1
|
Blumenstiel JP. From the cauldron of conflict: Endogenous gene regulation by piRNA and other modes of adaptation enabled by selfish transposable elements. Semin Cell Dev Biol 2025; 164:1-12. [PMID: 38823219 DOI: 10.1016/j.semcdb.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 06/03/2024]
Abstract
Transposable elements (TEs) provide a prime example of genetic conflict because they can proliferate in genomes and populations even if they harm the host. However, numerous studies have shown that TEs, though typically harmful, can also provide fuel for adaptation. This is because they code functional sequences that can be useful for the host in which they reside. In this review, I summarize the "how" and "why" of adaptation enabled by the genetic conflict between TEs and hosts. In addition, focusing on mechanisms of TE control by small piwi-interacting RNAs (piRNAs), I highlight an indirect form of adaptation enabled by conflict. In this case, mechanisms of host defense that regulate TEs have been redeployed for endogenous gene regulation. I propose that the genetic conflict released by meiosis in early eukaryotes may have been important because, among other reasons, it spurred evolutionary innovation on multiple interwoven trajectories - on the part of hosts and also embedded genetic parasites. This form of evolution may function as a complexity generating engine that was a critical player in eukaryotic evolution.
Collapse
Affiliation(s)
- Justin P Blumenstiel
- Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States.
| |
Collapse
|
2
|
Zhang X, Van Treeck B, Horton CA, McIntyre JJR, Palm SM, Shumate JL, Collins K. Harnessing eukaryotic retroelement proteins for transgene insertion into human safe-harbor loci. Nat Biotechnol 2025; 43:42-51. [PMID: 38379101 PMCID: PMC11371274 DOI: 10.1038/s41587-024-02137-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/10/2024] [Indexed: 02/22/2024]
Abstract
Current approaches for inserting autonomous transgenes into the genome, such as CRISPR-Cas9 or virus-based strategies, have limitations including low efficiency and high risk of untargeted genome mutagenesis. Here, we describe precise RNA-mediated insertion of transgenes (PRINT), an approach for site-specifically primed reverse transcription that directs transgene synthesis directly into the genome at a multicopy safe-harbor locus. PRINT uses delivery of two in vitro transcribed RNAs: messenger RNA encoding avian R2 retroelement-protein and template RNA encoding a transgene of length validated up to 4 kb. The R2 protein coordinately recognizes the target site, nicks one strand at a precise location and primes complementary DNA synthesis for stable transgene insertion. With a cultured human primary cell line, over 50% of cells can gain several 2 kb transgenes, of which more than 50% are full-length. PRINT advantages include no extragenomic DNA, limiting risk of deleterious mutagenesis and innate immune responses, and the relatively low cost, rapid production and scalability of RNA-only delivery.
Collapse
Affiliation(s)
- Xiaozhu Zhang
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Briana Van Treeck
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Connor A Horton
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Jeremy J R McIntyre
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Sarah M Palm
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Justin L Shumate
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
3
|
Zhu M, Zuber J, Tan Z, Sharma G, Mathews DH. DecoyFinder: Identification of Contaminants in Sets of Homologous RNA Sequences. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.12.618037. [PMID: 39464058 PMCID: PMC11507696 DOI: 10.1101/2024.10.12.618037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Motivation RNA structure is essential for the function of many non-coding RNAs. Using multiple homologous sequences, which share structure and function, secondary structure can be predicted with much higher accuracy than with a single sequence. It can be difficult, however, to establish a set of homologous sequences when their structure is not yet known. We developed a method to identify sequences in a set of putative homologs that are in fact non-homologs. Results Previously, we developed TurboFold to estimate conserved structure using multiple, unaligned RNA homologs. Here, we report that the positive predictive value of TurboFold is significantly reduced by the presence of contamination by non-homologous sequences, although the reduction is less than 1%. We developed a method called DecoyFinder, which applies machine learning trained with features determined by TurboFold, to detect sequences that are not homologous with the other sequences in the set. This method can identify approximately 45% of non-homologous sequences, at a rate of 5% misidentification of true homologous sequences. Availability DecoyFinder and TurboFold are incorporated in RNAstructure, which is provided for free and open source under the GPL V2 license. It can be downloaded at http://rna.urmc.rochester.edu/RNAstructure.html.
Collapse
Affiliation(s)
- Mingyi Zhu
- Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, United States
| | - Jeffrey Zuber
- Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, United States
| | - Zhen Tan
- Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, United States
| | - Gaurav Sharma
- University of Rochester, Department of Electrical and Computer Engineering, Rochester, NY, United States
- University of Rochester, Department of Computer Science, Rochester, NY, United States
| | - David H Mathews
- Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
4
|
Palm SM, Van Treeck B, Collins K. Experimental considerations for precise RNA-mediated insertion of transgenes. Methods Enzymol 2024; 705:1-24. [PMID: 39389660 DOI: 10.1016/bs.mie.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Precise RNA-mediated insertion of transgenes (PRINT) is a pioneering method for site-specific, safe-harbor transgene supplementation of the human genome that harnesses a eukaryotic retroelement protein and relies solely on the delivery of RNA. Here we outline important considerations in the design of the two required RNAs, details for the production and transfection of these RNAs to cells, and read-outs for successful transgene addition. Throughout, tips and key concepts are laid out to enable general use of this method.
Collapse
Affiliation(s)
- Sarah M Palm
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, United States
| | - Briana Van Treeck
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, United States
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, United States.
| |
Collapse
|
5
|
Palm SM, Horton CA, Zhang X, Collins K. Structure and sequence at an RNA template 5' end influence insertion of transgenes by an R2 retrotransposon protein. RNA (NEW YORK, N.Y.) 2024; 30:1227-1245. [PMID: 38960642 PMCID: PMC11331408 DOI: 10.1261/rna.080031.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024]
Abstract
R2 non-long terminal repeat retrotransposons insert site-specifically into ribosomal RNA genes (rDNA) in a broad range of multicellular eukaryotes. R2-encoded proteins can be leveraged to mediate transgene insertion at 28S rDNA loci in cultured human cells. This strategy, precise RNA-mediated insertion of transgenes (PRINT), relies on the codelivery of an mRNA encoding R2 protein and an RNA template encoding a transgene cassette of choice. Here, we demonstrate that the PRINT RNA template 5' module, which as a complementary DNA 3' end will generate the transgene 5' junction with rDNA, influences the efficiency and mechanism of gene insertion. Iterative design and testing identified optimal 5' modules consisting of a hepatitis delta virus-like ribozyme fold with high thermodynamic stability, suggesting that RNA template degradation from its 5' end may limit transgene insertion efficiency. We also demonstrate that transgene 5' junction formation can be either precise, formed by annealing the 3' end of first-strand complementary DNA with the upstream target site, or imprecise, by end-joining, but this difference in junction formation mechanism is not a major determinant of insertion efficiency. Sequence characterization of imprecise end-joining events indicates surprisingly minimal reliance on microhomology. Our findings expand the current understanding of the role of R2 retrotransposon transcript sequence and structure, and especially the 5' ribozyme fold, for retrotransposon mobility and RNA-templated gene synthesis in cells.
Collapse
Affiliation(s)
- Sarah M Palm
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Connor A Horton
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Xiaozhu Zhang
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
6
|
Kindelay SM, Maggert KA. Insights into ribosomal DNA dominance and magnification through characterization of isogenic deletion alleles. Genetics 2024; 227:iyae063. [PMID: 38797870 DOI: 10.1093/genetics/iyae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/02/2024] [Indexed: 05/29/2024] Open
Abstract
The major loci for the large primary ribosomal RNA (rRNA) genes (35S rRNAs) exist as hundreds to thousands of tandem repeats in all organisms and dozens to hundreds in Drosophila. The highly repetitive nature of the ribosomal DNA (rDNA) makes it intrinsically unstable, and many conditions arise from the reduction in or magnification of copy number, but the conditions under which it does so remain unknown. By targeted DNA damage to the rDNA of the Y chromosome, we created and investigated a series of rDNA alleles. We found that complete loss of rDNA leads to lethality after the completion of embryogenesis, blocking larval molting and metamorphosis. We find that the resident retrotransposons-R1 and R2-are regulated by active rDNA such that reduction in copy number derepresses these elements. Their expression is highest during the early first instar, when loss of rDNA is lethal. Regulation of R1 and R2 may be related to their structural arrangement within the rDNA, as we find they are clustered in the flanks of the nucleolus organizing region (NOR; the cytological appearance of the rDNA). We assessed the complex nucleolar dominance relationship between X- and Y-linked rDNA using a histone H3.3-GFP reporter construct and incorporation at the NOR and found that dominance is controlled by rDNA copy number as at high multiplicity the Y-linked array is dominant, but at low multiplicity the X-linked array becomes derepressed. Finally, we found that multiple conditions that disrupt nucleolar dominance lead to increased rDNA magnification, suggesting that the phenomena of dominance and magnification are related, and a single mechanism may underlie and unify these two longstanding observations in Drosophila.
Collapse
Affiliation(s)
- Selina M Kindelay
- Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, 85721, USA
| | - Keith A Maggert
- Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, 85721, USA
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
7
|
Kienbeck K, Malfertheiner L, Zelger-Paulus S, Johannsen S, von Mering C, Sigel RKO. Identification of HDV-like theta ribozymes involved in tRNA-based recoding of gut bacteriophages. Nat Commun 2024; 15:1559. [PMID: 38378708 PMCID: PMC10879173 DOI: 10.1038/s41467-024-45653-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/29/2024] [Indexed: 02/22/2024] Open
Abstract
Trillions of microorganisms, collectively known as the microbiome, inhabit our bodies with the gut microbiome being of particular interest in biomedical research. Bacteriophages, the dominant virome constituents, can utilize suppressor tRNAs to switch to alternative genetic codes (e.g., the UAG stop-codon is reassigned to glutamine) while infecting hosts with the standard bacterial code. However, what triggers this switch and how the bacteriophage manipulates its host is poorly understood. Here, we report the discovery of a subgroup of minimal hepatitis delta virus (HDV)-like ribozymes - theta ribozymes - potentially involved in the code switch leading to the expression of recoded lysis and structural phage genes. We demonstrate their HDV-like self-scission behavior in vitro and find them in an unreported context often located with their cleavage site adjacent to tRNAs, indicating a role in viral tRNA maturation and/or regulation. Every fifth associated tRNA is a suppressor tRNA, further strengthening our hypothesis. The vast abundance of tRNA-associated theta ribozymes - we provide 1753 unique examples - highlights the importance of small ribozymes as an alternative to large enzymes that usually process tRNA 3'-ends. Our discovery expands the short list of biological functions of small HDV-like ribozymes and introduces a previously unknown player likely involved in the code switch of certain recoded gut bacteriophages.
Collapse
Affiliation(s)
- Kasimir Kienbeck
- Department of Chemistry, University of Zurich, Zurich, CH-8057, Switzerland
| | - Lukas Malfertheiner
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Zurich, CH-8057, Switzerland
| | | | - Silke Johannsen
- Department of Chemistry, University of Zurich, Zurich, CH-8057, Switzerland
| | - Christian von Mering
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Zurich, CH-8057, Switzerland.
| | - Roland K O Sigel
- Department of Chemistry, University of Zurich, Zurich, CH-8057, Switzerland.
| |
Collapse
|
8
|
Dalíková M, Provazníková I, Provazník J, Grof-Tisza P, Pepi A, Nguyen P. The Role of Repetitive Sequences in Repatterning of Major Ribosomal DNA Clusters in Lepidoptera. Genome Biol Evol 2023; 15:evad090. [PMID: 37226278 PMCID: PMC10257491 DOI: 10.1093/gbe/evad090] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
Genes for major ribosomal RNAs (rDNA) are present in multiple copies mainly organized in tandem arrays. The number and position of rDNA loci can change dynamically and their repatterning is presumably driven by other repetitive sequences. We explored a peculiar rDNA organization in several representatives of Lepidoptera with either extremely large or numerous rDNA clusters. We combined molecular cytogenetics with analyses of second- and third-generation sequencing data to show that rDNA spreads as a transcription unit and reveal association between rDNA and various repeats. Furthermore, we performed comparative long read analyses among the species with derived rDNA distribution and moths with a single rDNA locus, which is considered ancestral. Our results suggest that satellite arrays, rather than mobile elements, facilitate homology-mediated spread of rDNA via either integration of extrachromosomal rDNA circles or ectopic recombination. The latter arguably better explains preferential spread of rDNA into terminal regions of lepidopteran chromosomes as efficiency of ectopic recombination depends on the proximity of homologous sequences to telomeres.
Collapse
Affiliation(s)
- Martina Dalíková
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre CAS, České Budějovice, Czech Republic
| | - Irena Provazníková
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre CAS, České Budějovice, Czech Republic
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jan Provazník
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Patrick Grof-Tisza
- Institute of Biology, Laboratory of Evolutionary Entomology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Adam Pepi
- Department of Biology, Tufts University
| | - Petr Nguyen
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre CAS, České Budějovice, Czech Republic
| |
Collapse
|
9
|
Golub NV, Golub VB, Anokhin BA, Kuznetsova VG. Comparative Cytogenetics of Lace Bugs (Tingidae, Heteroptera): New Data and a Brief Overview. INSECTS 2022; 13:insects13070608. [PMID: 35886784 PMCID: PMC9324616 DOI: 10.3390/insects13070608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 02/06/2023]
Abstract
The lace bug family Tingidae comprises more than 2600 described species in 318 genera that are classified into the subfamilies Tinginae (about 2500 species and 300 genera), Cantacaderinae, and Vianadinae. We provide data on karyotypes of 16 species belonging to 10 genera of the tribes Tingini and Acalyptaini (Tinginae) studied using conventional chromosome staining and FISH. The species of Tingini possess 2n = 12A + XY, whereas those of Acalyptaini have 2n = 12A + X(0). FISH for 18S rDNA revealed hybridization signals on one of the medium-sized bivalents in species of both tribes. FISH with a telomeric probe TTAGG produced no signals in any species. In addition, we provide a list of all data obtained to date on Tingidae karyotypes, which includes 60 species from 22 genera of Tinginae. The subfamily is highly conservative in relation to the number and size of autosomes, whereas it shows diversity in the number and chromosomal distribution of the rDNA arrays, which may be located either on a pair of autosomes (the predominant and supposedly ancestral pattern), on one or both sex chromosomes, or on an autosome pair and the X. The absence of the “insect” telomeric sequence TTAGG in all species implies that Tinginae have some other, yet unknown, telomere organization.
Collapse
Affiliation(s)
- Natalia V. Golub
- Department of Karyosystematics, Zoological Institute, Russian Academy of Sciences, Universitetskaya emb.1, St. Petersburg 199034, Russia; (B.A.A.); (V.G.K.)
- Department of Zoology and Parasitology, Voronezh State University, Universitetskaya sq.1, Voronezh 394006, Russia;
- Correspondence: ; Tel.: +7-812-323-5197
| | - Viktor B. Golub
- Department of Zoology and Parasitology, Voronezh State University, Universitetskaya sq.1, Voronezh 394006, Russia;
| | - Boris A. Anokhin
- Department of Karyosystematics, Zoological Institute, Russian Academy of Sciences, Universitetskaya emb.1, St. Petersburg 199034, Russia; (B.A.A.); (V.G.K.)
| | - Valentina G. Kuznetsova
- Department of Karyosystematics, Zoological Institute, Russian Academy of Sciences, Universitetskaya emb.1, St. Petersburg 199034, Russia; (B.A.A.); (V.G.K.)
| |
Collapse
|
10
|
Sicat JPA, Visendi P, Sewe SO, Bouvaine S, Seal SE. Characterization of transposable elements within the Bemisia tabaci species complex. Mob DNA 2022; 13:12. [PMID: 35440097 PMCID: PMC9017028 DOI: 10.1186/s13100-022-00270-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/30/2022] [Indexed: 12/24/2022] Open
Abstract
Background Whiteflies are agricultural pests that cause negative impacts globally to crop yields resulting at times in severe economic losses and food insecurity. The Bemisia tabaci whitefly species complex is the most damaging in terms of its broad crop host range and its ability to serve as vector for over 400 plant viruses. Genomes of whiteflies belonging to this species complex have provided valuable genomic data; however, transposable elements (TEs) within these genomes remain unexplored. This study provides the first accurate characterization of TE content within the B. tabaci species complex. Results This study identified that an average of 40.61% of the genomes of three whitefly species (MEAM1, MEDQ, and SSA-ECA) consists of TEs. The majority of the TEs identified were DNA transposons (22.85% average) while SINEs (0.14% average) were the least represented. This study also compared the TE content of the three whitefly genomes with three other hemipteran genomes and found significantly more DNA transposons and less LINEs in the whitefly genomes. A total of 63 TE superfamilies were identified to be present across the three whitefly species (39 DNA transposons, six LTR, 16 LINE, and two SINE). The sequences of the identified TEs were clustered which generated 5766 TE clusters. A total of 2707 clusters were identified as uniquely found within the whitefly genomes while none of the generated clusters were from both whitefly and non-whitefly TE sequences. This study is the first to characterize TEs found within different B. tabaci species and has created a standardized annotation workflow that could be used to analyze future whitefly genomes. Conclusion This study is the first to characterize the landscape of TEs within the B. tabaci whitefly species complex. The characterization of these elements within the three whitefly genomes shows that TEs occupy significant portions of B. tabaci genomes, with DNA transposons representing the vast majority. This study also identified TE superfamilies and clusters of TE sequences of potential interest, providing essential information, and a framework for future TE studies within this species complex. Supplementary Information The online version contains supplementary material available at 10.1186/s13100-022-00270-6.
Collapse
Affiliation(s)
- Juan Paolo A Sicat
- Natural Resources Institute, University of Greenwich, Central Avenue, Gillingham, Chatham, ME4 4TB, UK.
| | - Paul Visendi
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Steven O Sewe
- Natural Resources Institute, University of Greenwich, Central Avenue, Gillingham, Chatham, ME4 4TB, UK
| | - Sophie Bouvaine
- Natural Resources Institute, University of Greenwich, Central Avenue, Gillingham, Chatham, ME4 4TB, UK
| | - Susan E Seal
- Natural Resources Institute, University of Greenwich, Central Avenue, Gillingham, Chatham, ME4 4TB, UK
| |
Collapse
|
11
|
Fefelova EA, Pleshakova IM, Mikhaleva EA, Pirogov SA, Poltorachenko V, Abramov Y, Romashin D, Shatskikh A, Blokh R, Gvozdev V, Klenov M. Impaired function of rDNA transcription initiation machinery leads to derepression of ribosomal genes with insertions of R2 retrotransposon. Nucleic Acids Res 2022; 50:867-884. [PMID: 35037046 PMCID: PMC8789037 DOI: 10.1093/nar/gkab1276] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/21/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic genomes harbor hundreds of rRNA genes, many of which are transcriptionally silent. However, little is known about selective regulation of individual rDNA units. In Drosophila melanogaster, some rDNA repeats contain insertions of the R2 retrotransposon, which is capable to be transcribed only as part of pre-rRNA molecules. rDNA units with R2 insertions are usually inactivated, although R2 expression may be beneficial in cells with decreased rDNA copy number. Here we found that R2-inserted rDNA units are enriched with HP1a and H3K9me3 repressive mark, whereas disruption of the heterochromatin components slightly affects their silencing in ovarian germ cells. Surprisingly, we observed a dramatic upregulation of R2-inserted rRNA genes in ovaries lacking Udd (Under-developed) or other subunits (TAF1b and TAF1c-like) of the SL1-like complex, which is homologues to mammalian Selective factor 1 (SL1) involved in rDNA transcription initiation. Derepression of rRNA genes with R2 insertions was accompanied by a reduction of H3K9me3 and HP1a enrichment. We suggest that the impairment of the SL1-like complex affects a mechanism of selective activation of intact rDNA units which competes with heterochromatin formation. We also propose that R2 derepression may serve as an adaptive response to compromised rRNA synthesis.
Collapse
Affiliation(s)
- Elena A Fefelova
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow 123182, Russia
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena 91125, USA
| | - Irina M Pleshakova
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow 123182, Russia
- Laboratory for Neurobiology of Memory, P.K. Anokhin Institute of Normal Physiology, Moscow 125315, Russia
| | - Elena A Mikhaleva
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow 123182, Russia
| | - Sergei A Pirogov
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow 123182, Russia
| | - Valentin A Poltorachenko
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow 123182, Russia
| | - Yuri A Abramov
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow 123182, Russia
| | - Daniil D Romashin
- Laboratory of Precision Biosystems, V. N. Orekhovich Institute of Biomedical Chemistry, 10 Pogodinskaya St., Moscow 119121, Russia
| | - Aleksei S Shatskikh
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow 123182, Russia
| | - Roman S Blokh
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow 123182, Russia
- Department of Functional Genomics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Street, Moscow 119334, Russia
| | - Vladimir A Gvozdev
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow 123182, Russia
| | - Mikhail S Klenov
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow 123182, Russia
| |
Collapse
|
12
|
Setiawan AB, Teo CH, Kikuchi S, Sassa H, Kato K, Koba T. Chromosomal Locations of a Non-LTR Retrotransposon, Menolird18, in Cucumis melo and Cucumis sativus, and Its Implication on Genome Evolution of Cucumis Species. Cytogenet Genome Res 2020; 160:554-564. [DOI: 10.1159/000511119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/07/2020] [Indexed: 11/19/2022] Open
Abstract
Mobile elements are major regulators of genome evolution through their effects on genome size and chromosome structure in higher organisms. Non-long terminal repeat (non-LTR) retrotransposons, one of the subclasses of transposons, are specifically inserted into repetitive DNA sequences. While studies on the insertion of non-LTR retrotransposons into ribosomal RNA genes and other repetitive DNA sequences have been reported in the animal kingdom, studies in the plant kingdom are limited. Here, using FISH, we confirmed that <i>Menolird18</i>, a member of LINE (long interspersed nuclear element) in non-LTR retrotransposons and found in <i>Cucumis melo</i>, was inserted into ITS and ETS (internal and external transcribed spacers) regions of 18S rDNA in melon and cucumber. Beside the 18S rDNA regions, <i>Menolird18</i> was also detected in all centromeric regions of melon, while it was located at pericentromeric and sub-telomeric regions in cucumber. The fact that FISH signals of <i>Menolird18</i> were found in centromeric and rDNA regions of mitotic chromosomes suggests that <i>Menolird18</i> is a rDNA and centromere-specific non-LTR retrotransposon in melon. Our findings are the first report on a non-LTR retrotransposon that is highly conserved in 2 different plant species, melon and cucumber. The clear distinction of chromosomal localization of <i>Menolird18</i> in melon and cucumber implies that it might have been involved in the evolutionary processes of the melon (<i>C. melo</i>) and cucumber (<i>C. sativus</i>) genomes.
Collapse
|
13
|
Stolyarenko AD. Nuclear Argonaute Piwi Gene Mutation Affects rRNA by Inducing rRNA Fragment Accumulation, Antisense Expression, and Defective Processing in Drosophila Ovaries. Int J Mol Sci 2020; 21:ijms21031119. [PMID: 32046213 PMCID: PMC7037970 DOI: 10.3390/ijms21031119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/27/2020] [Accepted: 02/04/2020] [Indexed: 12/26/2022] Open
Abstract
Drosophila key nuclear piRNA silencing pathway protein Piwi of the Argonaute family has been classically studied as a factor controlling transposable elements and fertility. Piwi has been shown to concentrate in the nucleolus for reasons largely unknown. Ribosomal RNA is the main component of the nucleolus. In this work the effect of a piwi mutation on rRNA is described. This work led to three important conclusions: A mutation in piwi induces antisense 5S rRNA expression, a processing defect of 2S rRNA orthologous to the 3′-end of eukaryotic 5.8S rRNA, and accumulation of fragments of all five rRNAs in Drosophilamelanogaster ovaries. Hypotheses to explain these phenomena are proposed, possibly involving the interaction of the components of the piRNA pathway with the RNA surveillance machinery.
Collapse
Affiliation(s)
- Anastasia D Stolyarenko
- Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., Moscow 123182, Russia
| |
Collapse
|
14
|
Zoldoš V, Biruš I, Muratovic E, Šatovic Z, Vojta A, Robin O, Pustahija F, Bogunic F, Vicic Bockor V, Siljak-Yakovlev S. Epigenetic Differentiation of Natural Populations of Lilium bosniacum Associated with Contrasting Habitat Conditions. Genome Biol Evol 2018; 10:291-303. [PMID: 29342280 PMCID: PMC5786246 DOI: 10.1093/gbe/evy010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2018] [Indexed: 12/25/2022] Open
Abstract
Epigenetic variation in natural populations with contrasting habitats might be an important element, in addition to the genetic variation, in plant adaptation to environmental stress. Here, we assessed genetic, epigenetic, and cytogenetic structure of the three Lilium bosniacum populations growing on distinct habitats. One population was growing under habitual ecological conditions for this species and the other two were growing under stress associated with high altitude and serpentine soil. Amplified fragment length polymorphism and methylation-sensitive amplification polymorphism analyses revealed that the three populations did not differentiate genetically, but were clearly separated in three distinct clusters according to DNA methylation profiles. Principal coordinate analysis showed that overall epigenetic variation was closely related to habitat conditions. A new methylation-sensitive amplification polymorphism scoring approach allowed identification of mainly unmethylated (φST = 0.190) and fully CpG methylated (φST = 0.118) subepiloci playing a role in overall population differentiation, in comparison with hemimethylated sites (φST = 0.073). In addition, unusual rDNA repatterning and the presence of B chromosomes bearing 5S rDNA loci were recorded in the population growing on serpentine soil, suggesting dynamic chromosome rearrangements probably linked to global genome demethylation, which might have reactivated some mobile elements. We discuss our results considering our earlier data on morphology and leaf anatomy of several L. bosniacum populations, and suggest a possible role of epigenetics as a key element in population differentiation associated with environmental stress in these particular lily populations.
Collapse
Affiliation(s)
- Vlatka Zoldoš
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Croatia
| | - Ivan Biruš
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Croatia
| | - Edina Muratovic
- Laboratory for Research and Protection of Endemic Resources, Department of Biology, Faculty of Sciences, University of Sarajevo, Bosnia and Herzegovina
| | - Zlatko Šatovic
- Department of Seed Science and Technology, Faculty of Agriculture, University of Zagreb, Croatia.,Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Zagreb, Croatia
| | - Aleksandar Vojta
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Croatia
| | - Odile Robin
- Ecologie Systématique Evolution, University of Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Fatima Pustahija
- Laboratory for Research and Protection of Endemic Resources, Department of Biology, Faculty of Sciences, University of Sarajevo, Bosnia and Herzegovina.,Faculty of Forestry, University of Sarajevo, Bosnia and Herzegovina
| | - Faruk Bogunic
- Laboratory for Research and Protection of Endemic Resources, Department of Biology, Faculty of Sciences, University of Sarajevo, Bosnia and Herzegovina.,Faculty of Forestry, University of Sarajevo, Bosnia and Herzegovina
| | - Vedrana Vicic Bockor
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Croatia
| | - Sonja Siljak-Yakovlev
- Laboratory for Research and Protection of Endemic Resources, Department of Biology, Faculty of Sciences, University of Sarajevo, Bosnia and Herzegovina.,Ecologie Systématique Evolution, University of Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| |
Collapse
|
15
|
Drosophila: Retrotransposons Making up Telomeres. Viruses 2017; 9:v9070192. [PMID: 28753967 PMCID: PMC5537684 DOI: 10.3390/v9070192] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 12/27/2022] Open
Abstract
Drosophila and extant species are the best-studied telomerase exception. In this organism, telomere elongation is coupled with targeted retrotransposition of Healing Transposon (HeT-A) and Telomere Associated Retrotransposon (TART) with sporadic additions of Telomere Associated and HeT-A Related (TAHRE), all three specialized non-Long Terminal Repeat (non-LTR) retrotransposons. These three very special retroelements transpose in head to tail arrays, always in the same orientation at the end of the chromosomes but never in interior locations. Apparently, retrotransposon and telomerase telomeres might seem very different, but a detailed view of their mechanisms reveals similarities explaining how the loss of telomerase in a Drosophila ancestor could successfully have been replaced by the telomere retrotransposons. In this review, we will discover that although HeT-A, TART, and TAHRE are still the only examples to date where their targeted transposition is perfectly tamed into the telomere biology of Drosophila, there are other examples of retrotransposons that manage to successfully integrate inside and at the end of telomeres. Because the aim of this special issue is viral integration at telomeres, understanding the base of the telomerase exceptions will help to obtain clues on similar strategies that mobile elements and viruses could have acquired in order to ensure their survival in the host genome.
Collapse
|
16
|
Kojima KK, Seto Y, Fujiwara H. The Wide Distribution and Change of Target Specificity of R2 Non-LTR Retrotransposons in Animals. PLoS One 2016; 11:e0163496. [PMID: 27662593 PMCID: PMC5035012 DOI: 10.1371/journal.pone.0163496] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/09/2016] [Indexed: 12/23/2022] Open
Abstract
Transposons, or transposable elements, are the major components of genomes in most eukaryotes. Some groups of transposons have developed target specificity that limits the integration sites to a specific nonessential sequence or a genomic region to avoid gene disruption caused by insertion into an essential gene. R2 is one of the most intensively investigated groups of sequence-specific non-LTR retrotransposons and is inserted at a specific site inside of 28S ribosomal RNA (rRNA) genes. R2 is known to be distributed among at least six animal phyla even though its occurrence is reported to be patchy. Here, in order to obtain a more detailed picture of the distribution of R2, we surveyed R2 using both in silico screening and degenerate PCR, particularly focusing on actinopterygian fish. We found two families of the R2C lineage from vertebrates, although it has previously only been found in platyhelminthes. We also revealed the apparent movement of insertion sites of a lineage of actinopterygian R2, which was likely concurrent with the acquisition of a 28S rRNA-derived sequence in their 3' UTR. Outside of actinopterygian fish, we revealed the maintenance of a single R2 lineage in birds; the co-existence of four lineages of R2 in the leafcutter bee Megachile rotundata; the first examples of R2 in Ctenophora, Mollusca, and Hemichordata; and two families of R2 showing no target specificity. These findings indicate that R2 is relatively stable and universal, while differences in the distribution and maintenance of R2 lineages probably reflect characteristics of some combination of both R2 lineages and host organisms.
Collapse
Affiliation(s)
- Kenji K. Kojima
- Genetic Information Research Institute, Mountain View, CA, 94043, United States of America
- Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, 277–8562, Japan
- Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan
- * E-mail:
| | - Yosuke Seto
- Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, 277–8562, Japan
| | - Haruhiko Fujiwara
- Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, 277–8562, Japan
| |
Collapse
|
17
|
Both the Exact Target Site Sequence and a Long Poly(A) Tail Are Required for Precise Insertion of the 18S Ribosomal DNA-Specific Non-Long Terminal Repeat Retrotransposon R7Ag. Mol Cell Biol 2016; 36:1494-508. [PMID: 26976636 DOI: 10.1128/mcb.00970-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 03/02/2016] [Indexed: 11/20/2022] Open
Abstract
Ribosomal elements (R elements) are site-specific non-long terminal repeat (LTR) retrotransposons that target ribosomal DNA (rDNA). To elucidate how R elements specifically access their target sites, we isolated and characterized the 18S rDNA-specific R element R7Ag from Anopheles gambiae Using an in vivo and ex vivo recombinant baculovirus retrotransposition system, we found that the exact host 18S rDNA sequence at the target site is essential for the precise insertion of R7Ag. In addition, a long poly(A) tail is necessary for the accurate initiation of R7Ag reverse transcription, a novel mechanism found in non-LTR elements. We further compared the subcellular localizations of proteins in R7Ag as well as R1Bm, another R element that targets 28S rDNA. Although the open reading frame 1 proteins (ORF1ps) of both R7Ag and R1Bm localized predominantly in the cytoplasm, ORF2 proteins (ORF2ps) colocalized in the nucleus with the nucleolar marker fibrillarin. The ORF1ps and ORF2ps of both R elements colocalized largely in the nuclear periphery and to a lesser extent within the nucleus. These results suggest that R7Ag and R1Bm proteins may access nucleolar rDNA targets in an ORF2p-dependent manner.
Collapse
|
18
|
The ribosome as a missing link in prebiotic evolution II: Ribosomes encode ribosomal proteins that bind to common regions of their own mRNAs and rRNAs. J Theor Biol 2016; 397:115-27. [DOI: 10.1016/j.jtbi.2016.02.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 02/16/2016] [Accepted: 02/19/2016] [Indexed: 11/18/2022]
|
19
|
Abstract
Although most of non-long terminal repeat (non-LTR) retrotransposons are incorporated in the host genome almost randomly, some non-LTR retrotransposons are incorporated into specific sequences within a target site. On the basis of structural and phylogenetic features, non-LTR retrotransposons are classified into two large groups, restriction enzyme-like endonuclease (RLE)-encoding elements and apurinic/apyrimidinic endonuclease (APE)-encoding elements. All clades of RLE-encoding non-LTR retrotransposons include site-specific elements. However, only two of more than 20 APE-encoding clades, Tx1 and R1, contain site-specific non-LTR elements. Site-specific non-LTR retrotransposons usually target within multi-copy RNA genes, such as rRNA gene (rDNA) clusters, or repetitive genomic sequences, such as telomeric repeats; this behavior may be a symbiotic strategy to reduce the damage to the host genome. Site- and sequence-specificity are variable even among closely related non-LTR elements and appeared to have changed during evolution. In the APE-encoding elements, the primary determinant of the sequence- specific integration is APE itself, which nicks one strand of the target DNA during the initiation of target primed reverse transcription (TPRT). However, other factors, such as interaction between mRNA and the target DNA, and access to the target region in the nuclei also affect the sequence-specificity. In contrast, in the RLE-encoding elements, DNA-binding motifs appear to affect their sequence-specificity, rather than the RLE domain itself. Highly specific integration properties of these site-specific non-LTR elements make them ideal alternative tools for sequence-specific gene delivery, particularly for therapeutic purposes in human diseases.
Collapse
|
20
|
Abstract
R2 elements are sequence specific non-LTR retrotransposons that exclusively insert in the 28S rRNA genes of animals. R2s encode an endonuclease that cleaves the insertion site and a reverse transcriptase that uses the cleaved DNA to prime reverse transcription of the R2 transcript, a process termed target primed reverse transcription. Additional unusual properties of the reverse transcriptase as well as DNA and RNA binding domains of the R2 encoded protein have been characterized. R2 expression is through co-transcription with the 28S gene and self-cleavage by a ribozyme encoded at the R2 5' end. Studies in laboratory stocks and natural populations of Drosophila suggest that R2 expression is tied to the distribution of R2-inserted units within the rDNA locus. Most individuals have no R2 expression because only a small fraction of their rRNA genes need to be active, and a contiguous region of the locus free of R2 insertions can be selected for activation. However, if the R2-free region is not large enough to produce sufficient rRNA, flanking units - including those inserted with R2 - must be activated. Finally, R2 copies rapidly turnover within the rDNA locus, yet R2 has been vertically maintained in animal lineages for hundreds of millions of years. The key to this stability is R2's ability to remain dormant in rDNA units outside the transcribed regions for generations until the stochastic nature of the crossovers that drive the concerted evolution of the rDNA locus inevitably reshuffle the inserted and uninserted units, resulting in transcription of the R2-inserted units.
Collapse
|
21
|
Nascimento J, Baldo D, Lourenço LB. First insights on the retroelement Rex1 in the cytogenetics of frogs. Mol Cytogenet 2015; 8:86. [PMID: 26550032 PMCID: PMC4635592 DOI: 10.1186/s13039-015-0189-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/27/2015] [Indexed: 11/22/2022] Open
Abstract
Background While some transposable elements (TEs) have been found in the sequenced genomes of frog species, detailed studies of these elements have been lacking. In this work, we investigated the occurrence of the Rex1 element, which is widespread in fish, in anurans of the genus Physalaemus. We isolated and characterized the reverse transcriptase (RT)-coding sequences of Rex1 elements of five species of this genus. Results The amino acid sequences deduced from the nucleotide sequences of the isolated fragments allowed us to unambiguously identify regions corresponding to domains 3–7 of RT. Some of the nucleotide sequences isolated from Physlaemus ephippifer and P. albonotatus had internal deletions, suggesting that these fragments are likely not active TEs, despite being derived from a Rex1 element. When hybridized with metaphase chromosomes, Rex1 probes were revealed at the pericentromeric heterochromatic region of the short arm of chromosome 3 of the P. ephippifer karyotype. Neither other heterochromatin sites of the P. ephippifer karyotype nor any chromosomal regions of the karyotypes of P. albonotatus, P. spiniger and P. albifrons were detected with these probes. Conclusions Rex1 elements were found in the genomes of five species of Physalaemus but clustered in only the P. ephippifer karyotype, in contrast to observations in some species of fish, where large chromosomal sites with Rex1 elements are typically present. Electronic supplementary material The online version of this article (doi:10.1186/s13039-015-0189-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juliana Nascimento
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, 13083-863 Campinas São Paulo, Brazil
| | - Diego Baldo
- Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical (CONICET-UNaM), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Félix de Azara 1552, CPA N3300LQF Posadas, Misiones Argentina
| | - Luciana Bolsoni Lourenço
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, 13083-863 Campinas São Paulo, Brazil
| |
Collapse
|
22
|
Gunderina L, Golygina V, Broshkov A. Chromosomal organization of the ribosomal RNA genes in the genus Chironomus (Diptera, Chironomidae). COMPARATIVE CYTOGENETICS 2015; 9:201-220. [PMID: 26140162 PMCID: PMC4488967 DOI: 10.3897/compcytogen.v9i2.9055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/31/2015] [Indexed: 06/04/2023]
Abstract
Chromosomal localization of ribosomal RNA coding genes has been studied by using FISH (fluorescence in situ hybridization) in 21 species from the genus Chironomus Meigen, 1803. Analysis of the data has shown intra- and interspecific variation in number and location of 5.8S rDNA hybridization sites in 17 species from the subgenus Chironomus and 4 species from the subgenus Camptochironomus Kieffer, 1914. In the majority of studied species the location of rDNA sites coincided with the sites where active NORs (nucleolus organizer regions) were found. The number of hybridization sites in karyotypes of studied chironomids varied from 1 to 6. More than half of the species possessed only one NOR (12 out of 21). Two rDNA hybridization sites were found in karyotypes of five species, three - in two species, and five and six sites - in one species each. NORs were found in all chromosomal arms of species from the subgenus Chironomus with one of them always located on arm G. On the other hand, no hybridization sites were found on arm G in four studied species from the subgenus Camptochironomus. Two species from the subgenus Chironomus - Chironomusbalatonicus Devai, Wuelker & Scholl, 1983 and Chironomus "annularius" sensu Strenzke, 1959 - showed intraspecific variability in the number of hybridization signals. Possible mechanisms of origin of variability in number and location of rRNA genes in the karyotypes of species from the genus Chironomus are discussed.
Collapse
Affiliation(s)
- Larisa Gunderina
- Institute of Cytology and Genetics SB RAS, Academician Lavrentiev avenue 10, Novosibirsk, 630090, Russia
| | - Veronika Golygina
- Institute of Cytology and Genetics SB RAS, Academician Lavrentiev avenue 10, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova str. 2, Novosibirsk, 630090, Russia
| | - Andrey Broshkov
- Institute of Cytology and Genetics SB RAS, Academician Lavrentiev avenue 10, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova str. 2, Novosibirsk, 630090, Russia
| |
Collapse
|
23
|
Dritsou V, Deligianni E, Dialynas E, Allen J, Poulakakis N, Louis C, Lawson D, Topalis P. Non-coding RNA gene families in the genomes of anopheline mosquitoes. BMC Genomics 2014; 15:1038. [PMID: 25432596 PMCID: PMC4300560 DOI: 10.1186/1471-2164-15-1038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/19/2014] [Indexed: 12/12/2022] Open
Abstract
Background Only a small fraction of the mosquito species of the genus Anopheles are able to transmit malaria, one of the biggest killer diseases of poverty, which is mostly prevalent in the tropics. This diversity has genetic, yet unknown, causes. In a further attempt to contribute to the elucidation of these variances, the international “Anopheles Genomes Cluster Consortium” project (a.k.a. “16 Anopheles genomes project”) was established, aiming at a comprehensive genomic analysis of several anopheline species, most of which are malaria vectors. In the frame of the international consortium carrying out this project our team studied the genes encoding families of non-coding RNAs (ncRNAs), concentrating on four classes: microRNA (miRNA), ribosomal RNA (rRNA), small nuclear RNA (snRNA), and in particular small nucleolar RNA (snoRNA) and, finally, transfer RNA (tRNA). Results Our analysis was carried out using, exclusively, computational approaches, and evaluating both the primary NGS reads as well as the respective genome assemblies produced by the consortium and stored in VectorBase; moreover, the results of RNAseq surveys in cases in which these were available and meaningful were also accessed in order to obtain supplementary data, as were “pre-genomic era” sequence data stored in nucleic acid databases. The investigation included the identification and analysis, in most species studied, of ncRNA genes belonging to several families, as well as the analysis of the evolutionary relations of some of those genes in cross-comparisons to other members of the genus Anopheles. Conclusions Our study led to the identification of members of these gene families in the majority of twenty different anopheline taxa. A set of tools for the study of the evolution and molecular biology of important disease vectors has, thus, been obtained. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1038) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Pantelis Topalis
- Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece.
| |
Collapse
|
24
|
Neafsey DE, Waterhouse RM, Abai MR, Aganezov SS, Alekseyev MA, Allen JE, Amon J, Arcà B, Arensburger P, Artemov G, Assour LA, Basseri H, Berlin A, Birren BW, Blandin SA, Brockman AI, Burkot TR, Burt A, Chan CS, Chauve C, Chiu JC, Christensen M, Costantini C, Davidson VLM, Deligianni E, Dottorini T, Dritsou V, Gabriel SB, Guelbeogo WM, Hall AB, Han MV, Hlaing T, Hughes DST, Jenkins AM, Jiang X, Jungreis I, Kakani EG, Kamali M, Kemppainen P, Kennedy RC, Kirmitzoglou IK, Koekemoer LL, Laban N, Langridge N, Lawniczak MKN, Lirakis M, Lobo NF, Lowy E, MacCallum RM, Mao C, Maslen G, Mbogo C, McCarthy J, Michel K, Mitchell SN, Moore W, Murphy KA, Naumenko AN, Nolan T, Novoa EM, O'Loughlin S, Oringanje C, Oshaghi MA, Pakpour N, Papathanos PA, Peery AN, Povelones M, Prakash A, Price DP, Rajaraman A, Reimer LJ, Rinker DC, Rokas A, Russell TL, Sagnon N, Sharakhova MV, Shea T, Simão FA, Simard F, Slotman MA, Somboon P, Stegniy V, Struchiner CJ, Thomas GWC, Tojo M, Topalis P, Tubio JMC, Unger MF, Vontas J, Walton C, Wilding CS, Willis JH, Wu YC, Yan G, Zdobnov EM, Zhou X, Catteruccia F, Christophides GK, Collins FH, Cornman RS, Crisanti A, Donnelly MJ, Emrich SJ, Fontaine MC, Gelbart W, Hahn MW, Hansen IA, Howell PI, Kafatos FC, Kellis M, Lawson D, Louis C, Luckhart S, Muskavitch MAT, Ribeiro JM, Riehle MA, Sharakhov IV, Tu Z, Zwiebel LJ, Besansky NJ. Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes. Science 2014; 347:1258522. [PMID: 25554792 DOI: 10.1126/science.1258522] [Citation(s) in RCA: 384] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Variation in vectorial capacity for human malaria among Anopheles mosquito species is determined by many factors, including behavior, immunity, and life history. To investigate the genomic basis of vectorial capacity and explore new avenues for vector control, we sequenced the genomes of 16 anopheline mosquito species from diverse locations spanning ~100 million years of evolution. Comparative analyses show faster rates of gene gain and loss, elevated gene shuffling on the X chromosome, and more intron losses, relative to Drosophila. Some determinants of vectorial capacity, such as chemosensory genes, do not show elevated turnover but instead diversify through protein-sequence changes. This dynamism of anopheline genes and genomes may contribute to their flexible capacity to take advantage of new ecological niches, including adapting to humans as primary hosts.
Collapse
Affiliation(s)
- Daniel E Neafsey
- Genome Sequencing and Analysis Program, Broad Institute, 415 Main Street, Cambridge, MA 02142, USA.
| | - Robert M Waterhouse
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA 02139, USA. The Broad Institute of Massachusetts Institute of Technology and Harvard, 415 Main Street, Cambridge, MA 02142, USA. Department of Genetic Medicine and Development, University of Geneva Medical School, Rue Michel-Servet 1, 1211 Geneva, Switzerland. Swiss Institute of Bioinformatics, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Mohammad R Abai
- Department of Medical Entomology and Vector Control, School of Public Health and Institute of Health Researches, Tehran University of Medical Sciences, Tehran, Iran
| | - Sergey S Aganezov
- George Washington University, Department of Mathematics and Computational Biology Institute, 45085 University Drive, Ashburn, VA 20147, USA
| | - Max A Alekseyev
- George Washington University, Department of Mathematics and Computational Biology Institute, 45085 University Drive, Ashburn, VA 20147, USA
| | - James E Allen
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - James Amon
- National Vector Borne Disease Control Programme, Ministry of Health, Tafea Province, Vanuatu
| | - Bruno Arcà
- Department of Public Health and Infectious Diseases, Division of Parasitology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Peter Arensburger
- Department of Biological Sciences, California State Polytechnic-Pomona, 3801 West Temple Avenue, Pomona, CA 91768, USA
| | - Gleb Artemov
- Tomsk State University, 36 Lenina Avenue, Tomsk, Russia
| | - Lauren A Assour
- Department of Computer Science and Engineering, Eck Institute for Global Health, 211B Cushing Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Hamidreza Basseri
- Department of Medical Entomology and Vector Control, School of Public Health and Institute of Health Researches, Tehran University of Medical Sciences, Tehran, Iran
| | - Aaron Berlin
- Genome Sequencing and Analysis Program, Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - Bruce W Birren
- Genome Sequencing and Analysis Program, Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - Stephanie A Blandin
- Inserm, U963, F-67084 Strasbourg, France. CNRS, UPR9022, IBMC, F-67084 Strasbourg, France
| | - Andrew I Brockman
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Thomas R Burkot
- Faculty of Medicine, Health and Molecular Science, Australian Institute of Tropical Health Medicine, James Cook University, Cairns 4870, Australia
| | - Austin Burt
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| | - Clara S Chan
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA 02139, USA. The Broad Institute of Massachusetts Institute of Technology and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Cedric Chauve
- Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Joanna C Chiu
- Department of Entomology and Nematology, One Shields Avenue, University of California-Davis, Davis, CA 95616, USA
| | - Mikkel Christensen
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Carlo Costantini
- Institut de Recherche pour le Développement, Unités Mixtes de Recherche Maladies Infectieuses et Vecteurs Écologie, Génétique, Évolution et Contrôle, 911, Avenue Agropolis, BP 64501 Montpellier, France
| | - Victoria L M Davidson
- Division of Biology, Kansas State University, 271 Chalmers Hall, Manhattan, KS 66506, USA
| | - Elena Deligianni
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Hellas, Nikolaou Plastira 100 GR-70013, Heraklion, Crete, Greece
| | - Tania Dottorini
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Vicky Dritsou
- Centre of Functional Genomics, University of Perugia, Perugia, Italy
| | - Stacey B Gabriel
- Genomics Platform, Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - Wamdaogo M Guelbeogo
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou 01 BP 2208, Burkina Faso
| | - Andrew B Hall
- Program of Genetics, Bioinformatics, and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Mira V Han
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | - Thaung Hlaing
- Department of Medical Research, No. 5 Ziwaka Road, Dagon Township, Yangon 11191, Myanmar
| | - Daniel S T Hughes
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Adam M Jenkins
- Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | - Xiaofang Jiang
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA. Program of Genetics, Bioinformatics, and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Irwin Jungreis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA 02139, USA. The Broad Institute of Massachusetts Institute of Technology and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Evdoxia G Kakani
- Harvard School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA 02115, USA. Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Università degli Studi di Perugia, Perugia, Italy
| | - Maryam Kamali
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Petri Kemppainen
- Computational Evolutionary Biology Group, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Ryan C Kennedy
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143, USA
| | - Ioannis K Kirmitzoglou
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. Bioinformatics Research Laboratory, Department of Biological Sciences, New Campus, University of Cyprus, CY 1678 Nicosia, Cyprus
| | - Lizette L Koekemoer
- Wits Research Institute for Malaria, Faculty of Health Sciences, and Vector Control Reference Unit, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham 2131, Johannesburg, South Africa
| | - Njoroge Laban
- National Museums of Kenya, P.O. Box 40658-00100, Nairobi, Kenya
| | - Nicholas Langridge
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Mara K N Lawniczak
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Manolis Lirakis
- Department of Biology, University of Crete, 700 13 Heraklion, Greece
| | - Neil F Lobo
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, 317 Galvin Life Sciences Building, Notre Dame, IN 46556, USA
| | - Ernesto Lowy
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Robert M MacCallum
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Chunhong Mao
- Virginia Bioinformatics Institute, 1015 Life Science Circle, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Gareth Maslen
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Charles Mbogo
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Centre for Geographic Medicine Research - Coast, P.O. Box 230-80108, Kilifi, Kenya
| | - Jenny McCarthy
- Department of Biological Sciences, California State Polytechnic-Pomona, 3801 West Temple Avenue, Pomona, CA 91768, USA
| | - Kristin Michel
- Division of Biology, Kansas State University, 271 Chalmers Hall, Manhattan, KS 66506, USA
| | - Sara N Mitchell
- Harvard School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA 02115, USA
| | - Wendy Moore
- Department of Entomology, 1140 East South Campus Drive, Forbes 410, University of Arizona, Tucson, AZ 85721, USA
| | - Katherine A Murphy
- Department of Entomology and Nematology, One Shields Avenue, University of California-Davis, Davis, CA 95616, USA
| | - Anastasia N Naumenko
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Tony Nolan
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Eva M Novoa
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA 02139, USA. The Broad Institute of Massachusetts Institute of Technology and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Samantha O'Loughlin
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| | - Chioma Oringanje
- Department of Entomology, 1140 East South Campus Drive, Forbes 410, University of Arizona, Tucson, AZ 85721, USA
| | - Mohammad A Oshaghi
- Department of Medical Entomology and Vector Control, School of Public Health and Institute of Health Researches, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazzy Pakpour
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Philippos A Papathanos
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. Centre of Functional Genomics, University of Perugia, Perugia, Italy
| | - Ashley N Peery
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Michael Povelones
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Anil Prakash
- Regional Medical Research Centre NE, Indian Council of Medical Research, P.O. Box 105, Dibrugarh-786 001, Assam, India
| | - David P Price
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA. Molecular Biology Program, New Mexico State University, Las Cruces, NM 88003, USA
| | - Ashok Rajaraman
- Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Lisa J Reimer
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - David C Rinker
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Antonis Rokas
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN 37235, USA. Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Tanya L Russell
- Faculty of Medicine, Health and Molecular Science, Australian Institute of Tropical Health Medicine, James Cook University, Cairns 4870, Australia
| | - N'Fale Sagnon
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou 01 BP 2208, Burkina Faso
| | - Maria V Sharakhova
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Terrance Shea
- Genome Sequencing and Analysis Program, Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - Felipe A Simão
- Department of Genetic Medicine and Development, University of Geneva Medical School, Rue Michel-Servet 1, 1211 Geneva, Switzerland. Swiss Institute of Bioinformatics, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Frederic Simard
- Institut de Recherche pour le Développement, Unités Mixtes de Recherche Maladies Infectieuses et Vecteurs Écologie, Génétique, Évolution et Contrôle, 911, Avenue Agropolis, BP 64501 Montpellier, France
| | - Michel A Slotman
- Department of Entomology, Texas A&M University, College Station, TX 77807, USA
| | - Pradya Somboon
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Claudio J Struchiner
- Fundação Oswaldo Cruz, Avenida Brasil 4365, RJ Brazil. Instituto de Medicina Social, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gregg W C Thomas
- School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA
| | - Marta Tojo
- Department of Physiology, School of Medicine, Center for Research in Molecular Medicine and Chronic Diseases, Instituto de Investigaciones Sanitarias, University of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| | - Pantelis Topalis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Hellas, Nikolaou Plastira 100 GR-70013, Heraklion, Crete, Greece
| | - José M C Tubio
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Maria F Unger
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, 317 Galvin Life Sciences Building, Notre Dame, IN 46556, USA
| | - John Vontas
- Department of Biology, University of Crete, 700 13 Heraklion, Greece
| | - Catherine Walton
- Computational Evolutionary Biology Group, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Craig S Wilding
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Judith H Willis
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Yi-Chieh Wu
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA 02139, USA. The Broad Institute of Massachusetts Institute of Technology and Harvard, 415 Main Street, Cambridge, MA 02142, USA. Department of Computer Science, Harvey Mudd College, Claremont, CA 91711, USA
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California, Irvine, Hewitt Hall, Irvine, CA 92697, USA
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School, Rue Michel-Servet 1, 1211 Geneva, Switzerland. Swiss Institute of Bioinformatics, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Xiaofan Zhou
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Flaminia Catteruccia
- Harvard School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA 02115, USA. Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Università degli Studi di Perugia, Perugia, Italy
| | - George K Christophides
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Frank H Collins
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, 317 Galvin Life Sciences Building, Notre Dame, IN 46556, USA
| | - Robert S Cornman
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Andrea Crisanti
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. Centre of Functional Genomics, University of Perugia, Perugia, Italy
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK. Malaria Programme, Wellcome Trust Sanger Institute, Cambridge CB10 1SJ, UK
| | - Scott J Emrich
- Department of Computer Science and Engineering, Eck Institute for Global Health, 211B Cushing Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Michael C Fontaine
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, 317 Galvin Life Sciences Building, Notre Dame, IN 46556, USA. Centre of Evolutionary and Ecological Studies (Marine Evolution and Conservation group), University of Groningen, Nijenborgh 7, NL-9747 AG Groningen, Netherlands
| | - William Gelbart
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Matthew W Hahn
- Department of Biology, Indiana University, Bloomington, IN 47405, USA. School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA
| | - Immo A Hansen
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA. Molecular Biology Program, New Mexico State University, Las Cruces, NM 88003, USA
| | - Paul I Howell
- Centers for Disease Control and Prevention, 1600 Clifton Road NE MSG49, Atlanta, GA 30329, USA
| | - Fotis C Kafatos
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA 02139, USA. The Broad Institute of Massachusetts Institute of Technology and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Daniel Lawson
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Christos Louis
- Department of Biology, University of Crete, 700 13 Heraklion, Greece. Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Hellas, Nikolaou Plastira 100 GR-70013, Heraklion, Crete, Greece. Centre of Functional Genomics, University of Perugia, Perugia, Italy
| | - Shirley Luckhart
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Marc A T Muskavitch
- Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA. Biogen Idec, 14 Cambridge Center, Cambridge, MA 02142, USA
| | - José M Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, 12735 Twinbrook Parkway, Rockville, MD 20852, USA
| | - Michael A Riehle
- Department of Entomology, 1140 East South Campus Drive, Forbes 410, University of Arizona, Tucson, AZ 85721, USA
| | - Igor V Sharakhov
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA. Program of Genetics, Bioinformatics, and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Zhijian Tu
- Program of Genetics, Bioinformatics, and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA. Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Laurence J Zwiebel
- Departments of Biological Sciences and Pharmacology, Institutes for Chemical Biology, Genetics and Global Health, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Nora J Besansky
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, 317 Galvin Life Sciences Building, Notre Dame, IN 46556, USA.
| |
Collapse
|
25
|
Deletion of Drosophila Nopp140 induces subcellular ribosomopathies. Chromosoma 2014; 124:191-208. [PMID: 25384888 DOI: 10.1007/s00412-014-0490-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 09/04/2014] [Accepted: 10/02/2014] [Indexed: 01/18/2023]
Abstract
The nucleolar and Cajal body phosphoprotein of 140 kDa (Nopp140) is considered a ribosome assembly factor, but its precise functions remain unknown. To approach this problem, we deleted the Nopp140 gene in Drosophila using FLP-FRT recombination. Genomic PCR, reverse transcriptase-PCR (RT-PCR), and immunofluorescence microscopy confirmed the loss of Nopp140, its messenger RNA (mRNA), and protein products from all tissues examined. Nopp140-/- larvae arrested in the second instar stage and most died within 8 days. While nucleoli appeared intact in Nopp140-/- cells, the C/D small nucleolar ribonucleoprotein (snoRNP) methyltransferase, fibrillarin, redistributed to the nucleoplasm in variable amounts depending on the cell type; RT-PCRs showed that 2'-O-methylation of ribosomal RNA (rRNA) in Nopp140-/- cells was reduced at select sites within both the 18S and 28S rRNAs. Ultrastructural analysis showed that Nopp140-/- cells were deficient in cytoplasmic ribosomes, but instead contained abnormal electron-dense cytoplasmic granules. Immunoblot analysis showed a loss of RpL34, and metabolic labeling showed a significant drop in protein translation, supporting the loss of functional ribosomes. Northern blots showed that pre-RNA cleavage pathways were generally unaffected by the loss of Nopp140, but that R2 retrotransposons that naturally reside within the 28S region of normally silent heterochromatic Drosophila ribosomal DNA (rDNA) genes were selectively expressed in Nopp140-/- larvae. Unlike copia elements and the related R1 retrotransposon, R2 expression appeared to be preferentially dependent on the loss of Nopp140 and not on environmental stresses. We believe the phenotypes described here define novel intracellular ribosomopathies resulting from the loss of Nopp140.
Collapse
|
26
|
Compact genome of the Antarctic midge is likely an adaptation to an extreme environment. Nat Commun 2014; 5:4611. [PMID: 25118180 PMCID: PMC4164542 DOI: 10.1038/ncomms5611] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 07/08/2014] [Indexed: 12/30/2022] Open
Abstract
The midge, Belgica antarctica, is the only insect endemic to Antarctica, and thus it offers a powerful model for probing responses to extreme temperatures, freeze tolerance, dehydration, osmotic stress, ultraviolet radiation and other forms of environmental stress. Here we present the first genome assembly of an extremophile, the first dipteran in the family Chironomidae, and the first Antarctic eukaryote to be sequenced. At 99 megabases, B. antarctica has the smallest insect genome sequenced thus far. Although it has a similar number of genes as other Diptera, the midge genome has very low repeat density and a reduction in intron length. Environmental extremes appear to constrain genome architecture, not gene content. The few transposable elements present are mainly ancient, inactive retroelements. An abundance of genes associated with development, regulation of metabolism and responses to external stimuli may reflect adaptations for surviving in this harsh environment.
Collapse
|
27
|
Riccitelli N, Lupták A. HDV family of self-cleaving ribozymes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 120:123-71. [PMID: 24156943 DOI: 10.1016/b978-0-12-381286-5.00004-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The hepatitis delta virus (HDV) ribozymes are catalytic RNAs capable of cleaving their own sugar-phosphate backbone. The HDV virus possesses the ribozymes in both sense and antisense genomic transcripts, where they are essential for processing during replication. These ribozymes have been the subject of intense biochemical scrutiny and have yielded a wealth of mechanistic insights. In recent years, many HDV-like ribozymes have been identified in nearly all branches of life. The ribozymes are implicated in a variety of biological events, including episodic memory in mammals and retrotransposition in many eukaryotes. Detailed analysis of additional HDV-like ribozyme isolates will likely reveal many more biological functions and provide information about the evolution of this unique RNA.
Collapse
Affiliation(s)
- Nathan Riccitelli
- Department of Chemistry, University of California, Irvine, California, USA
| | | |
Collapse
|
28
|
Pita S, Panzera F, Ferrandis I, Galvão C, Gómez-Palacio A, Panzera Y. Chromosomal divergence and evolutionary inferences in Rhodniini based on the chromosomal location of ribosomal genes. Mem Inst Oswaldo Cruz 2014; 108:S0074-02762013000300376. [PMID: 23778665 DOI: 10.1590/s0074-02762013000300017] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 02/07/2013] [Indexed: 11/22/2022] Open
Abstract
In this study, we used fluorescence in situ hybridisation to determine the chromosomal location of 45S rDNA clusters in 10 species of the tribe Rhodniini (Hemiptera: Reduviidae: Triatominae). The results showed striking inter and intraspecific variability, with the location of the rDNA clusters restricted to sex chromosomes with two patterns: either on one (X chromosome) or both sex chromosomes (X and Y chromosomes). This variation occurs within a genus that has an unchanging diploid chromosome number (2n = 22, including 20 autosomes and 2 sex chromosomes) and a similar chromosome size and genomic DNA content, reflecting a genome dynamic not revealed by these chromosome traits. The rDNA variation in closely related species and the intraspecific polymorphism in Rhodnius ecuadoriensis suggested that the chromosomal position of rDNA clusters might be a useful marker to identify recently diverged species or populations. We discuss the ancestral position of ribosomal genes in the tribe Rhodniini and the possible mechanisms involved in the variation of the rDNA clusters, including the loss of rDNA loci on the Y chromosome, transposition and ectopic pairing. The last two processes involve chromosomal exchanges between both sex chromosomes, in contrast to the widely accepted idea that the achiasmatic sex chromosomes of Heteroptera do not interchange sequences.
Collapse
Affiliation(s)
- Sebastián Pita
- Universidad de la República, Facultad de Ciencias, Sección Genética Evolutiva, Montevideo, Uruguay
| | | | | | | | | | | |
Collapse
|
29
|
Montiel EE, Cabrero J, Ruiz-Estévez M, Burke WD, Eickbush TH, Camacho JPM, López-León MD. Preferential occupancy of R2 retroelements on the B chromosomes of the grasshopper Eyprepocnemis plorans. PLoS One 2014; 9:e91820. [PMID: 24632855 PMCID: PMC3954772 DOI: 10.1371/journal.pone.0091820] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 02/14/2014] [Indexed: 02/02/2023] Open
Abstract
R2 non-LTR retrotransposons exclusively insert into the 28S rRNA genes of their host, and are expressed by co-transcription with the rDNA unit. The grasshopper Eyprepocnemis plorans contains transcribed rDNA clusters on most of its A chromosomes, as well as non-transcribed rDNA clusters on the parasitic B chromosomes found in many populations. Here the structure of the E. plorans R2 element, its abundance relative to the number of rDNA units and its retrotransposition activity were determined. Animals screened from five populations contained on average over 12,000 rDNA units on their A chromosomes, but surprisingly only about 100 R2 elements. Monitoring the patterns of R2 insertions in individuals from these populations revealed only low levels of retrotransposition. The low rates of R2 insertion observed in E. plorans differ from the high levels of R2 insertion previously observed in insect species that have many fewer rDNA units. It is proposed that high levels of R2 are strongly selected against in E. plorans, because the rDNA transcription machinery in this species is unable to differentiate between R2-inserted and uninserted units. The B chromosomes of E. plorans contain an additional 7,000 to 15,000 rDNA units, but in contrast to the A chromosomes, from 150 to over 1,500 R2 elements. The higher concentration of R2 in the inactive B chromosomes rDNA clusters suggests these chromosomes can act as a sink for R2 insertions thus further reducing the level of insertions on the A chromosomes. These studies suggest an interesting evolutionary relationship between the parasitic B chromosomes and R2 elements.
Collapse
Affiliation(s)
- Eugenia E. Montiel
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Josefa Cabrero
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Mercedes Ruiz-Estévez
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - William D. Burke
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Thomas H. Eickbush
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Juan Pedro M. Camacho
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | | |
Collapse
|
30
|
Stoddard BL. Homing endonucleases from mobile group I introns: discovery to genome engineering. Mob DNA 2014; 5:7. [PMID: 24589358 PMCID: PMC3943268 DOI: 10.1186/1759-8753-5-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/13/2014] [Indexed: 12/20/2022] Open
Abstract
Homing endonucleases are highly specific DNA cleaving enzymes that are encoded within genomes of all forms of microbial life including phage and eukaryotic organelles. These proteins drive the mobility and persistence of their own reading frames. The genes that encode homing endonucleases are often embedded within self-splicing elements such as group I introns, group II introns and inteins. This combination of molecular functions is mutually advantageous: the endonuclease activity allows surrounding introns and inteins to act as invasive DNA elements, while the splicing activity allows the endonuclease gene to invade a coding sequence without disrupting its product. Crystallographic analyses of representatives from all known homing endonuclease families have illustrated both their mechanisms of action and their evolutionary relationships to a wide range of host proteins. Several homing endonucleases have been completely redesigned and used for a variety of genome engineering applications. Recent efforts to augment homing endonucleases with auxiliary DNA recognition elements and/or nucleic acid processing factors has further accelerated their use for applications that demand exceptionally high specificity and activity.
Collapse
Affiliation(s)
- Barry L Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, N, A3-025, Seattle, WA 98109, USA.
| |
Collapse
|
31
|
Perrat PN, DasGupta S, Wang J, Theurkauf W, Weng Z, Rosbash M, Waddell S. Transposition-driven genomic heterogeneity in the Drosophila brain. Science 2013; 340:91-5. [PMID: 23559253 PMCID: PMC3887341 DOI: 10.1126/science.1231965] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recent studies in mammals have documented the neural expression and mobility of retrotransposons and have suggested that neural genomes are diverse mosaics. We found that transposition occurs among memory-relevant neurons in the Drosophila brain. Cell type-specific gene expression profiling revealed that transposon expression is more abundant in mushroom body (MB) αβ neurons than in neighboring MB neurons. The Piwi-interacting RNA (piRNA) proteins Aubergine and Argonaute 3, known to suppress transposons in the fly germline, are expressed in the brain and appear less abundant in αβ MB neurons. Loss of piRNA proteins correlates with elevated transposon expression in the brain. Paired-end deep sequencing identified more than 200 de novo transposon insertions in αβ neurons, including insertions into memory-relevant loci. Our observations indicate that genomic heterogeneity is a conserved feature of the brain.
Collapse
Affiliation(s)
- Paola N. Perrat
- Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Shamik DasGupta
- Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
- Center for Neural Circuits and Behaviour, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Jie Wang
- Program in Bioinformatics and Integrative Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - William Theurkauf
- Program in Molecular Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Michael Rosbash
- Howard Hughes Medical Institute and National Center for Behavioral Genomics, Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Scott Waddell
- Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
- Center for Neural Circuits and Behaviour, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
32
|
Y chromosome mediates ribosomal DNA silencing and modulates the chromatin state in Drosophila. Proc Natl Acad Sci U S A 2012; 109:9941-6. [PMID: 22665801 DOI: 10.1073/pnas.1207367109] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Although the Drosophila Y chromosome is degenerated, heterochromatic, and contains few genes, increasing evidence suggests that it plays an important role in regulating the expression of numerous autosomal and X-linked genes. Here we use 15 Y chromosomes originating from a single founder 550 generations ago to study the role of the Y chromosome in regulating rRNA gene transcription, position-effect variegation (PEV), and the link among rDNA copy number, global gene expression, and chromatin regulation. Based on patterns of rRNA gene transcription indicated by transcription of the retrotransposon R2 that specifically inserts into the 28S rRNA gene, we show that X-linked rDNA is silenced in males. The silencing of X-linked rDNA expression by the Y chromosome is consistent across populations and independent of genetic background. These Y chromosomes also vary more than threefold in rDNA locus size and cause dramatically different levels of PEV suppression. The degree of suppression is negatively associated with the number and fraction of rDNA units without transposon insertions, but not with total rDNA locus size. Gene expression profiling revealed hundreds of differentially expressed genes among these Y chromosome introgression lines, as well as a divergent global gene expression pattern between the low-PEV and high-PEV flies. Our findings suggest that the Y chromosome is involved in diverse phenomena related to transcriptional regulation including X-linked rDNA silencing and suppression of PEV phenotype. These results further expand our understanding of the role of the Y chromosome in modulating global gene expression, and suggest a link with modifications of the chromatin state.
Collapse
|
33
|
Abstract
In all eukaryotes, the ribosomal RNA genes are stably inherited redundant elements. In Drosophila melanogaster, the presence of a Ybb(-) chromosome in males, or the maternal presence of the Ribosomal exchange (Rex) element, induces magnification: a heritable increase of rDNA copy number. To date, several alternative classes of mechanisms have been proposed for magnification: in situ replication or extra-chromosomal replication, either of which might act on short or extended strings of rDNA units, or unequal sister chromatid exchange. To eliminate some of these hypotheses, none of which has been clearly proven, we examined molecular-variant composition and compared genetic maps of the rDNA in the bb(2) mutant and in some magnified bb(+) alleles. The genetic markers used are molecular-length variants of IGS sequences and of R1 and R2 mobile elements present in many 28S sequences. Direct comparison of PCR products does not reveal any particularly intensified electrophoretic bands in magnified alleles compared to the nonmagnified bb(2) allele. Hence, the increase of rDNA copy number is diluted among multiple variants. We can therefore reject mechanisms of magnification based on multiple rounds of replication of short strings. Moreover, we find no changes of marker order when pre- and postmagnification maps are compared. Thus, we can further restrict the possible mechanisms to two: replication in situ of an extended string of rDNA units or unequal exchange between sister chromatids.
Collapse
|
34
|
Vujatovic O, Zaragoza K, Vaquero A, Reina O, Bernués J, Azorín F. Drosophila melanogaster linker histone dH1 is required for transposon silencing and to preserve genome integrity. Nucleic Acids Res 2012; 40:5402-14. [PMID: 22406835 PMCID: PMC3384340 DOI: 10.1093/nar/gks224] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Histone H1 is an intrinsic component of chromatin, whose important contribution to chromatin structure is well-established in vitro. Little is known, however, about its functional roles in vivo. Here, we have addressed this question in Drosophila, a model system offering many advantages since it contains a single dH1 variant. For this purpose, RNAi was used to efficiently deplete dH1 in flies. Expression-profiling shows that dH1 depletion affects expression of a relatively small number of genes in a regional manner. Furthermore, depletion up-regulates inactive genes, preferentially those located in heterochromatin, while active euchromatic genes are down-regulated, suggesting that the contribution of dH1 to transcription regulation is mainly structural, organizing chromatin for proper gene-expression regulation. Up-regulated genes are remarkably enriched in transposons. In particular, R1/R2 retrotransposons, which specifically integrate in the rDNA locus, are strongly up-regulated. Actually, depletion increases expression of transposon-inserted rDNA copies, resulting in synthesis of aberrant rRNAs and enlarged nucleolus. Concomitantly, dH1-depleted cells accumulate extra-chromosomal rDNA, show increased γH2Av content, stop proliferation and activate apoptosis, indicating that depletion causes genome instability and affects proliferation. Finally, the contributions to maintenance of genome integrity and cell proliferation appear conserved in human hH1s, as their expression rescues proliferation of dH1-depleted cells.
Collapse
Affiliation(s)
- Olivera Vujatovic
- Institute of Molecular Biology of Barcelona, CSIC and Institute for Research in Biomedicine, IRB Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
35
|
Ruminski DJ, Webb CHT, Riccitelli NJ, Lupták A. Processing and translation initiation of non-long terminal repeat retrotransposons by hepatitis delta virus (HDV)-like self-cleaving ribozymes. J Biol Chem 2011; 286:41286-41295. [PMID: 21994949 DOI: 10.1074/jbc.m111.297283] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Many non-long terminal repeat (non-LTR) retrotransposons lack internal promoters and are co-transcribed with their host genes. These transcripts need to be liberated before inserting into new loci. Using structure-based bioinformatics, we show that several classes of retrotransposons in phyla-spanning arthropods, nematodes, and chordates utilize self-cleaving ribozymes of the hepatitis delta virus (HDV) family for processing their 5' termini. Ribozyme-terminated retrotransposons include rDNA-specific R2, R4, and R6, telomere-specific SART, and Baggins and RTE. The self-scission of the R2 ribozyme is strongly modulated by the insertion site sequence in the rDNA, with the most common insertion sequences promoting faster processing. The ribozymes also promote translation initiation of downstream open reading frames in vitro and in vivo. In some organisms HDV-like and hammerhead ribozymes appear to be dedicated to processing long and short interspersed elements, respectively. HDV-like ribozymes serve several distinct functions in non-LTR retrotransposition, including 5' processing, translation initiation, and potentially trans-templating.
Collapse
Affiliation(s)
- Dana J Ruminski
- Departments of Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| | - Chiu-Ho T Webb
- Departments of Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| | | | - Andrej Lupták
- Departments of Molecular Biology and Biochemistry, University of California, Irvine, California 92697; Department of Chemistry, University of California, Irvine, California 92697; Department of Pharmaceutical Sciences, University of California, Irvine, California 92697.
| |
Collapse
|
36
|
Fosmid library end sequencing reveals a rarely known genome structure of marine shrimp Penaeus monodon. BMC Genomics 2011; 12:242. [PMID: 21575266 PMCID: PMC3124438 DOI: 10.1186/1471-2164-12-242] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 05/17/2011] [Indexed: 11/28/2022] Open
Abstract
Background The black tiger shrimp (Penaeus monodon) is one of the most important aquaculture species in the world, representing the crustacean lineage which possesses the greatest species diversity among marine invertebrates. Yet, we barely know anything about their genomic structure. To understand the organization and evolution of the P. monodon genome, a fosmid library consisting of 288,000 colonies and was constructed, equivalent to 5.3-fold coverage of the 2.17 Gb genome. Approximately 11.1 Mb of fosmid end sequences (FESs) from 20,926 non-redundant reads representing 0.45% of the P. monodon genome were obtained for repetitive and protein-coding sequence analyses. Results We found that microsatellite sequences were highly abundant in the P. monodon genome, comprising 8.3% of the total length. The density and the average length of microsatellites were evidently higher in comparison to those of other taxa. AT-rich microsatellite motifs, especially poly (AT) and poly (AAT), were the most abundant. High abundance of microsatellite sequences were also found in the transcribed regions. Furthermore, via self-BlastN analysis we identified 103 novel repetitive element families which were categorized into four groups, i.e., 33 WSSV-like repeats, 14 retrotransposons, 5 gene-like repeats, and 51 unannotated repeats. Overall, various types of repeats comprise 51.18% of the P. monodon genome in length. Approximately 7.4% of the FESs contained protein-coding sequences, and the Inhibitor of Apoptosis Protein (IAP) gene and the Innexin 3 gene homologues appear to be present in high abundance in the P. monodon genome. Conclusions The redundancy of various repeat types in the P. monodon genome illustrates its highly repetitive nature. In particular, long and dense microsatellite sequences as well as abundant WSSV-like sequences highlight the uniqueness of genome organization of penaeid shrimp from those of other taxa. These results provide substantial improvement to our current knowledge not only for shrimp but also for marine crustaceans of large genome size.
Collapse
|
37
|
Thompson BK, Christensen SM. Independently derived targeting of 28S rDNA by A- and D-clade R2 retrotransposons: Plasticity of integration mechanism. Mob Genet Elements 2011; 1:29-37. [PMID: 22016843 PMCID: PMC3190273 DOI: 10.4161/mge.1.1.16485] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 05/16/2011] [Accepted: 05/16/2011] [Indexed: 12/24/2022] Open
Abstract
Restriction-like endonuclease (RLE) bearing non-LTR retrotransposons are site-specific elements that integrate into the genome through a target primed reverse transcription mechanism (TPRT). R2 elements have been used as a model system for investigating non-LTR retrotransposon integration. We previously demonstrated that R2 retrotransposons require two subunits of the element-encoded multifunctional protein to integrate-one subunit bound upstream of the insertion site and one bound downstream. R2 elements have been phylogenetically categorized into four clades: R2-A, B, C and D, that diverged from a common ancestor more than 850 million years ago. All R2 elements target the same sequence within 28S rDNA. The amino-terminal domain of R2Bm, an R2-D clade element, contains a single zinc finger and a Myb motif that are responsible for binding R2 protein downstream of the insertion site. Target site recognition is of interest as it is the first step in the integration reaction and may help elucidate evolutionary history and integration mechanism. The amino-terminal domain of R2-A clade members contains three zinc fingers and a Myb motif. We show here that R2Lp, an R2-A clade member, uses its amino-terminal DNA binding motifs to bind upstream of the insertion site. Because the R2-A and R2-D clade elements recognize 28S rDNA differently, we conclude the A- and D-clades represent independent targeting events to the 28S site. Our results also indicate a certain plasticity of insertional mechanics exists between the two clades.
Collapse
Affiliation(s)
- Blaine K Thompson
- Department of Biology; University of Texas at Arlington; Arlington, TX USA
| | | |
Collapse
|
38
|
Ghesini S, Luchetti A, Marini M, Mantovani B. The Non-LTR Retrotransposon R2 in Termites (Insecta, Isoptera): Characterization and Dynamics. J Mol Evol 2011; 72:296-305. [DOI: 10.1007/s00239-011-9430-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 01/03/2011] [Indexed: 01/07/2023]
|
39
|
Bandyopadhyay S, Bera AK, Sikdar S, De S, Ghosh S, Rana T, Bandyopadhyay S, Dandapat P, Bhattacharya D. Intra-species sequence variability in 28s rRNA gene of Oesophagostomum venulosum isolated from goats of West Bengal, India. ASIAN PAC J TROP MED 2010. [DOI: 10.1016/s1995-7645(10)60124-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
40
|
R2 dynamics in Triops cancriformis (Bosc, 1801) (Crustacea, Branchiopoda, Notostraca): turnover rate and 28S concerted evolution. Heredity (Edinb) 2010; 106:567-75. [PMID: 20628416 DOI: 10.1038/hdy.2010.86] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The R2 retrotransposon is here characterized in bisexual populations of the European crustacean Triops cancriformis. The isolated element matches well with the general aspects of the R2 family and it is highly differentiated from that of the congeneric North American Triops longicaudatus. The analysis of 5' truncations indicates that R2 dynamics in T. cancriformis populations show a high turnover rate as observed in Drosophila simulans. For the first time in the literature, though, individuals harboring truncation variants, but lacking the complete element, are found. Present results suggest that transposition-mediated deletion mechanisms, possibly involving genomic turnover processes acting on rDNAs, can dramatically decrease the copy number or even delete R2 from the ribosomal locus. The presence of R2 does not seem to impact on the nucleotide variation of inserted 28S rDNA with respect to the uninserted genes. On the other hand, a low level of polymorphism characterizes rDNA units because new 28S variants continuously spread across the ribosomal array. Again, the interplay between transposition-mediated deletion and molecular drive may explain this pattern.
Collapse
|
41
|
Stage DE, Eickbush TH. Maintenance of multiple lineages of R1 and R2 retrotransposable elements in the ribosomal RNA gene loci of Nasonia. INSECT MOLECULAR BIOLOGY 2010; 19 Suppl 1:37-48. [PMID: 20167016 DOI: 10.1111/j.1365-2583.2009.00949.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Sequencing reads from the Nasonia genome project were used to study the ribosomal RNA gene loci and the retrotransposons R1 and R2 that insert specifically into the 28S genes. Five highly divergent R1 and five highly divergent R2 families were identified in the three sequenced species, as well as a non-autonomous element that appears to use the retrotransposition machinery of R1. A duplication of the R1 target site within the spacer region of the rDNA units was also found to be extensively utilized by R1 elements. We document numerous instances where the R1 and R2 families appropriated parts of the retrotransposition machinery of other lineages and speculate that this enables rapid adaptation and the maintenance of multiple R1 and R2 families.
Collapse
Affiliation(s)
- D E Stage
- Biology Department, University of Rochester, Rochester, NY 14627, USA
| | | |
Collapse
|
42
|
Stage DE, Eickbush TH. Origin of nascent lineages and the mechanisms used to prime second-strand DNA synthesis in the R1 and R2 retrotransposons of Drosophila. Genome Biol 2009; 10:R49. [PMID: 19416522 PMCID: PMC2718515 DOI: 10.1186/gb-2009-10-5-r49] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 03/27/2009] [Accepted: 05/05/2009] [Indexed: 01/31/2023] Open
Abstract
Comparative analysis of 12 Drosophila genomes reveals insights into the evolution and mechanism of integration of R1 and R2 retrotransposons. Background Most arthropods contain R1 and R2 retrotransposons that specifically insert into the 28S rRNA genes. Here, the sequencing reads from 12 Drosophila genomes have been used to address two questions concerning these elements. First, to what extent is the evolution of these elements subject to the concerted evolution process that is responsible for sequence homogeneity among the different copies of rRNA genes? Second, how precise are the target DNA cleavages and priming of DNA synthesis used by these elements? Results Most copies of R1 and R2 in each species were found to exhibit less than 0.2% sequence divergence. However, in many species evidence was obtained for the formation of distinct sublineages of elements, particularly in the case of R1. Analysis of the hundreds of R1 and R2 junctions with the 28S gene revealed that cleavage of the first DNA strand was precise both in location and the priming of reverse transcription. Cleavage of the second DNA strand was less precise within a species, differed between species, and gave rise to variable priming mechanisms for second strand synthesis. Conclusions These findings suggest that the high sequence identity amongst R1 and R2 copies is because all copies are relatively new. However, each active element generates its own independent lineage that can eventually populate the locus. Independent lineages occur more often with R1, possibly because these elements contain their own promoter. Finally, both R1 and R2 use imprecise, rapidly evolving mechanisms to cleave the second strand and prime second strand synthesis.
Collapse
Affiliation(s)
- Deborah E Stage
- Biology Department, University of Rochester, Rochester NY 14627-0211, USA.
| | | |
Collapse
|
43
|
Internal repetition and intraindividual variation in the rDNA ITS1 of the anopheles punctulatus group (Diptera: Culicidae): multiple units and rates of turnover. J Mol Evol 2009; 68:66-79. [PMID: 19123014 PMCID: PMC9935728 DOI: 10.1007/s00239-008-9188-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 11/05/2008] [Accepted: 12/01/2008] [Indexed: 10/21/2022]
Abstract
The rapid divergence of repetitive sequences makes them desirable markers for phylogenetic studies of closely related groups, provided that a high level of sequence homogeneity has been maintained within species. Intraspecific polymorphisms are found in an increasing number of studies now, and this highlights the need to determine why these occur. In this study we examined intraindividual variation present in the first ribosomal internal transcribed spacer (ITS1) from a group of cryptic mosquito species. Individuals of the Anopheles punctulatus group contained multiple ITS1 length variants that ranged from 1.2 to 8.0 kb. Nucleotide and copy number variation for several homologous internal repeats is common, yet the intraspecific sequence divergence of cloned PCR isolates is comparable to that of other mosquito species (~0.2-1.5%). Most of the length variation is comprised of a 5'-ITS1 repeat that was identified as a duplication of a conserved ITS2 region. Secondary structure conservation for this repeat is pronounced and several repeat types that are highly homogenized have formed. Significant interspecific divergence indicates a high rate of evolutionary change for this spacer. A maximum likelihood tree constructed here was congruent with previous phylogenetic hypotheses and suggests that concerted evolution is also accompanied by interpopulation divergence. The lack of interindividual differences and the presence of homogenized internal repeats suggest that a high rate of turnover has reduced the overall level of variation. However, the intraindividual variation also appears to be maintained by the absence of a single turnover rate and the complex dynamics of ongoing recombination within the spacer.
Collapse
|
44
|
Plata MP, Kang HJ, Zhang S, Kuruganti S, Hsu SJ, Labrador M. Changes in chromatin structure correlate with transcriptional activity of nucleolar rDNA in polytene chromosomes. Chromosoma 2008; 118:303-22. [PMID: 19066928 DOI: 10.1007/s00412-008-0198-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 11/14/2008] [Accepted: 11/19/2008] [Indexed: 12/30/2022]
Abstract
Ribosomal DNA genes (rDNA) are found in tandem arrays of hundreds of repeated genes, but only a fraction of these genes are actively transcribed. The regulatory mechanism controlling the transition between active and inactive rDNA in higher eukaryotes is vital for cell survival. Here, we show that the nucleolus from Drosophila salivary gland cells contains two levels of chromatin organization reflecting differences in transcriptional activity: Decondensed chromatin is highly occupied with TATA-box-binding protein (TBP), phosphorylated H3S10, and acetylated H3K14, suggesting that rDNA in decondensed nucleolar areas is actively transcribed. Condensed chromatin lacks TBP, phosphorylated H3S10, or acetylated H3K14 and is enriched in the rDNA retrotransposons R1 and R2. The data show that R1 and R2 retrotransposons are not actively transcribed in salivary glands and may lead to the epigenetic silencing of flanking rDNA genes and that the silencing mechanisms of these sequences might be partially independent of heterochromatin formation by methylation of histone H3 at lysine 9 and binding of heterochromatin protein 1.
Collapse
Affiliation(s)
- Maria Piedad Plata
- Department of Biochemistry, Cellular and Molecular Biology, M407 Walters Life Sciences, The University of Tennessee, 1414 Cumberland Avenue, Knoxville, TN 37996, USA
| | | | | | | | | | | |
Collapse
|
45
|
Ribosomal RNA gene insertions in the R2 site of Rhynchosciara (Diptera: Sciaridae). Chromosome Res 2008; 16:1233-41. [PMID: 19051044 DOI: 10.1007/s10577-008-1271-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 09/25/2008] [Accepted: 09/25/2008] [Indexed: 10/21/2022]
Abstract
Ribosomal RNA genes of most insects are interrupted by R1/R2 retrotransposons. The occurrence of R2 retrotransposons in sciarid genomes was studied by PCR and Southern blot hybridization in three Rhynchosciara species and in Trichosia pubescens. Amplification products with the expected size for non-truncated R2 elements were only obtained in Rhynchosciara americana. The rDNA in this species is located in the proximal end of the X mitotic chromosome but in the salivary gland is associated with all four polytene chromosomes. Approximately 50% of the salivary gland rDNA of most R. americana larval groups analysed had an insertion in the R2 site, while no evidence for the presence of R1 elements was found. In-situ hybridization results showed that rDNA repeat units containing R2 take part in the structure of the extrachromosomal rDNA. Also, rDNA resistance to Bal 31 digestion could be interpreted as evidence for nonlinear rDNA as part of the rDNA in the salivary gland. Insertions in the rDNA of three other sciarid species were not detected by Southern blot and in-situ hybridization, suggesting that rDNA retrotransposons are significantly under-represented in their genomes in comparison with R. americana. R2 elements apparently restricted to R. americana correlate with an increased amount of repetitive DNA in its genome in contrast to other Rhynchosciara species. The results obtained in this work together with previous results suggest that evolutionary changes in the genus Rhynchosciara occurred by differential genomic occupation not only of satellite DNA but possibly also of rDNA retrotransposons.
Collapse
|
46
|
Nomura N, Nomura Y, Sussman D, Klein D, Stoddard BL. Recognition of a common rDNA target site in archaea and eukarya by analogous LAGLIDADG and His-Cys box homing endonucleases. Nucleic Acids Res 2008; 36:6988-98. [PMID: 18984620 PMCID: PMC2602781 DOI: 10.1093/nar/gkn846] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The presence of a homing endonuclease gene (HEG) within a microbial intron or intein empowers the entire element with the ability to invade genomic targets. The persistence of a homing endonuclease lineage depends in part on conservation of its DNA target site. One such rDNA sequence has been invaded both in archaea and in eukarya, by LAGLIDADG and His–Cys box homing endonucleases, respectively. The bases encoded by this target include a universally conserved ribosomal structure, termed helix 69 (H69) in the large ribosomal subunit. This region forms the ‘B2a’ intersubunit bridge to the small ribosomal subunit, contacts bound tRNA in the A- and P-sites, and acts as a trigger for ribosome disassembly through its interactions with ribosome recycling factor. We have determined the DNA-bound structure and specificity profile of an archaeal LAGLIDADG homing endonuclease (I-Vdi141I) that recognizes this target site, and compared its specificity with the analogous eukaryal His–Cys box endonuclease I-PpoI. These homodimeric endonuclease scaffolds have arrived at similar specificity profiles across their common biological target and analogous solutions to the problem of accommodating conserved asymmetries within the DNA sequence, but with differences at individual base pairs that are fine-tuned to the sequence conservation of archaeal versus eukaryal ribosomes.
Collapse
Affiliation(s)
- Norimichi Nomura
- Iwata Human Receptor Crystallography Project, ERATO, Japan Science and Technology Agency, Kyoto, Japan
| | | | | | | | | |
Collapse
|
47
|
Role of recombination in the long-term retention of transposable elements in rRNA gene loci. Genetics 2008; 180:1617-26. [PMID: 18791229 DOI: 10.1534/genetics.108.093716] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multiple theoretical studies have focused on the concerted evolution of the tandemly repeated rRNA genes of eukaryotes; however, these studies did not consider the transposable elements that interrupt the rRNA genes in many organisms. For example, in insects, R1 and R2 have been stable components of the rDNA locus for hundreds of millions of years, suggesting either that they have minimal effects on fitness or that they are unable to be eliminated. We constructed a simulation model of recombination and retrotransposition within the rDNA locus that addresses the population dynamics and fitness consequences associated with R1 and R2 insertions. The simulations suggest that even without R1 and R2 retrotransposition the frequent sister chromatid exchanges postulated from various empirical studies will, in combination with selection, generate rDNA loci that are much larger than those needed for transcription. These large loci enable the host to tolerate high levels of R1 and R2 insertions with little fitness consequences. Changes in retrotransposition rates are likely to be accommodated by adjustments in sister chromatid exchange (SCE) rate, rather than by direct selection on the number of uninserted rDNA units. These simulations suggest that the rDNA locus serves as an ideal niche for the long-term survival of transposable elements.
Collapse
|
48
|
Stage DE, Eickbush TH. Sequence variation within the rRNA gene loci of 12 Drosophila species. Genome Res 2007; 17:1888-97. [PMID: 17989256 DOI: 10.1101/gr.6376807] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Concerted evolution maintains at near identity the hundreds of tandemly arrayed ribosomal RNA (rRNA) genes and their spacers present in any eukaryote. Few comprehensive attempts have been made to directly measure the identity between the rDNA units. We used the original sequencing reads (trace archives) available through the whole-genome shotgun sequencing projects of 12 Drosophila species to locate the sequence variants within the 7.8-8.2 kb transcribed portions of the rDNA units. Three to 18 variants were identified in >3% of the total rDNA units from 11 species. Species where the rDNA units are present on multiple chromosomes exhibited only minor increases in sequence variation. Variants were 10-20 times more abundant in the noncoding compared with the coding regions of the rDNA unit. Within the coding regions, variants were three to eight times more abundant in the expansion compared with the conserved core regions. The distribution of variants was largely consistent with models of concerted evolution in which there is uniform recombination across the transcribed portion of the unit with the frequency of standing variants dependent upon the selection pressure to preserve that sequence. However, the 28S gene was found to contain fewer variants than the 18S gene despite evolving 2.5-fold faster. We postulate that the fewer variants in the 28S gene is due to localized gene conversion or DNA repair triggered by the activity of retrotransposable elements that are specialized for insertion into the 28S genes of these species.
Collapse
Affiliation(s)
- Deborah E Stage
- University of Rochester, Department of Biology, Rochester, New York 14627, USA
| | | |
Collapse
|
49
|
Maita N, Aoyagi H, Osanai M, Shirakawa M, Fujiwara H. Characterization of the sequence specificity of the R1Bm endonuclease domain by structural and biochemical studies. Nucleic Acids Res 2007; 35:3918-27. [PMID: 17537809 PMCID: PMC1919474 DOI: 10.1093/nar/gkm397] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 04/25/2007] [Accepted: 05/01/2007] [Indexed: 11/30/2022] Open
Abstract
R1Bm is a long interspersed element (LINE) inserted into a specific sequence within 28S rDNA of the silkworm genome. Of two open reading frames (ORFs) of R1Bm, ORF2 encodes a reverse transcriptase (RT) and an endonuclease (EN) domain which digests specifically both top and bottom strand of the target sequence in 28S rDNA. To elucidate the sequence specificity of EN domain of R1Bm (R1Bm EN), we examined the cleavage tendency for the target sequences, and found that 5'-A(G/C)(A/T)!(A/G)T-3' is the consensus sequence (! = cleavage site). We also determined the crystal structure of R1Bm EN at 2.0 A resolution. Its structure was basically similar to AP endonuclease family, but had a special beta-hairpin at the edge of the DNA binding surface, which is a common feature among EN of LINEs. Point-mutations on the DNA binding surface of R1Bm EN significantly decreased the cleavage activities, but did not affect the sequence recognition in most residues. However, two mutants Y98A and N180A had altered cleavage patterns, suggesting an important role of these residues (Y98 and N180) for the sequence recognition of R1Bm EN. In addition, Y98A mutant showed another cleavage pattern, that implies de novo design of novel sequence-specific EN.
Collapse
Affiliation(s)
- Nobuo Maita
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 812-8582, Japan, Graduate School of Integrated Science, Yokohama City University, Yokohama 230-0045, Japan, Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Bioscience Building 501, Kashiwa, Chiba 277-8562, Japan, Graduate School of Engineering Kyoto University, Kyoto 615-8510, Japan and CREST, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012, Japan
| | - Hideyuki Aoyagi
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 812-8582, Japan, Graduate School of Integrated Science, Yokohama City University, Yokohama 230-0045, Japan, Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Bioscience Building 501, Kashiwa, Chiba 277-8562, Japan, Graduate School of Engineering Kyoto University, Kyoto 615-8510, Japan and CREST, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012, Japan
| | - Mizuko Osanai
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 812-8582, Japan, Graduate School of Integrated Science, Yokohama City University, Yokohama 230-0045, Japan, Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Bioscience Building 501, Kashiwa, Chiba 277-8562, Japan, Graduate School of Engineering Kyoto University, Kyoto 615-8510, Japan and CREST, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012, Japan
| | - Masahiro Shirakawa
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 812-8582, Japan, Graduate School of Integrated Science, Yokohama City University, Yokohama 230-0045, Japan, Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Bioscience Building 501, Kashiwa, Chiba 277-8562, Japan, Graduate School of Engineering Kyoto University, Kyoto 615-8510, Japan and CREST, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012, Japan
| | - Haruhiko Fujiwara
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 812-8582, Japan, Graduate School of Integrated Science, Yokohama City University, Yokohama 230-0045, Japan, Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Bioscience Building 501, Kashiwa, Chiba 277-8562, Japan, Graduate School of Engineering Kyoto University, Kyoto 615-8510, Japan and CREST, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
50
|
Gillespie JJ, Johnston JS, Cannone JJ, Gutell RR. Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure, organization, and retrotransposable elements. INSECT MOLECULAR BIOLOGY 2006; 15:657-86. [PMID: 17069639 PMCID: PMC2048585 DOI: 10.1111/j.1365-2583.2006.00689.x] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 06/28/2006] [Indexed: 05/12/2023]
Abstract
As an accompanying manuscript to the release of the honey bee genome, we report the entire sequence of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) ribosomal RNA (rRNA)-encoding gene sequences (rDNA) and related internally and externally transcribed spacer regions of Apis mellifera (Insecta: Hymenoptera: Apocrita). Additionally, we predict secondary structures for the mature rRNA molecules based on comparative sequence analyses with other arthropod taxa and reference to recently published crystal structures of the ribosome. In general, the structures of honey bee rRNAs are in agreement with previously predicted rRNA models from other arthropods in core regions of the rRNA, with little additional expansion in non-conserved regions. Our multiple sequence alignments are made available on several public databases and provide a preliminary establishment of a global structural model of all rRNAs from the insects. Additionally, we provide conserved stretches of sequences flanking the rDNA cistrons that comprise the externally transcribed spacer regions (ETS) and part of the intergenic spacer region (IGS), including several repetitive motifs. Finally, we report the occurrence of retrotransposition in the nuclear large subunit rDNA, as R2 elements are present in the usual insertion points found in other arthropods. Interestingly, functional R1 elements usually present in the genomes of insects were not detected in the honey bee rRNA genes. The reverse transcriptase products of the R2 elements are deduced from their putative open reading frames and structurally aligned with those from another hymenopteran insect, the jewel wasp Nasonia (Pteromalidae). Stretches of conserved amino acids shared between Apis and Nasonia are illustrated and serve as potential sites for primer design, as target amplicons within these R2 elements may serve as novel phylogenetic markers for Hymenoptera. Given the impending completion of the sequencing of the Nasonia genome, we expect our report eventually to shed light on the evolution of the hymenopteran genome within higher insects, particularly regarding the relative maintenance of conserved rDNA genes, related variable spacer regions and retrotransposable elements.
Collapse
Affiliation(s)
- J J Gillespie
- Department of Entomology, Texas A & M University, College Station, TX, USA.
| | | | | | | |
Collapse
|