1
|
Poto R, Marone G, Galli SJ, Varricchi G. Mast cells: a novel therapeutic avenue for cardiovascular diseases? Cardiovasc Res 2024; 120:681-698. [PMID: 38630620 PMCID: PMC11135650 DOI: 10.1093/cvr/cvae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/28/2023] [Accepted: 01/08/2024] [Indexed: 04/19/2024] Open
Abstract
Mast cells are tissue-resident immune cells strategically located in different compartments of the normal human heart (the myocardium, pericardium, aortic valve, and close to nerves) as well as in atherosclerotic plaques. Cardiac mast cells produce a broad spectrum of vasoactive and proinflammatory mediators, which have potential roles in inflammation, angiogenesis, lymphangiogenesis, tissue remodelling, and fibrosis. Mast cells release preformed mediators (e.g. histamine, tryptase, and chymase) and de novo synthesized mediators (e.g. cysteinyl leukotriene C4 and prostaglandin D2), as well as cytokines and chemokines, which can activate different resident immune cells (e.g. macrophages) and structural cells (e.g. fibroblasts and endothelial cells) in the human heart and aorta. The transcriptional profiles of various mast cell populations highlight their potential heterogeneity and distinct gene and proteome expression. Mast cell plasticity and heterogeneity enable these cells the potential for performing different, even opposite, functions in response to changing tissue contexts. Human cardiac mast cells display significant differences compared with mast cells isolated from other organs. These characteristics make cardiac mast cells intriguing, given their dichotomous potential roles of inducing or protecting against cardiovascular diseases. Identification of cardiac mast cell subpopulations represents a prerequisite for understanding their potential multifaceted roles in health and disease. Several new drugs specifically targeting human mast cell activation are under development or in clinical trials. Mast cells and/or their subpopulations can potentially represent novel therapeutic targets for cardiovascular disorders.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Via S. Pansini 5, Naples 80131, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Via S. Pansini 5, Naples 80131, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’, National Research Council (CNR), Via S. Pansini 5, Naples 80131, Italy
| | - Stephen J Galli
- Department of Pathology and the Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, 291 Campus Dr, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, 291 Campus Dr, Stanford, CA, USA
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Via S. Pansini 5, Naples 80131, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’, National Research Council (CNR), Via S. Pansini 5, Naples 80131, Italy
| |
Collapse
|
2
|
Bosveld CJ, Guth C, Limjunyawong N, Pundir P. Emerging Role of the Mast Cell-Microbiota Crosstalk in Cutaneous Homeostasis and Immunity. Cells 2023; 12:2624. [PMID: 37998359 PMCID: PMC10670560 DOI: 10.3390/cells12222624] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
The skin presents a multifaceted microbiome, a balanced coexistence of bacteria, fungi, and viruses. These resident microorganisms are fundamental in upholding skin health by both countering detrimental pathogens and working in tandem with the skin's immunity. Disruptions in this balance, known as dysbiosis, can lead to disorders like psoriasis and atopic dermatitis. Central to the skin's defense system are mast cells. These are strategically positioned within the skin layers, primed for rapid response to any potential foreign threats. Recent investigations have started to unravel the complex interplay between these mast cells and the diverse entities within the skin's microbiome. This relationship, especially during times of both balance and imbalance, is proving to be more integral to skin health than previously recognized. In this review, we illuminate the latest findings on the ties between mast cells and commensal skin microorganisms, shedding light on their combined effects on skin health and maladies.
Collapse
Affiliation(s)
- Cameron Jackson Bosveld
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada; (C.J.B.); (C.G.)
| | - Colin Guth
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada; (C.J.B.); (C.G.)
| | - Nathachit Limjunyawong
- Center of Research Excellence in Allergy and Immunology, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Priyanka Pundir
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada; (C.J.B.); (C.G.)
| |
Collapse
|
3
|
Wedi B. Inhibition of KIT for chronic urticaria: a status update on drugs in early clinical development. Expert Opin Investig Drugs 2023; 32:1043-1054. [PMID: 37897679 DOI: 10.1080/13543784.2023.2277385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/26/2023] [Indexed: 10/30/2023]
Abstract
INTRODUCTION Chronic urticaria (CU), including chronic spontaneous urticaria (CSU) and chronic inducible urticaria (CIndU), is a prevalent, enduring, mast-cell driven condition that presents challenges in its management. There is a clear need for additional approved treatment options beyond H1 receptor antagonists and the anti-IgE monoclonal antibody (mAb), omalizumab. One of the latest therapeutic strategies targets KIT, which is considered the primary master regulator for mast cell-related disorders. AREAS COVERED This review provides a status update on KIT inhibiting drugs in early clinical development for CU. EXPERT OPINION Whereas multi-targeted tyrosine kinase KIT inhibitors carry the risk of off-target toxicities, initial data from anti-KIT mAbs indicate significant potential in CSU and CIndU. The prolonged depletion of mast cells over several weeks by barzolvolimab could effectively control urticarial symptoms. Regarding safety, based on theoretical considerations and the available preliminary results, it is already evident that there may be more side effects compared to omalizumab. However, long-term safety data beyond 12 weeks are still lacking. The outcome of ongoing or planned clinical trials with several anti-KIT mAbs will need to demonstrate benefits compared to anti-IgE in CU or whether one approach is better suited for specific urticaria endotypes.
Collapse
Affiliation(s)
- Bettina Wedi
- Department of Dermatology and Allergy, Comprehensive Allergy Center, Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
St John AL, Rathore APS, Ginhoux F. New perspectives on the origins and heterogeneity of mast cells. Nat Rev Immunol 2023; 23:55-68. [PMID: 35610312 DOI: 10.1038/s41577-022-00731-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 01/06/2023]
Abstract
Mast cells are immune cells of the haematopoietic lineage that are now thought to have multifaceted functions during homeostasis and in various disease states. Furthermore, while mast cells have been known for a long time to contribute to allergic disease in adults, recent studies, mainly in mice, have highlighted their early origins during fetal development and potential for immune functions, including allergic responses, in early life. Our understanding of the imprinting of mast cells by particular tissues of residence and their potential for regulatory interactions with organ systems such as the peripheral immune, nervous and vascular systems is also rapidly evolving. Here, we discuss the origins of mast cells and their diverse and plastic phenotypes that are influenced by tissue residence. We explore how divergent phenotypes and functions might result from both their hard-wired 'nature' defined by their ontogeny and the 'nurture' they receive within specialized tissue microenvironments.
Collapse
Affiliation(s)
- Ashley L St John
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
- Department of Pathology, Duke University Medical Center, Durham, NC, USA.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- SingHealth Duke-NUS Global Health Institute, Singapore, Singapore.
| | - Abhay P S Rathore
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Florent Ginhoux
- Singapore Immunology Network, A*STAR, Singapore, Singapore.
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.
| |
Collapse
|
5
|
Lampinen M, Hagforsen E, Weström S, Bergström A, Levedahl K, Paivandy A, Lara‐Valencia P, Pejler G, Rollman O. Mefloquine causes selective mast cell apoptosis in cutaneous mastocytosis lesions by a secretory granule-mediated pathway. Exp Dermatol 2022; 31:1729-1740. [PMID: 35876458 PMCID: PMC9804232 DOI: 10.1111/exd.14651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/07/2022] [Accepted: 07/21/2022] [Indexed: 01/05/2023]
Abstract
Mastocytosis is a KIT-related myeloproliferative disease characterised by abnormal expansion of neoplastic mast cells (MC) in the skin or virtually any other organ system. The cutaneous form of adult-onset mastocytosis is almost invariably combined with indolent systemic involvement for which curative therapy is yet not available. Here we evaluated a concept of depleting cutaneous MCs in mastocytosis lesions ex vivo by targeting their secretory granules. Skin biopsies from mastocytosis patients were incubated with or without mefloquine, an antimalarial drug known to penetrate into acidic organelles such as MC secretory granules. Mefloquine reduced the number of dermal MCs without affecting keratinocyte proliferation or epidermal gross morphology at drug concentrations up to 40 μM. Flow cytometric analysis of purified dermal MCs showed that mefloquine-induced cell death was mainly due to apoptosis and accompanied by caspase-3 activation. However, caspase inhibition provided only partial protection against mefloquine-induced cell death, indicating predominantly caspase-independent apoptosis. Further assessments revealed that mefloquine caused an elevation of granule pH and a corresponding decrease in cytosolic pH, suggesting drug-induced granule permeabilisation. Extensive damage to the MC secretory granules was confirmed by transmission electron microscopy analysis. Further, blockade of granule acidification or serine protease activity prior to mefloquine treatment protected MCs from apoptosis, indicating that granule acidity and granule-localised serine proteases play major roles in the execution of mefloquine-induced cell death. Altogether, these findings reveal that mefloquine induces selective apoptosis of MCs by targeting their secretory granules and suggest that the drug may potentially extend its range of medical applications.
Collapse
Affiliation(s)
- Maria Lampinen
- Department of Medical Sciences, Dermatology and VenereologyUppsala UniversityUppsalaSweden,Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | - Eva Hagforsen
- Department of Medical Sciences, Dermatology and VenereologyUppsala UniversityUppsalaSweden
| | - Simone Weström
- Department of Medical Sciences, Dermatology and VenereologyUppsala UniversityUppsalaSweden,Present address:
Department of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Anna Bergström
- Department of Medical Sciences, Dermatology and VenereologyUppsala UniversityUppsalaSweden,Department of DermatologyUppsala University HospitalUppsalaSweden
| | | | - Aida Paivandy
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | - Paola Lara‐Valencia
- Department of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Gunnar Pejler
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | - Ola Rollman
- Department of Medical Sciences, Dermatology and VenereologyUppsala UniversityUppsalaSweden
| |
Collapse
|
6
|
Lim G, Widiapradja A, Levick SP, McKelvey KJ, Liao XH, Refetoff S, Bullock M, Clifton-Bligh RJ. Foxe1 Deletion in the Adult Mouse Is Associated With Increased Thyroidal Mast Cells and Hypothyroidism. Endocrinology 2022; 163:bqac158. [PMID: 36156081 PMCID: PMC9618408 DOI: 10.1210/endocr/bqac158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Indexed: 11/29/2022]
Abstract
CONTEXT Foxe1 is a key thyroid developmental transcription factor. Germline deletion results in athyreosis and congenital hypothyroidism. Some data suggest an ongoing role for maintaining thyroid differentiation. OBJECTIVE We created a mouse model to directly examine the role of Foxe1 in the adult thyroid. METHODS A model of tamoxifen-inducible Cre-mediated ubiquitous deletion of Foxe1 was generated in mice of C57BL/6J background (Foxe1flox/flox/Cre-TAM). Tamoxifen or vehicle was administered to Foxe1flox/flox/Cre mice aged 6-8 weeks. Blood was collected at 4, 12, and 20 weeks, and tissues after 12 or 20 weeks for molecular and histological analyses. Plasma total thyroxine (T4), triiodothyronine, and thyrotropin (TSH) were measured. Transcriptomics was performed using microarray or RNA-seq and validated by reverse transcription quantitative polymerase chain reaction. RESULTS Foxe1 was decreased by approximately 80% in Foxe1flox/flox/Cre-TAM mice and confirmed by immunohistochemistry. Foxe1 deletion was associated with abnormal follicular architecture and smaller follicle size at 12 and 20 weeks. Plasma TSH was elevated in Foxe1flox/flox/Cre-TAM mice as early as 4 weeks and T4 was lower in pooled samples from 12 and 20 weeks. Foxe1 deletion was also associated with an increase in thyroidal mast cells. Transcriptomic analyses found decreased Tpo and Tg and upregulated mast cell markers Mcpt4 and Ctsg in Foxe1flox/flox/Cre-TAM mice. CONCLUSION Foxe1 deletion in adult mice was associated with disruption in thyroid follicular architecture accompanied by biochemical hypothyroidism, confirming its role in maintenance of thyroid differentiation. An unanticipated finding was an increase in thyroidal mast cells. These data suggest a possible explanation for previous human genetic studies associating alleles in/near FOXE1 with hypothyroidism and/or autoimmune thyroiditis.
Collapse
Affiliation(s)
- Grace Lim
- Cancer Genetics Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW 2065, Australia
| | - Alexander Widiapradja
- Cardiac Biology and Heart Failure Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW 2065, Australia
| | - Scott P Levick
- Cardiac Biology and Heart Failure Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW 2065, Australia
| | - Kelly J McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW 2065, Australia
| | - Xiao-Hui Liao
- Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | - Samuel Refetoff
- Department of Medicine, Pediatrics and Committee on Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Martyn Bullock
- Cancer Genetics Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW 2065, Australia
| | - Roderick J Clifton-Bligh
- Cancer Genetics Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW 2065, Australia
- Department of Endocrinology, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| |
Collapse
|
7
|
Ludwig L, Dobromylskyj M, Wood GA, van der Weyden L. Feline Oncogenomics: What Do We Know about the Genetics of Cancer in Domestic Cats? Vet Sci 2022; 9:vetsci9100547. [PMID: 36288160 PMCID: PMC9609674 DOI: 10.3390/vetsci9100547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022] Open
Abstract
Simple Summary Cancer is a significant cause of suffering and death in domestic cats. In humans, an understanding of the genetics of different types of cancers has become clinically important for all aspects of patient care and forms the basis for most emerging diagnostics and therapies. The field of ‘oncogenomics’ characterises the alterations of cancer-associated genes that are found in tumours. Such a thorough understanding of the oncogenome of human tumours has only been possible due to a high-quality reference genome and an understanding of the genetic variation that can exist between people. Although a high-quality reference genome for cats has only recently been generated, investigations into understanding the genetics of feline cancers have been underway for many years, using a range of different technologies. This review summarises what is currently known of the genetics of both common and rare types of cancer in domestic cats. Drawing attention to our current understanding of the feline oncogenome will hopefully bring this topic into focus and serve as a springboard for more much-needed research into the genetics of cancer in domestic cats. Abstract Cancer is a significant cause of morbidity and mortality in domestic cats. In humans, an understanding of the oncogenome of different cancer types has proven critical and is deeply interwoven into all aspects of patient care, including diagnostics, prognostics and treatments through the application of targeted therapies. Investigations into understanding the genetics of feline cancers started with cytogenetics and was then expanded to studies at a gene-specific level, looking for mutations and expression level changes of genes that are commonly mutated in human cancers. Methylation studies have also been performed and together with a recently generated high-quality reference genome for cats, next-generation sequencing studies are starting to deliver results. This review summarises what is currently known of the genetics of both common and rare cancer types in cats, including lymphomas, mammary tumours, squamous cell carcinomas, soft tissue tumours, mast cell tumours, haemangiosarcomas, pulmonary carcinomas, pancreatic carcinomas and osteosarcomas. Shining a spotlight on our current understanding of the feline oncogenome will hopefully serve as a springboard for more much-needed research into the genetics of cancer in domestic cats.
Collapse
Affiliation(s)
- Latasha Ludwig
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | - Geoffrey A. Wood
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Louise van der Weyden
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Correspondence:
| |
Collapse
|
8
|
Jin J, Jiang Y, Chakrabarti S, Su Z. Cardiac Mast Cells: A Two-Head Regulator in Cardiac Homeostasis and Pathogenesis Following Injury. Front Immunol 2022; 13:963444. [PMID: 35911776 PMCID: PMC9334794 DOI: 10.3389/fimmu.2022.963444] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/24/2022] [Indexed: 11/23/2022] Open
Abstract
Cardiac mast cells (CMCs) are multifarious immune cells with complex roles both in cardiac physiological and pathological conditions, especially in cardiac fibrosis. Little is known about the physiological importance of CMCs in cardiac homeostasis and inflammatory process. Therefore, the present review will summarize the recent progress of CMCs on origin, development and replenishment in the heart, including their effects on cardiac development, function and ageing under physiological conditions as well as the roles of CMCs in inflammatory progression and resolution. The present review will shed a light on scientists to understand cardioimmunology and to develop immune treatments targeting on CMCs following cardiac injury.
Collapse
Affiliation(s)
- Jing Jin
- International Genome Center, Jiangsu University, Zhenjiang, China
- Institute of Immunology, Jiangsu University, Zhenjiang, China
| | - Yuanyuan Jiang
- Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang, China
- Institute of Immunology, Jiangsu University, Zhenjiang, China
- *Correspondence: Zhaoliang Su,
| |
Collapse
|
9
|
Tsai M, Valent P, Galli SJ. KIT as a master regulator of the mast cell lineage. J Allergy Clin Immunol 2022; 149:1845-1854. [PMID: 35469840 PMCID: PMC9177781 DOI: 10.1016/j.jaci.2022.04.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 10/18/2022]
Abstract
The discovery in 1987/1988 and 1990 of the cell surface receptor KIT and its ligand, stem cell factor (SCF), was a critical achievement in efforts to understand the development and function of multiple distinct cell lineages. These include hematopoietic progenitors, melanocytes, germ cells, and mast cells, which all are significantly affected by loss-of-function mutations of KIT or SCF. Such mutations also influence the development and/or function of additional cells, including those in parts of the central nervous system and the interstitial cells of Cajal (which control gut motility). Many other cells can express KIT constitutively or during immune responses, including dendritic cells, eosinophils, type 2 innate lymphoid cells, and taste cells. Yet the biological importance of KIT in many of these cell types largely remains to be determined. We here review the history of work investigating mice with mutations affecting the white spotting locus (which encodes KIT) or the steel locus (which encodes SCF), focusing especially on the influence of such mutations on mast cells. We also briefly review efforts to target the KIT/SCF pathway with anti-SCF or anti-Kit antibodies in mouse models of allergic disorders, parasite immunity, or fibrosis in which mast cells are thought to play significant roles.
Collapse
Affiliation(s)
- Mindy Tsai
- Department of Pathology and the Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Stephen J Galli
- Department of Pathology and the Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, Calif.
| |
Collapse
|
10
|
Annese T, Tamma R, Bozza M, Zito A, Ribatti D. Autocrine/Paracrine Loop Between SCF +/c-Kit + Mast Cells Promotes Cutaneous Melanoma Progression. Front Immunol 2022; 13:794974. [PMID: 35140718 PMCID: PMC8818866 DOI: 10.3389/fimmu.2022.794974] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/05/2022] [Indexed: 12/29/2022] Open
Abstract
c-Kit, or mast/stem cell growth factor receptor Kit, is a tyrosine kinase receptor structurally analogous to the colony-stimulating factor-1 (CSF-1) and platelet-derived growth factor (PDGF) CSF-1/PDGF receptor Tyr-subfamily. It binds the cytokine KITLG/SCF to regulate cell survival and proliferation, hematopoiesis, stem cell maintenance, gametogenesis, mast cell development, migration and function, and it plays an essential role in melanogenesis. SCF and c-Kit are biologically active as membrane-bound and soluble forms. They can be expressed by tumor cells and cells of the microenvironment playing a crucial role in tumor development, progression, and relapses. To date, few investigations have concerned the role of SCF+/c-Kit+ mast cells in normal, premalignant, and malignant skin lesions that resemble steps of malignant melanoma progression. In this study, by immunolabeling reactions, we demonstrated that in melanoma lesions, SCF and c-Kit were expressed in mast cells and released by themselves, suggesting an autocrine/paracrine loop might be implicated in regulatory mechanisms of neoangiogenesis and tumor progression in human melanoma.
Collapse
Affiliation(s)
- Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Mariella Bozza
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Alfredo Zito
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| |
Collapse
|
11
|
Snider DB, Arthur GK, Falduto GH, Olivera A, Ehrhardt-Humbert LC, Smith E, Smith C, Metcalfe DD, Cruse G. Targeting KIT by frameshifting mRNA transcripts as a therapeutic strategy for aggressive mast cell neoplasms. Mol Ther 2022; 30:295-310. [PMID: 34371183 PMCID: PMC8753370 DOI: 10.1016/j.ymthe.2021.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/21/2021] [Accepted: 07/31/2021] [Indexed: 01/07/2023] Open
Abstract
Activating mutations in c-KIT are associated with the mast cell (MC) clonal disorders cutaneous mastocytosis and systemic mastocytosis and its variants, including aggressive systemic mastocytosis, MC leukemia, and MC sarcoma. Currently, therapies inhibiting KIT signaling are a leading strategy to treat MC proliferative disorders. However, these approaches may have off-target effects, and in some patients, complete remission or improved survival time cannot be achieved. These limitations led us to develop an approach using chemically stable exon skipping oligonucleotides (ESOs) that induce exon skipping of precursor (pre-)mRNA to alter gene splicing and introduce a frameshift into mature KIT mRNA transcripts. The result of this alternate approach results in marked downregulation of KIT expression, diminished KIT signaling, inhibition of MC proliferation, and rapid induction of apoptosis in neoplastic HMC-1.2 MCs. We demonstrate that in vivo administration of KIT targeting ESOs significantly inhibits tumor growth and systemic organ infiltration using both an allograft mastocytosis model and a humanized xenograft MC tumor model. We propose that our innovative approach, which employs well-tolerated, chemically stable oligonucleotides to target KIT expression through unconventional pathways, has potential as a KIT-targeted therapeutic alone, or in combination with agents that target KIT signaling, in the treatment of KIT-associated malignancies.
Collapse
Affiliation(s)
- Douglas B. Snider
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Biomedical Partnership Center, 1060 William Moore Drive, Raleigh, NC 27607, USA,Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Greer K. Arthur
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Biomedical Partnership Center, 1060 William Moore Drive, Raleigh, NC 27607, USA,Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Guido H. Falduto
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ana Olivera
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lauren C. Ehrhardt-Humbert
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Biomedical Partnership Center, 1060 William Moore Drive, Raleigh, NC 27607, USA
| | - Emmaline Smith
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Biomedical Partnership Center, 1060 William Moore Drive, Raleigh, NC 27607, USA
| | - Cierra Smith
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Biomedical Partnership Center, 1060 William Moore Drive, Raleigh, NC 27607, USA
| | - Dean D. Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Glenn Cruse
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Biomedical Partnership Center, 1060 William Moore Drive, Raleigh, NC 27607, USA,Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA,Corresponding author: Glenn Cruse, PhD, Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Biomedical Partnership Center, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| |
Collapse
|
12
|
Pulz LH, Cordeiro YG, Huete GC, Cadrobbi KG, Rochetti AL, Xavier PLP, Nishiya AT, de Freitas SH, Fukumasu H, Strefezzi RF. Intercellular interactions between mast cells and stromal fibroblasts obtained from canine cutaneous mast cell tumours. Sci Rep 2021; 11:23881. [PMID: 34903806 PMCID: PMC8668961 DOI: 10.1038/s41598-021-03390-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/05/2021] [Indexed: 11/18/2022] Open
Abstract
Mast cell tumours (MCTs) are the most frequent malignant skin neoplasm in dogs. Due to the difficulty in purifying large numbers of canine neoplastic mast cells, relatively little is known about their properties. A reproducible in vitro model is needed to increase the understanding about the phenotype and functional properties of neoplastic mast cells. In the present study, we describe the establishment of primary cocultures of neoplastic mast cells from canine cutaneous MCTs and cancer-associated fibroblasts. We confirmed the inability of canine neoplastic mast cells to remain viable for long periods in vitro without the addition of growth factors or in vivo passages in mice. Using a transwell system, we observed that mast cell viability was significantly higher when there is cell-to-cell contact in comparison to non-physical contact conditions and that mast cell viability was significantly higher in high-grade than in low-grade derived primary cultures. Moreover, the use of conditioned medium from co-cultured cells led to a significantly higher tumoral mast cell viability when in monoculture. Signalling mechanisms involved in these interactions might be attractive therapeutic targets to block canine MCT progression and deserve more in-depth investigations.
Collapse
Affiliation(s)
- Lidia H Pulz
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, SP, CEP 05508-270, Brazil
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Campus "Fernando Costa", Av. Duque de Caxias Norte 225, Pirassununga, SP, CEP 13635-900, Brazil
| | - Yonara G Cordeiro
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Campus "Fernando Costa", Av. Duque de Caxias Norte 225, Pirassununga, SP, CEP 13635-900, Brazil
| | - Greice C Huete
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Campus "Fernando Costa", Av. Duque de Caxias Norte 225, Pirassununga, SP, CEP 13635-900, Brazil
| | - Karine G Cadrobbi
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Campus "Fernando Costa", Av. Duque de Caxias Norte 225, Pirassununga, SP, CEP 13635-900, Brazil
| | - Arina L Rochetti
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Campus "Fernando Costa", Av. Duque de Caxias Norte 225, Pirassununga, SP, CEP 13635-900, Brazil
| | - Pedro L P Xavier
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Campus "Fernando Costa", Av. Duque de Caxias Norte 225, Pirassununga, SP, CEP 13635-900, Brazil
| | - Adriana Tomoko Nishiya
- Hospital Veterinário da Universidade Anhembi Morumbi, R. Conselheiro Lafaiete, 64, São Paulo, SP, CEP 03101-00, Brazil
| | - Silvio Henrique de Freitas
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Campus "Fernando Costa", Av. Duque de Caxias Norte 225, Pirassununga, SP, CEP 13635-900, Brazil
| | - Heidge Fukumasu
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Campus "Fernando Costa", Av. Duque de Caxias Norte 225, Pirassununga, SP, CEP 13635-900, Brazil
| | - Ricardo F Strefezzi
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Campus "Fernando Costa", Av. Duque de Caxias Norte 225, Pirassununga, SP, CEP 13635-900, Brazil.
| |
Collapse
|
13
|
Yuan H, Jiang A, Fang H, Chen Y, Guo Z. Optical properties of natural small molecules and their applications in imaging and nanomedicine. Adv Drug Deliv Rev 2021; 179:113917. [PMID: 34384827 DOI: 10.1016/j.addr.2021.113917] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/31/2021] [Accepted: 08/05/2021] [Indexed: 01/10/2023]
Abstract
Natural small molecules derived from plants have fascinated scientists for centuries due to their practical applications in various fields, especially in nanomedicine. Some of the natural molecules were found to show intrinsic optical features such as fluorescence emission and photosensitization, which could be beneficial to provide spatial temporal information and help tracking the drugs in biological systems. Much efforts have been devoted to the investigation of optical properties and practical applications of natural molecules. In this review, optical properties of natural small molecules and their applications in fluorescence imaging, and theranostics will be summarized. First, we will introduce natural small molecules with different fluorescence emission, ranging from blue to near infrared emission. Second, imaging applications in biological samples will be covered. Third, we will discuss the applications of theranostic nanomedicines or drug delivering systems containing fluorescent natural molecules acting as imaging agents or photosensitizers. Finally, future perspectives in this field will be discussed.
Collapse
Affiliation(s)
- Hao Yuan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Ao Jiang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Hongbao Fang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China.
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China.
| |
Collapse
|
14
|
Galli SJ, Gaudenzio N, Tsai M. Mast Cells in Inflammation and Disease: Recent Progress and Ongoing Concerns. Annu Rev Immunol 2021; 38:49-77. [PMID: 32340580 DOI: 10.1146/annurev-immunol-071719-094903] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mast cells have existed long before the development of adaptive immunity, although they have been given different names. Thus, in the marine urochordate Styela plicata, they have been designated as test cells. However, based on their morphological characteristics (including prominent cytoplasmic granules) and mediator content (including heparin, histamine, and neutral proteases), test cells are thought to represent members of the lineage known in vertebrates as mast cells. So this lineage presumably had important functions that preceded the development of antibodies, including IgE. Yet mast cells are best known, in humans, as key sources of mediators responsible for acute allergic reactions, notably including anaphylaxis, a severe and potentially fatal IgE-dependent immediate hypersensitivity reaction to apparently harmless antigens, including many found in foods and medicines. In this review, we briefly describe the origins of tissue mast cells and outline evidence that these cells can have beneficial as well as detrimental functions, both innately and as participants in adaptive immune responses. We also discuss aspects of mast cell heterogeneity and comment on how the plasticity of this lineage may provide insight into its roles in health and disease. Finally, we consider some currently open questions that are yet unresolved.
Collapse
Affiliation(s)
- Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA; , .,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, California 94305, USA
| | - Nicolas Gaudenzio
- Unité de Différenciation Epithéliale et Autoimmunité Rhumatoïde (UDEAR), INSERM UMR 1056, Université de Toulouse, 31 059 Toulouse CEDEX 9, France;
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA; , .,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, California 94305, USA
| |
Collapse
|
15
|
Wang Y, Matsushita K, Jackson J, Numata T, Zhang Y, Zhou G, Tsai M, Galli SJ. Transcriptome programming of IL-3-dependent bone marrow-derived cultured mast cells by stem cell factor (SCF). Allergy 2021; 76:2288-2291. [PMID: 33683709 PMCID: PMC8274682 DOI: 10.1111/all.14808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/28/2022]
Affiliation(s)
- Ying Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kazufumi Matsushita
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Jennifer Jackson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Takafumi Numata
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yue Zhang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Gao Zhou
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
16
|
Zhang Z, Kurashima Y. Two Sides of the Coin: Mast Cells as a Key Regulator of Allergy and Acute/Chronic Inflammation. Cells 2021; 10:cells10071615. [PMID: 34203383 PMCID: PMC8308013 DOI: 10.3390/cells10071615] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 12/17/2022] Open
Abstract
It is well known that mast cells (MCs) initiate type I allergic reactions and inflammation in a quick response to the various stimulants, including—but not limited to—allergens, pathogen-associated molecular patterns (PAMPs), and damage-associated molecular patterns (DAMPs). MCs highly express receptors of these ligands and proteases (e.g., tryptase, chymase) and cytokines (TNF), and other granular components (e.g., histamine and serotonin) and aggravate the allergic reaction and inflammation. On the other hand, accumulated evidence has revealed that MCs also possess immune-regulatory functions, suppressing chronic inflammation and allergic reactions on some occasions. IL-2 and IL-10 released from MCs inhibit excessive immune responses. Recently, it has been revealed that allergen immunotherapy modulates the function of MCs from their allergic function to their regulatory function to suppress allergic reactions. This evidence suggests the possibility that manipulation of MCs functions will result in a novel approach to the treatment of various MCs-mediated diseases.
Collapse
Affiliation(s)
- Zhongwei Zhang
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Yosuke Kurashima
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
- Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- CU-UCSD Center for Mucosal Immunology, Department of Pathology/Medicine, Allergy and Vaccines, University of California, San Diego, CA 92093-0063, USA
- Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Correspondence: ; Tel.: +81-43-226-2848; Fax: +81-43-226-2183
| |
Collapse
|
17
|
Bae SJ, Ji JY, Oh JY, Won J, Ryu YH, Lee H, Jung HS, Park HJ. The Role of Skin Mast Cells in Acupuncture Induced Analgesia in Animals: A Preclinical Systematic Review and Meta-analysis. THE JOURNAL OF PAIN 2021; 22:1560-1577. [PMID: 34182104 DOI: 10.1016/j.jpain.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 05/08/2021] [Accepted: 06/05/2021] [Indexed: 01/28/2023]
Abstract
While mast cells (MCs) are previously well-known as a pathological indicator of pain, their role in alleviating pain is recently emerged in acupuncture research. Thus, this study systematically reviews the role of MC in acupuncture analgesia. Animal studies on MC changes associated with the acupuncture analgesia were searched in PubMed and EMBASE. The MC number, degranulation ratio and pain threshold changes were collected as outcome measures for meta-analyses. Twenty studies were included with 13 suitable for meta-analysis, most with a moderate risk of bias. A significant MC degranulation after acupuncture was indicated in the normal and was significantly higher in the pain model. In the subgroup analysis by acupuncture type, manual (MA) and electrical (EA, each P < .00001) but not sham acupuncture had significant MC degranulation. Meta-regression revealed the linear proportionality between MC degranulation and acupuncture-induced analgesia (P < .001), which was found essential in MA (P < .00001), but not in EA (P = .45). MC mediators, such as adenosine and histamine, are involved in its mechanism. Taken together, skin MC is an essential factor for acupuncture-induced analgesia, which reveals a new aspect of MC as a pain alleviator. However, its molecular mechanism requires further study. PERSPECTIVE: This systematic review synthesizes data from studies that examined the contribution of skin MC in acupuncture analgesia. Current reports suggest a new role for skin MC and its mediators in pain alleviation and explain a peripheral mechanism of acupuncture analgesia, with suggesting the need of further studies to confirm these findings.
Collapse
Affiliation(s)
- Sun-Jeong Bae
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jeong-Yeon Ji
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ju-Young Oh
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, Republic of Korea; Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jiyoon Won
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, Republic of Korea; Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Yeon-Hee Ryu
- Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Hyangsook Lee
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, Republic of Korea; Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyuk-Sang Jung
- Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hi-Joon Park
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, Republic of Korea; Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Sprinzl B, Greiner G, Uyanik G, Arock M, Haferlach T, Sperr WR, Valent P, Hoermann G. Genetic Regulation of Tryptase Production and Clinical Impact: Hereditary Alpha Tryptasemia, Mastocytosis and Beyond. Int J Mol Sci 2021; 22:2458. [PMID: 33671092 PMCID: PMC7957558 DOI: 10.3390/ijms22052458] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Tryptase is a serine protease that is predominantly produced by tissue mast cells (MCs) and stored in secretory granules together with other pre-formed mediators. MC activation, degranulation and mediator release contribute to various immunological processes, but also to several specific diseases, such as IgE-dependent allergies and clonal MC disorders. Biologically active tryptase tetramers primarily derive from the two genes TPSB2 (encoding β-tryptase) and TPSAB1 (encoding either α- or β-tryptase). Based on the most common gene copy numbers, three genotypes, 0α:4β, 1α:3β and 2α:2β, were defined as "canonical". About 4-6% of the general population carry germline TPSAB1-α copy number gains (2α:3β, 3α:2β or more α-extra-copies), resulting in elevated basal serum tryptase levels. This condition has recently been termed hereditary alpha tryptasemia (HαT). Although many carriers of HαT appear to be asymptomatic, a number of more or less specific symptoms have been associated with HαT. Recent studies have revealed a significantly higher HαT prevalence in patients with systemic mastocytosis (SM) and an association with concomitant severe Hymenoptera venom-induced anaphylaxis. Moreover, HαT seems to be more common in idiopathic anaphylaxis and MC activation syndromes (MCAS). Therefore, TPSAB1 genotyping should be included in the diagnostic algorithm in patients with symptomatic SM, severe anaphylaxis or MCAS.
Collapse
Affiliation(s)
- Bettina Sprinzl
- Ludwig Boltzmann Institute for Hematology and Oncology at the Hanusch Hospital, Center for Medical Genetics, Hanusch Hospital, 1140 Vienna, Austria; (B.S.); (G.U.)
- Center for Medical Genetics, Hanusch Hospital, 1140 Vienna, Austria
| | - Georg Greiner
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria;
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (W.R.S.); (P.V.)
- Ihr Labor, Medical Diagnostic Laboratories, 1220 Vienna, Austria
| | - Goekhan Uyanik
- Ludwig Boltzmann Institute for Hematology and Oncology at the Hanusch Hospital, Center for Medical Genetics, Hanusch Hospital, 1140 Vienna, Austria; (B.S.); (G.U.)
- Center for Medical Genetics, Hanusch Hospital, 1140 Vienna, Austria
- Medical School, Sigmund Freud Private University, 1020 Vienna, Austria
| | - Michel Arock
- Department of Hematology, APHP, Pitié-Salpêtrière-Charles Foix University Hospital and Sorbonne University, 75013 Paris, France;
- Centre de Recherche des Cordeliers, INSERM, Sorbonne University, Cell Death and Drug Resistance in Hematological Disorders Team, 75006 Paris, France
| | | | - Wolfgang R. Sperr
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (W.R.S.); (P.V.)
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
| | - Peter Valent
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (W.R.S.); (P.V.)
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
| | - Gregor Hoermann
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (W.R.S.); (P.V.)
- MLL Munich Leukemia Laboratory, 81377 Munich, Germany;
| |
Collapse
|
19
|
Abstract
The cornea is a special interface between the internal ocular tissue and the external environment that provides a powerful chemical, physical, and biological barrier against the invasion of harmful substances and pathogenic microbes. This protective effect is determined by the unique anatomical structure and cellular composition of the cornea, especially its locally resident innate immune cells, such as Langerhans cells (LCs), mast cells (MCs), macrophages, γδ T lymphocytes, and innate lymphoid cells. Recent studies have demonstrated the importance of these immune cells in terms of producing different cytokines and other growth factors in corneal homeostasis and its pathologic conditions. This review paper briefly describes the latest information on these resident immune cells by specifically analyzing research from our laboratory.
Collapse
Affiliation(s)
- Jun Liu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China
| | - Zhijie Li
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China
| |
Collapse
|
20
|
AhYoung AP, Eckard SC, Gogineni A, Xi H, Lin SJ, Gerhardy S, Cox C, Phung QT, Hackney JA, Katakam AK, Reichelt M, Caplazi P, Manzanillo P, Zhang J, Roose-Girma M, Tam LW, Newman RJ, Murthy A, Weimer RM, Lill JR, Lee WP, Grimbaldeston M, Kirchhofer D, van Lookeren Campagne M. Neutrophil serine protease 4 is required for mast cell-dependent vascular leakage. Commun Biol 2020; 3:687. [PMID: 33214666 PMCID: PMC7677402 DOI: 10.1038/s42003-020-01407-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/17/2020] [Indexed: 02/06/2023] Open
Abstract
Vascular leakage, or edema, is a serious complication of acute allergic reactions. Vascular leakage is triggered by the release of histamine and serotonin from granules within tissue-resident mast cells. Here, we show that expression of Neutrophil Serine Protease 4 (NSP4) during the early stages of mast cell development regulates mast cell-mediated vascular leakage. In myeloid precursors, the granulocyte-macrophage progenitors (GMPs), loss of NSP4 results in the decrease of cellular levels of histamine, serotonin and heparin/heparan sulfate. Mast cells that are derived from NSP4-deficient GMPs have abnormal secretory granule morphology and a sustained reduction in histamine and serotonin levels. Consequently, in passive cutaneous anaphylaxis and acute arthritis models, mast cell-mediated vascular leakage in the skin and joints is substantially reduced in NSP4-deficient mice. Our findings reveal that NSP4 is required for the proper storage of vasoactive amines in mast cell granules, which impacts mast cell-dependent vascular leakage in mouse models of immune complex-mediated diseases.
Collapse
Affiliation(s)
- Andrew P AhYoung
- Department of Early Discovery Biochemistry, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Sterling C Eckard
- Department of Immunology, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Alvin Gogineni
- Department of Biomedical Imaging, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Hongkang Xi
- Department of Immunology, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - S Jack Lin
- Department of Early Discovery Biochemistry, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Stefan Gerhardy
- Department of Early Discovery Biochemistry, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Christian Cox
- Department of Immunology, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Qui T Phung
- Department of Microchemistry, Proteomics, Lipidomics, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jason A Hackney
- Department of Bioinformatics, 1 DNA Way, South San Francisco, CA, 94080, USA
| | | | - Mike Reichelt
- Department of Pathology, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Patrick Caplazi
- Department of Pathology, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Paolo Manzanillo
- Department of Immunology, 1 DNA Way, South San Francisco, CA, 94080, USA
- Department of Inflammation and Oncology, Amgen Research, Amgen, 1120 Veterans Boulevard, South San Francisco, CA, 94080, USA
| | - Juan Zhang
- Department of Translational Immunology, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Merone Roose-Girma
- Department of Molecular Biology, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Lucinda W Tam
- Department of Molecular Biology, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Robert J Newman
- Department of Molecular Biology, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Aditya Murthy
- Department of Cancer Immunology, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Robby M Weimer
- Department of Biomedical Imaging, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jennie R Lill
- Department of Microchemistry, Proteomics, Lipidomics, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Wyne P Lee
- Department of Translational Immunology, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Michele Grimbaldeston
- OMNI-Biomarker Development, Genentech Inc, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Daniel Kirchhofer
- Department of Early Discovery Biochemistry, 1 DNA Way, South San Francisco, CA, 94080, USA.
| | - Menno van Lookeren Campagne
- Department of Immunology, 1 DNA Way, South San Francisco, CA, 94080, USA.
- Department of Inflammation and Oncology, Amgen Research, Amgen, 1120 Veterans Boulevard, South San Francisco, CA, 94080, USA.
| |
Collapse
|
21
|
Ud-Din S, Wilgus TA, Bayat A. Mast Cells in Skin Scarring: A Review of Animal and Human Research. Front Immunol 2020; 11:552205. [PMID: 33117341 PMCID: PMC7561364 DOI: 10.3389/fimmu.2020.552205] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/27/2020] [Indexed: 01/05/2023] Open
Abstract
Mast cells (MCs) are an important immune cell type in the skin and play an active role during wound healing. MCs produce mediators that can enhance acute inflammation, stimulate re-epithelialisation as well as angiogenesis, and promote skin scarring. There is also a link between MCs and abnormal pathological cutaneous scarring, with increased numbers of MCs found in hypertrophic scars and keloid disease. However, there has been conflicting data regarding the specific role of MCs in scar formation in both animal and human studies. Whilst animal studies have proved to be valuable in studying the MC phenomenon in wound healing, the appropriate translation of these findings to cutaneous wound healing and scar formation in human subjects remains crucial to elucidate the role of these cells and target treatment effectively. Therefore, this perspective paper will focus on evaluation of the current evidence for the role of MCs in skin scarring in both animals and humans in order to identify common themes and future areas for translational research.
Collapse
Affiliation(s)
- Sara Ud-Din
- Plastic and Reconstructive Surgery Research, Centre for Dermatology Research, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester, United Kingdom
| | - Traci A Wilgus
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Ardeshir Bayat
- Plastic and Reconstructive Surgery Research, Centre for Dermatology Research, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester, United Kingdom.,MRC-SA Wound Healing Unit, Division of Dermatology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
22
|
Valent P, Akin C, Hartmann K, Nilsson G, Reiter A, Hermine O, Sotlar K, Sperr WR, Escribano L, George TI, Kluin-Nelemans HC, Ustun C, Triggiani M, Brockow K, Gotlib J, Orfao A, Kovanen PT, Hadzijusufovic E, Sadovnik I, Horny HP, Arock M, Schwartz LB, Austen KF, Metcalfe DD, Galli SJ. Mast cells as a unique hematopoietic lineage and cell system: From Paul Ehrlich's visions to precision medicine concepts. Am J Cancer Res 2020; 10:10743-10768. [PMID: 32929378 PMCID: PMC7482799 DOI: 10.7150/thno.46719] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
The origin and functions of mast cells (MCs) have been debated since their description by Paul Ehrlich in 1879. MCs have long been considered 'reactive bystanders' and 'amplifiers' in inflammatory processes, allergic reactions, and host responses to infectious diseases. However, knowledge about the origin, phenotypes and functions of MCs has increased substantially over the past 50 years. MCs are now known to be derived from multipotent hematopoietic progenitors, which, through a process of differentiation and maturation, form a unique hematopoietic lineage residing in multiple organs. In particular, MCs are distinguishable from basophils and other hematopoietic cells by their unique phenotype, origin(s), and spectrum of functions, both in innate and adaptive immune responses and in other settings. The concept of a unique MC lineage is further supported by the development of a distinct group of neoplasms, collectively referred to as mastocytosis, in which MC precursors expand as clonal cells. The clinical consequences of the expansion and/or activation of MCs are best established in mastocytosis and in allergic inflammation. However, MCs have also been implicated as important participants in a number of additional pathologic conditions and physiological processes. In this article, we review concepts regarding MC development, factors controlling MC expansion and activation, and some of the fundamental roles MCs may play in both health and disease. We also discuss new concepts for suppressing MC expansion and/or activation using molecularly-targeted drugs.
Collapse
|
23
|
Kotov G, Landzhov B, Stamenov N, Stanchev S, Iliev A. Changes in the number of mast cells, expression of fibroblast growth factor-2 and extent of interstitial fibrosis in established and advanced hypertensive heart disease. Ann Anat 2020; 232:151564. [PMID: 32603827 DOI: 10.1016/j.aanat.2020.151564] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION An increasing number of studies have shed light on the role of cardiac mast cells in the pathogenesis of hypertension-induced myocardial remodeling. Mast cells promote fibroblast activation, myofibroblast differentiation and subsequent collagen accumulation through the action of tryptase, chymase, histamine and fibroblast growth factor-2. The aim of the present study was to report on the changes in the number of mast cells as evaluated through toluidine blue, tryptase and c-kit staining, to assess the extent of interstitial fibrosis and correlate it with the changes in the number of mast cells and to analyze the immunohistochemical expression of fibroblast growth factor-2 in two groups of spontaneously hypertensive rats indicative of established and advanced hypertensive heart disease. A novel aspect of our work was the analysis of all parameters in the right ventricle. MATERIAL AND METHODS For the present study, we used 6- and 12-month-old spontaneously hypertensive rats. A light microscopic study was conducted on sections stained with hematoxylin and eosin and toluidine blue. For the immunohistochemical study we used monoclonal antibodies against mast cell tryptase and fibroblast growth factor-2 and a polyclonal antibody against c-kit. The expression of fibroblast growth factor-2 was assessed semi-quantitatively through ImageJ. The number of mast cells was evaluated on toluidine blue-, tryptase- and c-kit-stained sections and a comparative statistical analysis with the Mann-Whitney test was conducted between the two age groups. A separate statistical analysis between results obtained through immunostaining for tryptase and for c-kit was conducted in each age group with the Wilcoxon signed-rank test. The extent of fibrosis was assessed quantitatively on slides stained with Mallory's trichrome stain as a percentage of the whole tissue and compared between the two age groups. Spearman's correlation was used to test whether a correlation exists between the number of mast cells and the percentage of interstitial fibrosis. RESULTS Mast cells with typical cytoplasmic granules were visualized in the interstitial tissue and in the perivascular zone in both age groups. In both ventricles, their number increased significantly in 12-month-old animals as evaluated through all three staining methods. Moreover, immunostaining for tryptase and for c-kit yielded comparable results. The immunoreactivity of fibroblast growth factor-2 increased in both ventricles in older animals. Expression of this protein was particularly intensive in the cytoplasm of connective tissue cells with the characteristic features of mast cells mainly found in the areas of fibrotic alterations in 12-month-old spontaneously hypertensive rats. In both ventricles, interstitial fibrosis was more extensive throughout the myocardium of older animals and was positively correlated with the changes in the number of mast cells in both age groups. CONCLUSION The present study reported for the first time that the increase in the number of mast cells, observed as hypertension-induced myocardial changes progress, is statistically significant and confirmed that this process takes place in both ventricles. This increase is accompanied by a higher expression of fibroblast growth factor-2 and is more strongly correlated with the more pronounced interstitial fibrosis in older animals, further supporting the role of mast cells in the structural changes taking place in the myocardium in response to systemic hypertension.
Collapse
Affiliation(s)
- Georgi Kotov
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Bulgaria.
| | - Boycho Landzhov
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Bulgaria
| | - Nikola Stamenov
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Bulgaria
| | - Stancho Stanchev
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Bulgaria
| | - Alexandar Iliev
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Bulgaria
| |
Collapse
|
24
|
Kakinoki A, Kameo T, Yamashita S, Furuta K, Tanaka S. Establishment and Characterization of a Murine Mucosal Mast Cell Culture Model. Int J Mol Sci 2019; 21:ijms21010236. [PMID: 31905768 PMCID: PMC6982154 DOI: 10.3390/ijms21010236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 01/08/2023] Open
Abstract
Accumulating evidence suggests that mast cells play critical roles in disruption and maintenance of intestinal homeostasis, although it remains unknown how they affect the local microenvironment. Interleukin-9 (IL-9) was found to play critical roles in intestinal mast cell accumulation induced in various pathological conditions, such as parasite infection and oral allergen-induced anaphylaxis. Newly recruited intestinal mast cells trigger inflammatory responses and damage epithelial integrity through release of a wide variety of mediators including mast cell proteases. We established a novel culture model (IL-9-modified mast cells, MCs/IL-9), in which murine IL-3-dependent bone-marrow-derived cultured mast cells (BMMCs) were further cultured in the presence of stem cell factor and IL-9. In MCs/IL-9, drastic upregulation of Mcpt1 and Mcpt2 was found. Although histamine storage and tryptase activity were significantly downregulated in the presence of SCF and IL-9, this was entirely reversed when mast cells were cocultured with a murine fibroblastic cell line, Swiss 3T3. MCs/IL-9 underwent degranulation upon IgE-mediated antigen stimulation, which was found to less sensitive to lower concentrations of IgE in comparison with BMMCs. This model might be useful for investigation of the spatiotemporal changes of newly recruited intestinal mast cells.
Collapse
Affiliation(s)
- Aya Kakinoki
- Department of Immunobiology, Faculty of Pharmacy and Pharmaceutical Sciences, Okayama University, Tsushima naka 1-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Tsuyoshi Kameo
- Department of Immunobiology, Faculty of Pharmacy and Pharmaceutical Sciences, Okayama University, Tsushima naka 1-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Shoko Yamashita
- Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Tsushima naka 1-1-1, Kita-ku, Okayama 700-8530, Japan (K.F.)
| | - Kazuyuki Furuta
- Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Tsushima naka 1-1-1, Kita-ku, Okayama 700-8530, Japan (K.F.)
| | - Satoshi Tanaka
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Misasagi Nakauchi-cho 5, Yamashina-ku, Kyoto 607-8414, Japan
- Correspondence: ; Tel.: +81-75-595-4667
| |
Collapse
|
25
|
Varricchi G, de Paulis A, Marone G, Galli SJ. Future Needs in Mast Cell Biology. Int J Mol Sci 2019; 20:E4397. [PMID: 31500217 PMCID: PMC6769913 DOI: 10.3390/ijms20184397] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022] Open
Abstract
The pathophysiological roles of mast cells are still not fully understood, over 140 years since their description by Paul Ehrlich in 1878. Initial studies have attempted to identify distinct "subpopulations" of mast cells based on a relatively small number of biochemical characteristics. More recently, "subtypes" of mast cells have been described based on the analysis of transcriptomes of anatomically distinct mouse mast cell populations. Although mast cells can potently alter homeostasis, in certain circumstances, these cells can also contribute to the restoration of homeostasis. Both solid and hematologic tumors are associated with the accumulation of peritumoral and/or intratumoral mast cells, suggesting that these cells can help to promote and/or limit tumorigenesis. We suggest that at least two major subsets of mast cells, MC1 (meaning anti-tumorigenic) and MC2 (meaning pro-tumorigenic), and/or different mast cell mediators derived from otherwise similar cells, could play distinct or even opposite roles in tumorigenesis. Mast cells are also strategically located in the human myocardium, in atherosclerotic plaques, in close proximity to nerves and in the aortic valve. Recent studies have revealed evidence that cardiac mast cells can participate both in physiological and pathological processes in the heart. It seems likely that different subsets of mast cells, like those of cardiac macrophages, can exert distinct, even opposite, effects in different pathophysiological processes in the heart. In this chapter, we have commented on possible future needs of the ongoing efforts to identify the diverse functions of mast cells in health and disease.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, 80138 Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, 80138 Naples, Italy.
- WAO Center of Excellence, 80138 Naples, Italy.
| | - Amato de Paulis
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, 80138 Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, 80138 Naples, Italy.
- WAO Center of Excellence, 80138 Naples, Italy.
| | - Gianni Marone
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, 80138 Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, 80138 Naples, Italy.
- WAO Center of Excellence, 80138 Naples, Italy.
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), 80138 Naples, Italy.
| | - Stephen J Galli
- Departments of Pathology and of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5176, USA.
| |
Collapse
|
26
|
Regulation of Cardiac Mast Cell Maturation and Function by the Neurokinin-1 Receptor in the Fibrotic Heart. Sci Rep 2019; 9:11004. [PMID: 31358823 PMCID: PMC6662794 DOI: 10.1038/s41598-019-47369-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 07/16/2019] [Indexed: 01/20/2023] Open
Abstract
Cardiac fibrosis is an underlying cause of diastolic dysfunction, contributing to heart failure. Substance P (SP) activation of the neurokinin-1 receptor (NK-1R) contributes to cardiac fibrosis in hypertension. However, based on in vitro experiments, this does not appear to be via direct activation of cardiac fibroblasts. While numerous cells could mediate the fibrotic effects of SP, herein, we investigate mast cells (MC) as a mechanism mediating the fibrotic actions of SP, since MCs are known to play a role in cardiac fibrosis and respond to SP. Spontaneously hypertensive rats (SHR) were treated with the NK-1R antagonist L732138 (5 mg/kg/d) from 8 to 12 weeks of age. L732138 prevented increased MC maturation of resident immature MCs. NK-1R blockade also prevented increased cardiac MC maturation in angiotensin II-infused mice. MC-deficient mice were used to test the importance of MC NK-1Rs to MC activation. MC-deficient mice administered angiotensin II did not develop fibrosis; MC-deficient mice reconstituted with MCs did develop fibrosis. MC-deficient mice reconstituted with MCs lacking the NK-1R also developed fibrosis, indicating that NK-1Rs are not required for MC activation in this setting. In conclusion, the NK-1R causes MC maturation, however, other stimuli are required to activate MCs to cause fibrosis.
Collapse
|
27
|
Flow Cytometry-Based Characterization of Mast Cells in Human Atherosclerosis. Cells 2019; 8:cells8040334. [PMID: 30970663 PMCID: PMC6523866 DOI: 10.3390/cells8040334] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/16/2022] Open
Abstract
The presence of mast cells in human atherosclerotic plaques has been associated with adverse cardiovascular events. Mast cell activation, through the classical antigen sensitized-IgE binding to their characteristic Fcε-receptor, causes the release of their cytoplasmic granules. These granules are filled with neutral proteases such as tryptase, but also with histamine and pro-inflammatory mediators. Mast cells accumulate in high numbers within human atherosclerotic tissue, particularly in the shoulder region of the plaque. These findings are largely based on immunohistochemistry, which does not allow for the extensive characterization of these mast cells and of the local mast cell activation mechanisms. In this study, we thus aimed to develop a new flow-cytometry based methodology in order to analyze mast cells in human atherosclerosis. We enzymatically digested 22 human plaque samples, collected after femoral and carotid endarterectomy surgery, after which we prepared a single cell suspension for flow cytometry. We were able to identify a specific mast cell population expressing both CD117 and the FcεR, and observed that most of the intraplaque mast cells were activated based on their CD63 protein expression. Furthermore, most of the activated mast cells had IgE fragments bound on their surface, while another fraction showed IgE-independent activation. In conclusion, we are able to distinguish a clear mast cell population in human atherosclerotic plaques, and this study establishes a strong relationship between the presence of IgE and the activation of mast cells in advanced atherosclerosis. Our data pave the way for potential therapeutic intervention through targeting IgE-mediated actions in human atherosclerosis.
Collapse
|
28
|
Tikoo S, Barki N, Jain R, Zulkhernain NS, Buhner S, Schemann M, Weninger W. Imaging of mast cells. Immunol Rev 2019; 282:58-72. [PMID: 29431206 DOI: 10.1111/imr.12631] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mast cells are a part of the innate immune system implicated in allergic reactions and the regulation of host-pathogen interactions. The distribution, morphology and biochemical composition of mast cells has been studied in detail in vitro and on tissue sections both at the light microscopic and ultrastructural level. More recently, the development of fluorescent reporter strains and intravital imaging modalities has enabled first glimpses of the real-time behavior of mast cells in situ. In this review, we describe commonly used imaging approaches to study mast cells in cell culture as well as within normal and diseased tissues. We further describe the interrogation of mast cell function via imaging by providing a detailed description of mast cell-nerve plexus interactions in the intestinal tract. Together, visualizing mast cells has expanded our view of these cells in health and disease.
Collapse
Affiliation(s)
- Shweta Tikoo
- The Centenary Institute, Newtown, NSW, Australia.,Discipline of Dermatology, Sydney Medical School, Sydney, NSW, Australia
| | - Natasja Barki
- LS Human Biology, Technical University München, München, Germany
| | - Rohit Jain
- The Centenary Institute, Newtown, NSW, Australia.,Discipline of Dermatology, Sydney Medical School, Sydney, NSW, Australia
| | | | - Sabine Buhner
- LS Human Biology, Technical University München, München, Germany
| | - Michael Schemann
- LS Human Biology, Technical University München, München, Germany
| | - Wolfgang Weninger
- The Centenary Institute, Newtown, NSW, Australia.,Discipline of Dermatology, Sydney Medical School, Sydney, NSW, Australia.,Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| |
Collapse
|
29
|
Halova I, Rönnberg E, Draberova L, Vliagoftis H, Nilsson GP, Draber P. Changing the threshold-Signals and mechanisms of mast cell priming. Immunol Rev 2019; 282:73-86. [PMID: 29431203 DOI: 10.1111/imr.12625] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mast cells play a key role in allergy and other inflammatory diseases involving engagement of multivalent antigen with IgE bound to high-affinity IgE receptors (FcεRIs). Aggregation of FcεRIs on mast cells initiates a cascade of signaling events that eventually lead to degranulation, secretion of leukotrienes and prostaglandins, and cytokine and chemokine production contributing to the inflammatory response. Exposure to pro-inflammatory cytokines, chemokines, bacterial and viral products, as well as some other biological products and drugs, induces mast cell transition from the basal state into a primed one, which leads to enhanced response to IgE-antigen complexes. Mast cell priming changes the threshold for antigen-mediated activation by various mechanisms, depending on the priming agent used, which alone usually do not induce mast cell degranulation. In this review, we describe the priming processes induced in mast cells by various cytokines (stem cell factor, interleukins-4, -6 and -33), chemokines, other agents acting through G protein-coupled receptors (adenosine, prostaglandin E2 , sphingosine-1-phosphate, and β-2-adrenergic receptor agonists), toll-like receptors, and various drugs affecting the cytoskeleton. We will review the current knowledge about the molecular mechanisms behind priming of mast cells leading to degranulation and cytokine production and discuss the biological effects of mast cell priming induced by several cytokines.
Collapse
Affiliation(s)
- Ivana Halova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Elin Rönnberg
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet and Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Lubica Draberova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Harissios Vliagoftis
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet and Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.,Alberta Respiratory Center and Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Gunnar P Nilsson
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet and Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Petr Draber
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
30
|
Kapur R, Shi J, Ghosh J, Munugalavadla V, Sims E, Martin H, Wei L, Mali RS. ROCK1 via LIM kinase regulates growth, maturation and actin based functions in mast cells. Oncotarget 2017; 7:16936-47. [PMID: 26943578 PMCID: PMC4941361 DOI: 10.18632/oncotarget.7851] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/29/2016] [Indexed: 12/31/2022] Open
Abstract
Understanding mast cell development is essential due to their critical role in regulating immunity and autoimmune diseases. Here, we show how Rho kinases (ROCK) regulate mast cell development and can function as therapeutic targets for treating allergic diseases. Rock1 deficiency results in delayed maturation of bone marrow derived mast cells (BMMCs) in response to IL-3 stimulation and reduced growth in response to stem cell factor (SCF) stimulation. Further, integrin-mediated adhesion and migration, and IgE-mediated degranulation are all impaired in Rock1-deficient BMMCs. To understand the mechanism behind altered mast cell development in Rock1-/- BMMCs, we analyzed the activation of ROCK and its downstream targets including LIM kinase (LIMK). We observed reduced activation of ROCK, LIMK, AKT and ERK1/2 in Rock1-deficient BMMCs in response to SCF stimulation. Further, loss of either Limk1 or Limk2 also demonstrated altered BMMC maturation and growth; combined deletion of both Limk1 and Limk2 resulted in further reduction in BMMC maturation and growth. In passive cutaneous anaphylaxis model, deficiency of Rock1 or treatment with ROCK inhibitor Fasudil protected mice against IgE-mediated challenge. Our results identify ROCK/LIMK pathway as a novel therapeutic target for treating allergic diseases involving mast cells.
Collapse
Affiliation(s)
- Reuben Kapur
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jianjian Shi
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joydeep Ghosh
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Emily Sims
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Holly Martin
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lei Wei
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Raghuveer Singh Mali
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
31
|
Ramírez C, Mendoza L. Phenotypic stability and plasticity in GMP-derived cells as determined by their underlying regulatory network. Bioinformatics 2017; 34:1174-1182. [DOI: 10.1093/bioinformatics/btx736] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 11/23/2017] [Indexed: 12/30/2022] Open
Affiliation(s)
- Carlos Ramírez
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Mx., México
| | - Luis Mendoza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Mx., México
| |
Collapse
|
32
|
Hoebaus C, Yussuf SM, Valent P, Schernthaner GH. Peripheral arterial disease outcomes and association with suPAR: A bridge to myeloid precursors or mast cells or both? Atherosclerosis 2017; 264:77-78. [PMID: 28724499 DOI: 10.1016/j.atherosclerosis.2017.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 10/19/2022]
Affiliation(s)
- Clemens Hoebaus
- Medical University of Vienna, Department of Medicine II, Division of Angiology, Vienna, Austria
| | - Sarah Mohammed Yussuf
- Medical University of Vienna, Department of Medicine II, Division of Angiology, Vienna, Austria
| | - Peter Valent
- Medical University of Vienna, Department of Medicine I, Division of Hematology and Hemostaseology, Vienna, Austria; Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
33
|
Chai M, Liu B, Sun F, Wei P, Chen P, Xu L, Luo SZ. Insights into the transmembrane helix associations of kit ligand by molecular dynamics simulation and TOXCAT. Proteins 2017; 85:1362-1370. [DOI: 10.1002/prot.25297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 02/18/2017] [Accepted: 03/27/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Mengya Chai
- Beijing Key Laboratory of Bioprocess College of Life Science and Technology; Beijing, University of Chemical Technology; Beijing 100029 China
| | - Bo Liu
- Beijing Key Laboratory of Bioprocess College of Life Science and Technology; Beijing, University of Chemical Technology; Beijing 100029 China
| | - Fude Sun
- Beijing Key Laboratory of Bioprocess College of Life Science and Technology; Beijing, University of Chemical Technology; Beijing 100029 China
| | - Peng Wei
- Beijing Key Laboratory of Bioprocess College of Life Science and Technology; Beijing, University of Chemical Technology; Beijing 100029 China
- School of Basic Medical Science; Beijing University of Chinese Medicine; Beijing 100029 China
| | - Peng Chen
- Beijing Key Laboratory of Bioprocess College of Life Science and Technology; Beijing, University of Chemical Technology; Beijing 100029 China
| | - Lida Xu
- Beijing Key Laboratory of Bioprocess College of Life Science and Technology; Beijing, University of Chemical Technology; Beijing 100029 China
| | - Shi-Zhong Luo
- Beijing Key Laboratory of Bioprocess College of Life Science and Technology; Beijing, University of Chemical Technology; Beijing 100029 China
| |
Collapse
|
34
|
Leist M, Sünder CA, Drube S, Zimmermann C, Geldmacher A, Metz M, Dudeck A, Maurer M. Membrane-bound stem cell factor is the major but not only driver of fibroblast-induced murine skin mast cell differentiation. Exp Dermatol 2017; 26:255-262. [PMID: 27619074 DOI: 10.1111/exd.13206] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2016] [Indexed: 11/28/2022]
Abstract
The maintenance and modulation of cutaneous mast cell (MC) numbers is held to be important for skin immune responses to allergens and pathogens. The increase in MC numbers in the skin is achieved by proliferation and the differentiation of precursor to mature MCs. Fibroblast-derived SCF is thought to be the major skin MC growth factor and it potently induces MC proliferation. The mechanisms of fibroblast-induced skin MC differentiation, including the role of SCF, however, remain insufficiently characterized and understood. Using cocultures of immature murine MCs and fibroblasts, we found that the adhesion of immature MCs to fibroblasts via VCAM-1 and α4 β7 integrin is very important for subsequent differentiation, which is driven by fibroblast membrane-bound SCF and additional fibroblast-derived membrane-bound signals. Thus, our results show that fibroblast-induced MC differentiation is induced by direct cell-cell contact and involves both Kit-dependent and Kit-independent pathways. Our findings add to the understanding of how immature mast cells mature in murine skin and encourage further analyses of the underlying mechanisms, which may result in novel targets for the modulation of skin mast cell driven diseases.
Collapse
Affiliation(s)
- Mandy Leist
- Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Cathleen Annett Sünder
- Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Drube
- Institute of Immunology, Universitätsklinikum, Jena, Germany
| | - Carolin Zimmermann
- Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Astrid Geldmacher
- Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Metz
- Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Anne Dudeck
- Institute for Immunology, University of Technology Dresden, Medical Faculty Carl-Gustav Carus, Dresden, Germany
| | - Marcus Maurer
- Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
35
|
Garton AJ, Seibel S, Lopresti-Morrow L, Crew L, Janson N, Mandiyan S, Trombetta ES, Pankratz S, LaVallee TM, Gedrich R. Anti-KIT Monoclonal Antibody Treatment Enhances the Antitumor Activity of Immune Checkpoint Inhibitors by Reversing Tumor-Induced Immunosuppression. Mol Cancer Ther 2017; 16:671-680. [DOI: 10.1158/1535-7163.mct-16-0676] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 11/16/2022]
|
36
|
Duval R, Duplais C. Fluorescent natural products as probes and tracers in biology. Nat Prod Rep 2017; 34:161-193. [DOI: 10.1039/c6np00111d] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fluorescence is a remarkable property of many natural products in addition to their medicinal and biological value. Herein, we provide a review of these peculiar secondary metabolites to stimulate prospecting of them as original fluorescent tracers, endowed with unique photophysical properties and with applications in most fields of biology.
Collapse
Affiliation(s)
- Romain Duval
- IRD
- UMR 216 IRD MERIT (Mère et Enfant face aux Infections Tropicales)
- Université Paris-Descartes
- 75006 Paris
- France
| | - Christophe Duplais
- CNRS
- UMR 8172 EcoFoG (Ecologie des Forêts de Guyane)
- AgroParisTech
- Cirad
- INRA
| |
Collapse
|
37
|
Lotinun S, Krishnamra N. Disruption of c-Kit Signaling in Kit(W-sh/W-sh) Growing Mice Increases Bone Turnover. Sci Rep 2016; 6:31515. [PMID: 27527615 PMCID: PMC4985756 DOI: 10.1038/srep31515] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/21/2016] [Indexed: 12/13/2022] Open
Abstract
c-Kit tyrosine kinase receptor has been identified as a regulator of bone homeostasis. The c-Kit loss-of-function mutations in WBB6F1/J-KitW/W-v mice result in low bone mass. However, these mice are sterile and it is unclear whether the observed skeletal phenotype is secondary to a sex hormone deficiency. In contrast, C57BL/6J-KitW-sh/W-sh (Wsh/Wsh) mice, which carry an inversion mutation affecting the transcriptional regulatory elements of the c-Kit gene, are fertile. Here, we showed that Wsh/Wsh mice exhibited osteopenia with elevated bone resorption and bone formation at 6- and 9-week-old. The c-Kit Wsh mutation increased osteoclast differentiation, the number of committed osteoprogenitors, alkaline phosphatase activity and mineralization. c-Kit was expressed in both osteoclasts and osteoblasts, and c-Kit expression was decreased in Wsh/Wshosteoclasts, but not osteoblasts, suggesting an indirect effect of c-Kit on bone formation. Furthermore, the osteoclast-derived coupling factor Wnt10b mRNA was increased in Wsh/Wsh osteoclasts. Conditioned medium from Wsh/Wsh osteoclasts had elevated Wnt10b protein levels and induced increased alkaline phosphatase activity and mineralization in osteoblast cultures. Antagonizing Wnt10b signaling with DKK1 or Wnt10b antibody inhibited these effects. Our data suggest that c-Kit negatively regulates bone turnover, and disrupted c-Kit signaling couples increased bone resorption with bone formation through osteoclast-derived Wnt 10 b.
Collapse
Affiliation(s)
- Sutada Lotinun
- Department of Physiology and STAR on Craniofacial and Skeletal Disorders, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Nateetip Krishnamra
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
38
|
Kiupel M, Webster JD, Kaneene JB, Miller R, Yuzbasiyan-Gurkan V. The Use of KIT and Tryptase Expression Patterns as Prognostic Tools for Canine Cutaneous Mast Cell Tumors. Vet Pathol 2016; 41:371-7. [PMID: 15232137 DOI: 10.1354/vp.41-4-371] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cutaneous mast cell tumors (MCTs) are one of the most common tumors in dogs. Currently, prognostic and therapeutic determinations for MCTs are primarily based on the histologic grade of the tumor, but a vast majority of MCTs are of an intermediate grade, and the prognostic relevance is highly questioned. A more detailed prognostic evaluation, especially of grade 2 canine MCTs, is greatly needed. To evaluate the prognostic significance of KIT and tryptase expression patterns in canine cutaneous MCTs, we studied 100 cutaneous MCTs from 100 dogs that had been treated with surgery only. The total survival and disease-free survival time and the time to local or distant recurrence of MCTs were recorded for all dogs. Using immuno-histochemistry, 98 of these MCTs were stained with anti-KIT and antitryptase antibodies. Three KIT- and three tryptase-staining patterns were identified. The KIT-staining patterns were identified as 1) membrane-associated staining, 2) focal to stippled cytoplasmic staining with decreased membrane-associated staining, and 3) diffuse cytoplasmic staining. The tryptase-staining patterns were identified as 1) diffuse cytoplasmic staining, 2) stippled cytoplasmic staining, and 3) little to no cytoplasmic staining. Based on univariate and multivariate survival analysis, increased cytoplasmic KIT staining was significantly associated with an increased rate of local recurrence and a decreased survival rate. The tryptase-staining patterns were not significantly associated with any survival parameter. On the basis of these results, we propose a new prognostic classification of canine cutaneous MCTs, according to their KIT-staining pattern, that can be used for the routine prognostic evaluation of canine cutaneous MCTs.
Collapse
Affiliation(s)
- M Kiupel
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing 48824, USA.
| | - J D Webster
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing 48824, USA.
| | | | | | | |
Collapse
|
39
|
Webster JD, Yuzbasiyan-Gurkan V, Miller RA, Kaneene JB, Kiupel M. Cellular Proliferation in Canine Cutaneous Mast Cell Tumors: Associations with c-KIT and Its Role in Prognostication. Vet Pathol 2016; 44:298-308. [PMID: 17491070 DOI: 10.1354/vp.44-3-298] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Canine cutaneous mast cell tumor (MCT) is a common neoplastic disease in dogs. Due to the prevalence of canine MCTs and the variable biologic behavior of this disease, accurate prognostication and a thorough understanding of MCT biology are critical for the treatment of this disease. The goals of this study were to evaluate and compare the utility of the proliferation markers Ki67, proliferating cell nuclear antigen (PCNA), and argyrophilic nucleolar organizing region (AgNOR) as independent prognostic markers for canine MCTs and to evaluate the use of these markers in combination, as each marker assesses different aspects of cellular proliferation. An additional goal of this study was to evaluate the associations between cellular proliferation and c-KIT mutations and between cellular proliferation and aberrant KIT protein localization in canine MCTs. Fifty-six MCTs treated with surgical excision alone were included in this study. Each MCT was evaluated for Ki67 expression, PCNA expression, and KIT protein localization using immunohistochemistry; for AgNOR counts using histochemical staining; and for the presence of internal tandem duplication c-KIT mutations using polymerase chain reaction amplification. In this study, increased Ki67 and AgNOR counts were both associated with significantly decreased survival. On the basis of these results, we recommend that the evaluation of cellular proliferation, including evaluations of both Ki67 expression and AgNORs, should be routinely used in the prognostication of canine MCTs. Additionally, the results of this study show that MCTs with aberrant KIT protein localization or internal tandem duplication c-KIT mutations are associated with increased cellular proliferation, further suggesting a role for c-KIT in the progression of canine MCTs.
Collapse
Affiliation(s)
- J D Webster
- Comparative Medicine and Integrative Biology Program, Michigan State University, Lansing, MI 48910, USA
| | | | | | | | | |
Collapse
|
40
|
Preziosi R, Morini M, Sarli G. Expression of the KIT Protein (CD117) in Primary Cutaneous Mast Cell Tumors of the Dog. J Vet Diagn Invest 2016; 16:554-61. [PMID: 15586571 DOI: 10.1177/104063870401600610] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Thirty-one canine cutaneous masses, diagnosed as mast cell tumors (MCT) by histopathologic analysis, were used to evaluate the immunohistochemical pattern of expression of KIT protein (CD117), a type III tyrosine kinase protein involved in mast cell growth and differentiation. Lesions were graded as I (well differentiated), II (intermediate differentiation), or III (poorly differentiated) according to the following morphologic features: invasiveness, cellularity and cellular morphology, mitotic index, and stromal reaction. Immunohistochemical KIT expression was compared with histologic grade and some histomorphologic features (cell differentiation and nuclear grade) evaluated separately. A possible predictive role of biologic behavior in MCTs for KIT expression was also investigated. Immunohistochemical analysis revealed three different patterns of KIT expression: a cytoplasmic diffuse pattern, a membranous pattern with immunostaining located on the cell surface, and a cytoplasmic perinuclear pattern, where KIT expression was detected in the cytoplasm of the neoplastic mast cells, close to the nucleus. Statistical analysis showed a close relationship between different KIT immunohistochemical patterns and histologic grade ( P < 0.00000), cell differentiation ( P < 0.00000), and nuclear grade ( P < 0.0024). According to Kaplan-Meier–estimated survival curves compared by survival analysis, KIT expression was significantly associated with survival time ( P = 0.037) but not cancer-free interval ( P = 0.50). Similar to other well-known histomorphological features, KIT expression is a useful parameter of malignancy in cutaneous MCTs. KIT expression also predicted the biological behavior of the tumors in this study.
Collapse
Affiliation(s)
- Rosario Preziosi
- Department of Veterinary Public Health and Animal Pathology, Ozzano Emilia, Bologna, Italy
| | | | | |
Collapse
|
41
|
Montagner S, Leoni C, Emming S, Della Chiara G, Balestrieri C, Barozzi I, Piccolo V, Togher S, Ko M, Rao A, Natoli G, Monticelli S. TET2 Regulates Mast Cell Differentiation and Proliferation through Catalytic and Non-catalytic Activities. Cell Rep 2016; 15:1566-1579. [PMID: 27160912 DOI: 10.1016/j.celrep.2016.04.044] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 03/08/2016] [Accepted: 04/07/2016] [Indexed: 12/13/2022] Open
Abstract
Dioxygenases of the TET family impact genome functions by converting 5-methylcytosine (5mC) in DNA to 5-hydroxymethylcytosine (5hmC). Here, we identified TET2 as a crucial regulator of mast cell differentiation and proliferation. In the absence of TET2, mast cells showed disrupted gene expression and altered genome-wide 5hmC deposition, especially at enhancers and in the proximity of downregulated genes. Impaired differentiation of Tet2-ablated cells could be relieved or further exacerbated by modulating the activity of other TET family members, and mechanistically it could be linked to the dysregulated expression of C/EBP family transcription factors. Conversely, the marked increase in proliferation induced by the loss of TET2 could be rescued exclusively by re-expression of wild-type or catalytically inactive TET2. Our data indicate that, in the absence of TET2, mast cell differentiation is under the control of compensatory mechanisms mediated by other TET family members, while proliferation is strictly dependent on TET2 expression.
Collapse
Affiliation(s)
- Sara Montagner
- Institute for Research in Biomedicine, Universita' della Svizzera italiana (USI), 6500 Bellinzona, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Cristina Leoni
- Institute for Research in Biomedicine, Universita' della Svizzera italiana (USI), 6500 Bellinzona, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Stefan Emming
- Institute for Research in Biomedicine, Universita' della Svizzera italiana (USI), 6500 Bellinzona, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Giulia Della Chiara
- Department of Experimental Oncology, European Institute of Oncology (IEO), 20139 Milan, Italy
| | - Chiara Balestrieri
- Department of Experimental Oncology, European Institute of Oncology (IEO), 20139 Milan, Italy
| | - Iros Barozzi
- Department of Experimental Oncology, European Institute of Oncology (IEO), 20139 Milan, Italy
| | - Viviana Piccolo
- Department of Experimental Oncology, European Institute of Oncology (IEO), 20139 Milan, Italy
| | - Susan Togher
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Myunggon Ko
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA; School of Life Sciences, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulju-gun, Ulsan 689-798, Republic of Korea
| | - Anjana Rao
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Gioacchino Natoli
- Department of Experimental Oncology, European Institute of Oncology (IEO), 20139 Milan, Italy
| | - Silvia Monticelli
- Institute for Research in Biomedicine, Universita' della Svizzera italiana (USI), 6500 Bellinzona, Switzerland.
| |
Collapse
|
42
|
Liu J, Fu T, Song F, Xue Y, Xia C, Liu P, Wang H, Zhong J, Li Q, Chen J, Li Y, Cai D, Li Z. Mast Cells Participate in Corneal Development in Mice. Sci Rep 2015; 5:17569. [PMID: 26627131 PMCID: PMC4667177 DOI: 10.1038/srep17569] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/02/2015] [Indexed: 12/18/2022] Open
Abstract
The development of the cornea, a highly specialized transparent tissue located at the anterior of the eye, is coordinated by a variety of molecules and cells. Here, we report that mast cells (MCs), recently found to be involved in morphogenesis, played a potentially important role in corneal development in mice. We show that two different waves of MC migration occurred during corneal development. In the first wave, MCs migrated to the corneal stroma and became distributed throughout the cornea. This wave occurred by embryonic day 12.5, with MCs disappearing from the cornea at the time of eyelid opening. In the second wave, MCs migrated to the corneal limbus and became distributed around limbal blood vessels. The number of MCs in this region gradually increased after birth and peaked at the time of eyelid opening in mice, remaining stable after postnatal day 21. We also show that integrin α4β7 and CXCR2 were important for the migration of MC precursors to the corneal limbus and that c-Kit-dependent MCs appeared to be involved in the formation of limbal blood vessels and corneal nerve fibers. These data clearly revealed that MCs participate in the development of the murine cornea.
Collapse
Affiliation(s)
- Jun Liu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Ting Fu
- International Collaborative Innovation Research Center of Ocular Surface Diseases and Institute of Ophthalmology, Jinan University School of Medicine, Guangzhou, China
| | - Fang Song
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Yunxia Xue
- International Collaborative Innovation Research Center of Ocular Surface Diseases and Institute of Ophthalmology, Jinan University School of Medicine, Guangzhou, China
| | - Chaoyong Xia
- Department of Embryology and Histology, Jinan University School of Medicine, Guangzhou, China
| | - Peng Liu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Hanqing Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Jiajun Zhong
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Quanrong Li
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Jiansu Chen
- International Collaborative Innovation Research Center of Ocular Surface Diseases and Institute of Ophthalmology, Jinan University School of Medicine, Guangzhou, China
| | - Yangqiu Li
- Institute of Hematology, Jinan University School of Medicine, Guangzhou, China
| | - Dongqing Cai
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Zhijie Li
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,International Collaborative Innovation Research Center of Ocular Surface Diseases and Institute of Ophthalmology, Jinan University School of Medicine, Guangzhou, China.,Department of Ophthalmology, First Affiliated Hospital of Jinan University, Guangzhou, China.,Section of Leukocyte Biology, Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
43
|
Fonseca-Alves CE, Bento DD, Torres-Neto R, Werner J, Kitchell B, Laufer-Amorim R. Ki67/KIT double immunohistochemical staining in cutaneous mast cell tumors from Boxer dogs. Res Vet Sci 2015; 102:122-6. [PMID: 26412531 DOI: 10.1016/j.rvsc.2015.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 07/16/2015] [Accepted: 08/06/2015] [Indexed: 12/11/2022]
Abstract
Cutaneous mast cell tumors (MCTs) are among the most frequent malignant tumors in dogs and Boxer breed dogs have a higher incidence of this disease. Ki67 staining and KIT staining are widely used to predict natural behavior in canine MCT but no previous study has evaluated double staining of these proteins as a prognostic factor. Based on biological behavior predictors in canine MCT, the purpose of this study was to determine the Ki67 proliferative index in KIT positive cells using double stain immunohistochemistry technique. Sixty-nine MCTs from Boxer dogs were selected and a tissue microarray was constructed for the double stained immunohistochemistry. Double positivity (Ki67(+)/KIT(+)) was observed in 20/69 (29%) MCT, with a mean of 9.06 double positive cells per tissue core (range 0.48%-43.97%) and Ki67(-)/KIT(+) animals had a longer survival time than Ki67(+)/KIT(+) animals (p=0.03).
Collapse
Affiliation(s)
- Carlos Eduardo Fonseca-Alves
- Veterinary Clinic Department, School of Veterinary Medicine and Animal Science, Univ Estadual Paulista, UNESP, Botucatu, SP, Brazil
| | - Daniel Diola Bento
- Veterinary Clinic Department, School of Veterinary Medicine and Animal Science, Univ Estadual Paulista, UNESP, Botucatu, SP, Brazil
| | - Rafael Torres-Neto
- Veterinary Clinic Department, School of Veterinary Medicine and Animal Science, Univ Estadual Paulista, UNESP, Botucatu, SP, Brazil
| | | | | | - Renée Laufer-Amorim
- Veterinary Clinic Department, School of Veterinary Medicine and Animal Science, Univ Estadual Paulista, UNESP, Botucatu, SP, Brazil.
| |
Collapse
|
44
|
Yan Q, Fong SS. Bacterial chitinase: nature and perspectives for sustainable bioproduction. BIORESOUR BIOPROCESS 2015. [DOI: 10.1186/s40643-015-0057-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
45
|
Gaudenzio N, Sibilano R, Starkl P, Tsai M, Galli SJ, Reber LL. Analyzing the Functions of Mast Cells In Vivo Using 'Mast Cell Knock-in' Mice. J Vis Exp 2015:e52753. [PMID: 26068439 DOI: 10.3791/52753] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Mast cells (MCs) are hematopoietic cells which reside in various tissues, and are especially abundant at sites exposed to the external environment, such as skin, airways and gastrointestinal tract. Best known for their detrimental role in IgE-dependent allergic reactions, MCs have also emerged as important players in host defense against venom and invading bacteria and parasites. MC phenotype and function can be influenced by microenvironmental factors that may differ according to anatomic location and/or based on the type or stage of development of immune responses. For this reason, we and others have favored in vivo approaches over in vitro methods to gain insight into MC functions. Here, we describe methods for the generation of mouse bone marrow-derived cultured MCs (BMCMCs), their adoptive transfer into genetically MC-deficient mice, and the analysis of the numbers and distribution of adoptively transferred MCs at different anatomical sites. This method, named the 'mast cell knock-in' approach, has been extensively used over the past 30 years to assess the functions of MCs and MC-derived products in vivo. We discuss the advantages and limitations of this method, in light of alternative approaches that have been developed in recent years.
Collapse
Affiliation(s)
| | | | - Philipp Starkl
- Department of Pathology, Stanford University School of Medicine
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine; Department of Microbiology & Immunology, Stanford University School of Medicine
| | - Laurent L Reber
- Department of Pathology, Stanford University School of Medicine;
| |
Collapse
|
46
|
Al-Azzam N, Kondeti V, Duah E, Gombedza F, Thodeti CK, Paruchuri S. Modulation of mast cell proliferative and inflammatory responses by leukotriene d4 and stem cell factor signaling interactions. J Cell Physiol 2015; 230:595-602. [PMID: 25161061 DOI: 10.1002/jcp.24777] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 08/22/2014] [Indexed: 11/08/2022]
Abstract
Mast cells (MCs) are important effector cells in asthma and pulmonary inflammation, and their proliferation and maturation is maintained by stem cell factor (SCF) via its receptor, c-Kit. Cysteinyl leukotrienes (cys-LTs) are potent inflammatory mediators that signal through CysLT1 R and CysLT2 R located on the MC surface, and they enhance MC inflammatory responses. However, it is not known if SCF and cys-LTs cross-talk and influence MC hyperplasia and activation in inflammation. Here, we report the concerted effort of the growth factor SCF and the inflammatory mediator LTD4 in MC activation. Stimulation of MCs by LTD4 in the presence of SCF enhances c-Kit-mediated proliferative responses. Similarly, SCF synergistically enhances LTD4 -induced calcium, c-fos expression and phosphorylation, as well as MIP1β generation in MCs. These findings suggest that integration of SCF and LTD4 signals may contribute to MC hyperplasia and hyper-reactivity during airway hyper-response and inflammation.
Collapse
|
47
|
Galli SJ, Tsai M, Marichal T, Tchougounova E, Reber LL, Pejler G. Approaches for analyzing the roles of mast cells and their proteases in vivo. Adv Immunol 2015; 126:45-127. [PMID: 25727288 DOI: 10.1016/bs.ai.2014.11.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The roles of mast cells in health and disease remain incompletely understood. While the evidence that mast cells are critical effector cells in IgE-dependent anaphylaxis and other acute IgE-mediated allergic reactions seems unassailable, studies employing various mice deficient in mast cells or mast cell-associated proteases have yielded divergent conclusions about the roles of mast cells or their proteases in certain other immunological responses. Such "controversial" results call into question the relative utility of various older versus newer approaches to ascertain the roles of mast cells and mast cell proteases in vivo. This review discusses how both older and more recent mouse models have been used to investigate the functions of mast cells and their proteases in health and disease. We particularly focus on settings in which divergent conclusions about the importance of mast cells and their proteases have been supported by studies that employed different models of mast cell or mast cell protease deficiency. We think that two major conclusions can be drawn from such findings: (1) no matter which models of mast cell or mast cell protease deficiency one employs, the conclusions drawn from the experiments always should take into account the potential limitations of the models (particularly abnormalities affecting cell types other than mast cells) and (2) even when analyzing a biological response using a single model of mast cell or mast cell protease deficiency, details of experimental design are critical in efforts to define those conditions under which important contributions of mast cells or their proteases can be identified.
Collapse
Affiliation(s)
- Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA; Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, USA.
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Thomas Marichal
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA; GIGA-Research and Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Elena Tchougounova
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Laurent L Reber
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
48
|
Synthesis and biological evaluation of novel oxindole-based RTK inhibitors as anti-cancer agents. Bioorg Med Chem 2014; 22:6953-60. [DOI: 10.1016/j.bmc.2014.10.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 02/01/2023]
|
49
|
Nishikori Y, Shiota N, Okunishi H. The role of mast cells in cutaneous wound healing in streptozotocin-induced diabetic mice. Arch Dermatol Res 2014; 306:823-35. [PMID: 25218083 DOI: 10.1007/s00403-014-1496-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 07/25/2014] [Accepted: 08/29/2014] [Indexed: 12/24/2022]
Abstract
Mast cells (MCs) reside in cutaneous tissue, and an increment of MCs is suggested to induce vascular regression in the process of wound healing. To clarify participation of MCs in diabetic cutaneous wound healing, we created an excisional wound on diabetic mice 4 weeks after streptozotocin injections and subsequently investigated the healing processes for 49 days, comparing them with control mice. The rate of wound closure was not markedly different between the diabetic and control mice. In the proliferative phase at days 7 and 14, neovascularization in the wound was weaker in diabetic mice than in control mice. In the remodeling phase at day 21 and afterward, rapid vascular regression occurred in control mice; however, neovascularization was still observed in diabetic mice where the number of vessels in granulation tissues was relatively higher than in control mice. In the remodeling phase of the control mice, MCs within the wound began to increase rapidly and resulted in considerable accumulation, whereas the increment of MCs was delayed in diabetic mice. In addition, the number of fibroblast growth factor (FGF)- or vascular endothelial growth factor (VEGF)-immunopositive hypertrophic fibroblast-like spindle cells and c-Kit-positive/VEGFR2-positive/FcεRIα-negative endothelial progenitor cells (EPCs) were higher in diabetic wounds. In conclusion, neovascularization in the proliferative phase and vascular regression in the remodeling phase were impaired in diabetic mice. The delayed increment of MCs and sustained angiogenic stimuli by fibroblast-like spindle cells and EPCs may inhibit vascular regression in the remodeling phase and impair the wound-healing process in diabetic mice.
Collapse
Affiliation(s)
- Yoriko Nishikori
- Department of Pharmacology, Shimane University School of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan,
| | | | | |
Collapse
|
50
|
Syrjänen R, Petrov P, Glumoff V, Fang S, Salven P, Savolainen ER, Vainio O, Uchida T. TIM-family molecules in embryonic hematopoiesis: Fetal liver TIM-4lo cells have myeloid potential. Exp Hematol 2014; 42:230-40. [DOI: 10.1016/j.exphem.2013.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 11/20/2013] [Accepted: 11/25/2013] [Indexed: 01/13/2023]
|