1
|
Wan W, Pan Y, Chen Y, Bai S, Yao X, Lin Y, Wu J, Ni L, Mei Y, Qiu H, Zhou Y, Hao Y, Guan Y. The effect of double filtration plasmapheresis and corticosteroids on patients with anti-dipeptidyl-peptidase-like protein 6 encephalitis. Ther Apher Dial 2024; 28:141-151. [PMID: 37461148 DOI: 10.1111/1744-9987.14039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 01/04/2024]
Abstract
INTRODUCTION Anti-dipeptidyl-peptidase-like protein 6 (DPPX) encephalitis is a rare condition with varied symptoms including gastrointestinal issues, weight loss, cognitive and mental dysfunction, and hyperexcitability of the central nervous system. METHODS We studied five patients with anti-DPPX encephalitis who received immunotherapy, specifically DFPP, at our hospital. We analyzed their clinical symptoms, lab results, electrophysiological and imaging findings, and outcomes with immunotherapy. RESULTS Patients presented with cognitive dysfunction, tremor, seizures, psychiatric disturbances, and cerebellar and brainstem dysfunction. Magnetic resonance imaging (MRI) showed brain abnormalities in one patient and elevated cerebrospinal fluid (CSF) protein levels in two patients. Antibodies against DPPX were detected in all patients and in CSF in two patients. One patient had antibodies against anti-CV2/contactin response mediator protein 5 (CRMP5). All patients responded well to DFPP and corticosteroids. CONCLUSION DFPP may be an effective treatment for anti-DPPX encephalitis. Further research is needed to understand disease progression and evaluate immunotherapy efficacy.
Collapse
Affiliation(s)
- Wenbin Wan
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yuanmei Pan
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ying Chen
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Shuwei Bai
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaoying Yao
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yan Lin
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jun Wu
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Liping Ni
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yufang Mei
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Huiying Qiu
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yan Zhou
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yong Hao
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yangtai Guan
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Neo RJ, Mehta AR, Weston M, Magrinelli F, Quattrone A, Gandhi S, Joyce EM, Bhatia KP. Neuropsychiatric Presentation of Anti-DPPX Progressive Encephalomyelitis with Rigidity and Myoclonus. Mov Disord Clin Pract 2024; 11:97-100. [PMID: 38291842 PMCID: PMC10828617 DOI: 10.1002/mdc3.13928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/01/2023] [Accepted: 10/28/2023] [Indexed: 02/01/2024] Open
Affiliation(s)
- Ray Jen Neo
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
- Department of NeurologyHospital Kuala LumpurKuala LumpurMalaysia
| | - Arpan R. Mehta
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| | - Mikail Weston
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| | - Francesca Magrinelli
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| | - Andrea Quattrone
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
- Department of Medical and Surgical SciencesInstitute of Neurology, Magna Graecia University of CatanzaroCatanzaroItaly
| | - Sonia Gandhi
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| | - Eileen M. Joyce
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| | - Kailash P. Bhatia
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| |
Collapse
|
3
|
Dominguez L, McKeon A, Tobin WO, Lopez-Chiriboga S. Long term outcomes in patients with anti-DPPX autoimmunity. J Neuroimmunol 2023; 384:578214. [PMID: 37806046 DOI: 10.1016/j.jneuroim.2023.578214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
DDPX antibody-associated encephalitis is characterized by cognitive dysfunction, neuropsychiatric symptoms, and CNS hyperexcitability, preceded by prodromal weight loss and diarrhea. Data regarding long-term outcomes is scarce. We retrospectively identified six anti-DPPX encephalitis patients across all three Mayo Clinic sites with inclusion criteria: 1) positive DPPX cell-based assay and mouse tissue-based immunofluorescence samples in both serum and CSF; 2) duration of follow up of at least 36 months from symptom onset to last follow up. Only one patient had a paraneoplastic process in the setting of chronic lymphocytic leukemia. At last follow up, all patients had resolution of GI symptoms. Residual cognitive impairment was seen in 4/6 (67%). Clinical stability was reached in 3/6 (50%) while on immunotherapy. Immunotherapy was discontinued in 2/6 (33%) and they remained stable without relapse at last follow up. One patient died of unclear etiology. Overall long-term outcomes are good in anti-DPPX encephalitis. Symptoms can improve on immunotherapy, but full resolution and return to premorbid baseline is unlikely.
Collapse
Affiliation(s)
| | - Andrew McKeon
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America; Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - W Oliver Tobin
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America; Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, United States of America
| | | |
Collapse
|
4
|
Malloy C, Ahern M, Lin L, Hoffman DA. Neuronal Roles of the Multifunctional Protein Dipeptidyl Peptidase-like 6 (DPP6). Int J Mol Sci 2022; 23:ijms23169184. [PMID: 36012450 PMCID: PMC9409431 DOI: 10.3390/ijms23169184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
The concerted action of voltage-gated ion channels in the brain is fundamental in controlling neuronal physiology and circuit function. Ion channels often associate in multi-protein complexes together with auxiliary subunits, which can strongly influence channel expression and function and, therefore, neuronal computation. One such auxiliary subunit that displays prominent expression in multiple brain regions is the Dipeptidyl aminopeptidase-like protein 6 (DPP6). This protein associates with A-type K+ channels to control their cellular distribution and gating properties. Intriguingly, DPP6 has been found to be multifunctional with an additional, independent role in synapse formation and maintenance. Here, we feature the role of DPP6 in regulating neuronal function in the context of its modulation of A-type K+ channels as well as its independent involvement in synaptic development. The prevalence of DPP6 in these processes underscores its importance in brain function, and recent work has identified that its dysfunction is associated with host of neurological disorders. We provide a brief overview of these and discuss research directions currently underway to advance our understanding of the contribution of DPP6 to their etiology.
Collapse
|
5
|
Xiao J, Fu PC, Li ZJ. Clinical and imaging analysis to evaluate the response of patients with anti-DPPX encephalitis to immunotherapy. BMC Neurol 2022; 22:129. [PMID: 35382765 PMCID: PMC8981927 DOI: 10.1186/s12883-022-02649-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/20/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND To report the main spectrum and new clinical and imaging characteristics of dipeptidyl-peptidase-like protein 6 (DPPX) antibody-associated encephalitis, and to evaluate the effect of immunotherapy. METHODS A retrospective analysis of nine patients with anti-DPPX encephalitis was performed, and all previously reported cases in the literature were reviewed. A cell-based indirect immunofluorescence assay using human embryonic kidney 293 cells transfected with DPPX was used. RESULTS Nine patients were identified (median age, 51 years; range, 14-65 years) with prodromal fever, diarrhea, or weight loss, followed by rapid progressive encephalopathy characterized by cognitive disorder. One patient who received methylprednisolone therapy and a trial of tacrolimus showed substantial improvement and had no relapse by the 6-month follow-up. Our comprehensive literature review demonstrated that 53 cases were reported, of which more than half had prodromal weight loss (52.8%) and gastrointestinal disorders (58.5%). Cognitive disorders (74.6%) and brainstem/spinal cord disorders (75.5%) were the most common major symptoms. A greater proportion of Chinese patients than non-Chinese patients had abnormalities on brain magnetic resonance imaging specific for encephalitis (70.0% vs. 23.3%, P < 0.001). Our study is the first to report three patients with anti-DPPX encephalitis who had sleep disorders with rapid eye movement sleep behavior disorder, limb paralysis (two), severe pleocytosis, elevated protein levels (two) in the cerebrospinal fluid, and increased T2/FLAIR signal abnormalities in the bilateral hippocampus, temporal lobe, amygdala, basal ganglia, thalamus, centrum semiovale, and frontal and parietal lobes in seven patients (77.8%). CONCLUSION Our study expands the clinical and imaging phenotypes of anti-DPPX encephalitis. Further studies elucidating the entire clinical spectrum of anti-DPPX encephalitis, its pathogenic mechanisms, and prognosis under long-term immunosuppressive therapy are warranted.
Collapse
Affiliation(s)
- Jun Xiao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People’s Republic of China
| | - Pei-cai Fu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People’s Republic of China
| | - Zhi-jun Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People’s Republic of China
| |
Collapse
|
6
|
Miao A, Shi Y, Wang X, Ge J, Yu C. Clinical Features and Prognosis in Chinese Patients With Dipeptidyl–Peptidase–Like Protein 6 Antibody–Associated Encephalitis. Front Neurol 2022; 12:817896. [PMID: 35095748 PMCID: PMC8795695 DOI: 10.3389/fneur.2021.817896] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: Anti-dipeptidyl–peptidase–like protein 6 (anti-DPPX) encephalitis an extremely rare type of immune-mediated encephalitis. This study aimed to analyze the electroclinical characteristics and prognosis of anti-DPPX encephalitis. Methods: Five patients (all male) with anti-DPPX encephalitis in East China from January 2016 to October 2021 was retrospective analyzed. Electroclinical features and outcomes were reviewed. Results: All five patients were male. The media age at disease onset was 32 years old with a range of 14–56 years. The main symptoms included psychiatric disturbances (2/5), amnesia (4/5), confusion (3/5), and seizures (3/5). Migrating myoclonus were identified in patient 4 with positive DPPX and contactin-associated protein-like 2 antibodies in blood. All of the patients had positive DPPX antibodies in serum. Only one of them had positive antibody in the cerebrospinal fluid. EEG showed diffuse slowing in two patients, but no epileptiform discharges were observed. Eighty percent (4/5) of the patients showed normal brain magnetic resonance imaging. After immunotherapy, improvement of neuropsychiatric symptoms from all of the patients was observed. Over a mean follow-up of 30.8 weeks, all of the patients had marked improvement in the modified Rankin Scale. To date, no tumors were not observed in any patients. Conclusions: Anti-DPPX encephalitis mainly presents as neuropsychiatric symptoms. Cooperation of DPPX antibodies and CASPR2 antibodies might have contributed to the migration of myoclonus in the patient 4. Prompt immunotherapy often results in improvement.
Collapse
Affiliation(s)
- Ailiang Miao
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Department of Video-Electroencephalogram, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Ailiang Miao
| | - Yongwei Shi
- Department of Neurology, Taizhou Fourth People's Hospital, Taizhou, China
| | - Xiaoshan Wang
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jianqing Ge
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chuanyong Yu
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Zhang Y, Tachtsidis G, Schob C, Koko M, Hedrich UBS, Lerche H, Lemke JR, Haeringen A, Ruivenkamp C, Prescott T, Tveten K, Gerstner T, Pruniski B, DiTroia S, VanNoy GE, Rehm HL, McLaughlin H, Bolz HJ, Zechner U, Bryant E, McDonough T, Kindler S, Bähring R. KCND2 variants associated with global developmental delay differentially impair Kv4.2 channel gating. Hum Mol Genet 2021; 30:2300-2314. [PMID: 34245260 DOI: 10.1093/hmg/ddab192] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/13/2022] Open
Abstract
Here, we report on six unrelated individuals, all presenting with early-onset global developmental delay, associated with impaired motor, speech and cognitive development, partly with developmental epileptic encephalopathy and physical dysmorphisms. All individuals carry heterozygous missense variants of KCND2, which encodes the voltage-gated potassium (Kv) channel α-subunit Kv4.2. The amino acid substitutions associated with the variants, p.(Glu323Lys) (E323K), p.(Pro403Ala) (P403A), p.(Val404Leu) (V404L) and p.(Val404Met) (V404M), affect sites known to be critical for channel gating. To unravel their likely pathogenicity, recombinant mutant channels were studied in the absence and presence of auxiliary β-subunits under two-electrode voltage-clamp in Xenopus oocytes. All channel mutants exhibited slowed and incomplete macroscopic inactivation, and the P403A variant in addition slowed activation. Co-expression of KChIP2 or DPP6 augmented the functional expression of both wild-type and mutant channels, however, the auxiliary β-subunit-mediated gating modifications differed from wild-type and among mutants. To simulate the putative setting in the affected individuals, heteromeric Kv4.2 channels (wild-type + mutant) were studied as ternary complexes (containing both KChIP2 and DPP6). In the heteromeric ternary configuration, the E323K variant exhibited only marginal functional alterations compared to homomeric wild-type ternary, compatible with mild loss-of-function. By contrast, the P403A, V404L and V404M variants displayed strong gating impairment in the heteromeric ternary configuration, compatible with loss or gain-of-function. Our results support the etiological involvement of Kv4.2 channel gating impairment in early-onset monogenic global developmental delay. In addition, they suggest that gain-of-function mechanisms associated with a substitution of V404 increase epileptic seizure susceptibility.
Collapse
Affiliation(s)
- Yongqiang Zhang
- Institute for Cellular and Integrative Physiology, Center for Experimental Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany.,Southeast University, Nanjing, China
| | - Georgios Tachtsidis
- Institute for Cellular and Integrative Physiology, Center for Experimental Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Schob
- Institute for Human Genetics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Mahmoud Koko
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, Tübingen, Germany
| | - Ulrike B S Hedrich
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, Tübingen, Germany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, Tübingen, Germany
| | - Johannes R Lemke
- University Center for Rare Diseases, Institute for Human Genetics, University Hospital, Leipzig, Germany
| | - Arie Haeringen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Claudia Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Trine Prescott
- Department of Medical Genetics, Telemark Hospital Trust, Skien, Norway
| | - Kristian Tveten
- Department of Medical Genetics, Telemark Hospital Trust, Skien, Norway
| | - Thorsten Gerstner
- Department of Child Neurology and Rehabilitation and Department of Pediatrics, Hospital of Southern Norway, Arendal, Norway
| | - Brianna Pruniski
- Division of Genetics & Metabolism, Phoenix Children's Medical Group, Phoenix, AZ, USA
| | - Stephanie DiTroia
- Center for Mendelian Genomics and Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Grace E VanNoy
- Center for Mendelian Genomics and Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Heidi L Rehm
- Center for Mendelian Genomics and Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Hanno J Bolz
- Senckenberg Centre for Human Genetics, Frankfurt/Main, Germany.,Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany
| | - Ulrich Zechner
- Senckenberg Centre for Human Genetics, Frankfurt/Main, Germany.,Institute of Human Genetics, University Medical Center Mainz, Mainz, Germany
| | - Emily Bryant
- Ann & Robert H Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg Scool of Medicine, Chicago, IL, USA
| | - Tiffani McDonough
- Ann & Robert H Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg Scool of Medicine, Chicago, IL, USA
| | - Stefan Kindler
- Institute for Human Genetics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Robert Bähring
- Institute for Cellular and Integrative Physiology, Center for Experimental Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
8
|
Wei B, Wang R, Wang L, Du C. Prognostic factor identification by analysis of the gene expression and DNA methylation data in glioma. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2020; 17:3909-3924. [PMID: 32987560 DOI: 10.3934/mbe.2020217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Objective: This study was aimed to identify prognostic factors in glioma by analysis of the gene expression and DNA methylation data. Methods: The RNAseq and DNA methylation data associated with glioma were downloaded from GEO and TCGA databases to analyze the differentially expressed genes (DEGs) and methylated genes between tumor and normal tissues. Function and pathway analyses, co-expression network and survival analysis were performed based on these DEGs. The intersection genes of DEGs and differentially methylated genes were obtained followed by function analysis. Results: Total 2190 DEGs were identified between tumor and normal tissues, which were significantly enriched in neuron differentiation associated functions, as well as ribosome pathway. There were 6186 methylation sites (2834 up-regulated and 3352 down-regulated) with significant differences in tumor vs. normal. In the constructed co-expression network, DPP6, MAPK10 and RPL3 were hub genes. Survival analysis of 20 DEGs obtained 18 prognostic genes, among which 9 were differentially methylated, such as LHFPL tetraspan subfamily member 3 (LHFPL3), cadherin 20 (CDH20), complexin 2 (CPLX2), and tenascin R (TNR). The intersection of DEGs and differentially methylated genes (632 genes) were significantly enriched in functions of neuron differentiation. Conclusion: DPP6, MAPK10 and RPL3 may play important roles in tumorigenesis of glioma. Additionally, methylation of LHFPL3, CDH20, CPLX2, and TNR may serve as prognostic factors of glioma.
Collapse
Affiliation(s)
- Bo Wei
- Department of Neurosurgery, The Third Hospital of Jilin University, Changchun 130033, China
| | - Rui Wang
- Departments of Radiology, The Third Hospital of Jilin University, Changchun 130033, China
| | - Le Wang
- Departments of Ophthalmology, The Third Hospital of Jilin University, Changchun 130033, China
| | - Chao Du
- Department of Neurosurgery, The Third Hospital of Jilin University, Changchun 130033, China
| |
Collapse
|
9
|
Zhang H, Zhang H, Wang C, Wang Y, Zou R, Shi C, Guan B, Gamper N, Xu Y. Auxiliary subunits control biophysical properties and response to compound NS5806 of the Kv4 potassium channel complex. FASEB J 2019; 34:807-821. [PMID: 31914636 PMCID: PMC6972550 DOI: 10.1096/fj.201902010rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 12/19/2022]
Abstract
Kv4 pore‐forming subunits co‐assemble with β‐subunits including KChIP2 and DPP6 and the resultant complexes conduct cardiac transient outward K+ current (Ito). Compound NS5806 has been shown to potentate Ito in canine cardiomyocytes; however, its effects on Ito in other species yet to be determined. We found that NS5806 inhibited native Ito in a concentration‐dependent manner (0.1~30 μM) in both mouse ventricular cardiomyocytes and human‐induced pluripotent stem cell‐derived cardiomyocytes (hiPSC‐CMs), but potentiated Ito in the canine cardiomyocytes. In HEK293 cells co‐transfected with cloned Kv4.3 (or Kv4.2) and β‐subunit KChIP2, NS5806 significantly increased the peak current amplitude and slowed the inactivation. In contrast, NS5806 suppressed the current and accelerated inactivation of the channels when cells were co‐transfected with Kv4.3 (or Kv4.2), KChIP2 and another β‐subunit, DPP6‐L (long isoform). Western blot analysis showed that DPP6‐L was dominantly expressed in both mouse ventricular myocardium and hiPSC‐CMs, while it was almost undetectable in canine ventricular myocardium. In addition, low level of DPP6‐S expression was found in canine heart, whereas levels of KChIP2 expression were comparable among all three species. siRNA knockdown of DPP6 antagonized the Ito inhibition by NS5806 in hiPSC‐CMs. Molecular docking simulation suggested that DPP6‐L may associate with KChIP2 subunits. Mutations of putative KChIP2‐interacting residues of DPP6‐L reversed the inhibitory effect of NS5806 into potentiation of the current. We conclude that a pharmacological modulator can elicit opposite regulatory effects on Kv4 channel complex among different species, depending on the presence of distinct β‐subunits. These findings provide novel insight into the molecular design and regulation of cardiac Ito. Since Ito is a potential therapeutic target for treatment of multiple cardiovascular diseases, our data will facilitate the development of new therapeutic Ito modulators.
Collapse
Affiliation(s)
- Hongxue Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
| | - Hua Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
| | - Chanjuan Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
| | - Yuhong Wang
- Institute of Masteria Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ruya Zou
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
| | - Chenxia Shi
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
| | - Bingcai Guan
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
| | - Nikita Gamper
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Yanfang Xu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
| |
Collapse
|
10
|
Ji CC, Yao FJ, Cheng YJ, Yao H, Fan J, Chen XM, Zheng ZH, Dong YG, Wu SH. A novel DPP6 variant in Chinese families causes early repolarization syndrome. Exp Cell Res 2019; 384:111561. [PMID: 31476289 DOI: 10.1016/j.yexcr.2019.111561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 11/15/2022]
Abstract
Previous studies demonstrated that variants in dipeptidyl aminopeptidase-like protein-6 (DPP6) are involved in idiopathic ventricular fibrillation. However, its role in early repolarization syndrome (ERS) remains largely elusive. The aim of this study is to determine whether the novel DPP6-L747P variant is associated with ERS, and explore the underlying mechanisms. In our study, whole genome sequencing was used to identify a genetic variant in 4 Chinese families with sudden cardiac arrest induced by ERS. Then, wild-type (WT) DPP6 or mutant (c.2240T > C/p.L747P) DPP6 were respectively expressed in HEK293 cells, co-expressed with KV4.3 and KChIP2. Western blotting, immunofluorescence, and whole-cell patch clamp experiments were performed to reveal possible underlying mechanisms. A novel missense variant (c.2240T > C/p.L747P) in DPP6 was identified in the 4 families. Both DPP6-WT and DPP6-L747P were mainly located on the cell membrane. Compared with DPP6-WT, the intensity of DPP6 protein bands was downregulated in DPP6-L747P. Functional experiments showed that macroscopic currents exhibited an increase in DPP6-L747P, and the current intensity of DPP6-L747P was increased more than that of DPP6-WT (63.1 ± 8.2 pA/pF vs.86.5 ± 15.1 pA/pF at +50 mV, P < 0.05). Compared with DPP6-WT, the slope of the activation curve of DPP6-L747P was slightly decreased (15.49 ± 0.56 mV vs. 13.88 ± 0.54 mV, P < 0.05), the slope of the inactivation curve was increased (13.65 ± 1.57 mV, vs. 24.44 ± 2.79 mV, P < 0.05) and the recovery time constant was significantly reduced (216.81 ± 18.59 ms vs. 102.11 ± 32.03 ms, P < 0.05). In conclusion, we identified a novel missense variant (c.2240T > C/p. L747P) in DPP6 in 4 Chinese families with sudden cardiac arrest induced by ERS. Patch clamp experiments revealed that this variant could generate a gain of function of Ito and affect the potassium current. These results demonstrated that changes caused by the variant may be the underlying mechanisms of malignant arrhythmias in the individuals with ERS.
Collapse
Affiliation(s)
- Cheng-Cheng Ji
- Department of Cardiology and Department of Medical Ultrasonics (Feng-Juan, Yao), the First Affiliated Hospital, Sun Yat-Sen University, and Key Laboratory of Assisted Circulation, NHC, Guangzhou, China
| | - Feng-Juan Yao
- Department of Cardiology and Department of Medical Ultrasonics (Feng-Juan, Yao), the First Affiliated Hospital, Sun Yat-Sen University, and Key Laboratory of Assisted Circulation, NHC, Guangzhou, China
| | - Yun-Jiu Cheng
- Department of Cardiology and Department of Medical Ultrasonics (Feng-Juan, Yao), the First Affiliated Hospital, Sun Yat-Sen University, and Key Laboratory of Assisted Circulation, NHC, Guangzhou, China
| | - Hao Yao
- Department of Cardiology and Department of Medical Ultrasonics (Feng-Juan, Yao), the First Affiliated Hospital, Sun Yat-Sen University, and Key Laboratory of Assisted Circulation, NHC, Guangzhou, China
| | - Jun Fan
- Department of Cardiology and Department of Medical Ultrasonics (Feng-Juan, Yao), the First Affiliated Hospital, Sun Yat-Sen University, and Key Laboratory of Assisted Circulation, NHC, Guangzhou, China
| | - Xu-Miao Chen
- Department of Cardiology and Department of Medical Ultrasonics (Feng-Juan, Yao), the First Affiliated Hospital, Sun Yat-Sen University, and Key Laboratory of Assisted Circulation, NHC, Guangzhou, China
| | - Zi-Heng Zheng
- Department of Cardiology and Department of Medical Ultrasonics (Feng-Juan, Yao), the First Affiliated Hospital, Sun Yat-Sen University, and Key Laboratory of Assisted Circulation, NHC, Guangzhou, China
| | - Yu-Gang Dong
- Department of Cardiology and Department of Medical Ultrasonics (Feng-Juan, Yao), the First Affiliated Hospital, Sun Yat-Sen University, and Key Laboratory of Assisted Circulation, NHC, Guangzhou, China.
| | - Su-Hua Wu
- Department of Cardiology and Department of Medical Ultrasonics (Feng-Juan, Yao), the First Affiliated Hospital, Sun Yat-Sen University, and Key Laboratory of Assisted Circulation, NHC, Guangzhou, China.
| |
Collapse
|
11
|
More than just an enzyme: Dipeptidyl peptidase-4 (DPP-4) and its association with diabetic kidney remodelling. Pharmacol Res 2019; 147:104391. [PMID: 31401210 DOI: 10.1016/j.phrs.2019.104391] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/04/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE OF THE REVIEW This review article discusses recent advances in the mechanism of dipeptidyl peptidase-4 (DPP-4) actions in renal diseases, especially diabetic kidney fibrosis, and summarizes anti-fibrotic functions of various DPP-4 inhibitors in diabetic nephropathy (DN). RECENT FINDINGS DN is a common complication of diabetes and is a leading cause of the end-stage renal disease (ESRD). DPP-4 is a member of serine proteases, and more than 30 substrates have been identified that act via several biochemical messengers in a variety of tissues including kidney. Intriguingly, DPP-4 actions on the diabetic kidney is a complex mechanism, and a variety of pathways are involved including increasing GLP-1/SDF-1, disrupting AGE-RAGE pathways, and integrin-β- and TGF-β-Smad-mediated signalling pathways that finally lead to endothelial to mesenchymal transition. Interestingly, an array of DPP-4 inhibitors is well recognized as oral drugs to treat type 2 diabetic (T2D) patients, which promote better glycemic control. Furthermore, recent experimental and preclinical data reveal that DPP-4 inhibitors may also exhibit protective effects in renal disease progression including anti-fibrotic effects in the diabetic kidney by attenuating above signalling cascade(s), either singly or as a combinatorial effect. In this review, we discussed the anti-fibrotic effects of DPP-4 inhibitors based on recent reports along with the possible mechanism of actions and future perspectives to underscore the beneficial effects of DPP-4 inhibitors in DN. SUMMARY With recent experimental, preclinical, and clinical evidence, we summarized DPP-4 activities and its mechanism of actions in diabetic kidney diseases. A knowledge gap of DPP-4 inhibition in controlling renal fibrosis in DN has also been postulated in this review for future research perspectives.
Collapse
|
12
|
Is there a Chance to Promote Arteriogenesis by DPP4 Inhibitors Even in Type 2 Diabetes? A Critical Review. Cells 2018; 7:cells7100181. [PMID: 30360455 PMCID: PMC6210696 DOI: 10.3390/cells7100181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/08/2018] [Accepted: 10/18/2018] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular diseases (CVD) are still the prevailing cause of death not only in industrialized countries, but even worldwide. Type 2 diabetes mellitus (type 2 DM) and hyperlipidemia, a metabolic disorder that is often associated with diabetes, are major risk factors for developing CVD. Recently, clinical trials proved the safety of gliptins in treating patients with type 2 DM. Gliptins are dipeptidyl-peptidase 4 (DPP4/CD26) inhibitors, which stabilize glucagon-like peptide-1 (GLP-1), thereby increasing the bioavailability of insulin. Moreover, blocking DPP4 results in increased levels of stromal cell derived factor 1 (SDF-1). SDF-1 has been shown in pre-clinical animal studies to improve heart function and survival after myocardial infarction, and to promote arteriogenesis, the growth of natural bypasses, compensating for the function of an occluded artery. Clinical trials, however, failed to demonstrate a superiority of gliptins compared to placebo treated type 2 DM patients in terms of cardiovascular (CV) outcomes. This review highlights the function of DPP4 inhibitors in type 2 DM, and in treating cardiovascular diseases, with special emphasis on arteriogenesis. It critically addresses the potency of currently available gliptins and gives rise to hope by pointing out the most relevant questions that need to be resolved.
Collapse
|
13
|
McKeon A, Tracy JA. GAD65 neurological autoimmunity. Muscle Nerve 2017; 56:15-27. [PMID: 28063151 DOI: 10.1002/mus.25565] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 01/04/2017] [Indexed: 12/11/2022]
Abstract
The glutamic acid decarboxylase 65-kilodalton isoform (GAD65) antibody is a biomarker of autoimmune central nervous system (CNS) disorders and, more commonly, nonneurological autoimmune diseases. Type 1 diabetes, autoimmune thyroid disease, and pernicious anemia are the most frequent GAD65 autoimmune associations. One or more of these disorders coexists in approximately 70% of patients with GAD65 neurological autoimmunity. Neurological phenotypes have CNS localization and include limbic encephalitis, epilepsy, cerebellar ataxia, and stiff-person syndrome (SPS), among others. Classic SPS is a disorder on the spectrum of CNS hyperexcitability which also includes phenotypes that are either more restricted (stiff-limb syndrome) or more widespread (progressive encephalomyelitis with rigidity and myoclonus). GAD65 antibody is not highly predictive of a paraneoplastic cause for neurological disorders, but diverse cancer types have been occasionally reported. For all phenotypes, responses to immunotherapy are variable (approximately 50% improve). GAD65 autoimmunity is important to recognize for both coexisting nonneurological autoimmune associations and potential immunotherapy-response. Muscle Nerve 56: 15-27, 2017.
Collapse
Affiliation(s)
- Andrew McKeon
- Department of Neurology, College of Medicine, Mayo Clinic, 200 1st Street SW, Rochester, Minnesota, 55905, USA.,Department of Laboratory Medicine and Pathology, College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jennifer A Tracy
- Department of Neurology, College of Medicine, Mayo Clinic, 200 1st Street SW, Rochester, Minnesota, 55905, USA
| |
Collapse
|
14
|
Maussion G, Cruceanu C, Rosenfeld JA, Bell SC, Jollant F, Szatkiewicz J, Collins RL, Hanscom C, Kolobova I, de Champfleur NM, Blumenthal I, Chiang C, Ota V, Hultman C, O'Dushlaine C, McCarroll S, Alda M, Jacquemont S, Ordulu Z, Marshall CR, Carter MT, Shaffer LG, Sklar P, Girirajan S, Morton CC, Gusella JF, Turecki G, Stavropoulos DJ, Sullivan PF, Scherer SW, Talkowski ME, Ernst C. Implication of LRRC4C and DPP6 in neurodevelopmental disorders. Am J Med Genet A 2016; 173:395-406. [PMID: 27759917 DOI: 10.1002/ajmg.a.38021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/29/2016] [Indexed: 12/27/2022]
Abstract
We performed whole-genome sequencing on an individual from a family with variable psychiatric phenotypes that had a sensory processing disorder, apraxia, and autism. The proband harbored a maternally inherited balanced translocation (46,XY,t(11;14)(p12;p12)mat) that disrupted LRRC4C, a member of the highly specialized netrin G family of axon guidance molecules. The proband also inherited a paternally derived chromosomal inversion that disrupted DPP6, a potassium channel interacting protein. Copy Number (CN) analysis in 14,077 cases with neurodevelopmental disorders and 8,960 control subjects revealed that 60% of cases with exonic deletions in LRRC4C had a second clinically recognizable syndrome associated with variable clinical phenotypes, including 16p11.2, 1q44, and 2q33.1 CN syndromes, suggesting LRRC4C deletion variants may be modifiers of neurodevelopmental disorders. In vitro, functional assessments modeling patient deletions in LRRC4C suggest a negative regulatory role of these exons found in the untranslated region of LRRC4C, which has a single, terminal coding exon. These data suggest that the proband's autism may be due to the inheritance of disruptions in both DPP6 and LRRC4C, and may highlight the importance of the netrin G family and potassium channel interacting molecules in neurodevelopmental disorders. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gilles Maussion
- Department of Psychiatry, McGill Group for Suicide Studies, and Douglas Mental Health University Institute, Montreal, Canada
| | - Cristiana Cruceanu
- Department of Psychiatry, McGill Group for Suicide Studies, and Douglas Mental Health University Institute, Montreal, Canada.,Department of Human Genetics, McGill University, Montreal, Canada
| | - Jill A Rosenfeld
- Signature Genomic Laboratories, PerkinElmer, Inc., Spokane, Washington
| | - Scott C Bell
- Department of Psychiatry, McGill Group for Suicide Studies, and Douglas Mental Health University Institute, Montreal, Canada
| | - Fabrice Jollant
- Department of Psychiatry, McGill Group for Suicide Studies, and Douglas Mental Health University Institute, Montreal, Canada.,Nîmes Academic Hospital (CHU), Nîmes, France
| | - Jin Szatkiewicz
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | - Ryan L Collins
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Carrie Hanscom
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts
| | - Ilaria Kolobova
- Department of Psychiatry, McGill Group for Suicide Studies, and Douglas Mental Health University Institute, Montreal, Canada
| | | | - Ian Blumenthal
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts
| | - Colby Chiang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia.,McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Vanessa Ota
- Department of Psychiatry, McGill Group for Suicide Studies, and Douglas Mental Health University Institute, Montreal, Canada
| | - Christina Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | | | - Steve McCarroll
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Martin Alda
- Department of Psychiatry Halifax, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sebastien Jacquemont
- Department of Pediatrics, Sainte-Justine Hospital, University of Montreal, Montreal, Canada
| | - Zehra Ordulu
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Christian R Marshall
- The Centre for Applied Genomics and Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Melissa T Carter
- Regional Genetics Program, The Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Lisa G Shaffer
- Signature Genomic Laboratories, PerkinElmer, Inc., Spokane, Washington
| | - Pamela Sklar
- Departments of Neuroscience, Psychiatry and Genetics and Genome Sciences, Mount Sinai Hospital, New York, New York
| | - Santhosh Girirajan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania
| | - Cynthia C Morton
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Departments of Obstetrics, Gynecology, and Reproductive Biology and of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts.,Manchester Academic Health Science Center, University of Manchester, Manchester, United Kingdom
| | - James F Gusella
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Gustavo Turecki
- Department of Psychiatry, McGill Group for Suicide Studies, and Douglas Mental Health University Institute, Montreal, Canada.,Department of Human Genetics, McGill University, Montreal, Canada
| | - Dimitri J Stavropoulos
- Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Patrick F Sullivan
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | - Stephen W Scherer
- The Centre for Applied Genomics and Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics and McLaughlin Centre, University of Toronto, Toronto, Canada
| | - Michael E Talkowski
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Department of Neurology, Harvard Medical School, Boston, Massachusetts
| | - Carl Ernst
- Department of Psychiatry, McGill Group for Suicide Studies, and Douglas Mental Health University Institute, Montreal, Canada.,Department of Human Genetics, McGill University, Montreal, Canada
| |
Collapse
|
15
|
Wollberg J, Bähring R. Intra- and Intersubunit Dynamic Binding in Kv4.2 Channel Closed-State Inactivation. Biophys J 2016; 110:157-75. [PMID: 26745419 DOI: 10.1016/j.bpj.2015.10.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/02/2015] [Accepted: 10/14/2015] [Indexed: 12/28/2022] Open
Abstract
We studied the kinetics and structural determinants of closed-state inactivation (CSI) in Kv4.2 channels, considering a multistep process and the possibility that both intra- and intersubunit dynamic binding (i.e., loss and restoration of physical contact) may occur between the S4-S5 linker, including the initial S5 segment (S4S5), and the S6 gate. We expressed Kv4.2 channels in Xenopus oocytes and measured the onset of low-voltage inactivation under two-electrode voltage clamp. Indicative of a transitory state, the onset kinetics were best described by a double-exponential function. To examine the involvement of individual S4S5 and S6 amino acid residues in dynamic binding, we studied S4S5 and S6 single alanine mutants and corresponding double mutants. Both transitory and steady-state inactivation were modified by these mutations, and we quantified the mutational effects based on apparent affinities for the respective inactivated states. Double-mutant cycle analyses revealed strong functional coupling of the S6 residues V404 and I412 to all tested S4S5 residues. To examine whether dynamic S4S5/S6 binding occurs within individual α-subunits or between neighboring α-subunits, we performed a double-mutant cycle analysis with Kv4.2 tandem-dimer constructs. The constructs carried either an S4S5/S6 double mutation in the first α-subunit and no mutation in the second (concatenated) α-subunit or an S4S5 point mutation in the first α-subunit and an S6 point mutation in the second α-subunit. Our results support the notion that CSI in Kv4.2 channels is a multistep process that involves dynamic binding both within individual α-subunits and between neighboring α-subunits.
Collapse
Affiliation(s)
- Jessica Wollberg
- Institut für Zelluläre und Integrative Physiologie, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Robert Bähring
- Institut für Zelluläre und Integrative Physiologie, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
16
|
Wagner L, Klemann C, Stephan M, von Hörsten S. Unravelling the immunological roles of dipeptidyl peptidase 4 (DPP4) activity and/or structure homologue (DASH) proteins. Clin Exp Immunol 2016; 184:265-83. [PMID: 26671446 DOI: 10.1111/cei.12757] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/01/2015] [Accepted: 12/14/2015] [Indexed: 12/31/2022] Open
Abstract
Dipeptidyl peptidase (DPP) 4 (CD26, DPP4) is a multi-functional protein involved in T cell activation by co-stimulation via its association with adenosine deaminase (ADA), caveolin-1, CARMA-1, CD45, mannose-6-phosphate/insulin growth factor-II receptor (M6P/IGFII-R) and C-X-C motif receptor 4 (CXC-R4). The proline-specific dipeptidyl peptidase also modulates the bioactivity of several chemokines. However, a number of enzymes displaying either DPP4-like activities or representing structural homologues have been discovered in the past two decades and are referred to as DPP4 activity and/or structure homologue (DASH) proteins. Apart from DPP4, DASH proteins include fibroblast activation protein alpha (FAP), DPP8, DPP9, DPP4-like protein 1 (DPL1, DPP6, DPPX L, DPPX S), DPP4-like protein 2 (DPL2, DPP10) from the DPP4-gene family S9b and structurally unrelated enzyme DPP2, displaying DPP4-like activity. In contrast, DPP6 and DPP10 lack enzymatic DPP4-like activity. These DASH proteins play important roles in the immune system involving quiescence (DPP2), proliferation (DPP8/DPP9), antigen-presenting (DPP9), co-stimulation (DPP4), T cell activation (DPP4), signal transduction (DPP4, DPP8 and DPP9), differentiation (DPP4, DPP8) and tissue remodelling (DPP4, FAP). Thus, they are involved in many pathophysiological processes and have therefore been proposed for potential biomarkers or even drug targets in various cancers (DPP4 and FAP) and inflammatory diseases (DPP4, DPP8/DPP9). However, they also pose the challenge of drug selectivity concerning other DASH members for better efficacy and/or avoidance of unwanted side effects. Therefore, this review unravels the complex roles of DASH proteins in immunology.
Collapse
Affiliation(s)
- L Wagner
- Deutschsprachige Selbsthilfegruppe für Alkaptonurie (DSAKU) e.V, Stuttgart.,Department for Experimental Therapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - C Klemann
- Centre of Paediatric Surgery.,Centre for Paediatrics and Adolescent Medicine
| | - M Stephan
- Clinic for Psychosomatics and Psychotherapy, Hannover Medical School, Hannover
| | - S von Hörsten
- Department for Experimental Therapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
17
|
Tobin WO, Lennon VA, Komorowski L, Probst C, Clardy SL, Aksamit AJ, Appendino JP, Lucchinetti CF, Matsumoto JY, Pittock SJ, Sandroni P, Tippmann-Peikert M, Wirrell EC, McKeon A. DPPX potassium channel antibody: frequency, clinical accompaniments, and outcomes in 20 patients. Neurology 2014; 83:1797-803. [PMID: 25320100 DOI: 10.1212/wnl.0000000000000991] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE To describe the detection frequency and clinical associations of immunoglobulin G (IgG) targeting dipeptidyl-peptidase-like protein-6 (DPPX), a regulatory subunit of neuronal Kv4.2 potassium channels. METHODS Specimens from 20 patients evaluated on a service basis by tissue-based immunofluorescence yielded a synaptic immunostaining pattern consistent with DPPX-IgG (serum, 20; CSF, all 7 available). Transfected HEK293 cell-based assay confirmed DPPX specificity in all specimens. Sixty-nine patients with stiff-person syndrome and related disorders were also evaluated by DPPX-IgG cell-based assay. RESULTS Of 20 seropositive patients, 12 were men; median symptom onset age was 53 years (range, 13-75). Symptom onset was insidious in 15 and subacute in 5. Twelve patients reported prodromal weight loss. Neurologic disorders were multifocal. All had one or more brain or brainstem manifestations: amnesia (16), delirium (8), psychosis (4), depression (4), seizures (2), and brainstem disorders (15; eye movement disturbances [8], ataxia [7], dysphagia [6], dysarthria [4], respiratory failure [3]). Nine patients reported sleep disturbance. Manifestations of central hyperexcitability included myoclonus (8), exaggerated startle (6), diffuse rigidity (6), and hyperreflexia (6). Dysautonomia involved the gastrointestinal tract (9; diarrhea [6], gastroparesis, and constipation [3]), bladder (7), cardiac conduction system (3), and thermoregulation (1). Two patients had B-cell neoplasms: gastrointestinal lymphoma (1), and chronic lymphocytic leukemia (1). Substantial neurologic improvements followed immunotherapy in 7 of 11 patients with available treatment data. DPPX-IgG was not detected in any of the stiff-person syndrome patients. CONCLUSIONS DPPX-IgG is a biomarker for an immunotherapy-responsive multifocal neurologic disorder of the central and autonomic nervous systems.
Collapse
Affiliation(s)
- William Oliver Tobin
- From the Departments of Neurology (W.O.T., V.A.L., S.L.C., A.J.A., C.F.L., J.Y.M., S.J.P., P.S., M.T.-P., E.C.W., A.M.), Laboratory Medicine and Pathology (V.A.L., S.J.P., A.M.), Immunology (V.A.L.), and Pediatrics (E.C.W.), College of Medicine, Mayo Clinic, Rochester, MN; Euroimmun AG (L.K., C.P.), Lübeck, Germany; and Neurology (J.P.A.), Faculty of Medicine, University of Manitoba, Canada
| | - Vanda A Lennon
- From the Departments of Neurology (W.O.T., V.A.L., S.L.C., A.J.A., C.F.L., J.Y.M., S.J.P., P.S., M.T.-P., E.C.W., A.M.), Laboratory Medicine and Pathology (V.A.L., S.J.P., A.M.), Immunology (V.A.L.), and Pediatrics (E.C.W.), College of Medicine, Mayo Clinic, Rochester, MN; Euroimmun AG (L.K., C.P.), Lübeck, Germany; and Neurology (J.P.A.), Faculty of Medicine, University of Manitoba, Canada
| | - Lars Komorowski
- From the Departments of Neurology (W.O.T., V.A.L., S.L.C., A.J.A., C.F.L., J.Y.M., S.J.P., P.S., M.T.-P., E.C.W., A.M.), Laboratory Medicine and Pathology (V.A.L., S.J.P., A.M.), Immunology (V.A.L.), and Pediatrics (E.C.W.), College of Medicine, Mayo Clinic, Rochester, MN; Euroimmun AG (L.K., C.P.), Lübeck, Germany; and Neurology (J.P.A.), Faculty of Medicine, University of Manitoba, Canada
| | - Christian Probst
- From the Departments of Neurology (W.O.T., V.A.L., S.L.C., A.J.A., C.F.L., J.Y.M., S.J.P., P.S., M.T.-P., E.C.W., A.M.), Laboratory Medicine and Pathology (V.A.L., S.J.P., A.M.), Immunology (V.A.L.), and Pediatrics (E.C.W.), College of Medicine, Mayo Clinic, Rochester, MN; Euroimmun AG (L.K., C.P.), Lübeck, Germany; and Neurology (J.P.A.), Faculty of Medicine, University of Manitoba, Canada
| | - Stacey Lynn Clardy
- From the Departments of Neurology (W.O.T., V.A.L., S.L.C., A.J.A., C.F.L., J.Y.M., S.J.P., P.S., M.T.-P., E.C.W., A.M.), Laboratory Medicine and Pathology (V.A.L., S.J.P., A.M.), Immunology (V.A.L.), and Pediatrics (E.C.W.), College of Medicine, Mayo Clinic, Rochester, MN; Euroimmun AG (L.K., C.P.), Lübeck, Germany; and Neurology (J.P.A.), Faculty of Medicine, University of Manitoba, Canada
| | - Allen J Aksamit
- From the Departments of Neurology (W.O.T., V.A.L., S.L.C., A.J.A., C.F.L., J.Y.M., S.J.P., P.S., M.T.-P., E.C.W., A.M.), Laboratory Medicine and Pathology (V.A.L., S.J.P., A.M.), Immunology (V.A.L.), and Pediatrics (E.C.W.), College of Medicine, Mayo Clinic, Rochester, MN; Euroimmun AG (L.K., C.P.), Lübeck, Germany; and Neurology (J.P.A.), Faculty of Medicine, University of Manitoba, Canada
| | - Juan Pablo Appendino
- From the Departments of Neurology (W.O.T., V.A.L., S.L.C., A.J.A., C.F.L., J.Y.M., S.J.P., P.S., M.T.-P., E.C.W., A.M.), Laboratory Medicine and Pathology (V.A.L., S.J.P., A.M.), Immunology (V.A.L.), and Pediatrics (E.C.W.), College of Medicine, Mayo Clinic, Rochester, MN; Euroimmun AG (L.K., C.P.), Lübeck, Germany; and Neurology (J.P.A.), Faculty of Medicine, University of Manitoba, Canada
| | - Claudia F Lucchinetti
- From the Departments of Neurology (W.O.T., V.A.L., S.L.C., A.J.A., C.F.L., J.Y.M., S.J.P., P.S., M.T.-P., E.C.W., A.M.), Laboratory Medicine and Pathology (V.A.L., S.J.P., A.M.), Immunology (V.A.L.), and Pediatrics (E.C.W.), College of Medicine, Mayo Clinic, Rochester, MN; Euroimmun AG (L.K., C.P.), Lübeck, Germany; and Neurology (J.P.A.), Faculty of Medicine, University of Manitoba, Canada
| | - Joseph Y Matsumoto
- From the Departments of Neurology (W.O.T., V.A.L., S.L.C., A.J.A., C.F.L., J.Y.M., S.J.P., P.S., M.T.-P., E.C.W., A.M.), Laboratory Medicine and Pathology (V.A.L., S.J.P., A.M.), Immunology (V.A.L.), and Pediatrics (E.C.W.), College of Medicine, Mayo Clinic, Rochester, MN; Euroimmun AG (L.K., C.P.), Lübeck, Germany; and Neurology (J.P.A.), Faculty of Medicine, University of Manitoba, Canada
| | - Sean J Pittock
- From the Departments of Neurology (W.O.T., V.A.L., S.L.C., A.J.A., C.F.L., J.Y.M., S.J.P., P.S., M.T.-P., E.C.W., A.M.), Laboratory Medicine and Pathology (V.A.L., S.J.P., A.M.), Immunology (V.A.L.), and Pediatrics (E.C.W.), College of Medicine, Mayo Clinic, Rochester, MN; Euroimmun AG (L.K., C.P.), Lübeck, Germany; and Neurology (J.P.A.), Faculty of Medicine, University of Manitoba, Canada
| | - Paola Sandroni
- From the Departments of Neurology (W.O.T., V.A.L., S.L.C., A.J.A., C.F.L., J.Y.M., S.J.P., P.S., M.T.-P., E.C.W., A.M.), Laboratory Medicine and Pathology (V.A.L., S.J.P., A.M.), Immunology (V.A.L.), and Pediatrics (E.C.W.), College of Medicine, Mayo Clinic, Rochester, MN; Euroimmun AG (L.K., C.P.), Lübeck, Germany; and Neurology (J.P.A.), Faculty of Medicine, University of Manitoba, Canada
| | - Maja Tippmann-Peikert
- From the Departments of Neurology (W.O.T., V.A.L., S.L.C., A.J.A., C.F.L., J.Y.M., S.J.P., P.S., M.T.-P., E.C.W., A.M.), Laboratory Medicine and Pathology (V.A.L., S.J.P., A.M.), Immunology (V.A.L.), and Pediatrics (E.C.W.), College of Medicine, Mayo Clinic, Rochester, MN; Euroimmun AG (L.K., C.P.), Lübeck, Germany; and Neurology (J.P.A.), Faculty of Medicine, University of Manitoba, Canada
| | - Elaine C Wirrell
- From the Departments of Neurology (W.O.T., V.A.L., S.L.C., A.J.A., C.F.L., J.Y.M., S.J.P., P.S., M.T.-P., E.C.W., A.M.), Laboratory Medicine and Pathology (V.A.L., S.J.P., A.M.), Immunology (V.A.L.), and Pediatrics (E.C.W.), College of Medicine, Mayo Clinic, Rochester, MN; Euroimmun AG (L.K., C.P.), Lübeck, Germany; and Neurology (J.P.A.), Faculty of Medicine, University of Manitoba, Canada
| | - Andrew McKeon
- From the Departments of Neurology (W.O.T., V.A.L., S.L.C., A.J.A., C.F.L., J.Y.M., S.J.P., P.S., M.T.-P., E.C.W., A.M.), Laboratory Medicine and Pathology (V.A.L., S.J.P., A.M.), Immunology (V.A.L.), and Pediatrics (E.C.W.), College of Medicine, Mayo Clinic, Rochester, MN; Euroimmun AG (L.K., C.P.), Lübeck, Germany; and Neurology (J.P.A.), Faculty of Medicine, University of Manitoba, Canada.
| |
Collapse
|
18
|
Li L, Chen H, Yin C, Yang C, Wang B, Zheng S, Zhang J, Fan W. Mapping breakpoints of a familial chromosome insertion (18,7) (q22.1; q36.2q21.11) to DPP6 and CACNA2D1 genes in an azoospermic male. Gene 2014; 547:43-9. [PMID: 24937803 DOI: 10.1016/j.gene.2014.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/03/2014] [Accepted: 06/05/2014] [Indexed: 11/16/2022]
Abstract
It is widely accepted that the incidence of chromosomal aberration is 10-15.2% in the azoospermic male; however, the exact genetic damages are currently unknown for more than 40% of azoospermia. To elucidate the causative gene defects, we used the next generation sequencing (NGS) to map the breakpoints of a chromosome insertion from an azoospermic male who carries a balanced, maternally inherited karyotype 46, XY, inv ins (18,7) (q22.1; q36.2q21.11). The analysis revealed that the breakage in chromosome 7 disrupts two genes, dipeptidyl aminopeptidase-like protein 6 (DPP6) and contactin-associated protein-like 2 (CACNA2D1), the former participates in regulation of voltage-gated potassium channels, and the latter is one of the components in voltage-gated calcium channels. The deletion and duplication were not identified equal or beyond 100 kb, but 4 homologous DNA elements were verified proximal to the breakpoints. One of the proband's sisters inherited the same aberrant karyotype and experienced recurrent miscarriages and consecutive fetus death, while in contrast, another sister with a normal karyotype experienced normal labor and gave birth to healthy babies. The insertional translocation is confirmed with FISH and the Y-chromosome microdeletions were excluded by genetic testing. This is the first report describing chromosome insertion inv ins (18,7) and attributes DPP6 and CACNA2D1 to azoospermia.
Collapse
Affiliation(s)
- Lin Li
- Institute of Medical Genetics, Linyi People's Hospital, Shandong 276003, China
| | - Haixiao Chen
- BGI, 11-2 Building, Northern Industry District, Shenzhen 518083, China
| | - Chenxing Yin
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Hebei University School of Life Sciences, Baoding, Hebei 071002, China
| | - Chuanchun Yang
- BGI, 11-2 Building, Northern Industry District, Shenzhen 518083, China
| | - Bei Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Hebei University School of Life Sciences, Baoding, Hebei 071002, China
| | - Shuqi Zheng
- Institute of Medical Genetics, Linyi People's Hospital, Shandong 276003, China
| | - Jixia Zhang
- Institute of Medical Genetics, Linyi People's Hospital, Shandong 276003, China
| | - Wufang Fan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Hebei University School of Life Sciences, Baoding, Hebei 071002, China
| |
Collapse
|
19
|
Buzanskas ME, Grossi DA, Ventura RV, Schenkel FS, Sargolzaei M, Meirelles SLC, Mokry FB, Higa RH, Mudadu MA, da Silva MVGB, Niciura SCM, Júnior RAAT, Alencar MM, Regitano LCA, Munari DP. Genome-wide association for growth traits in Canchim beef cattle. PLoS One 2014; 9:e94802. [PMID: 24733441 PMCID: PMC3986245 DOI: 10.1371/journal.pone.0094802] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/20/2014] [Indexed: 12/01/2022] Open
Abstract
Studies are being conducted on the applicability of genomic data to improve the accuracy of the selection process in livestock, and genome-wide association studies (GWAS) provide valuable information to enhance the understanding on the genetics of complex traits. The aim of this study was to identify genomic regions and genes that play roles in birth weight (BW), weaning weight adjusted for 210 days of age (WW), and long-yearling weight adjusted for 420 days of age (LYW) in Canchim cattle. GWAS were performed by means of the Generalized Quasi-Likelihood Score (GQLS) method using genotypes from the BovineHD BeadChip and estimated breeding values for BW, WW, and LYW. Data consisted of 285 animals from the Canchim breed and 114 from the MA genetic group (derived from crossings between Charolais sires and ½ Canchim + ½ Zebu dams). After applying a false discovery rate correction at a 10% significance level, a total of 4, 12, and 10 SNPs were significantly associated with BW, WW, and LYW, respectively. These SNPs were surveyed to their corresponding genes or to surrounding genes within a distance of 250 kb. The genes DPP6 (dipeptidyl-peptidase 6) and CLEC3B (C-type lectin domain family 3 member B) were highlighted, considering its functions on the development of the brain and skeletal system, respectively. The GQLS method identified regions on chromosome associated with birth weight, weaning weight, and long-yearling weight in Canchim and MA animals. New candidate regions for body weight traits were detected and some of them have interesting biological functions, of which most have not been previously reported. The observation of QTL reports for body weight traits, covering areas surrounding the genes (SNPs) herein identified provides more evidence for these associations. Future studies targeting these areas could provide further knowledge to uncover the genetic architecture underlying growth traits in Canchim cattle.
Collapse
Affiliation(s)
- Marcos E. Buzanskas
- Departamento de Ciências Exatas, UNESP - Univ Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, São Paulo, Brazil
| | - Daniela A. Grossi
- Department of Animal and Poultry Science, University of Guelph, Centre for Genetic Improvement of Livestock (CGIL), Guelph, Ontario, Canada
| | - Ricardo V. Ventura
- Department of Animal and Poultry Science, University of Guelph, Centre for Genetic Improvement of Livestock (CGIL), Guelph, Ontario, Canada
- Beef Improvement Opportunities (BIO), Guelph, Ontario, Canada
| | - Flávio S. Schenkel
- Department of Animal and Poultry Science, University of Guelph, Centre for Genetic Improvement of Livestock (CGIL), Guelph, Ontario, Canada
| | - Mehdi Sargolzaei
- Department of Animal and Poultry Science, University of Guelph, Centre for Genetic Improvement of Livestock (CGIL), Guelph, Ontario, Canada
- The Semex Alliance, Guelph, Ontario, Canada
| | - Sarah L. C. Meirelles
- Department of Animal Science, Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | - Fabiana B. Mokry
- Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Roberto H. Higa
- Embrapa Agricultural Informatics, Campinas, São Paulo, Brazil
| | | | | | | | | | | | | | - Danísio P. Munari
- Departamento de Ciências Exatas, UNESP - Univ Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
20
|
Jerng HH, Pfaffinger PJ. Modulatory mechanisms and multiple functions of somatodendritic A-type K (+) channel auxiliary subunits. Front Cell Neurosci 2014; 8:82. [PMID: 24723849 PMCID: PMC3973911 DOI: 10.3389/fncel.2014.00082] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/03/2014] [Indexed: 12/13/2022] Open
Abstract
Auxiliary subunits are non-conducting, modulatory components of the multi-protein ion channel complexes that underlie normal neuronal signaling. They interact with the pore-forming α-subunits to modulate surface distribution, ion conductance, and channel gating properties. For the somatodendritic subthreshold A-type potassium (ISA) channel based on Kv4 α-subunits, two types of auxiliary subunits have been extensively studied: Kv channel-interacting proteins (KChIPs) and dipeptidyl peptidase-like proteins (DPLPs). KChIPs are cytoplasmic calcium-binding proteins that interact with intracellular portions of the Kv4 subunits, whereas DPLPs are type II transmembrane proteins that associate with the Kv4 channel core. Both KChIPs and DPLPs genes contain multiple start sites that are used by various neuronal populations to drive the differential expression of functionally distinct N-terminal variants. In turn, these N-terminal variants generate tremendous functional diversity across the nervous system. Here, we focus our review on (1) the molecular mechanism underlying the unique properties of different N-terminal variants, (2) the shaping of native ISA properties by the concerted actions of KChIPs and DPLP variants, and (3) the surprising ways that KChIPs and DPLPs coordinate the activity of multiple channels to fine-tune neuronal excitability. Unlocking the unique contributions of different auxiliary subunit N-terminal variants may provide an important opportunity to develop novel targeted therapeutics to treat numerous neurological disorders.
Collapse
Affiliation(s)
- Henry H. Jerng
- Department of Neuroscience, Baylor College of MedicineHouston, TX, USA
| | | |
Collapse
|
21
|
Du J, Fan Z, Ma X, Wu Y, Liu S, Gao Y, Shen Y, Fan M, Wang S. Expression of DPP6 in Meckel's cartilage and tooth germs during mouse facial development. Biotech Histochem 2013; 89:14-8. [DOI: 10.3109/10520295.2013.795661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Xiao L, Koopmann TT, Ördög B, Postema PG, Verkerk AO, Iyer V, Sampson KJ, Boink GJJ, Mamarbachi MA, Varro A, Jordaens L, Res J, Kass RS, Wilde AA, Bezzina CR, Nattel S. Unique cardiac Purkinje fiber transient outward current β-subunit composition: a potential molecular link to idiopathic ventricular fibrillation. Circ Res 2013; 112:1310-22. [PMID: 23532596 DOI: 10.1161/circresaha.112.300227] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RATIONALE A chromosomal haplotype producing cardiac overexpression of dipeptidyl peptidase-like protein-6 (DPP6) causes familial idiopathic ventricular fibrillation. The molecular basis of transient outward current (I(to)) in Purkinje fibers (PFs) is poorly understood. We hypothesized that DPP6 contributes to PF I(to) and that its overexpression might specifically alter PF I(to) properties and repolarization. OBJECTIVE To assess the potential role of DPP6 in PF I(to). METHODS AND RESULTS Clinical data in 5 idiopathic ventricular fibrillation patients suggested arrhythmia origin in the PF-conducting system. PF and ventricular muscle I(to) had similar density, but PF I(to) differed from ventricular muscle in having tetraethylammonium sensitivity and slower recovery. DPP6 overexpression significantly increased, whereas DPP6 knockdown reduced, I(to) density and tetraethylammonium sensitivity in canine PF but not in ventricular muscle cells. The K(+)-channel interacting β-subunit K(+)-channel interacting protein type-2, essential for normal expression of I(to) in ventricular muscle, was weakly expressed in human PFs, whereas DPP6 and frequenin (neuronal calcium sensor-1) were enriched. Heterologous expression of Kv4.3 in Chinese hamster ovary cells produced small I(to); I(to) amplitude was greatly enhanced by coexpression with K(+)-channel interacting protein type-2 or DPP6. Coexpression of DPP6 with Kv4.3 and K(+)-channel interacting protein type-2 failed to alter I(to) compared with Kv4.3/K(+)-channel interacting protein type-2 alone, but DPP6 expression with Kv4.3 and neuronal calcium sensor-1 (to mimic PF I(to) composition) greatly enhanced I(to) compared with Kv4.3/neuronal calcium sensor-1 and recapitulated characteristic PF kinetic/pharmacological properties. A mathematical model of cardiac PF action potentials showed that I(to) enhancement can greatly accelerate PF repolarization. CONCLUSIONS These results point to a previously unknown central role of DPP6 in PF I(to), with DPP6 gain of function selectively enhancing PF current, and suggest that a DPP6-mediated PF early-repolarization syndrome might be a novel molecular paradigm for some forms of idiopathic ventricular fibrillation.
Collapse
Affiliation(s)
- Ling Xiao
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, QC, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sheikh MA, Malik YS, Yu H, Lai M, Wang X, Zhu X. Epigenetic regulation of Dpp6 expression by Dnmt3b and its novel role in the inhibition of RA induced neuronal differentiation of P19 cells. PLoS One 2013; 8:e55826. [PMID: 23409053 PMCID: PMC3567024 DOI: 10.1371/journal.pone.0055826] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/02/2013] [Indexed: 12/05/2022] Open
Abstract
DNA methylation is an important mechanism of gene silencing in mammals catalyzed by a group of DNA methyltransferases including Dnmt1, Dnmt3a, and Dnmt3b which are required for the establishment of genomic methylation patterns during development and differentiation. In this report, we studied the role of DNA methyltransferases during retinoic acid induced neuronal differentiation of P19 cells. We observed an increase in the mRNA and protein level of Dnmt3b, whereas the expression of Dnmt1 and Dnmt3a was decreased after RA treatment of P19 cells which indicated that Dnmt3b is more important during neuronal differentiation of P19 cells. Dnmt3b enriched chromatin library from RA treated P19 cells identified dipeptidyl peptidase 6 (Dpp6) gene as a novel target of Dnmt3b. Further, quantitative ChIP analysis showed that the amount of Dnmt3b recruited on Dpp6 promoter was equal in both RA treated as well as untreated p19 cells. Bisulfite genomic sequencing, COBRA, and methylation specific PCR analysis revealed that Dpp6 promoter was heavily methylated in both RA treated and untreated P19 cells. Dnmt3b was responsible for transcriptional silencing of Dpp6 gene as depletion of Dnmt3b resulted in increased mRNA and protein expression of Dpp6. Consequently, the average methylation of Dpp6 gene promoter was reduced to half in Dnmt3b knockdown cells. In the absence of Dnmt3b, Dnmt3a was associated with Dpp6 gene promoter and regulated its expression and methylation in P19 cells. RA induced neuronal differentiation was inhibited upon ectopic expression of Dpp6 in P19 cells. Taken together, the present study described epigenetic silencing of Dpp6 expression by DNA methylation and established that its ectopic expression can act as negative signal during RA induced neuronal differentiation of P19 cells.
Collapse
Affiliation(s)
- Muhammad Abid Sheikh
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Yousra Saeed Malik
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Huali Yu
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Mingming Lai
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xingzhi Wang
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xiaojuan Zhu
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| |
Collapse
|
24
|
Social networking among voltage-activated potassium channels. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:269-302. [PMID: 23663972 DOI: 10.1016/b978-0-12-386931-9.00010-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Voltage-activated potassium channels (Kv channels) are ubiquitously expressed proteins that subserve a wide range of cellular functions. From their birth in the endoplasmic reticulum, Kv channels assemble from multiple subunits in complex ways that determine where they live in the cell, their biophysical characteristics, and their role in enabling different kinds of cells to respond to specific environmental signals to generate appropriate functional responses. This chapter describes the types of protein-protein interactions among pore-forming channel subunits and their auxiliary protein partners, as well as posttranslational protein modifications that occur in various cell types. This complex oligomerization of channel subunits establishes precise cell type-specific Kv channel localization and function, which in turn drives a diverse range of cellular signal transduction mechanisms uniquely suited to the physiological contexts in which they are found.
Collapse
|
25
|
Boronat A, Gelfand JM, Gresa-Arribas N, Jeong HY, Walsh M, Roberts K, Martinez-Hernandez E, Rosenfeld MR, Balice-Gordon R, Graus F, Rudy B, Dalmau J. Encephalitis and antibodies to dipeptidyl-peptidase-like protein-6, a subunit of Kv4.2 potassium channels. Ann Neurol 2012; 73:120-8. [PMID: 23225603 DOI: 10.1002/ana.23756] [Citation(s) in RCA: 226] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/28/2012] [Accepted: 09/04/2012] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To report a novel cell surface autoantigen of encephalitis that is a critical regulatory subunit of the Kv4.2 potassium channels. METHODS Four patients with encephalitis of unclear etiology and antibodies with a similar pattern of neuropil brain immunostaining were selected for autoantigen characterization. Techniques included immunoprecipitation, mass spectrometry, cell-base experiments with Kv4.2 and several dipeptidyl-peptidase-like protein-6 (DPPX) plasmid constructs, and comparative brain immunostaining of wild-type and DPPX-null mice. RESULTS Immunoprecipitation studies identified DPPX as the target autoantigen. A cell-based assay confirmed that all 4 patients, but not 210 controls, had DPPX antibodies. Symptoms included agitation, confusion, myoclonus, tremor, and seizures (1 case with prominent startle response). All patients had pleocytosis, and 3 had severe prodromal diarrhea of unknown etiology. Given that DPPX tunes up the Kv4.2 potassium channels (involved in somatodendritic signal integration and attenuation of dendritic back-propagation of action potentials), we determined the epitope distribution in DPPX, DPP10 (a protein homologous to DPPX), and Kv4.2. Patients' antibodies were found to be specific for DPPX, without reacting with DPP10 or Kv4.2. The unexplained diarrhea led to a demonstration of a robust expression of DPPX in the myenteric plexus, which strongly reacted with patients' antibodies. The course of neuropsychiatric symptoms was prolonged and often associated with relapses during decreasing immunotherapy. Long-term follow-up showed substantial improvement in 3 patients (1 was lost to follow-up). INTERPRETATION Antibodies to DPPX are associated with a protracted encephalitis characterized by central nervous system hyperexcitability (agitation, myoclonus, tremor, seizures), pleocytosis, and frequent diarrhea at symptom onset. The disorder is potentially treatable with immunotherapy.
Collapse
Affiliation(s)
- Anna Boronat
- Institute of Biomedical Research August Pi i Sunyer and Service of Neurology, Hospital Clinic, University of Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Brambilla P, Esposito F, Lindstrom E, Sorosina M, Giacalone G, Clarelli F, Rodegher M, Colombo B, Moiola L, Ghezzi A, Capra R, Collimedaglia L, Coniglio G, Celius EG, Galimberti D, Sørensen PS, Martinelli V, Oturai AB, Harbo HF, Hillert J, Comi G, Martinelli-Boneschi F. Association between DPP6 polymorphism and the risk of progressive multiple sclerosis in Northern and Southern Europeans. Neurosci Lett 2012; 530:155-60. [PMID: 23069673 DOI: 10.1016/j.neulet.2012.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 09/24/2012] [Accepted: 10/02/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND In this study, we investigated the role of the dipeptidyl-peptidase-6 (DPP6) gene in the etiopathogenesis of progressive forms of multiple sclerosis (PrMS). This gene emerged as a candidate gene in a genome-wide association study (GWAS) performed in an Italian sample of PrMS and controls in which two SNPs located in the gene (rs6956703 and rs11767658) showed evidence of association (nominal p-value<10(-4)) (Martinelli-Boneschi et al.) [18]. Moreover, the gene is highly expressed in the central nervous system, and it has been found to be associated with sporadic cases of amyotrophic lateral sclerosis which shares some feature with PrMS. METHODS We genotyped 19 SNPs selected using a direct and tagging approach in 244 Italian PrMS and 225 controls, and we measured the expression levels of the gene in 13 PrMS cases and 25 controls. RESULTS Five out of 19 SNPs were found to be associated with the disease (adjusted p<0.05), and they have been tested in an independent sample of 179 primary progressive MS and 198 controls from Northern Europe. None of the SNPs was replicated, but combined analysis confirmed the presence of association for rs2046748 (p=2.5×10(-3),OR=1.82, 95%CI=1.24-2.69). CONCLUSIONS These results, inflated by the limited sample size determined by the rarity of this condition, suggest a possible role of this gene in the susceptibility to PrMS, at least in Southern Europeans. Moreover, DPP6 was over-expressed in PrMS patients compared to controls.
Collapse
Affiliation(s)
- Paola Brambilla
- Institute of Experimental Neurology and Department of Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Witzel K, Fischer P, Bähring R. Hippocampal A-type current and Kv4.2 channel modulation by the sulfonylurea compound NS5806. Neuropharmacology 2012; 63:1389-403. [PMID: 22964468 DOI: 10.1016/j.neuropharm.2012.08.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/16/2012] [Accepted: 08/18/2012] [Indexed: 12/24/2022]
Abstract
We examined the effects of the sulfonylurea compound NS5806 on neuronal A-type channel function. Using whole-cell patch-clamp we studied the effects of NS5806 on the somatodendritic A-type current (I(SA)) in cultured hippocampal neurons and the currents mediated by Kv4.2 channels coexpressed with different auxiliary β-subunits, including both Kv channel interacting proteins (KChIPs) and dipeptidyl aminopeptidase-related proteins (DPPs), in HEK 293 cells. The amplitude of the I(SA) component in hippocampal neurons was reduced in the presence of 20 μM NS5806. I(SA) decay kinetics were slowed and the recovery kinetics accelerated, but the voltage dependence of steady-state inactivation was shifted to more negative potentials by NS5806. The peak amplitudes of currents mediated by ternary Kv4.2 channel complexes, associated with DPP6-S (short splice-variant) and either KChIP2, KChIP3 or KChIP4, were potentiated and their macroscopic inactivation slowed by NS5806, whereas the currents mediated by binary Kv4.2 channels, associated only with DPP6-S, were suppressed, and the NS5806-mediated slowing of macroscopic inactivation was less pronounced. Neither potentiation nor suppression and no effect on current decay kinetics in the presence of NS5806 were observed for Kv4.2 channels associated with KChIP3 and the N-type inactivation-conferring DPP6a splice-variant. For all recombinant channel complexes, NS5806 slowed the recovery from inactivation and shifted the voltage dependence of steady-state inactivation to more negative potentials. Our results demonstrate the activity of NS5806 on native I(SA) and possible molecular correlates in the form of recombinant Kv4.2 channels complexed with different KChIPs and DPPs, and they shed some light on the mechanism of NS5806 action.
Collapse
Affiliation(s)
- Katrin Witzel
- Institut für Zelluläre und Integrative Physiologie, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | | | | |
Collapse
|
28
|
Jerng HH, Pfaffinger PJ. Incorporation of DPP6a and DPP6K variants in ternary Kv4 channel complex reconstitutes properties of A-type K current in rat cerebellar granule cells. PLoS One 2012; 7:e38205. [PMID: 22675523 PMCID: PMC3366920 DOI: 10.1371/journal.pone.0038205] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 05/04/2012] [Indexed: 01/27/2023] Open
Abstract
Dipeptidyl peptidase-like protein 6 (DPP6) proteins co-assemble with Kv4 channel α-subunits and Kv channel-interacting proteins (KChIPs) to form channel protein complexes underlying neuronal somatodendritic A-type potassium current (ISA). DPP6 proteins are expressed as N-terminal variants (DPP6a, DPP6K, DPP6S, DPP6L) that result from alternative mRNA initiation and exhibit overlapping expression patterns. Here, we study the role DPP6 variants play in shaping the functional properties of ISA found in cerebellar granule (CG) cells using quantitative RT-PCR and voltage-clamp recordings of whole-cell currents from reconstituted channel complexes and native ISA channels. Differential expression of DPP6 variants was detected in rat CG cells, with DPP6K (41±3%)>DPP6a (33±3%)>>DPP6S (18±2%)>DPP6L (8±3%). To better understand how DPP6 variants shape native neuronal ISA, we focused on studying interactions between the two dominant variants, DPP6K and DPP6a. Although previous studies did not identify unique functional effects of DPP6K, we find that the unique N-terminus of DPP6K modulates the effects of KChIP proteins, slowing recovery and producing a negative shift in the steady-state inactivation curve. By contrast, DPP6a uses its distinct N-terminus to directly confer rapid N-type inactivation independently of KChIP3a. When DPP6a and DPP6K are co-expressed in ratios similar to those found in CG cells, their distinct effects compete in modulating channel function. The more rapid inactivation from DPP6a dominates during strong depolarization; however, DPP6K produces a negative shift in the steady-state inactivation curve and introduces a slow phase of recovery from inactivation. A direct comparison to the native CG cell ISA shows that these mixed effects are present in the native channels. Our results support the hypothesis that the precise expression and co-assembly of different auxiliary subunit variants are important factors in shaping the ISA functional properties in specific neuronal populations.
Collapse
Affiliation(s)
- Henry H Jerng
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America.
| | | |
Collapse
|
29
|
Cotella D, Radicke S, Cipriani V, Cavaletto M, Merlin S, Follenzi A, Ravens U, Wettwer E, Santoro C, Sblattero D. N-glycosylation of the mammalian dipeptidyl aminopeptidase-like protein 10 (DPP10) regulates trafficking and interaction with Kv4 channels. Int J Biochem Cell Biol 2012; 44:876-85. [PMID: 22387313 DOI: 10.1016/j.biocel.2012.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 02/09/2012] [Accepted: 02/14/2012] [Indexed: 02/01/2023]
Abstract
The dipeptidyl aminopeptidase-like protein 10 (DPP10) is a type II transmembrane protein homologue to the serine protease DPPIV/CD26 but enzymatically inactive. In the mammalian brain, DPP10 forms a complex with voltage-gated potassium channels of the Kv4 family, regulating their cell surface expression and biophysical properties. DPP10 is a glycoprotein containing eight predicted N-glycosylation sites in the extracellular domain. In this study we investigated the role of N-glycosylation on DPP10 trafficking and functional activity. Using site-directed mutagenesis (N to Q) we showed that N-glycosylation occured at six positions. Glycosylation at these specific residues was necessary for DPP10 trafficking to the plasma membrane as observed by flow cytometry. The surface expression levels of the substitutions N90Q, N119Q, N257Q and N342Q were reduced by more than 60%. Hence the interaction with the Kv4.3/KChIP2a channel complex was disrupted preventing the hastening effect of wild type DPP10 on current kinetics. Interestingly, N257 was crucial for this function and its substitution to glutamine completely blocked DPP10 sorting to the cell surface and prevented DPP10 dimerization. In summary, we demonstrated that glycosylation was necessary for both DPP10 trafficking to the cell surface and functional interaction with Kv4 channels.
Collapse
Affiliation(s)
- Diego Cotella
- Department of Health Sciences and Interdisciplinary Research Centre on Autoimmune Diseases (IRCAD), Università del Piemonte Orientale A. Avogadro, Via Solaroli 17, 28100 Novara, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Du J, Fan Z, Ma X, Gao Y, Wu Y, Liu S, Shen Y, Fan M, Wang S. Expression of Dpp6 in mouse embryonic craniofacial development. Acta Histochem 2011; 113:636-9. [PMID: 20817268 DOI: 10.1016/j.acthis.2010.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 07/31/2010] [Accepted: 08/02/2010] [Indexed: 10/19/2022]
Abstract
Dipeptidyl-peptidase-like protein 6 (DPP6), a member of the dipeptidyl aminopeptidase family, plays distinct roles in brain development, but its expression in embryonic craniofacial development is unknown. The expression pattern of Dpp6 in the maxillofacial region during mouse embryonic craniofacial development was analyzed by whole-mount in situ hybridization on sections and by real-time PCR analysis. Dpp6 expression was detected during mouse embryonic craniofacial development in embryos 11-13.5 days post-coitum (dpc). Real-time PCR showed high Dpp6 expression present in 11.5-13.5dpc, and this then decreased as development of maxillofacial region progressed. The expression pattern of Dpp6 suggests that Dpp6 may be involved in embryonic craniofacial development.
Collapse
|
31
|
Ohara-Nemoto Y, Shimoyama Y, Kimura S, Kon A, Haraga H, Ono T, Nemoto TK. Asp- and Glu-specific novel dipeptidyl peptidase 11 of Porphyromonas gingivalis ensures utilization of proteinaceous energy sources. J Biol Chem 2011; 286:38115-38127. [PMID: 21896480 DOI: 10.1074/jbc.m111.278572] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Porphyromonas gingivalis and Porphyromonas endodontalis, asaccharolytic black-pigmented anaerobes, are predominant pathogens of human chronic and periapical periodontitis, respectively. They incorporate di- and tripeptides from the environment as carbon and energy sources. In the present study we cloned a novel dipeptidyl peptidase (DPP) gene of P. endodontalis ATCC 35406, designated as DPP11. The DPP11 gene encoded 717 amino acids with a molecular mass of 81,090 Da and was present as a 75-kDa form with an N terminus of Asp(22). A homology search revealed the presence of a P. gingivalis orthologue, PGN0607, that has been categorized as an isoform of authentic DPP7. P. gingivalis DPP11 was exclusively cell-associated as a truncated 60-kDa form, and the gene ablation retarded cell growth. DPP11 specifically removed dipeptides from oligopeptides with the penultimate N-terminal Asp and Glu and has a P2-position preference to hydrophobic residues. Optimum pH was 7.0, and the k(cat)/K(m) value was higher for Asp than Glu. Those activities were lost by substitution of Ser(652) in P. endodontalis and Ser(655) in P. gingivalis DPP11 to Ala, and they were consistently decreased with increasing NaCl concentration. Arg(670) is a unique amino acid completely conserved in all DPP11 members distributed in the genera Porphyromonas, Bacteroides, and Parabacteroides, whereas this residue is converted to Gly in all authentic DPP7 members. Substitution analysis suggested that Arg(670) interacts with an acidic residue of the substrate. Considered to preferentially utilize acidic amino acids, DPP11 ensures efficient degradation of oligopeptide substrates in these Gram-negative anaerobic rods.
Collapse
Affiliation(s)
- Yuko Ohara-Nemoto
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588.
| | - Yu Shimoyama
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Yahaba-cho 028-3691, Japan
| | - Shigenobu Kimura
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Yahaba-cho 028-3691, Japan
| | - Asako Kon
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Yahaba-cho 028-3691, Japan
| | - Hiroshi Haraga
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Yahaba-cho 028-3691, Japan
| | - Toshio Ono
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588
| | - Takayuki K Nemoto
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588
| |
Collapse
|
32
|
Impaired glycosylation blocks DPP10 cell surface expression and alters the electrophysiology of Ito channel complex. Pflugers Arch 2010; 460:87-97. [PMID: 20354865 DOI: 10.1007/s00424-010-0824-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 02/23/2010] [Accepted: 03/10/2010] [Indexed: 01/25/2023]
Abstract
DPP10 is a transmembrane glycosylated protein belonging to the family of dipeptidyl aminopeptidase-like proteins (DPPLs). DPPLs are auxiliary subunits involved in the regulation of voltage-gated Kv4 channels, key determinants of cardiac and neuronal excitability. Although it is known that DPPLs are needed to generate native-like currents in heterologous expression systems, the molecular basis of this involvement are still poorly defined. In this study, we investigated the functional relevance of DPP10 glycosylation in modulating Kv4.3 channel activities. Using transfected Chinese hamster ovary (CHO) cells to reconstitute Kv4 complex, we show that the pharmacological inhibition of DPP10 glycosylation by tunicamycin and neuraminidase affects transient outward potassium current (I (to)) kinetics. Tunicamycin completely blocked DPP10 glycosylation and reduced DPP10 cell surface expression. The accelerating effects of DPP10 on Kv4.3 current kinetics, i.e. on inactivation and recovery from inactivation, were abolished. Neuraminidase produced different effects on current kinetics than tunicamycin, i.e., shifted the voltage dependence to more negative potentials. The effects of tunicamycin on the native I (to) currents of human atrial myocytes expressing DPP10 were similar to those of the KV4.3/KChIP2/DPP10 complex in CHO cells. Our results suggest that N-linked glycosylation of DPP10 plays an important role in modulating Kv4 channel activities.
Collapse
|
33
|
McNicholas K, Chen T, Abbott CA. Dipeptidyl peptidase (DP) 6 and DP10: novel brain proteins implicated in human health and disease. Clin Chem Lab Med 2009; 47:262-7. [PMID: 19676137 DOI: 10.1515/cclm.2009.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Dipeptidyl peptidase (DP) 6 and DP10 are non-enzyme members of the dipeptidyl peptidase IV family, which includes fibroblast activation protein, DP8, and DP9. DP6 and DP10 proteins have been shown to be critical components of voltage-gated potassium (Kv) channels important in determining cellular excitability. The aim of this paper was to review the research to date on DP6 and DP10 structure, expression, and functions. To date, the protein region responsible for modulating Kv4 channels has not been conclusively identified and the significance of the splice variants has not been resolved. Resolution of these issues will improve our overall knowledge of DP6 and DP10 and lead to a better understanding of their role in diseases, such as asthma and Alzheimer's disease.
Collapse
Affiliation(s)
- Kym McNicholas
- School of Biological Sciences, Flinders University, Adelaide, South Australia, Australia
| | | | | |
Collapse
|
34
|
Niwa N, Nerbonne JM. Molecular determinants of cardiac transient outward potassium current (I(to)) expression and regulation. J Mol Cell Cardiol 2009; 48:12-25. [PMID: 19619557 DOI: 10.1016/j.yjmcc.2009.07.013] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/25/2009] [Accepted: 07/10/2009] [Indexed: 12/21/2022]
Abstract
Rapidly activating and inactivating cardiac transient outward K(+) currents, I(to), are expressed in most mammalian cardiomyocytes, and contribute importantly to the early phase of action potential repolarization and to plateau potentials. The rapidly recovering (I(t)(o,f)) and slowly recovering (I(t)(o,s)) components are differentially expressed in the myocardium, contributing to regional heterogeneities in action potential waveforms. Consistent with the marked differences in biophysical properties, distinct pore-forming (alpha) subunits underlie the two I(t)(o) components: Kv4.3/Kv4.2 subunits encode I(t)(o,f), whereas Kv1.4 encodes I(t)(o,s), channels. It has also become increasingly clear that cardiac I(t)(o) channels function as components of macromolecular protein complexes, comprising (four) Kvalpha subunits and a variety of accessory subunits and regulatory proteins that influence channel expression, biophysical properties and interactions with the actin cytoskeleton, and contribute to the generation of normal cardiac rhythms. Derangements in the expression or the regulation of I(t)(o) channels in inherited or acquired cardiac diseases would be expected to increase the risk of potentially life-threatening cardiac arrhythmias. Indeed, a recently identified Brugada syndrome mutation in KCNE3 (MiRP2) has been suggested to result in increased I(t)(o,f) densities. Continued focus in this area seems certain to provide new and fundamentally important insights into the molecular determinants of functional I(t)(o) channels and into the molecular mechanisms involved in the dynamic regulation of I(t)(o) channel functioning in the normal and diseased myocardium.
Collapse
Affiliation(s)
- Noriko Niwa
- Department of Developmental Biology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8103, St. Louis, MO 63110-1093, USA
| | | |
Collapse
|
35
|
DPPX modifies TEA sensitivity of the Kv4 channels in rabbit carotid body chemoreceptor cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009. [PMID: 19536467 DOI: 10.1007/978-90-481-2259-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Chemoreceptor cells from rabbit carotid body (CB) exhibit transient outward currents reversibly inhibited by low P(o2). Molecular and functional dissection of the components of these outward currents indicates that at least two different channels (Kv4.3 and Kv3.4) contribute to this current. Furthermore, several lines of evidence support the conclusion that Kv4 channel subfamily members (either Kv4.3 alone or Kv4.3/Kv4.1 heteromultimers) are the oxygen sensitive K channels (K(o2)) in rabbit CB chemoreceptor cells. However, the pharmacological characterization of these currents shows that they are almost completely blocked by high external TEA concentrations, while Kv4 channels have been shown to be TEA-insensitive. We hypothesized that the expression of regulatory subunits in chemoreceptor cells could modify TEA sensitivity of Kv4 channels. Here, we explore the presence and functional contribution of DPPX to K(o2) currents in rabbit CB chemoreceptor cells by using DPPX functional knockdown with siRNA. Our data suggest that DPPX proteins are integral components of K(o2) currents, and that their association with Kv4 subunits modulate the pharmacological profile of the heteromultimers.
Collapse
|
36
|
Radicke S, Cotella D, Sblattero D, Ravens U, Santoro C, Wettwer E. The transmembrane beta-subunits KCNE1, KCNE2, and DPP6 modify pharmacological effects of the antiarrhythmic agent tedisamil on the transient outward current Ito. Naunyn Schmiedebergs Arch Pharmacol 2009; 379:617-26. [PMID: 19153714 DOI: 10.1007/s00210-008-0389-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 12/25/2008] [Indexed: 11/28/2022]
Abstract
Accessory beta-subunits modulate the pharmacology of ion channel blockers. The aim was to investigate differences in effects of the antiarrhythmic agent and open-channel blocker tedisamil on transient outward current I(to) (Kv4.3) when coexpressed with beta-subunits potassium voltage-gated channel, Isk-related family, member 1 (KCNE1), potassium voltage-gated channel, Isk-related family, member 2 (KCNE2), or dipeptidyl-aminopeptidase-like protein 6 (DPP6) which modulate I(to) kinetics. Tedisamil inhibited I(to) with IC(50) values of 16 microM for Kv4.3+KChIP2, 11 microM in the presence of KCNE1, and 14 microM for KCNE2. Values were higher in the presence of DPP6 or DPP6+KCNE2 (35 and 26 microM). K(d) values of tedisamil binding and rate constants were not affected by KCNE or DPP6. I(to) kinetics were accelerated by KCNE and DPP6, inactivation to a larger extent with DPP6. Tedisamil did not affect activation time course but apparently accelerated inactivation in all channel subunit combinations tested. Deletion of the intracellular domain of KCNE2 or DPP6 resulted in slowing of kinetics and increased tedisamil sensitivity (IC(50) 4 and 7 microM). It is concluded that apparent effects of DPP6 and deletion mutants (KCNE2 and DPP6) are due to the acceleration or slowing effects of the beta-subunits on I(to) kinetics.
Collapse
Affiliation(s)
- Susanne Radicke
- Department of Pharmacology and Toxicology, Medical Faculty, Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Maffie J, Blenkinsop T, Rudy B. A novel DPP6 isoform (DPP6-E) can account for differences between neuronal and reconstituted A-type K(+) channels. Neurosci Lett 2008; 449:189-94. [PMID: 19007856 DOI: 10.1016/j.neulet.2008.10.098] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 10/29/2008] [Accepted: 10/29/2008] [Indexed: 11/25/2022]
Abstract
The channels mediating most of the somatodendritic A-type K(+) current in neurons are thought to be ternary complexes of Kv4 pore-forming subunits and two types of auxiliary subunits, the K(+) channel interacting proteins (KChIPs) and dipeptidyl-peptidase-like (DPPL) proteins. The channels expressed in heterologous expression systems by mixtures of Kv4.2, KChIP1 and DPP6-S resemble in many properties the A-type current in hippocampal CA1 pyramidal neurons and cerebellar granule cells, neurons with prominent A-type K(+) currents. However, the native currents have faster kinetics. Moreover, the A-type currents in neurons in intermediary layers of the superior colliculus have even faster inactivating rates. We have characterized a new DPP6 spliced isoform, DPP6-E, that produces in heterologous cells ternary Kv4 channels with very fast kinetics. DPP6-E is selectively expressed in a few neuronal populations in brain including cerebellar granule neurons, hippocampal pyramidal cells and neurons in intermediary layers of the superior colliculus. The effects of DPP6-E explain past discrepancies between reconstituted and native Kv4 channels in some neurons, and contributes to the diversity of A-type K(+) currents in neurons.
Collapse
Affiliation(s)
- Jonathon Maffie
- Department of Physiology & Neuroscience, New York University School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
38
|
Maffie J, Rudy B. Weighing the evidence for a ternary protein complex mediating A-type K+ currents in neurons. J Physiol 2008; 586:5609-23. [PMID: 18845608 DOI: 10.1113/jphysiol.2008.161620] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The subthreshold-operating A-type K(+) current in neurons (I(SA)) has important roles in the regulation of neuronal excitability, the timing of action potential firing and synaptic integration and plasticity. The channels mediating this current (Kv4 channels) have been implicated in epilepsy, the control of dopamine release, and the regulation of pain plasticity. It has been proposed that Kv4 channels in neurons are ternary complexes of three types of protein: pore forming subunits of the Kv4 subfamily and two types of auxiliary subunits, the Ca(2+) binding proteins KChIPs and the dipeptidyl peptidase-like proteins (DPPLs) DPP6 (also known as DPPX) and DPP10 (4 molecules of each per channel for a total of 12 proteins in the complex). Here we consider the evidence supporting this hypothesis. Kv4 channels in many neurons are likely to be ternary complexes of these three types of protein. KChIPs and DPPLs are required to efficiently traffic Kv4 channels to the plasma membrane and regulate the functional properties of the channels. These proteins may also be important in determining the localization of the channels to specific neuronal compartments, their dynamics, and their response to neuromodulators. A surprisingly large number of additional proteins have been shown to modify Kv4 channels in heterologous expression systems, but their association with native Kv4 channels in neurons has not been properly validated. A critical consideration of the evidence suggests that it is unlikely that association of Kv4 channels with these additional proteins is widespread in the CNS. However, we cannot exclude that some of these proteins may associate with the channels transiently or in specific neurons or neuronal compartments, or that they may associate with the channels in other tissues.
Collapse
Affiliation(s)
- Jonathon Maffie
- Smilow Neuroscience Program, Department of Physiology and Neuroscience, New York University School of Medicine, Smilow Research Center, 522 First Avenue, 6th Floor, New York, NY 10016, USA
| | | |
Collapse
|
39
|
Colinas O, Pérez-Carretero FD, López-López JR, Pérez-García MT. A role for DPPX modulating external TEA sensitivity of Kv4 channels. ACTA ACUST UNITED AC 2008; 131:455-71. [PMID: 18411327 PMCID: PMC2346566 DOI: 10.1085/jgp.200709912] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Shal-type (Kv4) channels are expressed in a large variety of tissues, where they contribute to transient voltage-dependent K+ currents. Kv4 are the molecular correlate of the A-type current of neurons (ISA), the fast component of ITO current in the heart, and also of the oxygen-sensitive K+ current (KO2) in rabbit carotid body (CB) chemoreceptor cells. The enormous degree of variability in the physiological properties of Kv4-mediated currents can be attributable to the complexity of their regulation together with the large number of ancillary subunits and scaffolding proteins that associate with Kv4 proteins to modify their trafficking and their kinetic properties. Among those, KChIPs and DPPX proteins have been demonstrated to be integral components of ISA and ITO currents, as their coexpression with Kv4 subunits recapitulates the kinetics of native currents. Here, we explore the presence and functional contribution of DPPX to KO2 currents in rabbit CB chemoreceptor cells by using DPPX functional knockdown with siRNA. Additionally, we investigate if the presence of DPPX endows Kv4 channels with new pharmacological properties, as we have observed anomalous tetraethylammonium (TEA) sensitivity in the native KO2 currents. DPPX association with Kv4 channels induced an increased TEA sensitivity both in heterologous expression systems and in CB chemoreceptor cells. Moreover, TEA application to Kv4-DPPX heteromultimers leads to marked kinetic effects that could be explained by an augmented closed-state inactivation. Our data suggest that DPPX proteins are integral components of KO2 currents, and that their association with Kv4 subunits modulate the pharmacological profile of the heteromultimers.
Collapse
Affiliation(s)
- Olaia Colinas
- Departamento de Bioquímica y Biología Molecular y Fisiología e Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
| | | | | | | |
Collapse
|
40
|
Jerng HH, Lauver AD, Pfaffinger PJ. DPP10 splice variants are localized in distinct neuronal populations and act to differentially regulate the inactivation properties of Kv4-based ion channels. Mol Cell Neurosci 2007; 35:604-24. [PMID: 17475505 PMCID: PMC3674967 DOI: 10.1016/j.mcn.2007.03.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 12/20/2006] [Accepted: 03/16/2007] [Indexed: 10/23/2022] Open
Abstract
Dipeptidyl peptidase-like proteins (DPLs) and Kv-channel-interacting proteins (KChIPs) join Kv4 pore-forming subunits to form multi-protein complexes that underlie subthreshold A-type currents (I(SA)) in neuronal somatodendritic compartments. Here, we characterize the functional effects and brain distributions of N-terminal variants belonging to the DPL dipeptidyl peptidase 10 (DPP10). In the Kv4.2+KChIP3+DPP10 channel complex, all DPP10 variants accelerate channel gating kinetics; however, the splice variant DPP10a produces uniquely fast inactivation kinetics that accelerates with increasing depolarization. This DPP10a-specific inactivation dominates in co-expression studies with KChIP4a and other DPP10 isoforms. Real-time qRT-PCR and in situ hybridization analyses reveal differential expression of DPP10 variants in rat brain. DPP10a transcripts are prominently expressed in the cortex, whereas DPP10c and DPP10d mRNAs exhibit more diffuse distributions. Our results suggest that DPP10a underlies rapid inactivation of cortical I(SA), and the regulation of isoform expression may contribute to the variable inactivation properties of I(SA) across different brain regions.
Collapse
Affiliation(s)
- Henry H Jerng
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, S630 Houston, TX 77030, USA.
| | | | | |
Collapse
|
41
|
Frerker N, Wagner L, Wolf R, Heiser U, Hoffmann T, Rahfeld JU, Schade J, Karl T, Naim HY, Alfalah M, Demuth HU, von Hörsten S. Neuropeptide Y (NPY) cleaving enzymes: structural and functional homologues of dipeptidyl peptidase 4. Peptides 2007; 28:257-68. [PMID: 17223229 DOI: 10.1016/j.peptides.2006.09.027] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 09/06/2006] [Indexed: 10/23/2022]
Abstract
N-terminal truncation of NPY has important physiological consequences, because the truncated peptides lose their capability to activate the Y1-receptor. The sources of N-terminally truncated NPY and related peptides are unknown and several proline specific peptidases may be involved. First, we therefore provide an overview on the peptidases, belonging to structural and functional homologues of dipeptidyl peptidase 4 (DP4) as well as aminopeptidase P (APP) and thus, represent potential candidates of NPY cleavage in vivo. Second, applying selective inhibitors against DP4, DP8/9 and DP2, respectively, the enzymatic distribution was analyzed in brain extracts from wild type and DP4 deficient F344 rat substrains and human plasma samples in activity studies as well as by matrix assisted laser desorption/ionisation-time of flight (MALDI-TOF)-mass spectrometry. Third, co-transfection of Cos-1 cells with Dpp4 and Npy followed by confocal lasermicroscopy illustrated that hNPY-dsRed1-N1 was transported in large dense core vesicles towards the membrane while rDP4-GFP-C1 was transported primarily in different vesicles thereby providing no clear evidence for co-localization of NPY and DP4. Nevertheless, the review and experimental results of activity and mass spectrometry studies support the notion that at least five peptidases (DP4, DP8, DP9, XPNPEP1, XPNPEP2) are potentially involved in NPY cleavage while the serine protease DP4 (CD26) could be the principal peptidase involved in the N-terminal truncation of NPY. However, DP8 and DP9 are also capable of cleaving NPY, whereas no cleavage could be demonstrated for DP2.
Collapse
Affiliation(s)
- Nadine Frerker
- Department of Functional and Applied Anatomy, Hannover Medical School, OE 4120, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Gorrell MD, Wang XM, Park J, Ajami K, Yu DMT, Knott H, Seth D, McCaughan GW. Structure and Function in Dipeptidyl Peptidase IV and Related Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 575:45-54. [PMID: 16700507 DOI: 10.1007/0-387-32824-6_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Mark D Gorrell
- A. W. Morrow Gastroenterology and Liver Centre at Royal Prince Alfred Hospital, Centenary Institute of Cancer Medicine and Cell Biology and The Discipline of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Various studies, mostly in the past 5 years, have demonstrated that, in addition to their well-described function in regulating electrical excitability, voltage-dependent ion channels participate in intracellular signalling pathways. Channels can directly activate enzymes linked to cellular signalling pathways, serve as cell adhesion molecules or components of the cytoskeleton, and their activity can alter the expression of specific genes. Here, I review these findings and discuss the extent to which the molecular mechanisms of such signalling are understood.
Collapse
Affiliation(s)
- Leonard K Kaczmarek
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA.
| |
Collapse
|
44
|
Li HL, Qu YJ, Lu YC, Bondarenko VE, Wang S, Skerrett IM, Morales MJ. DPP10 is an inactivation modulatory protein of Kv4.3 and Kv1.4. Am J Physiol Cell Physiol 2006; 291:C966-76. [PMID: 16738002 DOI: 10.1152/ajpcell.00571.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Voltage-gated K+ channels exist in vivo as multiprotein complexes made up of pore-forming and ancillary subunits. To further our understanding of the role of a dipeptidyl peptidase-related ancillary subunit, DPP10, we expressed it with Kv4.3 and Kv1.4, two channels responsible for fast-inactivating K+ currents. Previously, DPP10 has been shown to effect Kv4 channels. However, Kv1.4, when expressed with DPP10, showed many of the same effects as Kv4.3, such as faster time to peak current and negative shifts in the half-inactivation potential of steady-state activation and inactivation. The exception was recovery from inactivation, which is slowed by DPP10. DPP10 expressed with Kv4.3 caused negative shifts in both steady-state activation and inactivation of Kv4.3, but no significant shifts were detected when DPP10 was expressed with Kv4.3 + KChIP2b (Kv channel interacting protein). DPP10 and KChIP2b had different effects on closed-state inactivation. At −60 mV, KChIP2b nearly abolishes closed-state inactivation in Kv4.3, whereas it developed to a much greater extent in the presence of DPP10. Finally, expression of a DPP10 mutant consisting of its transmembrane and cytoplasmic 58 amino acids resulted in effects on Kv4.3 gating that were nearly identical to those of wild-type DPP10. These data show that DPP10 and KChIP2b both modulate Kv4.3 inactivation but that their primary effects are on different inactivation states. Thus DPP10 may be a general modulator of voltage-gated K+ channel inactivation; understanding its mechanism of action may lead to deeper understanding of the inactivation of a broad range of K+ channels.
Collapse
Affiliation(s)
- Hong-Ling Li
- Dept. of Physiology and Biophysics, University at Buffalo-SUNY, Buffalo, NY 14214, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Takimoto K, Hayashi Y, Ren X, Yoshimura N. Species and tissue differences in the expression of DPPY splicing variants. Biochem Biophys Res Commun 2006; 348:1094-100. [PMID: 16899223 DOI: 10.1016/j.bbrc.2006.07.157] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2006] [Accepted: 07/26/2006] [Indexed: 11/29/2022]
Abstract
The non-functional dipeptidyl peptidase, DPPY (DPP10), regulates the expression and gating of K+ channels in Kv4 family by tightly binding to these pore-forming subunits. Neural tissue-specific expression of this and the related DPPX (DPP6) is thought to confer rapid inactivation and other unique properties of neuronal Kv4 channels. Here we report that DPPY mRNA is abundant in human adrenal gland, but very low in the corresponding rat tissue. Furthermore, multiple DPPY splicing variants with alternative first exons are significant in the brain, whereas the expression of DPPY gene in the adrenal gland and pancreas is predominantly initiated at the two latter sites. These splicing variants, as well as an N-terminal peptide-deleted DPPY, produce similar changes in Kv4.3 gating. Thus, transcription of DPPY gene is species- and tissue-specifically controlled.
Collapse
Affiliation(s)
- Koichi Takimoto
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, 100 Technology Drive, Pittsburgh, PA 15260, USA.
| | | | | | | |
Collapse
|
46
|
Nadal MS, Amarillo Y, Vega-Saenz de Miera E, Rudy B. Differential characterization of three alternative spliced isoforms of DPPX. Brain Res 2006; 1094:1-12. [PMID: 16764835 DOI: 10.1016/j.brainres.2006.03.106] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 03/13/2006] [Accepted: 03/22/2006] [Indexed: 11/17/2022]
Abstract
Transient subthreshold-activating somato-dendritic A-type K(+) currents (I(SA)s) have fundamental roles in neuronal function. They cause delayed excitation, influence spike repolarization, modulate the frequency of repetitive firing, and have important roles in signal processing in dendrites. We previously reported that DPPX proteins are key components of the channels mediating these currents (Kv4 channels) (Nadal, M.S., Ozaita, A., Amarillo, Y., Vega-Saenz, E., Ma, Y., Mo, W., Goldberg, E.M., Misumi, Y., Ikehara, Y., Neubert, T.A., Rudy, B., 2003. The CD26-related dipeptidyl aminopeptidase-like protein DPPX is a critical component of neuronal A-type K+ channels. Neuron 37, 449-461). The DPPX gene encodes alternatively spliced transcripts that generate single-spanning transmembrane proteins with a short, divergent intracellular domain and a large extracellular domain. We characterized the modulatory effects on Kv4.2-mediated currents and the rat brain distribution of three splice variants of the DPPX subfamily of proteins. These three splice isoforms--DPPX-S, DPPX-L, and DPPX-K--are expressed in adult rat brain and modify the voltage dependence and kinetic properties of Kv4.2 channels expressed in Xenopus oocytes. Analysis of a deletion mutant that lacks the variable N-terminus showed that the N-terminus is not necessary for the modulation of Kv4 channels. Using in situ hybridization analysis, we found that the three splice variants are prominently expressed in brain regions where Kv4 subunits are also expressed. DPPX-K and DPPX-S mRNAs have a widespread distribution, whereas DPPX-L transcripts are concentrated in few specific areas of the rat brain. The emerging diversity of DPPX splice variants, differing only in the N-terminus of the protein, opens up intriguing possibilities for the modulation of Kv4 channels.
Collapse
Affiliation(s)
- Marcela S Nadal
- Department of Physiology and Neuroscience, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | |
Collapse
|
47
|
Chen T, Ajami K, McCaughan GW, Gai WP, Gorrell MD, Abbott CA. Molecular characterization of a novel dipeptidyl peptidase like 2-short form (DPL2-s) that is highly expressed in the brain and lacks dipeptidyl peptidase activity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:33-43. [PMID: 16290253 DOI: 10.1016/j.bbapap.2005.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 09/24/2005] [Accepted: 09/28/2005] [Indexed: 10/25/2022]
Abstract
DPL2 (DPP10) found at chromosome 2q14.1 is a member of the dipeptidyl peptidase IV (DPIV) gene family. Here we characterize a novel short DPL2 isoform (DPL2-s), a 789-amino acid protein, that differs from the previously described long DPL2 isoform (DPL2-l) at the N-terminal cytoplasmic domain by 13 amino acids. The two DPL2 isoforms use alternate first exons. DPL2 mRNA was expressed mainly in the brain and pancreas. Multiple forms of recombinant DPL2-s protein were observed in 293T cells, having mobilities 96 kDa, 100 kDa, and approximately 250 kDa which may represent soluble DPL2, transmembrane DPL2 and multimeric DPL2 respectively. DPL2 is glycosylated as a band shift is observed following PNGase F deglycosylation. DPL2-s was expressed primarily on the cell surface of transfected 293T and PC12 cells. DPL2-s exhibits high sequence homology with other DPIV peptidases, but lacks a catalytic serine residue and lacks dipeptidyl peptidase activity. Substitutions of Gly(644)-->Ser, Lys(643)Gly(644)-->TrpSer, or Asp(561)Lys(643)Gly(644)-->TyrTrpSer in the catalytic motif did not confer dipeptidyl peptidase activity upon DPL2-s. Thus, although DPL2 is similar in structure and sequence to the other dipeptidyl peptidases, it lacks vital residues required to confer dipeptidyl peptidase activity and has instead evolved features that enable it to act as an important component of voltage-gated potassium channels.
Collapse
Affiliation(s)
- Tong Chen
- School of Biological Sciences, Flinders University, GPO BOX 2100, Adelaide, South Australia 5001, Australia
| | | | | | | | | | | |
Collapse
|
48
|
Patel SP, Campbell DL. Transient outward potassium current, 'Ito', phenotypes in the mammalian left ventricle: underlying molecular, cellular and biophysical mechanisms. J Physiol 2005; 569:7-39. [PMID: 15831535 PMCID: PMC1464208 DOI: 10.1113/jphysiol.2005.086223] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/07/2005] [Accepted: 04/13/2005] [Indexed: 11/08/2022] Open
Abstract
At least two functionally distinct transient outward K(+) current (I(to)) phenotypes can exist across the free wall of the left ventricle (LV). Based upon their voltage-dependent kinetics of recovery from inactivation, these two phenotypes are designated 'I(to,fast)' (recovery time constants on the order of tens of milliseconds) and 'I(to,slow)' (recovery time constants on the order of thousands of milliseconds). Depending upon species, either I(to,fast), I(to,slow) or both current phenotypes may be expressed in the LV free wall. The expression gradients of these two I(to) phenotypes across the LV free wall are typically heterogeneous and, depending upon species, may consist of functional phenotypic gradients of both I(to,fast) and I(to,slow) and/or density gradients of either phenotype. We review the present evidence (molecular, biophysical, electrophysiological and pharmacological) for Kv4.2/4.3 alpha subunits underlying LV I(to,fast) and Kv1.4 alpha subunits underlying LV I(to,slow) and speculate upon the potential roles of each of these currents in determining frequency-dependent action potential characteristics of LV subepicardial versus subendocardial myocytes in different species. We also review the possible functional implications of (i) ancillary subunits that regulate Kv1.4 and Kv4.2/4.3 (Kvbeta subunits, DPPs), (ii) KChIP2 isoforms, (iii) spider toxin-mediated block of Kv4.2/4.3 (Heteropoda toxins, phrixotoxins), and (iv) potential mechanisms of modulation of I(to,fast) and I(to,slow) by cellular redox state, [Ca(2)(+)](i) and kinase-mediated phosphorylation. I(to) phenotypic activation and state-dependent gating models and molecular structure-function relationships are also discussed.
Collapse
Affiliation(s)
- Sangita P Patel
- Department of Physiology and Biophysics, University at Buffalo, State University of New York, NY 14214-3078, USA.
| | | |
Collapse
|
49
|
Jerng HH, Kunjilwar K, Pfaffinger PJ. Multiprotein assembly of Kv4.2, KChIP3 and DPP10 produces ternary channel complexes with ISA-like properties. J Physiol 2005; 568:767-88. [PMID: 16123112 PMCID: PMC1464192 DOI: 10.1113/jphysiol.2005.087858] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 08/22/2005] [Indexed: 01/04/2023] Open
Abstract
Kv4 pore-forming subunits are the principal constituents of the voltage-gated K+ channel underlying somatodendritic subthreshold A-type currents (I(SA)) in neurones. Two structurally distinct types of Kv4 channel modulators, Kv channel-interacting proteins (KChIPs) and dipeptidyl-peptidase-like proteins (DPLs: DPP6 or DPPX, DPP10 or DPPY), enhance surface expression and modify functional properties. Since KChIP and DPL distributions overlap in the brain, we investigated the potential coassembly of Kv4.2, KChIP3 and DPL proteins, and the contribution of DPLs to ternary complex properties. Immunoprecipitation results show that KChIP3 and DPP10 associate simultaneously with Kv4.2 proteins in rat brain as well as heterologously expressing Xenopus oocytes, indicating Kv4.2 + KChIP3 + DPP10 multiprotein complexes. Consistent with ternary complex formation, coexpression of Kv4.2, KChIP3 and DPP10 in oocytes and CHO cells results in current waveforms distinct from the arithmetic sum of Kv4.2 + KChIP3 and Kv4.2 + DPP10 currents. Furthermore, the Kv4.2 + KChIP3 + DPP10 channels recover from inactivation very rapidly (tau(rec) approximately 18-26 ms), closely matching that of native I(SA) and significantly faster than the recovery of Kv4.2 + KChIP3 or Kv4.2 + DPP10 channels. For comparison, identical triple coexpression experiments were performed using DPP6 variants. While most results are similar, the Kv4.2 + KChIP3 + DPP6 channels exhibit inactivation that slows with increasing membrane potential, resulting in inactivation slower than that of Kv4.2 + KChIP3 + DPP10 channels at positive voltages. In conclusion, the native neuronal subthreshold A-type channel is probably a macromolecular complex formed from Kv4 and a combination of both KChIP and DPL proteins, with the precise composition of channel alpha and auxiliary subunits underlying tissue and regional variability in I(SA) properties.
Collapse
Affiliation(s)
- Henry H Jerng
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, S630, Houston, TX 77030, USA.
| | | | | |
Collapse
|
50
|
Radicke S, Cotella D, Graf EM, Ravens U, Wettwer E. Expression and function of dipeptidyl-aminopeptidase-like protein 6 as a putative beta-subunit of human cardiac transient outward current encoded by Kv4.3. J Physiol 2005; 565:751-6. [PMID: 15890703 PMCID: PMC1464568 DOI: 10.1113/jphysiol.2005.087312] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dipeptidyl-aminopeptidase-like protein 6 (DPPX) was recently shown in the brain to modulate the kinetics of transient A-type currents by accelerating inactivation and recovery from inactivation. Since the kinetics of human cardiac transient outward current (I(to)) are not mimicked by coexpression of the alpha-subunit Kv4.3 with its known beta-subunit KChIP2, we have tested the hypothesis that DPPX may serve as an additional beta-subunit in the human heart. With quantitative real-time RT-PCR strong mRNA expression of DPPX was detected in human ventricles and was verified at the protein level in human but not in rat heart by a DPPX-specific antibody. Co-expression of DPPX with Kv4.3 in Chinese hamster ovary cells produced I(to)-like currents, but compared with expression of KChIP2a and Kv4.3, the time constant of inactivation was faster, the potential of half-maximum steady-state inactivation was more negative and recovery from inactivation was delayed. Co-expression of DPPX in addition to Kv4.3 and KChIP2a produced similar current kinetics as in human ventricular myocytes. We therefore propose that DPPX is an essential component of the native cardiac I(to) channel complex in human heart.
Collapse
Affiliation(s)
- Susanne Radicke
- Department of Pharmacology and Toxicology, Medical Faculty, Dresden University of Technology, Fetscherstr. 74, Dresden, 01307 Germany
| | | | | | | | | |
Collapse
|