1
|
Serano M, Perni S, Pierantozzi E, Laurino A, Sorrentino V, Rossi D. Intracellular Membrane Contact Sites in Skeletal Muscle Cells. MEMBRANES 2025; 15:29. [PMID: 39852269 PMCID: PMC11767089 DOI: 10.3390/membranes15010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025]
Abstract
Intracellular organelles are common to eukaryotic cells and provide physical support for the assembly of specialized compartments. In skeletal muscle fibers, the largest intracellular organelle is the sarcoplasmic reticulum, a specialized form of the endoplasmic reticulum primarily devoted to Ca2+ storage and release for muscle contraction. Occupying about 10% of the total cell volume, the sarcoplasmic reticulum forms multiple membrane contact sites, some of which are unique to skeletal muscle. These contact sites primarily involve the plasma membrane; among these, specialized membrane contact sites between the transverse tubules and the terminal cisternae of the sarcoplasmic reticulum form triads. Triads are skeletal muscle-specific contact sites where Ca2+ channels and regulatory proteins assemble to form the so-called calcium release complex. Additionally, the sarcoplasmic reticulum contacts mitochondria to enable a more precise regulation of Ca2+ homeostasis and energy metabolism. The sarcoplasmic reticulum and the plasma membrane also undergo dynamic remodeling to allow Ca2+ entry from the extracellular space and replenish the stores. This process involves the formation of dynamic membrane contact sites called Ca2+ Entry Units. This review explores the key processes in biogenesis and assembly of intracellular membrane contact sites as well as the membrane remodeling that occurs in response to muscle fatigue.
Collapse
Affiliation(s)
- Matteo Serano
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
| | - Stefano Perni
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
| | - Enrico Pierantozzi
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
| | - Annunziatina Laurino
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
- Program of Molecular Diagnosis of Rare Genetic Diseases, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy
| | - Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
- Program of Molecular Diagnosis of Rare Genetic Diseases, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy
| |
Collapse
|
2
|
Johnston JG, Welch AK, Cain BD, Sayeski PP, Gumz ML, Wingo CS. Aldosterone: Renal Action and Physiological Effects. Compr Physiol 2023; 13:4409-4491. [PMID: 36994769 PMCID: PMC11472823 DOI: 10.1002/cphy.c190043] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Aldosterone exerts profound effects on renal and cardiovascular physiology. In the kidney, aldosterone acts to preserve electrolyte and acid-base balance in response to changes in dietary sodium (Na+ ) or potassium (K+ ) intake. These physiological actions, principally through activation of mineralocorticoid receptors (MRs), have important effects particularly in patients with renal and cardiovascular disease as demonstrated by multiple clinical trials. Multiple factors, be they genetic, humoral, dietary, or otherwise, can play a role in influencing the rate of aldosterone synthesis and secretion from the adrenal cortex. Normally, aldosterone secretion and action respond to dietary Na+ intake. In the kidney, the distal nephron and collecting duct are the main targets of aldosterone and MR action, which stimulates Na+ absorption in part via the epithelial Na+ channel (ENaC), the principal channel responsible for the fine-tuning of Na+ balance. Our understanding of the regulatory factors that allow aldosterone, via multiple signaling pathways, to function properly clearly implicates this hormone as central to many pathophysiological effects that become dysfunctional in disease states. Numerous pathologies that affect blood pressure (BP), electrolyte balance, and overall cardiovascular health are due to abnormal secretion of aldosterone, mutations in MR, ENaC, or effectors and modulators of their action. Study of the mechanisms of these pathologies has allowed researchers and clinicians to create novel dietary and pharmacological targets to improve human health. This article covers the regulation of aldosterone synthesis and secretion, receptors, effector molecules, and signaling pathways that modulate its action in the kidney. We also consider the role of aldosterone in disease and the benefit of mineralocorticoid antagonists. © 2023 American Physiological Society. Compr Physiol 13:4409-4491, 2023.
Collapse
Affiliation(s)
- Jermaine G Johnston
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Amanda K Welch
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Brian D Cain
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Peter P Sayeski
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Michelle L Gumz
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Charles S Wingo
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| |
Collapse
|
3
|
Kutumova E, Kiselev I, Sharipov R, Lifshits G, Kolpakov F. Thoroughly Calibrated Modular Agent-Based Model of the Human Cardiovascular and Renal Systems for Blood Pressure Regulation in Health and Disease. Front Physiol 2021; 12:746300. [PMID: 34867451 PMCID: PMC8632703 DOI: 10.3389/fphys.2021.746300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Here we present a modular agent-based mathematical model of the human cardiovascular and renal systems. It integrates the previous models primarily developed by A. C. Guyton, F. Karaaslan, K. M. Hallow, and Y. V. Solodyannikov. We performed the model calibration to find an equilibrium state within the normal vital sign ranges for a healthy adult. We verified the model's abilities to reproduce equilibrium states with abnormal physiological values related to different combinations of cardiovascular diseases (such as systemic hypertension, chronic heart failure, pulmonary hypertension, etc.). For the model creation and validation, we involved over 200 scientific studies covering known models of the human cardiovascular and renal functions, biosimulation platforms, and clinical measurements of physiological quantities in normal and pathological conditions. We compiled detailed documentation describing all equations, parameters and variables of the model with justification of all formulas and values. The model is implemented in BioUML and available in the web-version of the software.
Collapse
Affiliation(s)
- Elena Kutumova
- Department of Computational Biology, Sirius University of Science and Technology, Sochi, Russia
- Laboratory of Bioinformatics, Federal Research Center for Information and Computational Technologies, Novosibirsk, Russia
- Biosoft.Ru, Ltd., Novosibirsk, Russia
| | - Ilya Kiselev
- Department of Computational Biology, Sirius University of Science and Technology, Sochi, Russia
- Laboratory of Bioinformatics, Federal Research Center for Information and Computational Technologies, Novosibirsk, Russia
- Biosoft.Ru, Ltd., Novosibirsk, Russia
| | - Ruslan Sharipov
- Department of Computational Biology, Sirius University of Science and Technology, Sochi, Russia
- Laboratory of Bioinformatics, Federal Research Center for Information and Computational Technologies, Novosibirsk, Russia
- Biosoft.Ru, Ltd., Novosibirsk, Russia
- Specialized Educational Scientific Center, Novosibirsk State University, Novosibirsk, Russia
| | - Galina Lifshits
- Laboratory for Personalized Medicine, Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Fedor Kolpakov
- Department of Computational Biology, Sirius University of Science and Technology, Sochi, Russia
- Laboratory of Bioinformatics, Federal Research Center for Information and Computational Technologies, Novosibirsk, Russia
- Biosoft.Ru, Ltd., Novosibirsk, Russia
| |
Collapse
|
4
|
Spät A, Szanda G. Mitochondrial cAMP and Ca 2+ metabolism in adrenocortical cells. Pflugers Arch 2018; 470:1141-1148. [PMID: 29876637 DOI: 10.1007/s00424-018-2157-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 01/22/2023]
Abstract
The biological effects of physiological stimuli of adrenocortical glomerulosa cells are predominantly mediated by the Ca2+ and the cAMP signal transduction pathways. The complex interplay between these signalling systems fine-tunes aldosterone secretion. In addition to the well-known cytosolic interactions, a novel intramitochondrial Ca2+-cAMP interplay has been recently recognised. The cytosolic Ca2+ signal is rapidly transferred into the mitochondrial matrix where it activates Ca2+-sensitive dehydrogenases, thus enhancing the formation of NADPH, a cofactor of steroid synthesis. Quite a few cell types, including H295R adrenocortical cells, express the soluble adenylyl cyclase within the mitochondria and the elevation of mitochondrial [Ca2+] activates the enzyme, thus resulting in the Ca2+-dependent formation of cAMP within the mitochondrial matrix. On the other hand, mitochondrial cAMP (mt-cAMP) potentiates the transfer of cytosolic Ca2+ into the mitochondrial matrix. This cAMP-mediated positive feedback control of mitochondrial Ca2+ uptake may facilitate the rapid hormonal response to emergency situations since knockdown of soluble adenylyl cyclase attenuates aldosterone production whereas overexpression of the enzyme facilitates steroidogenesis in vitro. Moreover, the mitochondrial Ca2+-mt-cAMP-Ca2+ uptake feedback loop is not a unique feature of adrenocortical cells; a similar signalling system has been described in HeLa cells as well.
Collapse
Affiliation(s)
- András Spät
- Department of Physiology, Semmelweis University Medical School, POB 2, Budapest, 1428, Hungary.
- MTA-SE Laboratory of Molecular Physiology, Semmelweis University, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Gergő Szanda
- Department of Physiology, Semmelweis University Medical School, POB 2, Budapest, 1428, Hungary
- MTA-SE Laboratory of Molecular Physiology, Semmelweis University, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
5
|
Szanda G, Wisniewski É, Rajki A, Spät A. Mitochondrial cAMP exerts positive feedback on mitochondrial Ca 2+ uptake via the recruitment of Epac1. J Cell Sci 2018; 131:jcs.215178. [PMID: 29661848 DOI: 10.1242/jcs.215178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/07/2018] [Indexed: 01/10/2023] Open
Abstract
We have previously demonstrated in H295R adrenocortical cells that the Ca2+-dependent production of mitochondrial cAMP (mt-cAMP) by the matrix soluble adenylyl cyclase (sAC; encoded by ADCY10) is associated with enhanced aldosterone production. Here, we examined whether mitochondrial sAC and mt-cAMP fine tune mitochondrial Ca2+ metabolism to support steroidogenesis. Reduction of mt-cAMP formation resulted in decelerated mitochondrial Ca2+ accumulation in intact cells during K+-induced Ca2+ signalling and also in permeabilized cells exposed to elevated perimitochondrial [Ca2+]. By contrast, treatment with the membrane-permeable cAMP analogue 8-Br-cAMP, inhibition of phosphodiesterase 2 and overexpression of sAC in the mitochondrial matrix all intensified Ca2+ uptake into the organelle. Identical mt-cAMP dependence of mitochondrial Ca2+ uptake was also observed in HeLa cells. Importantly, the enhancing effect of mt-cAMP on Ca2+ uptake was independent from both the mitochondrial membrane potential and Ca2+ efflux, but was reduced by Epac1 (also known as RAPGEF3) blockade both in intact and in permeabilized cells. Finally, overexpression of sAC in the mitochondrial matrix potentiated aldosterone production implying that the observed positive feedback mechanism of mt-cAMP on mitochondrial Ca2+ accumulation may have a role in the rapid initiation of steroidogenesis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Gergő Szanda
- Department of Physiology, Semmelweis University Medical School, 1482 POB 2 Budapest, Hungary .,MTA-SE Laboratory of Molecular Physiology, Semmelweis University and Hungarian Academy of Sciences, 1482 POB 2 Budapest, Hungary
| | - Éva Wisniewski
- Department of Physiology, Semmelweis University Medical School, 1482 POB 2 Budapest, Hungary
| | - Anikó Rajki
- MTA-SE Laboratory of Molecular Physiology, Semmelweis University and Hungarian Academy of Sciences, 1482 POB 2 Budapest, Hungary
| | - András Spät
- Department of Physiology, Semmelweis University Medical School, 1482 POB 2 Budapest, Hungary .,MTA-SE Laboratory of Molecular Physiology, Semmelweis University and Hungarian Academy of Sciences, 1482 POB 2 Budapest, Hungary
| |
Collapse
|
6
|
Bandulik S. Of channels and pumps: different ways to boost the aldosterone? Acta Physiol (Oxf) 2017; 220:332-360. [PMID: 27862984 DOI: 10.1111/apha.12832] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/10/2016] [Accepted: 11/11/2016] [Indexed: 01/19/2023]
Abstract
The mineralocorticoid aldosterone is a major factor controlling the salt and water balance and thereby also the arterial blood pressure. Accordingly, primary aldosteronism (PA) characterized by an inappropriately high aldosterone secretion is the most common form of secondary hypertension. The physiological stimulation of aldosterone synthesis in adrenocortical glomerulosa cells by angiotensin II and an increased plasma K+ concentration depends on a membrane depolarization and an increase in the cytosolic Ca2+ activity. Recurrent gain-of-function mutations of ion channels and transporters have been identified in a majority of cases of aldosterone-producing adenomas and in familial forms of PA. In this review, the physiological role of these genes in the regulation of aldosterone synthesis and the altered function of the mutant proteins as well are described. The specific changes of the membrane potential and the cellular ion homoeostasis in adrenal cells expressing the different mutants are compared, and their impact on autonomous aldosterone production and proliferation is discussed.
Collapse
Affiliation(s)
- S. Bandulik
- Medical Cell Biology; University of Regensburg; Regensburg Germany
| |
Collapse
|
7
|
Spät A, Szanda G. The Role of Mitochondria in the Activation/Maintenance of SOCE: Store-Operated Ca 2+ Entry and Mitochondria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:257-275. [PMID: 28900919 DOI: 10.1007/978-3-319-57732-6_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mitochondria extensively modify virtually all cellular Ca2+ transport processes, and store-operated Ca2+ entry (SOCE) is no exception to this rule. The interaction between SOCE and mitochondria is complex and reciprocal, substantially altering and, ultimately, fine-tuning both capacitative Ca2+ influx and mitochondrial function. Mitochondria, owing to their considerable Ca2+ accumulation ability, extensively buffer the cytosolic Ca2+ in their vicinity. In turn, the accumulated ion is released back into the neighboring cytosol during net Ca2+ efflux. Since store depletion itself and the successive SOCE are both Ca2+-regulated phenomena, mitochondrial Ca2+ handling may have wide-ranging effects on capacitative Ca2+ influx at any given time. In addition, mitochondria may also produce or consume soluble factors known to affect store-operated channels. On the other hand, Ca2+ entering the cell during SOCE is sensed by mitochondria, and the ensuing mitochondrial Ca2+ uptake boosts mitochondrial energy metabolism and, if Ca2+ overload occurs, may even lead to apoptosis or cell death. In several cell types, mitochondria seem to be sterically excluded from the confined space that forms between the plasma membrane (PM) and endoplasmic reticulum (ER) during SOCE. This implies that high-Ca2+ microdomains comparable to those observed between the ER and mitochondria do not form here. In the following chapter, the above aspects of the many-sided SOCE-mitochondrion interplay will be discussed in greater detail.
Collapse
Affiliation(s)
- András Spät
- Department of Physiology, Semmelweis University Medical School, POB 2, 1428, Budapest, Hungary.
- Laboratory of Molecular Physiology, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Gergö Szanda
- Department of Physiology, Semmelweis University Medical School, POB 2, 1428, Budapest, Hungary
| |
Collapse
|
8
|
Oki K, Plonczynski MW, Gomez-Sanchez EP, Gomez-Sanchez CE. YPEL4 modulates HAC15 adrenal cell proliferation and is associated with tumor diameter. Mol Cell Endocrinol 2016; 434:93-8. [PMID: 27333825 PMCID: PMC5478919 DOI: 10.1016/j.mce.2016.06.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/18/2016] [Accepted: 06/17/2016] [Indexed: 10/21/2022]
Abstract
Yippee-like (YPEL) proteins are thought to be related to cell proliferation because of their structure and location in the cell. The aim of this study was to clarify the effects of YPEL4 on aldosterone production and cell proliferation in the human adrenocortical cell line (HAC15) and aldosterone producing adenoma (APA). Basal aldosterone levels in HAC15 cells over-expressing YPEL4 was higher than those of control HAC15 cells. The positive effects of YPEL4 on cell proliferation were detected by XTT assay and crystal violet staining. YPEL4 levels in 39 human APA were 2.4-fold higher compared to those in 12 non-functional adrenocortical adenomas, and there was a positive relationship between YPEL4 levels and APA diameter (r = 0.316, P < 0.05). In summary, we have demonstrated that YPEL4 stimulates human adrenal cortical cell proliferation, increasing aldosterone production as a consequence. These results in human adrenocortical cells are consistent with the clinical observations with APA in humans.
Collapse
Affiliation(s)
- Kenji Oki
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Division of Endocrinology, Department of Medicine, The University of Mississippi Medical Center, Jackson, MS, USA.
| | - Maria W Plonczynski
- Division of Endocrinology, Department of Medicine, The University of Mississippi Medical Center, Jackson, MS, USA
| | - Elise P Gomez-Sanchez
- Division of Endocrinology, Department of Medicine, The University of Mississippi Medical Center, Jackson, MS, USA; Departments of Pharmacology & Toxicology, Anatomy and Neurosciences, The University of Mississippi Medical Center, Jackson, MS, USA
| | - Celso E Gomez-Sanchez
- Division of Endocrinology, Department of Medicine, The University of Mississippi Medical Center, Jackson, MS, USA; Research and Medicine Services, G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS, USA
| |
Collapse
|
9
|
Peruzzo R, Biasutto L, Szabò I, Leanza L. Impact of intracellular ion channels on cancer development and progression. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2016; 45:685-707. [PMID: 27289382 PMCID: PMC5045486 DOI: 10.1007/s00249-016-1143-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 12/13/2022]
Abstract
Cancer research is nowadays focused on the identification of possible new targets in order to try to develop new drugs for curing untreatable tumors. Ion channels have emerged as "oncogenic" proteins, since they have an aberrant expression in cancers compared to normal tissues and contribute to several hallmarks of cancer, such as metabolic re-programming, limitless proliferative potential, apoptosis-resistance, stimulation of neo-angiogenesis as well as cell migration and invasiveness. In recent years, not only the plasma membrane but also intracellular channels and transporters have arisen as oncological targets and were proposed to be associated with tumorigenesis. Therefore, the research is currently focusing on understanding the possible role of intracellular ion channels in cancer development and progression on one hand and, on the other, on developing new possible drugs able to modulate the expression and/or activity of these channels. In a few cases, the efficacy of channel-targeting drugs in reducing tumors has already been demonstrated in vivo in preclinical mouse models.
Collapse
Affiliation(s)
| | - Lucia Biasutto
- CNR Institute of Neuroscience, Padua, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padua, Padua, Italy
- CNR Institute of Neuroscience, Padua, Italy
| | - Luigi Leanza
- Department of Biology, University of Padua, Padua, Italy.
| |
Collapse
|
10
|
Wagner S, De Bortoli S, Schwarzländer M, Szabò I. Regulation of mitochondrial calcium in plants versus animals. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3809-29. [PMID: 27001920 DOI: 10.1093/jxb/erw100] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ca(2+) acts as an important cellular second messenger in eukaryotes. In both plants and animals, a wide variety of environmental and developmental stimuli trigger Ca(2+) transients of a specific signature that can modulate gene expression and metabolism. In animals, mitochondrial energy metabolism has long been considered a hotspot of Ca(2+) regulation, with a range of pathophysiology linked to altered Ca(2+) control. Recently, several molecular players involved in mitochondrial Ca(2+) signalling have been identified, including those of the mitochondrial Ca(2+) uniporter. Despite strong evidence for sophisticated Ca(2+) regulation in plant mitochondria, the picture has remained much less clear. This is currently changing aided by live imaging and genetic approaches which allow dissection of subcellular Ca(2+) dynamics and identification of the proteins involved. We provide an update on our current understanding in the regulation of mitochondrial Ca(2+) and signalling by comparing work in plants and animals. The significance of mitochondrial Ca(2+) control is discussed in the light of the specific metabolic and energetic needs of plant and animal cells.
Collapse
Affiliation(s)
- Stephan Wagner
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Sara De Bortoli
- Department of Biology and CNR Institute of Neurosciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| | - Markus Schwarzländer
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Ildikò Szabò
- Department of Biology and CNR Institute of Neurosciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| |
Collapse
|
11
|
Spät A, Hunyady L, Szanda G. Signaling Interactions in the Adrenal Cortex. Front Endocrinol (Lausanne) 2016; 7:17. [PMID: 26973596 PMCID: PMC4770035 DOI: 10.3389/fendo.2016.00017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/11/2016] [Indexed: 11/30/2022] Open
Abstract
The major physiological stimuli of aldosterone secretion are angiotensin II (AII) and extracellular K(+), whereas cortisol production is primarily regulated by corticotropin (ACTH) in fasciculata cells. AII triggers Ca(2+) release from internal stores that is followed by store-operated and voltage-dependent Ca(2+) entry, whereas K(+)-evoked depolarization activates voltage-dependent Ca(2+) channels. ACTH acts primarily through the formation of cAMP and subsequent protein phosphorylation by protein kinase A. Both Ca(2+) and cAMP facilitate the transfer of cholesterol to mitochondrial inner membrane. The cytosolic Ca(2+) signal is transferred into the mitochondrial matrix and enhances pyridine nucleotide reduction. Increased formation of NADH results in increased ATP production, whereas that of NADPH supports steroid production. In reality, the control of adrenocortical function is a lot more sophisticated with second messengers crosstalking and mutually modifying each other's pathways. Cytosolic Ca(2+) and cGMP are both capable of modifying cAMP metabolism, while cAMP may enhance Ca(2+) release and voltage-activated Ca(2+) channel activity. Besides, mitochondrial Ca(2+) signal brings about cAMP formation within the organelle and this further enhances aldosterone production. Maintained aldosterone and cortisol secretion are optimized by the concurrent actions of Ca(2+) and cAMP, as exemplified by the apparent synergism of Ca(2+) influx (inducing cAMP formation) and Ca(2+) release during response to AII. Thus, cross-actions of parallel signal transducing pathways are not mere intracellular curiosities but rather substantial phenomena, which fine-tune the biological response. Our review focuses on these functionally relevant interactions between the Ca(2+) and the cyclic nucleotide signal transducing pathways hitherto described in the adrenal cortex.
Collapse
Affiliation(s)
- András Spät
- Department of Physiology, Semmelweis University Medical School, Budapest, Hungary
- Laboratory of Molecular Physiology, Hungarian Academy of Sciences, Budapest, Hungary
- *Correspondence: András Spät,
| | - László Hunyady
- Department of Physiology, Semmelweis University Medical School, Budapest, Hungary
- Laboratory of Molecular Physiology, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gergő Szanda
- Department of Physiology, Semmelweis University Medical School, Budapest, Hungary
| |
Collapse
|
12
|
The Roles of Mitochondrial Cation Channels Under Physiological Conditions and in Cancer. Handb Exp Pharmacol 2016; 240:47-69. [PMID: 27995386 DOI: 10.1007/164_2016_92] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bioenergetics has become central to our understanding of pathological mechanisms as well as the development of new therapeutic strategies and as a tool for gauging disease progression in neurodegeneration, diabetes, cancer, and cardiovascular disease. The view is emerging that inner mitochondrial membrane (IMM) cation channels have a profound effect on mitochondrial function and, consequently, on the metabolic state and survival of the whole cell. Since disruption of the sustained integrity of mitochondria is strongly linked to human disease, pharmacological intervention offers a new perspective concerning neurodegenerative and cardiovascular diseases as well as cancer. This review summarizes our current knowledge regarding IMM cation channels and their roles under physiological conditions as well as in cancer, with special emphasis on potassium channels and the mammalian mitochondrial calcium uniporter.
Collapse
|
13
|
Stindl J, Tauber P, Sterner C, Tegtmeier I, Warth R, Bandulik S. Pathogenesis of Adrenal Aldosterone-Producing Adenomas Carrying Mutations of the Na(+)/K(+)-ATPase. Endocrinology 2015; 156:4582-91. [PMID: 26418325 DOI: 10.1210/en.2015-1466] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aldosterone-producing adenoma (APA) is a major cause of primary aldosteronism, leading to secondary hypertension. Somatic mutations in the gene for the α1 subunit of the Na(+)/K(+)-ATPase were found in about 6% of APAs. APA-related α1 subunit of the Na(+)/K(+)-ATPase mutations lead to a loss of the pump function of the Na(+)/K(+)-ATPase, which is believed to result in membrane depolarization and Ca(2+)-dependent stimulation of aldosterone synthesis in adrenal cells. In addition, H(+) and Na(+) leak currents via the mutant Na(+)/K(+)-ATPase were suggested to contribute to the phenotype. The aim of this study was to investigate the cellular pathophysiology of adenoma-associated Na(+)/K(+)-ATPase mutants (L104R, V332G, G99R) in adrenocortical NCI-H295R cells. The expression of these Na(+)/K(+)-ATPase mutants depolarized adrenal cells and stimulated aldosterone secretion. However, an increase of basal cytosolic Ca(2+) levels in Na(+)/K(+)-ATPase mutant cells was not detectable, and stimulation with high extracellular K(+) hardly increased Ca(2+) levels in cells expressing L104R and V332G mutant Na(+)/K(+)-ATPase. Cytosolic pH measurements revealed an acidification of L104R and V332G mutant cells, despite an increased activity of the Na(+)/H(+) exchanger. The possible contribution of cellular acidification to the hypersecretion of aldosterone was supported by the observation that aldosterone secretion of normal adrenocortical cells was stimulated by acetate-induced acidification. Taken together, mutations of the Na(+)/K(+)-ATPase depolarize adrenocortical cells, disturb the K(+) sensitivity, and lower intracellular pH but, surprisingly, do not induce an overt increase of intracellular Ca(2+). Probably, the autonomous aldosterone secretion is caused by the concerted action of several pathological signaling pathways and incomplete cellular compensation.
Collapse
Affiliation(s)
- J Stindl
- Medical Cell Biology, University of Regensburg, 93053 Regensburg, Germany
| | - P Tauber
- Medical Cell Biology, University of Regensburg, 93053 Regensburg, Germany
| | - C Sterner
- Medical Cell Biology, University of Regensburg, 93053 Regensburg, Germany
| | - I Tegtmeier
- Medical Cell Biology, University of Regensburg, 93053 Regensburg, Germany
| | - R Warth
- Medical Cell Biology, University of Regensburg, 93053 Regensburg, Germany
| | - S Bandulik
- Medical Cell Biology, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
14
|
Katona D, Rajki A, Di Benedetto G, Pozzan T, Spät A. Calcium-dependent mitochondrial cAMP production enhances aldosterone secretion. Mol Cell Endocrinol 2015; 412:196-204. [PMID: 25958040 DOI: 10.1016/j.mce.2015.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/27/2015] [Accepted: 05/03/2015] [Indexed: 10/23/2022]
Abstract
Glomerulosa cells secrete aldosterone in response to agonists coupled to Ca(2+) increases such as angiotensin II and corticotrophin, coupled to a cAMP dependent pathway. A recently recognized interaction between Ca(2+) and cAMP is the Ca(2+)-induced cAMP formation in the mitochondrial matrix. Here we describe that soluble adenylyl cyclase (sAC) is expressed in H295R adrenocortical cells. Mitochondrial cAMP formation, monitored with a mitochondria-targeted fluorescent sensor (4mtH30), is enhanced by HCO3(-) and the Ca(2+) mobilizing agonist angiotensin II. The effect of angiotensin II is inhibited by 2-OHE, an inhibitor of sAC, and by RNA interference of sAC, but enhanced by an inhibitor of phosphodiesterase PDE2A. Heterologous expression of the Ca(2+) binding protein S100G within the mitochondrial matrix attenuates angiotensin II-induced mitochondrial cAMP formation. Inhibition and knockdown of sAC significantly reduce angiotensin II-induced aldosterone production. These data provide the first evidence for a cell-specific functional role of mitochondrial cAMP.
Collapse
Affiliation(s)
- Dávid Katona
- Department of Physiology, Semmelweis University Medical School, Budapest, Hungary
| | - Anikó Rajki
- Laboratory of Molecular Physiology, Hungarian Academy of Sciences, Budapest, Hungary
| | - Giulietta Di Benedetto
- Institute of Neuroscience, Italian National Research Council, Padova, Italy; Venetian Institute of Molecular Medicine, Padova, Italy
| | - Tullio Pozzan
- Institute of Neuroscience, Italian National Research Council, Padova, Italy; Venetian Institute of Molecular Medicine, Padova, Italy
| | - András Spät
- Department of Physiology, Semmelweis University Medical School, Budapest, Hungary.
| |
Collapse
|
15
|
Bandulik S, Tauber P, Lalli E, Barhanin J, Warth R. Two-pore domain potassium channels in the adrenal cortex. Pflugers Arch 2015; 467:1027-42. [PMID: 25339223 PMCID: PMC4428839 DOI: 10.1007/s00424-014-1628-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/02/2014] [Accepted: 10/03/2014] [Indexed: 12/31/2022]
Abstract
The physiological control of steroid hormone secretion from the adrenal cortex depends on the function of potassium channels. The "two-pore domain K(+) channels" (K2P) TWIK-related acid sensitive K(+) channel 1 (TASK1), TASK3, and TWIK-related K(+) channel 1 (TREK1) are strongly expressed in adrenocortical cells. They confer a background K(+) conductance to these cells which is important for the K(+) sensitivity as well as for angiotensin II and adrenocorticotropic hormone-dependent stimulation of aldosterone and cortisol synthesis. Mice with single deletions of the Task1 or Task3 gene as well as Task1/Task3 double knockout mice display partially autonomous aldosterone synthesis. It appears that TASK1 and TASK3 serve different functions: TASK1 affects cell differentiation and prevents expression of aldosterone synthase in the zona fasciculata, while TASK3 controls aldosterone secretion in glomerulosa cells. TREK1 is involved in the regulation of cortisol secretion in fasciculata cells. These data suggest that a disturbed function of K2P channels could contribute to adrenocortical pathologies in humans.
Collapse
Affiliation(s)
- Sascha Bandulik
- Medical Cell Biology, University of Regensburg, Universitaetsstrasse 31, 93053, Regensburg, Germany,
| | | | | | | | | |
Collapse
|
16
|
Trejter M, Hochol A, Tyczewska M, Ziolkowska A, Jopek K, Szyszka M, Malendowicz LK, Rucinski M. Visinin-like peptide 1 in adrenal gland of the rat. Gene expression and its hormonal control. Peptides 2015; 63:22-9. [PMID: 25451331 DOI: 10.1016/j.peptides.2014.10.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/29/2014] [Accepted: 10/29/2014] [Indexed: 10/24/2022]
Abstract
VSNL1 encodes the calcium-sensor protein visinin-like 1 and was identified previously as an upregulated gene in a sample set of aldosterone-producing adenomas. Recently, by means of microarray studies we demonstrated high expression of Vsnl1 gene in rat adrenal zona glomerulosa (ZG). Only scanty data are available on the role of this gene in adrenal function as well as on regulation of its expression by factors affecting adrenal cortex structure and function. Therefore we performed relevant studies aimed at clarifying some of the above issues. By Affymetrix(®) Rat Gene 1.1 ST Array Strip, QPCR and immunohistochemistry we demonstrated that expression levels of Vsnl1 in the rat adrenal ZG are notably higher than in the fasciculata/reticularis zone. In QPCR assay this difference was approximately 10 times higher. Expression of this gene in the rat adrenal gland or adrenocortical cells was acutely down regulated by ACTH, while chronic administration of corticotrophin or dexamethasone did not change Vsnl1 mRNA levels. In enucleation-induced adrenocortical regeneration expression levels of both Vsnl1 and Cyp11b2 were notably lowered and positively correlated. Despite these findings, the physiological significance of adrenal Vsnl1 remains unclear, and requires further investigation.
Collapse
Affiliation(s)
- Marcin Trejter
- Department of Histology and Embryology, Poznań University of Medical Sciences, Poznań, Poland
| | - Anna Hochol
- Department of Histology and Embryology, Poznań University of Medical Sciences, Poznań, Poland
| | - Marianna Tyczewska
- Department of Histology and Embryology, Poznań University of Medical Sciences, Poznań, Poland
| | - Agnieszka Ziolkowska
- Department of Histology and Embryology, Poznań University of Medical Sciences, Poznań, Poland
| | - Karol Jopek
- Department of Histology and Embryology, Poznań University of Medical Sciences, Poznań, Poland
| | - Marta Szyszka
- Department of Histology and Embryology, Poznań University of Medical Sciences, Poznań, Poland
| | - Ludwik K Malendowicz
- Department of Histology and Embryology, Poznań University of Medical Sciences, Poznań, Poland.
| | - Marcin Rucinski
- Department of Histology and Embryology, Poznań University of Medical Sciences, Poznań, Poland
| |
Collapse
|
17
|
Fülöp L, Rajki A, Katona D, Szanda G, Spät A. Extramitochondrial OPA1 and adrenocortical function. Mol Cell Endocrinol 2013; 381:70-9. [PMID: 23906536 DOI: 10.1016/j.mce.2013.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/19/2013] [Accepted: 07/19/2013] [Indexed: 02/06/2023]
Abstract
We have previously described that silencing of the mitochondrial protein OPA1 enhances mitochondrial Ca(2+) signaling and aldosterone production in H295R adrenocortical cells. Since extramitochondrial OPA1 (emOPA1) was reported to facilitate cAMP-induced lipolysis, we hypothesized that emOPA1, via the enhanced hydrolysis of cholesterol esters, augments aldosterone production in H295R cells. A few OPA1 immunopositive spots were detected in ∼40% of the cells. In cell fractionation studies OPA1/COX IV (mitochondrial marker) ratio in the post-mitochondrial fractions was an order of magnitude higher than that in the mitochondrial fraction. The ratio of long to short OPA1 isoforms was lower in post-mitochondrial than in mitochondrial fractions. Knockdown of OPA1 failed to reduce db-cAMP-induced phosphorylation of hormone-sensitive lipase (HSL), Ca(2+) signaling and aldosterone secretion. In conclusion, OPA1 could be detected in the post-mitochondrial fractions, nevertheless, OPA1 did not interfere with the cAMP - PKA - HSL mediated activation of aldosterone secretion.
Collapse
Affiliation(s)
- László Fülöp
- Department of Physiology, Faculty of Medicine, Semmelweis University, Hungary
| | | | | | | | | |
Collapse
|
18
|
Wen D, Cornelius RJ, Yuan Y, Sansom SC. Regulation of BK-α expression in the distal nephron by aldosterone and urine pH. Am J Physiol Renal Physiol 2013; 305:F463-76. [PMID: 23761673 DOI: 10.1152/ajprenal.00171.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the distal nephron, the large-conductance Ca-activated K (BK) channel, comprised of a pore-forming-α (BK-α) and the BK-β4 subunit, promotes K excretion when mice are maintained on a high-K alkaline diet (HK-alk). We examined whether BK-β4 and the acid-base status regulate apical membrane expression of BK-α in the cortical (CCD) and medullary collecting ducts (MCD) using immunohistochemical analysis (IHC) and Western blot. With the use of IHC, BK-α of mice on acontrol diet localized mostly cytoplasmically in intercalated cells (IC) of the CCD and in the perinuclear region of both principle cells (PC) and IC of the MCD. HK-alk wild-type mice (WT), but not BK-β4 knockout mice (β4KO), exhibited increased apical BK-α in both the CCD and MCD. When given a high-K acidic diet (HK-Cl), BK-α expression increased but remained cytoplasmic in the CCD and perinuclear in the MCD of both WT and β4KO. Western blot confirmed that total BK-α expression was enhanced by either HK-alk or HK-Cl but only increased in the plasma membrane with HK-alk. Compared with controls, mice drinking NaHCO3 water exhibited more apical BK-α and total cellular BK-β4. Spironolactone given to mice on HK-alk significantly reduced K secretion and decreased total cellular BK-α but did not affect cellular BK-β4 and apical BK-α. Experiments with MDCK-C11 cells indicated that BK-β4 stabilizes surface BK-α by inhibiting degradation through a lysosomal pathway. These data suggest that aldosterone mediates a high-K-induced increase in BK-α and urinary alkalinization increases BK-β4 expression, which promotes the apical localization of BK-α.
Collapse
Affiliation(s)
- Donghai Wen
- Dept. of Cellular and Integrative Physiology, 985850 Nebraska Medical Center, Omaha, NE 68198-5850.
| | | | | | | |
Collapse
|
19
|
Adam-Vizi V, Tretter L. The role of mitochondrial dehydrogenases in the generation of oxidative stress. Neurochem Int 2013; 62:757-63. [DOI: 10.1016/j.neuint.2013.01.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 01/08/2013] [Accepted: 01/10/2013] [Indexed: 01/09/2023]
|
20
|
Gaspers LD, Mémin E, Thomas AP. Calcium-dependent physiologic and pathologic stimulus-metabolic response coupling in hepatocytes. Cell Calcium 2012; 52:93-102. [PMID: 22564906 DOI: 10.1016/j.ceca.2012.04.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 04/13/2012] [Accepted: 04/16/2012] [Indexed: 01/19/2023]
Abstract
A recurrent paradigm in calcium signaling is the coordination of the target response of the calcium signal with activation of metabolic energy production to support that response. This occurs in many tissues, including cardiac and skeletal muscle where contractile activity and ATP production are coordinately regulated by the frequency and amplitude of calcium transients, endocrine and exocrine cells that use calcium to drive the secretory process, and hepatocytes where the downstream targets of calcium include both catabolic and anabolic processes. The primary mechanism by which calcium enhances the capacity for energy production is through calcium-dependent stimulation of mitochondrial oxidative metabolism, achieved by increasing NADH production and respiratory chain flux. Although this enhances energy supply, it also has the potential for deleterious consequences resulting from increased generation of reactive oxygen species (ROS). The negative consequences of calcium-dependent mitochondrial activation can be ameliorated when the underlying cytosolic calcium signals occur as brief calcium spikes or oscillations, with signal strength encoded through the spike frequency (frequency modulation). Frequency modulation increases signal fidelity, and reduces pathological effects of calcium, including excess mitochondrial ROS production and apoptotic or necrotic outcomes. The present article reviews these issues using data obtained in hepatocytes under physiologic and pathologic conditions.
Collapse
Affiliation(s)
- Lawrence D Gaspers
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, United States.
| | | | | |
Collapse
|
21
|
Wiederkehr A, Wollheim CB. Mitochondrial signals drive insulin secretion in the pancreatic β-cell. Mol Cell Endocrinol 2012; 353:128-37. [PMID: 21784130 DOI: 10.1016/j.mce.2011.07.016] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 07/07/2011] [Indexed: 12/31/2022]
Abstract
β-Cell nutrient sensing depends on mitochondrial function. Oxidation of nutrient-derived metabolites in the mitochondria leads to plasma membrane depolarization, Ca(2+) influx and insulin granule exocytosis. Subsequent mitochondrial Ca(2+) uptake further accelerates metabolism and oxidative phosphorylation. Nutrient activation also increases the mitochondrial matrix pH. This alkalinization is required to maintain elevated insulin secretion during prolonged nutrient stimulation. Together the mitochondrial Ca(2+) rise and matrix alkalinization assure optimal ATP synthesis necessary for efficient activation of the triggering pathway of insulin secretion. The sustained, amplifying pathway of insulin release also depends on mitochondrial Ca(2+) signals, which likely influence the generation of glucose-derived metabolites serving as coupling factors. Therefore, mitochondria are both recipients and generators of signals essential for metabolism-secretion coupling. Activation of these signaling pathways would be an attractive target for the improvement of β-cell function and the treatment of type 2 diabetes.
Collapse
|
22
|
|
23
|
Szanda G, Rajki A, Spät A. Control mechanisms of mitochondrial Ca(2+) uptake - feed-forward modulation of aldosterone secretion. Mol Cell Endocrinol 2012; 353:101-8. [PMID: 21924321 DOI: 10.1016/j.mce.2011.08.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 08/31/2011] [Accepted: 08/31/2011] [Indexed: 12/23/2022]
Abstract
Mitochondrial Ca(2+) signal activates metabolism by boosting pyridine nucleotide reduction and ATP synthesis or, if Ca(2+) sequestration is supraphysiological, may even lead to apoptosis. Although the molecular background of mitochondrial Ca(2+) uptake has recently been elucidated, the regulation of Ca(2+) handling is still not properly clarified. In human adrenocortical H295R cells we found a regulatory mechanism involving p38 MAPK and novel-type PKC isoforms. Upon stimulation with angiotensin II (AII) these kinases are activated typically prior to the release of Ca(2+) and - most probably by reducing the Ca(2+) permeation through the outer mitochondrial membrane - attenuate mitochondrial Ca(2+) uptake in a feed-forward manner. The biologic significance of the kinase-mediated reduction of mitochondrial Ca(2+) signal is also reflected by the attenuation of AII-mediated aldosterone secretion. As another feed-forward mechanism, we found in HEK-293T and H295R cells that Ca(2+) signal evoked either by IP(3) or by voltage-gated influx is accompanied by a concomitant cytosolic Mg(2+) signal. In permeabilized HEK-293T cells Mg(2+) was found to be a potent inhibitor of mitochondrial Ca(2+) uptake in the physiologic [Mg(2+)] and [Ca(2+)] range. Thus, these inhibitory mechanisms may serve not only as protection against mitochondrial Ca(2+) overload and subsequent apoptosis but also have the potential to substantially alter physiological responses.
Collapse
Affiliation(s)
- Gergö Szanda
- Department of Physiology, Semmelweis University, POB 259, H-1444 Budapest, Hungary
| | | | | |
Collapse
|
24
|
Mitochondrial Ca(2+) signals in autophagy. Cell Calcium 2012; 52:44-51. [PMID: 22459281 DOI: 10.1016/j.ceca.2012.03.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 02/29/2012] [Accepted: 03/01/2012] [Indexed: 01/05/2023]
Abstract
Macroautophagy (autophagy) is a lysosomal degradation pathway that is conserved from yeast to humans that plays an important role in recycling cellular constituents in all cells. A number of protein complexes and signaling pathways impinge on the regulation of autophagy, with the mammalian target of rapamycin (mTOR) as the central player in the canonical pathway. Cytoplasmic Ca(2+) signaling also regulates autophagy, with both activating and inhibitory effects, mediated by the canonical as well as non-canonical pathways. Here we review this regulation, with a focus on the role of an mTOR-independent pathway that involves the inositol trisphosphate receptor (InsP(3)R) Ca(2+) release channel and Ca(2+) signaling to mitochondria. Constitutive InsP(3)R Ca(2+) transfer to mitochondria is required for autophagy suppression in cells in nutrient-replete media. In its absence, cells become metabolically compromised due to insufficient production of reducing equivalents to support oxidative phosphorylation. Absence of this Ca(2+) transfer to mitochondria results in activation of AMPK, which activates mTOR-independent pro-survival autophagy. Constitutive InsP(3)R Ca(2+) release to mitochondria is an essential cellular process that is required for efficient mitochondrial respiration, maintenance of normal cell bioenergetics and suppression of autophagy.
Collapse
|
25
|
Spät A, Szanda G. Special features of mitochondrial Ca²⁺ signalling in adrenal glomerulosa cells. Pflugers Arch 2012; 464:43-50. [PMID: 22395411 DOI: 10.1007/s00424-012-1086-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 02/10/2012] [Accepted: 02/14/2012] [Indexed: 11/30/2022]
Abstract
Aldosterone, secreted by adrenal glomerulosa cells, allows the adaptation of the vertebrate organism to a wide range of physiological and pathological stimuli including acute haemodynamic challenges and long-term changes in dietary sodium and potassium intake. Most of the extracellular signals are mediated by cytosolic Ca²⁺ signal deriving from Ca²⁺ release, store-operated and/or voltage-gated Ca²⁺ influx. Mitochondria in glomerulosa cells play a fundamental role in generating and modulating the final biological response. These organelles not only house several enzymes of aldosterone biosynthesis but also-in a Ca²⁺-dependent manner-provide NADPH for the function of these enzymes. Moreover, mitochondria, constituting a high portion of cytoplasmic volume and displaying a uniquely low-threshold Ca²⁺ sequestering ability, shape and thus modulate the decoding of the complex cytosolic Ca²⁺ response. The unusual features of mitochondrial Ca²⁺ signalling that permit such an integrative function in adrenal glomerulosa cells are hereby described.
Collapse
Affiliation(s)
- András Spät
- Department of Physiology, Semmelweis University, Budapest, Hungary.
| | | |
Collapse
|
26
|
Spät A, Fülöp L, Szanda G. The role of mitochondrial Ca(2+) and NAD(P)H in the control of aldosterone secretion. Cell Calcium 2012; 52:64-72. [PMID: 22364774 DOI: 10.1016/j.ceca.2012.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/25/2012] [Accepted: 01/27/2012] [Indexed: 01/03/2023]
Abstract
The mineralocorticoid hormone aldosterone is synthesized in the zona glomerulosa of the adrenal cortex. Glomerulosa cells respond to the physiological stimuli, elevated extracellular [K(+)] and angiotensin II, with an intracellular Ca(2+) signal. Cytosolic Ca(2+) facilitates the transport of the steroid-precursor cholesterol to mitochondria and, after a few hours, it also induces the transcription of aldosterone synthase. Therefore, the cytosolic Ca(2+) signal is regarded as the most important short and long-term mediator of aldosterone secretion. However, cytosolic Ca(2+) is also taken up by mitochondria and, in turn, the mitochondrial Ca(2+) response activates mitochondrial dehydrogenases resulting in stimulation of respiration and increase in reduced pyridine nucleotides. Since both cholesterol side-chain cleavage and all of the hydroxylation steps of steroid synthesis require NADPH as a cofactor, the importance of cytosolic Ca(2+) - mitochondrial Ca(2+) coupling and of appropriate NADPH supply in respect to hormone production can be assumed. However, the importance of the mitochondrial factors has been neglected so far. Here, after summarizing earlier findings we provide new results obtained through modifying mitochondrial Ca(2+) uptake by knocking down p38 MAPK or OPA1 and overexpressing S100G, supporting the notion that mitochondrial Ca(2+) and reduced pyridine nucleotides are facilitating factors for both basal and stimulated steroid production.
Collapse
Affiliation(s)
- András Spät
- Department of Physiology, Faculty of Medicine, Semmelweis University, Hungary.
| | | | | |
Collapse
|
27
|
Mitochondria and chromaffin cell function. Pflugers Arch 2012; 464:33-41. [PMID: 22278417 DOI: 10.1007/s00424-012-1074-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/05/2012] [Accepted: 01/09/2012] [Indexed: 10/14/2022]
Abstract
Chromaffin cells are an excellent model for stimulus-secretion coupling. Ca(2+) entry through plasma membrane voltage-operated Ca(2+) channels (VOCC) is the trigger for secretion, but the intracellular organelles contribute subtle nuances to the Ca(2+) signal. The endoplasmic reticulum amplifies the cytosolic Ca(2+) ([Ca(2+)](C)) signal by Ca(2+)-induced Ca(2+) release (CICR) and helps generation of microdomains with high [Ca(2+)](C) (HCMD) at the subplasmalemmal region. These HCMD induce exocytosis of the docked secretory vesicles. Mitochondria close to VOCC take up large amounts of Ca(2+) from HCMD and stop progression of the Ca(2+) wave towards the cell core. On the other hand, the increase of [Ca(2+)] at the mitochondrial matrix stimulates respiration and tunes energy production to the increased needs of the exocytic activity. At the end of stimulation, [Ca(2+)](C) decreases rapidly and mitochondria release the Ca(2+) accumulated in the matrix through the Na(+)/Ca(2+) exchanger. VOCC, CICR sites and nearby mitochondria form functional triads that co-localize at the subplasmalemmal area, where secretory vesicles wait ready for exocytosis. These triads optimize stimulus-secretion coupling while avoiding propagation of the Ca(2+) signal to the cell core. Perturbation of their functioning in neurons may contribute to the genesis of excitotoxicity, ageing mental retardation and/or neurodegenerative disorders.
Collapse
|
28
|
Wiederkehr A, Szanda G, Akhmedov D, Mataki C, Heizmann CW, Schoonjans K, Pozzan T, Spät A, Wollheim CB. Mitochondrial matrix calcium is an activating signal for hormone secretion. Cell Metab 2011; 13:601-11. [PMID: 21531342 DOI: 10.1016/j.cmet.2011.03.015] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 12/30/2010] [Accepted: 03/11/2011] [Indexed: 12/18/2022]
Abstract
Mitochondrial Ca(2+) signals have been proposed to accelerate oxidative metabolism and ATP production to match Ca(2+)-activated energy-consuming processes. Efforts to understand the signaling role of mitochondrial Ca(2+) have been hampered by the inability to manipulate matrix Ca(2+) without directly altering cytosolic Ca(2+). We were able to selectively buffer mitochondrial Ca(2+) rises by targeting the Ca(2+)-binding protein S100G to the matrix. We find that matrix Ca(2+) controls signal-dependent NAD(P)H formation, respiration, and ATP changes in intact cells. Furthermore, we demonstrate that matrix Ca(2+) increases are necessary for the amplification of sustained glucose-dependent insulin secretion in β cells. Through the regulation of NAD(P)H in adrenal glomerulosa cells, matrix Ca(2+) also acts as a positive signal in reductive biosynthesis, which stimulates aldosterone secretion. Our dissection of cytosolic and mitochondrial Ca(2+) signals reveals the physiological importance of matrix Ca(2+) in energy metabolism required for signal-dependent hormone secretion.
Collapse
Affiliation(s)
- Andreas Wiederkehr
- Department of Cell Physiology and Metabolism, University of Geneva, University Medical Center, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Large, Ca-activated K channels (BK) are comprised of an α pore (BKα) and one of four β subunits (BKβ1-4). When the gene for BKβ1 is knocked out (BKβ1-KO), the result is increased myogenic tone of vascular smooth muscle and hypertension. We reexamined whether the hypertension is entirely due to increased vascular tone, because most monogenic forms of hypertension have renal origins and BKβ1 resides in renal connecting tubule (CNT) cells. Moreover, BKβ1 is localized in the adrenal glands, where it may control production of aldosterone. This review will summarize our report that a majority of the hypertension of BKβ1-KO is the result of insufficient handling of dietary K, resulting in increased plasma K and hyperaldosteronism, the latter promoting Na and fluid retention. The fluid retention and hypertension are exacerbated by a high-K diet and reduced by eplerenone, an aldosterone receptor inhibitor. Genetic knockout of BKβ4 (BKβ4-KO), which resides in intercalated cells, also exhibits deficient K excretion, fluid retention, and mild hypertension that is not exacerbated when animals are treated with a high-K diet. These results show that the hypertension associated with BKβ1-KO occurs because of enhanced fluid retention, as well as because of the previously described vascular dysfunction.
Collapse
Affiliation(s)
- P Richard Grimm
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
30
|
Szanda G, Halász E, Spät A. Protein kinases reduce mitochondrial Ca2+ uptake through an action on the outer mitochondrial membrane. Cell Calcium 2010; 48:168-75. [DOI: 10.1016/j.ceca.2010.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 08/10/2010] [Accepted: 08/12/2010] [Indexed: 12/30/2022]
|
31
|
Carafoli E. The fateful encounter of mitochondria with calcium: how did it happen? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:595-606. [PMID: 20385096 DOI: 10.1016/j.bbabio.2010.03.024] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 03/29/2010] [Accepted: 03/30/2010] [Indexed: 01/09/2023]
Abstract
A number of findings in the 1950s had offered indirect indications that mitochondria could accumulate Ca2+. In 1961, the phenomenon was directly demonstrated using isolated mitochondria: the uptake process was driven by respiratory chain activity or by the hydrolysis of added ATP. It could be accompanied by the simultaneous uptake of inorganic phosphate, in which case precipitates of hydroxyapatite were formed in the matrix, buffering its free Ca2+ concentration. The properties of the uptake process were established in the 1960s and 1970s: the uptake of Ca2+ occurred electrophoretically on a carrier that has not yet been molecularly identified, and was released from mitochondria via a Na+/Ca2+ antiporter. A H+/Ca2+ release exchanger was also found to operate in some mitochondrial types. The permeability transition pore was later also found to mediate the efflux of Ca2+ from mitochondria. In the mitochondrial matrix two TCA cycle dehydrogenases and pyruvate dehydrogenase phosphate phosphatase were found to be regulated in the matrix by the cycling of Ca2+ across the inner membrane. In conditions of cytoplasmic Ca2+ overload mitochondria could store for a time large amounts of precipitated Ca2+-phosphate, thus permitting cells to survive situations of Ca2+ emergency. The uptake process was found to have very low affinity for Ca2+: since the bulk concentration of Ca2+ in the cytoplasm is in the low to mid-nM range, it became increasingly difficult to postulate a role of mitochondria in the regulation of cytoplsmic Ca2+. A number of findings had nevertheless shown that energy linked Ca2+ transport occurred efficiently in mitochondria of various tissues in situ. The paradox was only solved in the 1990s, when it was found that the concentration of Ca2+ in the cytoplasm is not uniform: perimitochondrial micropools are created by the agonist-promoted discharge of Ca2+ from vicinal stores in which the concentration of Ca2+ is high enough to activate the low affinity mitochondrial uniporter. Mitochondria thus regained center stage as important regulators of cytoplasmic Ca2+ (not only of their own internal Ca2+). Their Ca2+ uptake systems was found to react very rapidly to cytoplasmic Ca2+ demands, even in the 150-200 msec time scale of processes like the contraction and relaxation of heart. An important recent development in the area of mitochondrial Ca2+ transport is its involvement in the disease process. Ca2+ signaling defects are now gaining increasing importance in the pathogenesis of diseases, e.g., neurodegenerative diseases. Since mitochondria have now regained a central role in the regulation of cytoplasmic Ca2+, dysfunctions of their Ca2+ controlling systems have expectedly been found to be involved in the pathogenesis of numerous disease processes.
Collapse
Affiliation(s)
- Ernesto Carafoli
- Department of Biochemistry and Venetian Institute of Molecular Medicine, University of Padova, Italy.
| |
Collapse
|
32
|
Gunter TE, Sheu SS. Characteristics and possible functions of mitochondrial Ca(2+) transport mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1787:1291-308. [PMID: 19161975 PMCID: PMC2730425 DOI: 10.1016/j.bbabio.2008.12.011] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 12/22/2008] [Accepted: 12/29/2008] [Indexed: 02/07/2023]
Abstract
Mitochondria produce around 92% of the ATP used in the typical animal cell by oxidative phosphorylation using energy from their electrochemical proton gradient. Intramitochondrial free Ca(2+) concentration ([Ca(2+)](m)) has been found to be an important component of control of the rate of this ATP production. In addition, [Ca(2+)](m) also controls the opening of a large pore in the inner mitochondrial membrane, the permeability transition pore (PTP), which plays a role in mitochondrial control of programmed cell death or apoptosis. Therefore, [Ca(2+)](m) can control whether the cell has sufficient ATP to fulfill its functions and survive or is condemned to death. Ca(2+) is also one of the most important second messengers within the cytosol, signaling changes in cellular response through Ca(2+) pulses or transients. Mitochondria can also sequester Ca(2+) from these transients so as to modify the shape of Ca(2+) signaling transients or control their location within the cell. All of this is controlled by the action of four or five mitochondrial Ca(2+) transport mechanisms and the PTP. The characteristics of these mechanisms of Ca(2+) transport and a discussion of how they might function are described in this paper.
Collapse
Affiliation(s)
- Thomas E Gunter
- Department of Biochemistry and Biophysics and Mitochondrial Research and Innovation Group, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | | |
Collapse
|
33
|
Koncz P, Szanda G, Fülöp L, Rajki A, Spät A. Mitochondrial Ca2+ uptake is inhibited by a concerted action of p38 MAPK and protein kinase D. Cell Calcium 2009; 46:122-9. [DOI: 10.1016/j.ceca.2009.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 06/05/2009] [Accepted: 06/20/2009] [Indexed: 10/20/2022]
|
34
|
Leo S, Szabadkai G, Rizzuto R. The mitochondrial antioxidants MitoE(2) and MitoQ(10) increase mitochondrial Ca(2+) load upon cell stimulation by inhibiting Ca(2+) efflux from the organelle. Ann N Y Acad Sci 2009; 1147:264-74. [PMID: 19076448 DOI: 10.1196/annals.1427.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mitochondrial reactive oxygen species (ROS) production is recognized as a major pathogenic event in a number of human diseases, and mitochondrial scavenging of ROS appears a promising therapeutic approach. Recently, two mitochondrial antioxidants have been developed; conjugating alpha-tocopherol and the ubiquinol moiety of coenzyme Q to the lipophilic triphenylphosphonium cation (TPP+), denominated MitoE(2) and MitoQ(10), respectively. We have investigated the effect of these compounds on mitochondrial Ca(2+) homeostasis, which controls processes as diverse as activation of mitochondrial dehydrogenases and pro-apoptotic morphological changes of the organelle. We demonstrate that treatment of HeLa cells with both MitoE(2) and MitoQ(10) induces (albeit with different efficacy) a major enhancement of the increase in matrix Ca(2+) concentration triggered by cell stimulation with the inositol 1,4,5-trisphosphate-generating agonist histamine. The effect is a result of the inhibition of Ca(2+) efflux from the organelle and depends on the TPP+ moiety of these compounds. Overall, the data identify an effect independent of their antioxidant activity, that on the one hand may be useful in addressing disorders in which mitochondrial Ca(2+) handling is impaired (e.g., mitochondrial diseases) and on the other may favor mitochondrial Ca(2+) overload and thus increase cell sensitivity to apoptosis (thus possibly counteracting the benefits of the antioxidant activity).
Collapse
Affiliation(s)
- Sara Leo
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation and Emilia Romagna Laboratory for Genomics and Biotechnology, University of Ferrara, Ferrara, Italy
| | | | | |
Collapse
|
35
|
Spät A, Fülöp L, Koncz P, Szanda G. When is high-Ca+ microdomain required for mitochondrial Ca+ uptake? Acta Physiol (Oxf) 2009; 195:139-47. [PMID: 18983456 DOI: 10.1111/j.1748-1716.2008.01928.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ca(2+) release from IP(3)-sensitive stores in the endoplasmic reticulum (ER) induced by Ca(2+)-mobilizing agonists generates high-Ca(2+) microdomains between ER vesicles and neighbouring mitochondria. Here we present a model that describes when such microdomains are required and when submicromolar [Ca(2+)] is sufficient for mitochondrial Ca(2+) uptake. Mitochondrial Ca(2+) uptake rate in angiotensin II-stimulated H295R adrenocortical cells correlates with the proximity between ER vesicles and the mitochondrion, reflecting the uptake promoting effect of high-Ca(2+) peri-mitochondrial microdomains. Silencing or inhibition of p38 mitogen-activated protein kinase (MAPK) or inhibition of the novel isoforms of protein kinase C enhances mitochondrial Ca(2+) uptake and abolishes the positive correlation between Ca(2+) uptake and ER-mitochondrion proximity. Inhibition of protein phosphatases attenuates mitochondrial Ca(2+) uptake and also abolishes its positive correlation with ER-mitochondrion proximity. We postulate that during IP(3)-induced Ca(2+) release, Ca(2+) uptake is confined to ER-close mitochondria, because of the simultaneous activation of the protein kinases. Attenuation of Ca(2+) uptake prevents Ca(2+) overload of mitochondria and thus protects the cell against apoptosis. On the other hand, all the mitochondria accumulate Ca(2+) at a non-inhibited rate during physiological Ca(2+) influx through the plasma membrane. Membrane potential is higher in ER-distant mitochondria, providing a bigger driving force for Ca(2+) uptake. Our model explains why comparable mitochondrial Ca(2+) signals are formed in response to K(+) and angiotensin II (equipotent in respect to global cytosolic Ca(2+) signals), although only the latter generates high-Ca(2+) microdomains.
Collapse
Affiliation(s)
- A Spät
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary.
| | | | | | | |
Collapse
|
36
|
Alonso MT, Manjarrés IM, García-Sancho J. Modulation of calcium signalling by intracellular organelles seen with targeted aequorins. Acta Physiol (Oxf) 2009; 195:37-49. [PMID: 18983457 DOI: 10.1111/j.1748-1716.2008.01920.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cytosolic Ca(2+) signals that trigger cell responses occur either as localized domains of high Ca(2+) concentration or as propagating Ca(2+) waves. Cytoplasmic organelles, taking up or releasing Ca(2+) to the cytosol, shape the cytosolic signals. On the other hand, Ca(2+) concentration inside organelles is also important in physiology and pathophysiology. Comprehensive study of these matters requires to measure [Ca(2+)] inside organelles and at the relevant cytosolic domains. Aequorins, the best-known chemiluminescent Ca(2+) probes, are excellent for this end as they do not require stressing illumination, have a large dynamic range and a sharp Ca(2+)-dependence, can be targeted to the appropriate location and engineered to have the proper Ca(2+) affinity. Using this methodology, we have evidenced the existence in chromaffin cells of functional units composed by three closely interrelated elements: (1) plasma membrane Ca(2+) channels, (2) subplasmalemmal endoplasmic reticulum and (3) mitochondria. These Ca(2+)-signalling triads optimize Ca(2+) microdomains for secretion and prevent propagation of the Ca(2+) wave towards the cell core. Oscillatory cytosolic Ca(2+) signals originate also oscillations of mitochondrial Ca(2+) in several cell types. The nuclear envelope slows down the propagation of the Ca(2+) wave to the nucleus and filters high frequencies. On the other hand, inositol-trisphosphate may produce direct release of Ca(2+) to the nucleoplasm in GH(3) pituitary cells, thus providing mechanisms for selective nuclear signalling. Aequorins emitting at different wavelengths, prepared by fusion either with green or red fluorescent protein, permit simultaneous and independent monitorization of the Ca(2+) signals in different subcellular domains within the same cell.
Collapse
Affiliation(s)
- M T Alonso
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | | | | |
Collapse
|
37
|
García-Pérez C, Hajnóczky G, Csordás G. Physical coupling supports the local Ca2+ transfer between sarcoplasmic reticulum subdomains and the mitochondria in heart muscle. J Biol Chem 2008; 283:32771-80. [PMID: 18790739 DOI: 10.1074/jbc.m803385200] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In many cell types, transfer of Ca(2+) released via ryanodine receptors (RyR) to the mitochondrial matrix is locally supported by high [Ca(2+)] microdomains at close contacts between the sarcoplasmic reticulum (SR) and mitochondria. Here we studied whether the close contacts were secured via direct physical coupling in cardiac muscle using isolated rat heart mitochondria (RHMs). "Immuno-organelle chemistry" revealed RyR2 and calsequestrin-positive SR particles associated with mitochondria in both crude and Percoll-purified "heavy" mitochondrial fractions (cRHM and pRHM), to a smaller extent in the latter one. Mitochondria-associated vesicles were also visualized by electron microscopy in the RHMs. Western blot analysis detected greatly reduced presence of SR markers (calsequestrin, SERCA2a, and phospholamban) in pRHM, suggesting that the mitochondria-associated particles represented a small subfraction of the SR. Fluorescence calcium imaging in rhod2-loaded cRHM revealed mitochondrial matrix [Ca(2+)] ([Ca(2+)](m)) responses to caffeine-induced Ca(2+) release that were prevented when thapsigargin was added to predeplete the SR or by mitochondrial Ca(2+) uptake inhibitors. Importantly, caffeine failed to increase [Ca(2+)] in the large volume of the incubation medium, suggesting that local Ca(2+) transfer between the SR particles and mitochondria mediated the [Ca(2+)](m) signal. Despite the substantially reduced SR presence, pRHM still displayed a caffeine-induced [Ca(2+)](m) rise comparable with the one recorded in cRHM. Thus, a relatively small fraction of the total SR is physically coupled and transfers Ca(2+) locally to the mitochondria in cardiac muscle. The transferred Ca(2+) stimulates dehydrogenase activity and affects mitochondrial membrane permeabilization, indicating the broad significance of the physical coupling in mitochondrial function.
Collapse
Affiliation(s)
- Cecilia García-Pérez
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
38
|
Effect of cytosolic Mg2+ on mitochondrial Ca2+ signaling. Pflugers Arch 2008; 457:941-54. [PMID: 18629534 DOI: 10.1007/s00424-008-0551-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 06/25/2008] [Indexed: 12/20/2022]
Abstract
Cytosolic Ca2+ signals are followed by mitochondrial Ca2+ uptake, which, in turn, modifies several biological processes. Mg2+ is known to inhibit Ca2+ uptake by isolated mitochondria, but its significance in intact cells has not been elucidated. In HEK293T cells, activation of purinergic receptors with extracellular ATP caused cytosolic Ca2+ signals associated with parallel changes in cytosolic [Mg2+]. Neither signals were affected by omitting bivalent cations from the extracellular medium. The effect of store-operated Ca2+ influx on cytosolic Mg2+ concentration ([Mg2+]c) was negligible. Uncaged Ca2+ displaced Mg2+ from cytosolic binding sites, but for an equivalent Ca2+ signal, the change in [Mg2+] was significantly smaller than that measured after adding extracellular ATP. Inositol 1,4,5-trisphosphate mobilized Ca2+ and Mg2+ from internal stores in permeabilized cells. The increase of [Mg2+] in the range that occurred in ATP-stimulated cells inhibited mitochondrial Ca2+ uptake in permeabilized cells without affecting mitochondrial Ca2+ efflux. Therefore, the Mg2+ signal generated by Ca2+ mobilizing agonists may attenuate mitochondrial Ca2+ uptake.
Collapse
|
39
|
Abstract
Mitochondria couple cellular metabolic state with Ca(2+) transport processes. They therefore control not only their own intra-organelle [Ca(2+)], but they also influence the entire cellular network of cellular Ca(2+) signaling, including the endoplasmic reticulum, the plasma membrane, and the nucleus. Through the detailed study of mitochondrial roles in Ca(2+) signaling, a remarkable picture of inter-organelle communication has emerged. We here review the ways in which this system provides integrity and flexibility for the cell to cope with the countless demands throughout its life cycle and discuss briefly the mechanisms through which it can also drive cell death.
Collapse
Affiliation(s)
- György Szabadkai
- Department of Physiology, Mitochondrial Biology Group, University College London, London, United Kingdom.
| | | |
Collapse
|
40
|
Petersen OH. Ca2+ signalling and Ca2+-activated ion channels in exocrine acinar cells. Cell Calcium 2008; 38:171-200. [PMID: 16107275 DOI: 10.1016/j.ceca.2005.06.024] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 06/28/2005] [Indexed: 01/11/2023]
Abstract
The development of the calcium signalling field, from its early beginnings some 40 years ago to the present, is described. Calcium signalling in exocrine gland acinar cells and the effects of neurotransmitter- or hormone-elicited rises in the cytosolic calcium ion concentration on ion channel gating are reviewed. The highly polarized arrangement of the organelle systems in living acinar cells is described as well as its importance for the physiologically relevant local and polarized calcium signalling events.
Collapse
Affiliation(s)
- Ole H Petersen
- MRC Group, The Physiological Laboratory, University of Liverpool, Crown Street, Liverpool L69 3BX, UK.
| |
Collapse
|
41
|
Szanda G, Koncz P, Rajki A, Spät A. Participation of p38 MAPK and a novel-type protein kinase C in the control of mitochondrial Ca2+ uptake. Cell Calcium 2008; 43:250-9. [PMID: 17628663 DOI: 10.1016/j.ceca.2007.05.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 05/16/2007] [Accepted: 05/18/2007] [Indexed: 11/23/2022]
Abstract
Angiotensin II elicits cytosolic and mitochondrial Ca2+ signal in H295R adrenocortical cells. We found that Ca2+ uptake rate and peak values in small mitochondrial regions both depend on the colocalization of these mitochondrial regions with GFP-marked endoplasmic reticular (ER) vesicles. The dependence of the Ca2+ response on this colocalization is abolished by SB202190 and PD169316, inhibitors of p38 MAPK, as well as by transfection with siRNA against p38 MAPK mRNA. The same manoeuvres result in an increased ratio of global mitochondrial to global cytosolic Ca2+ response, indicating that inhibition of p38 MAPK is followed by enhanced mitochondrial Ca2+ uptake. alpha-Toxin and TNFalpha, agents which similarly to angiotensin II increase the phosphorylation of p38, failed to affect mitochondrial Ca2+ uptake, indicating that activation of p38 MAPK is necessary but not sufficient for the inhibition of Ca2+ uptake. Bisindolylmaleimide, an inhibitor of the conventional and novel-type protein kinase C isoforms also evokes enhanced mitochondrial Ca2+ uptake, whereas Gö6976 that inhibits the conventional isoforms only failed to exert any effect. These data show that angiotensin II attenuates Ca2+ uptake predominantly into mitochondria that do not colocalize with ER, by a mechanism involving p38 MAPK and a novel-type PKC.
Collapse
Affiliation(s)
- Gergo Szanda
- Department of Physiology, Faculty of Medicine, Semmelweis University and Laboratory of Neurobiochemistry and Molecular Physiology, Hungarian Academy of Sciences, PO Box 259, H-1444 Budapest, Hungary
| | | | | | | |
Collapse
|
42
|
Spät A, Szanda G, Csordás G, Hajnóczky G. High- and low-calcium-dependent mechanisms of mitochondrial calcium signalling. Cell Calcium 2008; 44:51-63. [PMID: 18242694 DOI: 10.1016/j.ceca.2007.11.015] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Revised: 11/23/2007] [Accepted: 11/30/2007] [Indexed: 11/30/2022]
Abstract
The Ca(2+) coupling between endoplasmic reticulum (ER) and mitochondria is central to multiple cell survival and cell death mechanisms. Cytoplasmic [Ca(2+)] ([Ca(2+)](c)) spikes and oscillations produced by ER Ca(2+) release are effectively delivered to the mitochondria. Propagation of [Ca(2+)](c) signals to the mitochondria requires the passage of Ca(2+) across three membranes, namely the ER membrane, the outer mitochondrial membrane (OMM) and the inner mitochondrial membrane (IMM). Strategic positioning of the mitochondria by cytoskeletal transport and interorganellar tethers provides a means to promote the local transfer of Ca(2+) between the ER membrane and OMM. In this setting, even >100 microM [Ca(2+)] may be attained to activate the low affinity mitochondrial Ca(2+) uptake. However, a mitochondrial [Ca(2+)] rise has also been documented during submicromolar [Ca(2+)](c) elevations. Evidence has been emerging that Ca(2+) exerts allosteric control on the Ca(2+) transport sites at each membrane, providing mechanisms that may facilitate the Ca(2+) delivery to the mitochondria. Here we discuss the fundamental mechanisms of ER and mitochondrial Ca(2+) transport, particularly the control of their activity by Ca(2+) and evaluate both high- and low-[Ca(2+)]-activated mitochondrial calcium signals in the context of cell physiology.
Collapse
Affiliation(s)
- András Spät
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary.
| | | | | | | |
Collapse
|
43
|
Graier WF, Frieden M, Malli R. Mitochondria and Ca(2+) signaling: old guests, new functions. Pflugers Arch 2007; 455:375-96. [PMID: 17611770 PMCID: PMC4864527 DOI: 10.1007/s00424-007-0296-1] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 05/16/2007] [Indexed: 02/06/2023]
Abstract
Mitochondria are ancient endosymbiotic guests that joined the cells in the evolution of complex life. While the unique ability of mitochondria to produce adenosine triphosphate (ATP) and their contribution to cellular nutrition metabolism received condign attention, our understanding of the organelle's contribution to Ca(2+) homeostasis was restricted to serve as passive Ca(2+) sinks that accumulate Ca(2+) along the organelle's negative membrane potential. This paradigm has changed radically. Nowadays, mitochondria are known to respond to environmental Ca(2+) and to contribute actively to the regulation of spatial and temporal patterns of intracellular Ca(2+) signaling. Accordingly, mitochondria contribute to many signal transduction pathways and are actively involved in the maintenance of capacitative Ca(2+) entry, the accomplishment of Ca(2+) refilling of the endoplasmic reticulum and Ca(2+)-dependent protein folding. Mitochondrial Ca(2+) homeostasis is complex and regulated by numerous, so far, genetically unidentified Ca(2+) channels, pumps and exchangers that concertedly accomplish the organelle's Ca(2+) demand. Notably, mitochondrial Ca(2+) homeostasis and functions are crucially influenced by the organelle's structural organization and motility that, in turn, is controlled by matrix/cytosolic Ca(2+). This review intends to provide a condensed overview on the molecular mechanisms of mitochondrial Ca(2+) homeostasis (uptake, buffering and storage, extrusion), its modulation by other ions, kinases and small molecules, and its contribution to cellular processes as fundamental basis for the organelle's contribution to signaling pathways. Hence, emphasis is given to the structure-to-function and mobility-to-function relationship of the mitochondria and, thereby, bridging our most recent knowledge on mitochondria with the best-established mitochondrial function: metabolism and ATP production.
Collapse
Affiliation(s)
- Wolfgang F Graier
- Molecular and Cellular Physiology Research Unit, MCPRU, Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Graz, Austria.
| | | | | |
Collapse
|
44
|
Xia J, Reigada D, Mitchell CH, Ren D. CATSPER channel-mediated Ca2+ entry into mouse sperm triggers a tail-to-head propagation. Biol Reprod 2007; 77:551-9. [PMID: 17554080 DOI: 10.1095/biolreprod.107.061358] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Many Ca(2+) channel proteins have been detected in mammalian sperm, but only the four CATSPER channels have been clearly shown to be required for male fertility. Ca(2+) entry through the principal piece-localized CATSPER channels has been implicated in the activation of hyperactivated motility. In the present study, we show that the Ca(2+) entry also triggers a tail-to-head Ca(2+) propagation in the mouse sperm. When activated with 8-Br-cAMP, 8-Br-cGMP, or alkaline depolarization, a CATSPER-dependent increase in intracellular Ca(2+) concentration starts in the principal piece, propagates through the midpiece, and reaches the head in a few seconds. The Ca(2+) propagation through the midpiece leads to a Ca(2+)-dependent increase in NADH fluorescence. In addition, CatSper1-mutant sperm have lower intracellular ATP levels than wild-type sperm. Thus, a Ca(2+) influx in the principal piece through CATSPER channels can not only initiate hyperactivated motility, but can also trigger a tail-to-head Ca(2+) propagation that leads to an increase in [NADH] and may regulate ATP homeostasis.
Collapse
Affiliation(s)
- Jingsheng Xia
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
45
|
Szanda G, Koncz P, Várnai P, Spät A. Mitochondrial Ca2+ uptake with and without the formation of high-Ca2+ microdomains. Cell Calcium 2006; 40:527-37. [PMID: 17069884 DOI: 10.1016/j.ceca.2006.08.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 08/23/2006] [Indexed: 11/20/2022]
Abstract
The mitochondrial Ca(2+) uniporter has low affinity for Ca(2+), therefore it has been assumed that submicromolar Ca(2+) signals cannot induce mitochondrial Ca(2+) uptake. The close apposition of the plasma membrane or the endoplamic reticulum (ER) to the mitochondria and the limited Ca(2+) diffusion in the cytoplasm result in the formation of perimitochondrial high-Ca(2+) microdomains (HCMDs) capable of activating mitochondrial Ca(2+) uptake. The possibility of mitochondrial Ca(2+) uptake at low submicromolar [Ca(2+)](c) has not yet been generally accepted. Earlier we found in permeabilized glomerulosa, luteal and pancreatic beta cells that [Ca(2+)](m) increased when [Ca(2+)](c) was raised from 60 nM to less than 200 nM. Here we report data obtained from H295R (adrenocortical) cells transfected with ER-targeted GFP. Cytoplasmic Ca(2+) response to angiotensin II was different in mitochondrion-rich and mitochondrion-free domains. The mitochondrial Ca(2+) response to angiotensin II correlated with GFP fluorescence indicating the vicinity of ER. When the cells were exposed to K(+) (inducing Ca(2+) influx), no correlation was found between the mitochondrial Ca(2+) signal and the vicinity of the plasma membrane or the ER. The results presented here provide evidence that mitochondrial Ca(2+) uptake may occur both with and without the formation of HCMDs within the same cell.
Collapse
Affiliation(s)
- Gergo Szanda
- Department of Physiology, Faculty of Medicine, Semmelweis University and Laboratory of Cellular and Molecular Physiology, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | |
Collapse
|
46
|
McCarron JG, Chalmers S, Bradley KN, MacMillan D, Muir TC. Ca2+ microdomains in smooth muscle. Cell Calcium 2006; 40:461-93. [PMID: 17069885 DOI: 10.1016/j.ceca.2006.08.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 08/23/2006] [Indexed: 02/03/2023]
Abstract
In smooth muscle, Ca(2+) controls diverse activities including cell division, contraction and cell death. Of particular significance in enabling Ca(2+) to perform these multiple functions is the cell's ability to localize Ca(2+) signals to certain regions by creating high local concentrations of Ca(2+) (microdomains), which differ from the cytoplasmic average. Microdomains arise from Ca(2+) influx across the plasma membrane or release from the sarcoplasmic reticulum (SR) Ca(2+) store. A single Ca(2+) channel can create a microdomain of several micromolar near (approximately 200 nm) the channel. This concentration declines quickly with peak rates of several thousand micromolar per second when influx ends. The high [Ca(2+)] and the rapid rates of decline target Ca(2+) signals to effectors in the microdomain with rapid kinetics and enable the selective activation of cellular processes. Several elements within the cell combine to enable microdomains to develop. These include the brief open time of ion channels, localization of Ca(2+) by buffering, the clustering of ion channels to certain regions of the cell and the presence of membrane barriers, which restrict the free diffusion of Ca(2+). In this review, the generation of microdomains arising from Ca(2+) influx across the plasma membrane and the release of the ion from the SR Ca(2+) store will be discussed and the contribution of mitochondria and the Golgi apparatus as well as endogenous modulators (e.g. cADPR and channel binding proteins) will be considered.
Collapse
Affiliation(s)
- John G McCarron
- Department of Physiology and Pharmacology, University of Strathclyde, SIPBS, Glasgow, UK.
| | | | | | | | | |
Collapse
|
47
|
Alonso MT, Villalobos C, Chamero P, Alvarez J, García-Sancho J. Calcium microdomains in mitochondria and nucleus. Cell Calcium 2006; 40:513-25. [PMID: 17067669 DOI: 10.1016/j.ceca.2006.08.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 08/23/2006] [Indexed: 10/24/2022]
Abstract
Endomembranes modify the progression of the cytosolic Ca(2+) wave and contribute to generate Ca(2+) microdomains, both in the cytosol and inside the own organella. The concentration of Ca(2+) in the cytosol ([Ca(2+)](C)), the mitochondria ([Ca(2+)](M)) and the nucleus ([Ca(2+)](N)) are similar at rest, but may become very different during cell activation. Mitochondria avidly take up Ca(2+) from the high [Ca(2+)](C) microdomains generated during cell activation near Ca(2+) channels of the plasma membrane and/or the endomembranes and prevent propagation of the high Ca(2+) signal to the bulk cytosol. This shaping of [Ca(2+)](C) signaling is essential for independent regulation of compartmentalized cell functions. On the other hand, a high [Ca(2+)](M) signal is generated selectively in the mitochondria close to the active areas, which tunes up respiration to the increased local needs. The progression of the [Ca(2+)](C) signal to the nucleus may be dampened by mitochondria, the nuclear envelope or higher buffering power inside the nucleoplasm. On the other hand, selective [Ca(2+)](N) signals could be generated by direct release of stored Ca(2+) into the nucleoplasm. Ca(2+) release could even be restricted to subnuclear domains. Putative Ca(2+) stores include the nuclear envelope, their invaginations inside the nucleoplasm (nucleoplasmic reticulum) and nuclear microvesicles. Inositol trisphosphate, cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate have all been reported to produce release of Ca(2+) into the nucleoplasm, but contribution of these mechanisms under physiological conditions is still uncertain.
Collapse
Affiliation(s)
- María Teresa Alonso
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), c/Sanz y Forés s/n, Valladolid, Spain
| | | | | | | | | |
Collapse
|
48
|
Tretter L, Adam-Vizi V. Alpha-ketoglutarate dehydrogenase: a target and generator of oxidative stress. Philos Trans R Soc Lond B Biol Sci 2006; 360:2335-45. [PMID: 16321804 PMCID: PMC1569585 DOI: 10.1098/rstb.2005.1764] [Citation(s) in RCA: 313] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Alpha-ketoglutarate dehydrogenase (alpha-KGDH) is a highly regulated enzyme, which could determine the metabolic flux through the Krebs cycle. It catalyses the conversion of alpha-ketoglutarate to succinyl-CoA and produces NADH directly providing electrons for the respiratory chain. alpha-KGDH is sensitive to reactive oxygen species (ROS) and inhibition of this enzyme could be critical in the metabolic deficiency induced by oxidative stress. Aconitase in the Krebs cycle is more vulnerable than alpha-KGDH to ROS but as long as alpha-KGDH is functional NADH generation in the Krebs cycle is maintained. NADH supply to the respiratory chain is limited only when alpha-KGDH is also inhibited by ROS. In addition being a key target, alpha-KGDH is able to generate ROS during its catalytic function, which is regulated by the NADH/NAD+ ratio. The pathological relevance of these two features of alpha-KGDH is discussed in this review, particularly in relation to neurodegeneration, as an impaired function of this enzyme has been found to be characteristic for several neurodegenerative diseases.
Collapse
|
49
|
Koncz P, Szanda G, Rajki A, Spät A. Reactive oxygen species, Ca2+ signaling and mitochondrial NAD(P)H level in adrenal glomerulosa cells. Cell Calcium 2006; 40:347-57. [PMID: 16765442 DOI: 10.1016/j.ceca.2006.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 03/30/2006] [Accepted: 04/12/2006] [Indexed: 12/21/2022]
Abstract
The acute effects of ultraviolet light, the superoxide-generating xanthine-xanthine oxidase system and H(2)O(2) to on calcium signaling and mitochondrial pyridine nucleotide metabolism were investigated in rat glomerulosa cells. UV light induced the formation of superoxide, that, similar to exogenously applied superoxide and H(2)O(2), decreased the level of mitochondrial NAD(P)H. Free radical scavengers antagonized this effect of UV light. Extracellularly generated superoxide elicited Ca(2+) transients and inhibited angiotensin II-induced cytoplasmic Ca(2+) signaling. Low intensity UV light did not affect basal [Ca(2+)] and failed to influence Ca(2+) signaling induced by depolarization or store depletion. UV light of the same low power reduced both cytoplasmic and mitochondrial Ca(2+) signals induced by angiotensin II. The lack of UV effect on inositol phosphate formation indicates that the inhibition of cytoplasmic Ca(2+) signaling is due to reduced Ca(2+) release from InsP(3)-sensitive stores. Decreased mitochondrial Ca(2+) uptake may be attributed to UV-induced perturbation of the perimitochondrial microdomain.
Collapse
Affiliation(s)
- Péter Koncz
- Department of Physiology, Faculty of Medicine, Semmelweis University and Laboratory of Cellular and Molecular Physiology, Hungarian Academy of Sciences, P.O. Box 259, H-1444 Budapest, Hungary
| | | | | | | |
Collapse
|
50
|
Kosterin P, Kim GH, Muschol M, Obaid AL, Salzberg BM. Changes in FAD and NADH fluorescence in neurosecretory terminals are triggered by calcium entry and by ADP production. J Membr Biol 2006; 208:113-24. [PMID: 16645741 DOI: 10.1007/s00232-005-0824-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Indexed: 10/24/2022]
Abstract
We measured changes in the intrinsic fluorescence (IF) of the neurosecretory terminals of the mouse neurohypophysis during brief (1-2 s) trains of stimuli. With fluorescence excitation at either 350 +/- 20 or 450 +/- 50 nm, and with emission measured, respectively, at 450 +/- 50 or > or = 520 nm, DeltaF/F(o) was approximately 5-8 % for a 2 s train of 30 action potentials. The IF changes lagged the onset of stimulation by approximately 100 ms and were eliminated by 1 microM tetrodotoxin (TTX). The signals were partially inhibited by 500 microM Cd(2+), by substitution of Mg(2+) for Ca(2+), by Ca(2+)-free Ringer's with 0.5 mM EGTA, and by 50 microM ouabain. The IF signals were also sensitive to the mitochondrial metabolic inhibitors CCCP (0.3 microM), FCCP (0.3 microM), and NaN(3) (0.3 mM), and their amplitude reflected the partial pressure of oxygen (pO(2)) in the bath. Resting fluorescence at both 350 nm and 450 nm exhibited significant bleaching. Flavin adenine dinucleotide (FAD) is fluorescent, while its reduced form FADH(2) is relatively non-fluorescent; conversely, NADH is fluorescent, while its oxidized form NAD is non-fluorescent. Thus, our experiments suggest that the stimulus-coupled rise in [Ca(2+)](i) triggers an increase in FAD and NAD as FADH(2) and NADH are oxidized, but that elevation of [Ca(2+)](i), alone cannot account for the totality of changes in intrinsic fluorescence.
Collapse
Affiliation(s)
- P Kosterin
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, 19104, USA
| | | | | | | | | |
Collapse
|