarized the properties and functions of the 5' domain, called the leader, of MuLV genomic RNA. The 5' leader is formed of small interspersed and superimposed genetic elements involved in every step of the viral life cycle. In addition, the 3' domain of the leader encodes the N-terminal part of glycosylated forms of the GAG polyprotein, also named Gross cell surface antigen (GCSA or glycoGAG) which is essential for full spreading and pathogenic abilities of the virus in the animal. Therefore, the 5' leader of MuLV genomic RNA appears to be a very attractive model to study structure-function relationships of a small and multifunctional genetic domain in vitro, in cell culture and in the animal.
Collapse
Affiliation(s)
- A Corbin
- LaboRetro, Unité de Virologie Humaine (INSERM U412), Ecole Normale Supérieure de Lyon, France
| | | |
Collapse
|
28
|
Mukhopadhyaya R, Richardson J, Nazarov V, Corbin A, Koller R, Sitbon M, Wolff L. Different abilities of Friend murine leukemia virus (MuLV) and Moloney MuLV to induce promonocytic leukemia are due to determinants in both psi-gag-PR and env regions. J Virol 1994; 68:5100-7. [PMID: 7518530 PMCID: PMC236453 DOI: 10.1128/jvi.68.8.5100-5107.1994] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Moloney murine leukemia virus (M-MuLV) is capable of inducing promonocytic leukemia in 50% of adult BALB/c mice that have received peritoneal injections of pristane, but Friend MuLV strain 57 (F-MuLV) is nonleukemogenic under similar conditions. It was shown earlier that these differences could not be mapped to the U3 region of the virus long terminal repeat, indicating the probable influence of structural genes and/or R-U5 sequences. In this study, reciprocal chimeras containing exchanged structural genes and R-U5 sequences from these two closely related viruses were analyzed for differences in ability to induce disease. Results showed that two regions of F-MuLV, psi-gag-PR and env, when substituted for those of M-MuLV were dramatically disease attenuating. The 5'-most region, which is widely distributed, overlaps with the 5' end of the env intron and includes the RNA packaging region, psi, the entire gag coding region, and the viral protease coding region (PR) of pol. It was also found that reciprocal constructs having substitutions of both of these regions of M-MuLV in an F-MuLV background allowed full reestablishment of promonocytic leukemia. These leukemias were positive for c-myb rearrangements which are characteristic of M-MuLV-induced promonocytic leukemias. Neither region alone, however, was sufficient to produce disease with a greater incidence than 13%. Further studies demonstrated that the inability of viruses with psi, gag, PR, or env sequences from F-MuLV to induce leukemia in this model system was not due to their inability to replicate in hematopoietic tissue, to integrate into the c-myb locus early on after infection in vivo, or to express gag-myb mRNA characteristic of M-MuLV-induced preleukemic cells and acute leukemia.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Base Sequence
- DNA, Viral
- Epitopes
- Female
- Friend murine leukemia virus/genetics
- Friend murine leukemia virus/immunology
- Friend murine leukemia virus/pathogenicity
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Gene Products, gag/physiology
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/immunology
- Leukemia Virus, Murine/pathogenicity
- Leukemia, Myeloid/microbiology
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Mutagenesis, Insertional
- Precancerous Conditions/microbiology
- Tumor Virus Infections/microbiology
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viral Envelope Proteins/physiology
Collapse
Affiliation(s)
- R Mukhopadhyaya
- Laboratory of Genetics, National Cancer Institute, Bethesda, Maryland 20892
| | | | | | | | | | | | | |
Collapse
|
29
|
Corbin A, Prats AC, Darlix JL, Sitbon M. A nonstructural gag-encoded glycoprotein precursor is necessary for efficient spreading and pathogenesis of murine leukemia viruses. J Virol 1994; 68:3857-67. [PMID: 8189523 PMCID: PMC236891 DOI: 10.1128/jvi.68.6.3857-3867.1994] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In addition to the Gag-Pol and Env precursors whose translation initiates at AUG codons, murine, feline, and simian type C oncoviruses also express glycosylated Gag-Pol precursors (glycoGag), glycoGag translation is initiated at CUG codons located upstream of the Gag AUG initiation codon. In contrast to Gag, glycoGag is translocated into the endoplasmic reticulum and is absent from virions. Since glycoGag has been described to be dispensable ex vivo, we investigated the in vivo effects of a glycoGag- mutation in the Friend murine leukemia virus (F-MuLV). F-MuLV induces severe early hemolytic anemia and subsequent erythroleukemia within 2 months after inoculation of newborn mice. We obtained a glycoGag- F-MuLV, strain H5, by inserting an octanucleotide linker downstream of the CUG codon leading to the reading of a stop codon in all reading frames upstream of the Gag AUG. F-MuLV H5 did not induce severe early hemolytic anemia, and latency of erythroleukemia was significantly increased most likely because of an approximately 1-week delay in the in vivo spreading. Accordingly, induction of recombinant polytropic viruses was also significantly delayed. Close examination of ex vivo spreading kinetics also showed a slower dissemination of F-MuLV H5. Western blot (immunoblot) performed after inoculation of newborn mice with this glycoGag- virus indicated the emergence of new glycoGag+ viruses. PCR analyses with F-MuLV-specific primers demonstrated in vivo pseudoreversions restoring the glycoGag reading frame. Our results demonstrated that glycoGag expression is positively selected and essential for full spreading and pathogenic abilities.
Collapse
Affiliation(s)
- A Corbin
- Laboratoire d'Oncologie Cellulaire et Moléculaire, INSERM U363, Université Paris V, France
| | | | | | | |
Collapse
|
30
|
Richardson J, Corbin A, Pozo F, Orsoni S, Sitbon M. Sequences responsible for the distinctive hemolytic potentials of Friend and Moloney murine leukemia viruses are dispersed but confined to the psi-gag-PR region. J Virol 1993; 67:5478-86. [PMID: 8350407 PMCID: PMC237950 DOI: 10.1128/jvi.67.9.5478-5486.1993] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Friend and Moloney murine leukemia viruses (F- and M-MuLV) induce distinct diseases in hematopoietic tissues following inoculation of newborn mice of susceptible strains. F-MuLV induces erythroleukemia preceded by severe early hemolytic anemia; M-MuLV induces thymomas and only very mild hemolysis. The major viral determinant of severe early hemolytic anemia residues in the env gene, but sequences located outside this gene can modulate this effect. By means of genetic chimeras of F- and M-MuLV, we have found that although they are confined to the 5' portion of the env gene intron, sequences that determine the distinctive hemolytic potentials of F- and M-MuLV are widely distributed over a region spanning the RNA encapsidation domain, the gag gene, and the portion of the pol gene encoding the viral protease. Within this large region, two fragments of M-MuLV, a 1.3-kb region encoding the matrix, pp12, and capsid proteins and a 0.8-kb region encoding the nucleocapsid and the viral protease, were capable, individually, of partially attenuating the capacity of F-MuLV for induction of severe early hemolytic anemia. In association, these two fragments conferred complete attenuation. Moreover, a second pair of adjacent fragments within this large region appeared to behave cooperatively to confer complete attenuation; a 0.36-kb region roughly corresponding to the encapsidation domain, although not detectably altering hemolytic potential on its own, deepened the attenuation conferred by the adjacent 1.3-kb region. Whether capable of inducing severe early hemolytic anemia or not and despite different efficiencies of induction of recombinant polytropic viruses, all chimeric viruses retained the erythroleukemogenicity of the F-MuLV parent.
Collapse
Affiliation(s)
- J Richardson
- Laboratoire d'Oncologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Médicale U363, Institut Cochin de Génétique Moléculaire Université Paris V, France
| | | | | | | | | |
Collapse
|
31
|
Corbin A, Sitbon M. Protection against retroviral diseases after vaccination is conferred by interference to superinfection with attenuated murine leukemia viruses. J Virol 1993; 67:5146-52. [PMID: 8394442 PMCID: PMC237912 DOI: 10.1128/jvi.67.9.5146-5152.1993] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Cell cultures expressing a retroviral envelope are relatively resistant to superinfection by retroviruses which bear envelopes using the same receptor. We tested whether this phenomenon, known as interference to superinfection, might confer protection against retroviral diseases. Newborn mice first inoculated with the attenuated strain B3 of Friend murine leukemia virus (F-MuLV) were protected against severe early hemolytic anemia and nonacute anemiant erythroleukemia induced by the virulent strain 57 of F-MuLV. Vaccinated animals were also protected as adults against acute polycythemic erythroleukemia induced upon inoculation with the viral complex containing the defective spleen focus-forming virus and F-MuLV 57 as helper virus. Animals were inoculated as newborns, which is known to induce immune tolerance in mice, and the rapid kinetics of protection, incompatible with the delay necessary for the immune response to develop, indicated that protection was not due to an immune mechanism but rather was due to the rapid and long-lasting phenomenon of interference. This result was confirmed by combining parental and envelope chimeric MuLV from different interference groups as vaccinal and challenge viruses. Although efficient protection could be provided by vaccination by interference, we observed that attenuated replication-competent retroviruses from heterologous interference groups might exert deleterious synergistic effects.
Collapse
MESH Headings
- Aging/immunology
- Animals
- Animals, Newborn
- Cell Line
- Friend murine leukemia virus/immunology
- Immune Tolerance
- Leukemia Virus, Murine/immunology
- Leukemia Virus, Murine/pathogenicity
- Leukemia, Erythroblastic, Acute/immunology
- Leukemia, Erythroblastic, Acute/prevention & control
- Leukemia, Experimental/immunology
- Leukemia, Experimental/prevention & control
- Mice
- Mice, Inbred Strains
- Retroviridae/immunology
- Tumor Virus Infections/immunology
- Tumor Virus Infections/prevention & control
- Vaccines, Attenuated/therapeutic use
- Viral Vaccines/therapeutic use
Collapse
Affiliation(s)
- A Corbin
- Laboratoire d'Oncologie Cellulaire et Moléculaire, Unité INSERM 363, Institut Cochin de Génétique Moléculaire, Université Paris V, France
| | | |
Collapse
|
32
|
Fusion of the erythropoietin receptor and the Friend spleen focus-forming virus gp55 glycoprotein transforms a factor-dependent hematopoietic cell line. Mol Cell Biol 1993. [PMID: 8423798 DOI: 10.1128/mcb.13.2.739] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Friend spleen focus-forming virus (SFFV) gp55 glycoprotein binds to the erythropoietin receptor (EPO-R), causing constitutive receptor signaling and the first stage of Friend erythroleukemia. We have used three independent strategies to further define this transforming molecular interaction. First, using a retroviral selection strategy, we have isolated the cDNAs encoding three fusion polypeptides containing regions of both EPO-R and gp55. These fusion proteins, like full-length gp55, transformed the Ba/F3 factor-dependent hematopoietic cell line and localized the transforming activity of gp55 to its transmembrane domain. Second, we have isolated a mutant of gp55 (F-gp55-M1) which binds, but fails to activate, EPO-R. We have compared the transforming activity of this gp55 mutant with the EPO-R-gp55 fusion proteins and with other variants of gp55, including wild-type polycythemia Friend gp55 and Rauscher gp55. All of the fusion polypeptides and mutant gp55 polypeptides were expressed at comparable levels, and all coimmunoprecipitated with wild-type EPO-R, but only the Friend gp55 and the EPO-R-gp55 fusion proteins constitutively activated wild-type EPO-R. Third, we have examined the specificity of the EPO-R-gp55 interaction by comparing the differential activation of murine and human EPO-R by gp55. Wild-type gp55 had a highly specific interaction with murine EPO-R; gp55 bound, but did not activate, human EPO-R.
Collapse
|
33
|
Showers MO, DeMartino JC, Saito Y, D'Andrea AD. Fusion of the erythropoietin receptor and the Friend spleen focus-forming virus gp55 glycoprotein transforms a factor-dependent hematopoietic cell line. Mol Cell Biol 1993; 13:739-48. [PMID: 8423798 PMCID: PMC358956 DOI: 10.1128/mcb.13.2.739-748.1993] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The Friend spleen focus-forming virus (SFFV) gp55 glycoprotein binds to the erythropoietin receptor (EPO-R), causing constitutive receptor signaling and the first stage of Friend erythroleukemia. We have used three independent strategies to further define this transforming molecular interaction. First, using a retroviral selection strategy, we have isolated the cDNAs encoding three fusion polypeptides containing regions of both EPO-R and gp55. These fusion proteins, like full-length gp55, transformed the Ba/F3 factor-dependent hematopoietic cell line and localized the transforming activity of gp55 to its transmembrane domain. Second, we have isolated a mutant of gp55 (F-gp55-M1) which binds, but fails to activate, EPO-R. We have compared the transforming activity of this gp55 mutant with the EPO-R-gp55 fusion proteins and with other variants of gp55, including wild-type polycythemia Friend gp55 and Rauscher gp55. All of the fusion polypeptides and mutant gp55 polypeptides were expressed at comparable levels, and all coimmunoprecipitated with wild-type EPO-R, but only the Friend gp55 and the EPO-R-gp55 fusion proteins constitutively activated wild-type EPO-R. Third, we have examined the specificity of the EPO-R-gp55 interaction by comparing the differential activation of murine and human EPO-R by gp55. Wild-type gp55 had a highly specific interaction with murine EPO-R; gp55 bound, but did not activate, human EPO-R.
Collapse
Affiliation(s)
- M O Showers
- Division of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | |
Collapse
|
34
|
Felkner RH, Roth MJ. Mutational analysis of the N-linked glycosylation sites of the SU envelope protein of Moloney murine leukemia virus. J Virol 1992; 66:4258-64. [PMID: 1318404 PMCID: PMC241230 DOI: 10.1128/jvi.66.7.4258-4264.1992] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The role of the N-linked glycosylation sites in the major envelope glycoprotein, SU (gp70), of Moloney murine leukemia virus has been examined. By using site-specific oligonucleotide-directed mutagenesis, each of the seven glycan addition sites has been individually eliminated. Mutations resulting in the loss of a single glycosylation site produced, intracellularly, stable precursor SU-TM proteins which were 4 to 5 kDa smaller than the wild-type virus SU-TM protein. Mutant delta 1,4,7, a trimutant lacking three N-linked glycan addition sites, resulted in a viable, infectious virus with a stable SU-TM protein approximately 12 to 15 kDa smaller than the wild-type SU-TM protein. Five of the seven single-site mutations resulted in viable virus as judged by the release of reverse transcriptase in transient-expression assays and XC syncytium assays. Mutations at two of the sites resulted in a detectable phenotype. Virus mutated at position 2 was temperature sensitive in Rat2 cells; viable virus was produced at 32 degrees C but not at 37 degrees C. Virus mutated at position 3 was noninfectious and yielded virions lacking detectable mature SU protein. The mutation results in the block of transport of the protein to the cell surface and assembly into virion particles.
Collapse
Affiliation(s)
- R H Felkner
- Department of Biochemistry, University of Medicine and Dentistry/Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5635
| | | |
Collapse
|
35
|
Masuda M, Remington MP, Hoffman PM, Ruscetti SK. Molecular characterization of a neuropathogenic and nonerythroleukemogenic variant of Friend murine leukemia virus PVC-211. J Virol 1992; 66:2798-806. [PMID: 1560524 PMCID: PMC241036 DOI: 10.1128/jvi.66.5.2798-2806.1992] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PVC-211 murine leukemia virus (MuLV) is a replication-competent, ecotropic type C retrovirus that was isolated after passage of the Friend virus complex through F344 rats. Unlike viruses in the Friend virus complex, it does not cause erythroleukemia but causes a rapidly progressive hind limb paralysis when injected into newborn rats and mice. We have isolated an infectious DNA clone (clone 3d) of this virus which causes neurological disease in animals as efficiently as parental PVC-211 MuLV. The restriction map of clone 3d is very similar to that of the nonneuropathogenic, erythroleukemogenic Friend murine leukemia virus (F-MuLV), suggesting that PVC-211 MuLV is a variant of F-MuLV and that no major structural alteration was involved in its derivation. Studies with chimeric viruses between PVC-211 MuLV clone 3d and wild-type F-MuLV clone 57 indicate that at least one determinant for neuropathogenicity resides in the 2.1-kb XbaI-ClaI fragment containing the gp70 coding region of PVC-211 MuLV. Compared with nonneuropathogenic ecotropic MuLVs, the env gene of PVC-211 MuLV encodes four unique amino acids in the gp70 protein. Nucleotide sequence analysis also revealed a deletion in the U3 region of the long terminal repeat (LTR) of PVC-211 MuLV clone 3d compared with F-MuLV clone 57. In contrast to the env gene of PVC-211 MuLV, particular sequences within the U3 region of the viral LTR do not appear to be required for neuropathogenicity. However, the changes in the LTR of PVC-211 MuLV may be responsible for the failure of this virus to cause erythroleukemia, because chimeric viruses containing the U3 region of F-MuLV clone 57 were erythroleukemogenic whereas those with the U3 of PVC-211 MuLV clone 3d were not.
Collapse
MESH Headings
- 3T3 Cells
- Amino Acid Sequence
- Animals
- Animals, Newborn
- Base Sequence
- Cloning, Molecular
- Friend murine leukemia virus/genetics
- Friend murine leukemia virus/pathogenicity
- Genes, env/genetics
- Genetic Variation
- Genome, Viral
- Hindlimb/pathology
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/pathology
- Leukemia, Experimental/genetics
- Leukemia, Experimental/pathology
- Mice
- Molecular Sequence Data
- Paralysis/etiology
- Protein Processing, Post-Translational
- Rats
- Repetitive Sequences, Nucleic Acid/genetics
- Restriction Mapping
- Sequence Homology, Nucleic Acid
- Tumor Cells, Cultured
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- M Masuda
- Laboratory of Molecular Oncology, National Cancer Institute, Frederick, Maryland 21702-1201
| | | | | | | |
Collapse
|
36
|
Courgnaud V, Lauré F, Fultz PN, Montagnier L, Bréchot C, Sonigo P. Genetic differences accounting for evolution and pathogenicity of simian immunodeficiency virus from a sooty mangabey monkey after cross-species transmission to a pig-tailed macaque. J Virol 1992; 66:414-9. [PMID: 1727495 PMCID: PMC238301 DOI: 10.1128/jvi.66.1.414-419.1992] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We determined the nucleotide sequences of two related isolates of simian immunodeficiency virus from the sooty mangabey monkey (SIVsmm) that exhibit dramatic differences in virulence. These isolates are separated by one experimental cross-species transmission, from sooty mangabey to pig-tailed macaque. The parental virus (SIVsmm9), nonpathogenic in the original host (sooty mangabeys), causes a chronic AIDS-like disease in macaques. In contrast, the variant virus (SIVsmmPBj14) induces an acute lethal disease in various macaque species and is also pathogenic for sooty mangabeys. The combination of necessary and sufficient mutations that determined the acutely lethal phenotype on the SIVsmm9 genetic background is included within a maximal set of 57 point mutations, plus two insertions located in the long terminal repeat (22 bp spanning an NF-kappa B-like enhancer element) and in the surface envelope glycoprotein (5 amino acids). Comparisons of synonymous and nonsynonymous nucleotide substitutions in the genome of SIVsmm indicated that selective pressures, probably due to the host immune response, favored amino acid changes in the envelope. This immunoevolutionary mechanism could explain the increase in diversity and the apparition of new virulent phenotypes after cross-species transmission.
Collapse
Affiliation(s)
- V Courgnaud
- Institut National de la Santé et de la Recherche Médicale U75 CHU Necker, Paris, France
| | | | | | | | | | | |
Collapse
|
37
|
Perryman S, Nishio J, Chesebro B. Complete nucleotide sequence of Friend murine leukemia virus, strain FB29. Nucleic Acids Res 1991; 19:6950. [PMID: 1762923 PMCID: PMC329334 DOI: 10.1093/nar/19.24.6950] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- S Perryman
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840
| | | | | |
Collapse
|