1
|
Alessandroni L, Sagratini G, Gagaoua M. Proteomics and bioinformatics analyses based on two-dimensional electrophoresis and LC-MS/MS for the primary characterization of protein changes in chicken breast meat from divergent farming systems: Organic versus antibiotic-free. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 8:100194. [PMID: 38298469 PMCID: PMC10828576 DOI: 10.1016/j.fochms.2024.100194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/02/2024] [Accepted: 01/13/2024] [Indexed: 02/02/2024]
Abstract
Proteomics is a key analytical method in meat research thanks to its potential in investigating the proteins at interplay in post-mortem muscles. This study aimed to characterize for the first time the differences in early post-mortem muscle proteomes of chickens raised under two farming systems: organic versus antibiotic-free. Forty post-mortem Pectoralis major muscle samples from two chicken strains (Ross 308 versus Ranger Classic) reared under organic versus antibiotic-free farming systems were characterized and compared using two-dimensional electrophoresis and LC-MS/MS mass spectrometry. Within antibiotic-free and organic farming systems, 14 and 16 proteins were differentially abundant between Ross 308 and Ranger Classic, respectively. Within Ross 308 and Ranger Classic chicken strains, 12 and 18 proteins were differentially abundant between organic and antibiotic-free, respectively. Bioinformatics was applied to investigate the molecular pathways at interplay, which highlighted the key role of muscle structure and energy metabolism. Antibiotic-free and organic farming systems were found to significantly impact the muscle proteome of chicken breast meat. This paper further proposes a primary list of putative protein biomarkers that can be used for chicken meat or farming system authenticity.
Collapse
Affiliation(s)
- Laura Alessandroni
- School of Pharmacy, Chemistry Interdisciplinary Project (CHIP), University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Gianni Sagratini
- School of Pharmacy, Chemistry Interdisciplinary Project (CHIP), University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | | |
Collapse
|
2
|
Mallaby J, Ng J, Stewart A, Sinclair E, Dunn-Walters D, Hershberg U. Chickens, more than humans, focus the diversity of their immunoglobulin genes on the complementarity-determining region but utilise amino acids, indicative of a more cross-reactive antibody repertoire. Front Immunol 2022; 13:837246. [PMID: 36569888 PMCID: PMC9772431 DOI: 10.3389/fimmu.2022.837246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The mechanisms of B-cell diversification differ greatly between aves and mammals, but both produce B cells and antibodies capable of supporting an effective immune response. To see how differences in the generation of diversity might affect overall repertoire diversity, we have compared the diversity characteristics of immunoglobulin genes from domestic chickens to those from humans. Both use V(D)J gene rearrangement and somatic hypermutation, but only chickens use somatic gene conversion. A range of diversity analysis tools were used to investigate multiple aspects of amino acid diversity at both the germline and repertoire levels. The effect of differing amino acid usages on antibody characteristics was assessed. At both the germline and repertoire levels, chickens exhibited lower amino acid diversity in comparison to the human immunoglobulin genes, especially outside of the complementarity-determining region (CDR). Chickens were also found to possess much larger and more hydrophilic CDR3s with a higher predicted protein binding potential, suggesting that the antigen-binding site in chicken antibodies is more flexible and more polyreactive than that seen in human antibodies.
Collapse
Affiliation(s)
- Jessica Mallaby
- Department of Bioscience and Medicine, University of Surrey, Guildford, United Kingdom
| | - Joseph Ng
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | - Alex Stewart
- Department of Bioscience and Medicine, University of Surrey, Guildford, United Kingdom
| | - Emma Sinclair
- Department of Bioscience and Medicine, University of Surrey, Guildford, United Kingdom
| | - Deborah Dunn-Walters
- Department of Bioscience and Medicine, University of Surrey, Guildford, United Kingdom
| | - Uri Hershberg
- Department of Human Biology, University of Haifa, Haifa, Israel
| |
Collapse
|
3
|
Sinkora M, Stepanova K, Butler JE, Sinkora M, Sinkora S, Sinkorova J. Comparative Aspects of Immunoglobulin Gene Rearrangement Arrays in Different Species. Front Immunol 2022; 13:823145. [PMID: 35222402 PMCID: PMC8873125 DOI: 10.3389/fimmu.2022.823145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/24/2022] [Indexed: 11/25/2022] Open
Abstract
Studies in humans and mice indicate the critical role of the surrogate light chain in the selection of the productive immunoglobulin repertoire during B cell development. However, subsequent studies using mutant mice have also demonstrated that alternative pathways are allowed. Our recent investigation has shown that some species, such as pig, physiologically use preferential rearrangement of authentic light chains, and become independent of surrogate light chains. Here we summarize the findings from swine and compare them with results in other species. In both groups, allelic and isotypic exclusions remain intact, so the different processes do not alter the paradigm of B-cell monospecificity. Both groups also retained some other essential processes, such as segregated and sequential rearrangement of heavy and light chain loci, preferential rearrangement of light chain kappa before lambda, and functional κ-deleting element recombination. On the other hand, the respective order of heavy and light chains rearrangement may vary, and rearrangement of the light chain kappa and lambda on different chromosomes may occur independently. Studies have also confirmed that the surrogate light chain is not required for the selection of the productive repertoire of heavy chains and can be substituted by authentic light chains. These findings are important for understanding evolutional approaches, redundancy and efficiency of B-cell generation, dependencies on other regulatory factors, and strategies for constructing therapeutic antibodies in unrelated species. The results may also be important for explaining interspecies differences in the proportional use of light chains and for the understanding of divergences in rearrangement processes. Therefore, the division into two groups may not be definitive and there may be more groups of intermediate species.
Collapse
Affiliation(s)
- Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Katerina Stepanova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - John E. Butler
- Department of Microbiology, University of Iowa, Iowa City, IA, United States
| | - Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Simon Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Jana Sinkorova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| |
Collapse
|
4
|
Abstract
The intestinal tract harbors a diverse community of microbes that have co-evolved with the host immune system. Although many of these microbes execute functions that are critical for host physiology, the host immune system must control the microbial community so that the dynamics of this interdependent relationship is maintained. To facilitate host homeostasis, the immune system ensures that the microbial load is tolerated, but anatomically contained, while remaining reactive to microbial invasion. Although the microbiota is required for intestinal immune development, immune responses regulate the structure and composition of the intestinal microbiota by evolving unique immune adaptations that manage this high-bacterial load. The immune mechanisms work together to ensure that commensal bacteria rarely breach the intestinal barrier and that any that do invade should be killed rapidly to prevent penetration to systemic sites. The communication between microbiota and the immune system is mediated by the interaction of bacterial components with pattern recognition receptors expressed by intestinal epithelium and various antigen-presenting cells resulting in activation of both innate and adaptive immune responses. Interaction between the microbial community and host plays a crucial role in the mucosal homeostasis and health status of the host. In addition to providing a home to numerous microbial inhabitants, the intestinal tract is an active immunological organ, with more resident immune cells than anywhere else in the body, organized in lymphoid structures called Peyer's patches and isolated lymphoid follicles such as the cecal tonsils. Macrophages, dendritic cells, various subsets of T cells, B cells and the secretory immunoglobulin A (IgA) they produce, all contribute to the generation of a proper immune response to invading pathogens while keeping the resident microbial community in check without generating an overt inflammatory response to it. IgA-producing plasma cells, intraepithelial lymphocytes, and γδT cell receptor-expressing T cells are lymphocytes that are uniquely present in the mucosa. In addition, of the γδT cells in the intestinal lamina propria, there are significant numbers of IL-17-producing T cells and regulatory T cells. The accumulation and function of these mucosal leukocytes are regulated by the presence of intestinal microbiota, which regulate these immune cells and enhance the mucosal barrier function allowing the host to mount robust immune responses against invading pathogens, and simultaneously maintains immune homeostasis.
Collapse
Affiliation(s)
- Michael H Kogut
- Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX, 77845 USA.
| | - Annah Lee
- Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX, 77845 USA; Department of Poultry Science, Texas A&M University, College Station, TX, 77845 USA
| | - Elizabeth Santin
- Universidade Federal Do Paraná, Department of Veterinary Medicine, Curitiba, 80035-050 Brazil
| |
Collapse
|
5
|
Leighton PA, Morales J, Harriman WD, Ching KH. V(D)J Rearrangement Is Dispensable for Producing CDR-H3 Sequence Diversity in a Gene Converting Species. Front Immunol 2018; 9:1317. [PMID: 29951062 PMCID: PMC6008532 DOI: 10.3389/fimmu.2018.01317] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/28/2018] [Indexed: 12/20/2022] Open
Abstract
An important characteristic of chickens is that the antibody repertoire is based on a single framework, with diversity found mainly in the CDRs of the light and heavy chain variable regions. Despite this apparent limitation in the antibody repertoire, high-affinity antibodies can be raised to a wide variety of targets, including those that are highly conserved. Transgenic chickens have previously been generated that express a humanized antibody repertoire, with a single framework that incorporates diversity by the process of gene conversion, as in wild-type chickens. Here, we compare the sequences and antibodies that are generated purely by gene conversion/somatic hypermutation of a pre-rearranged heavy chain, with the diversity obtained by V(D)J rearrangement followed by gene conversion and somatic hypermutation. In a gene converting species, CDR-H3 lengths are more variable with V(D)J rearrangement, but similar levels of amino acid diversity are obtainable with gene conversion/somatic hypermutation alone.
Collapse
|
6
|
Wu B, Li L, Ruan T, Peng X. Effect of methionine deficiency on duodenal and jejunal IgA + B cell count and immunoglobulin level of broilers. IRANIAN JOURNAL OF VETERINARY RESEARCH 2018; 19:165-171. [PMID: 30349561 PMCID: PMC6184025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/28/2018] [Accepted: 02/17/2018] [Indexed: 06/08/2023]
Abstract
Dietary methionine (met) is reported to enhance antibody production and boost cell-mediated immunity in chickens. Methionine deficiency has been shown to affect the development of the lymphoid organs and the generation of antibodies in chickens. This study is designed to investigate the effects of met deficiency on IgA+ B cells and immunoglobulins (sIgA, IgA, IgG and IgM) for a 6 week period in the duodenum and jejunum of Cobb broiler chicken using immunohistochemistry and enzyme-linked immunosorbent assay (ELISA) techniques. The results of the study showed that the IgA+ B cell count reduced significantly in the met deficiency group compared to the control group (P<0.05 or P<0.01). The contents of sIgA, IgA, IgG and IgM in the met deficiency group were significantly decreased (P<0.05 or P<0.01), especially at 28 and 42 days of age. It can be concluded that met deficiency exerts significant effects on the humoral immune system of intestinal mucosa. This study has provided valuable experimental insight which could be useful for future studies on the function of met in the intestine of humans and other animals.
Collapse
Affiliation(s)
- B. Wu
- Department of Animal Pathology, College of Life Science, China West Normal University, Sichuan, China
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, Sichuan, China
| | - L. Li
- BSc in Animal Pathology, Department of Animal Pathology, College of Life Science, China West Normal University, Sichuan, China
| | - T. Ruan
- BSc in Animal Pathology, Department of Animal Pathology, College of Life Science, China West Normal University, Sichuan, China
| | - X. Peng
- Department of Animal Pathology, College of Life Science, China West Normal University, Sichuan, China
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, Sichuan, China
| |
Collapse
|
7
|
Sinkora M, Sinkorova J, Stepanova K. Ig Light Chain Precedes Heavy Chain Gene Rearrangement during Development of B Cells in Swine. THE JOURNAL OF IMMUNOLOGY 2017; 198:1543-1552. [DOI: 10.4049/jimmunol.1601035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/06/2016] [Indexed: 12/16/2022]
|
8
|
Bastianello G, Arakawa H. A double-strand break can trigger immunoglobulin gene conversion. Nucleic Acids Res 2016; 45:231-243. [PMID: 27701075 PMCID: PMC5224512 DOI: 10.1093/nar/gkw887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 12/23/2022] Open
Abstract
All three B cell-specific activities of the immunoglobulin (Ig) gene re-modeling system—gene conversion, somatic hypermutation and class switch recombination—require activation-induced deaminase (AID). AID-induced DNA lesions must be further processed and dissected into different DNA recombination pathways. In order to characterize potential intermediates for Ig gene conversion, we inserted an I-SceI recognition site into the complementarity determining region 1 (CDR1) of the Ig light chain locus of the AID knockout DT40 cell line, and conditionally expressed I-SceI endonuclease. Here, we show that a double-strand break (DSB) in CDR1 is sufficient to trigger Ig gene conversion in the absence of AID. The pattern and pseudogene usage of DSB-induced gene conversion were comparable to those of AID-induced gene conversion; surprisingly, sometimes a single DSB induced multiple gene conversion events. These constitute direct evidence that a DSB in the V region can be an intermediate for gene conversion. The fate of the DNA lesion downstream of a DSB had more flexibility than that of AID, suggesting two alternative models: (i) DSBs during the physiological gene conversion are in the minority compared to single-strand breaks (SSBs), which are frequently generated following DNA deamination, or (ii) the physiological gene conversion is mediated by a tightly regulated DSB that is locally protected from non-homologous end joining (NHEJ) or other non-homologous DNA recombination machineries.
Collapse
Affiliation(s)
- Giulia Bastianello
- IFOM - FIRC Institute of Molecular Oncology Foundation, Via Adamello 16, 20139 Milan, Italy.,Università degli Studi di Milano, Dipartimento di Bioscienze, Via Celoria 26, 20133 Milan, Italy
| | - Hiroshi Arakawa
- IFOM - FIRC Institute of Molecular Oncology Foundation, Via Adamello 16, 20139 Milan, Italy
| |
Collapse
|
9
|
Schusser B, Collarini EJ, Pedersen D, Yi H, Ching K, Izquierdo S, Thoma T, Lettmann S, Kaspers B, Etches RJ, van de Lavoir MC, Harriman W, Leighton PA. Expression of heavy chain-only antibodies can support B-cell development in light chain knockout chickens. Eur J Immunol 2016; 46:2137-48. [PMID: 27392810 PMCID: PMC5113765 DOI: 10.1002/eji.201546171] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 05/20/2016] [Accepted: 07/06/2016] [Indexed: 12/22/2022]
Abstract
Since the discovery of antibody-producing B cells in chickens six decades ago, chickens have been a model for B-cell development in gut-associated lymphoid tissue species. Here we describe targeting of the immunoglobulin light chain locus by homologous recombination in chicken primordial germ cells (PGCs) and generation of VJCL knockout chickens. In contrast to immunoglobulin heavy chain knockout chickens, which completely lack mature B cells, homozygous light chain knockout (IgL(-/-) ) chickens have a small population of B lineage cells that develop in the bursa and migrate to the periphery. This population of B cells expresses the immunoglobulin heavy chain molecule on the cell surface. Soluble heavy-chain-only IgM and IgY proteins of reduced molecular weight were detectable in plasma in 4-week-old IgL(-/-) chickens, and antigen-specific IgM and IgY heavy chain proteins were produced in response to immunization. Circulating heavy-chain-only IgM showed a deletion of the CH1 domain of the constant region enabling the immunoglobulin heavy chain to be secreted in the absence of the light chain. Our data suggest that the heavy chain by itself is enough to support all the important steps in B-cell development in a gut-associated lymphoid tissue species.
Collapse
Affiliation(s)
- Benjamin Schusser
- Reproductive Biotechnology, Technische Universität München, WZW Center of Life Science, Freising-Weihenstephan, Germany
| | | | | | - Henry Yi
- Crystal Bioscience Inc, Emeryville, CA, USA
| | | | | | - Theresa Thoma
- Reproductive Biotechnology, Technische Universität München, WZW Center of Life Science, Freising-Weihenstephan, Germany
| | - Sarah Lettmann
- Department of Veterinary Science, Institute for Animal Physiology, Ludwig-Maximilians-Universitaet Muenchen, Munich, Germany
| | - Bernd Kaspers
- Department of Veterinary Science, Institute for Animal Physiology, Ludwig-Maximilians-Universitaet Muenchen, Munich, Germany
| | | | | | | | | |
Collapse
|
10
|
Yin S, Guo H, Cui H, Peng X, Fang J, Zuo Z, Deng J, Wang X, Tang K, Li J. Nickel Chloride (NiCl2) Induces Histopathological Lesions via Oxidative Damage in the Broiler's Bursa of Fabricius. Biol Trace Elem Res 2016; 171:214-23. [PMID: 26440478 DOI: 10.1007/s12011-015-0528-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 09/28/2015] [Indexed: 11/29/2022]
Abstract
The purpose of this study was to investigate the histopathological lesions, oxidative damage, changes of immunoglobulin G (IgG), immunoglobulin M (IgM), and immunoglobulin A (IgA) contents in the bursa of Fabricius and serum immunoglobulins (IgG, IgM, IgA) induced by dietary nickel chloride (NiCl2). Two hundred and eighty-one-day-old broilers were randomly divided into four groups and fed on a control diet and three experimental diets supplemented with 300, 600, and 900 mg/kg of NiCl2 for 42 days. Lesions were observed in the NiCl2-treated groups. Histopathologically, lymphocytes were decreased in lymphoid follicles with thinner cortices and wider medullae. Concurrently, the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and the ability to inhibit hydroxyl radical and glutathione (GSH) contents were significantly (p < 0.05 or p < 0.01) decreased, while malondialdehyde (MDA) contents were increased in the NiCl2-treated groups. The serum IgG, IgM, and bursa IgG and IgM contents were significantly (p < 0.05 or p < 0.01) lower in the NiCl2-treated groups than those in the control group. The above-mentioned results show that dietary NiCl2 in excess of 300 mg/kg can cause histopathological lesions via oxidative damage, which finally impairs the function of the bursa of Fabricius and reduces IgG and IgM contents of the serum and the bursa of Fabricius. The study is aimed to provide helpful materials for studies on Ni- or Ni compounds-induced B cell toxicity in both human and other animals in the future.
Collapse
Affiliation(s)
- Shuang Yin
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Ya'an, China
| | - Hongrui Guo
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Ya'an, China
| | - Hengmin Cui
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Ya'an, China.
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, 625014, China.
| | - Xi Peng
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Ya'an, China
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, 625014, China
| | - Jing Fang
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Ya'an, China
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, 625014, China
| | - Zhicai Zuo
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Ya'an, China
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, 625014, China
| | - Junliang Deng
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Ya'an, China
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, 625014, China
| | - Xun Wang
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Ya'an, China
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, 625014, China
| | - Kun Tang
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Ya'an, China
| | - Jian Li
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Ya'an, China
| |
Collapse
|
11
|
Toxicological effects of nickel chloride on IgA+ B Cells and sIgA, IgA, IgG, IgM in the intestinal mucosal immunity in broilers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:8175-92. [PMID: 25116637 PMCID: PMC4143856 DOI: 10.3390/ijerph110808175] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/15/2014] [Accepted: 07/25/2014] [Indexed: 11/17/2022]
Abstract
The objective of this study was to investigate the toxicological effects of dietary NiCl2 on IgA+ B cells and the immunoglobulins including sIgA, IgA, IgG and IgM in the small intestine and cecal tonsil of broilers by the methods of immunohistochemistry and enzyme-linked immunosorbent assay (ELISA). Two hundred and forty one-day-old avian broilers were randomly divided into four groups and fed on a control diet and three experimental diets supplemented with 300, 600, and 900 mg/kg NiCl2 for 42 days. Compared with the control group, the IgA+ B cell number and the sIgA, IgA, IgG, and IgM contents in the NiCl2-treated groups were significantly decreased (p < 0.05 or p < 0.01). It was concluded that dietary NiCl2 in the excess of 300 mg/kg had negative effects on the IgA+ B cell number and the above mentioned immunoglobulin contents in the small intestine and the cecal tonsil. NiCl2-reduced sIgA, IgA, IgG and IgM contents is due to decrease in the population and/or the activation of B cell. The results suggest that NiCl2 at high levels has intestinal mucosal humoral immunotoxicity in animals.
Collapse
|
12
|
Madej JP, Chrząstek K, Piasecki T, Wieliczko A. New insight into the structure, development, functions and popular disorders of bursa Fabricii. Anat Histol Embryol 2013; 42:321-31. [PMID: 23438192 DOI: 10.1111/ahe.12026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 12/01/2012] [Indexed: 01/28/2023]
Abstract
Humoral immune responses in birds, contrary to mammals, depend on the normal functioning of bursa Fabricii. Recent studies have delivered new information about the structure, development and origin of cells that compose the bursa environment. Several viral infections affect bursa, causing lymphocyte depletion or excessive proliferation. This review summarizes data on the development and histology of healthy bursa and introduces some common disorders that affect this organ.
Collapse
Affiliation(s)
- J P Madej
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, ul. Norwida 25/27, 50-375, Wrocław, Poland
| | | | | | | |
Collapse
|
13
|
Chrzastek K, Madej JP, Mytnik E, Wieliczko A. The influence of antibiotics on B-cell number, percentage, and distribution in the bursa of Fabricius of newly hatched chicks. Poult Sci 2012; 90:2723-9. [PMID: 22080010 DOI: 10.3382/ps.2011-01525] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Antibiotics are commonly used to prevent and treat poultry microbial infections, but certain antibiotic families depress humoral immunity, such as antibody production. Poultry humoral immunity depends on the normal functioning of the bursa of Fabricius and the B lymphocytes that mature in that gland. In this study, recommended therapeutic doses of enrofloxacin, florfenicol, or ceftiofur were administered to 2-d-old chicks. On d 7 post-hatch, bursae were sampled for histological, immunohistochemical, and flow cytometric determination of Bu-1-positive (Bu-1+) cell number, percentage, and distribution. The bursa of Fabricius from all treatment and control groups had normal morphology. The administration of antibiotics significantly decreased the number of Bu-1+ cells in the bursal medulla, with a simultaneous increase of these cells in the cortex. Flow cytometry revealed a significant decrease in the percentage of bursal Bu-1+ cells from all of the studied antibiotics: enrofloxacin (93.91 ± 3.27), florfenicol (87.84 ± 7.14), and ceftiofur (89.16 ± 5.68) compared with that of the control (96.48 ± 2.60). The combination of reduced percentages of Bu-1+ cells and a decrease in these cells in the medullary region suggests lower B cell maturation.
Collapse
Affiliation(s)
- K Chrzastek
- Department of Epizootiology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | | | | | | |
Collapse
|
14
|
Das S, Hirano M, McCallister C, Tako R, Nikolaidis N. Comparative genomics and evolution of immunoglobulin-encoding loci in tetrapods. Adv Immunol 2011; 111:143-78. [PMID: 21970954 DOI: 10.1016/b978-0-12-385991-4.00004-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The immunoglobulins (Igs or antibodies) as an integral part of the tetrapod adaptive immune response system have evolved toward producing highly diversified molecules that recognize a remarkably large number of different antigens. Antibodies and their respective encoding loci have been shaped by different and often contrasting evolutionary forces, some of which aim to conserve an established pattern or mechanism and others to generate alternative and diversified structural and functional configurations. The genomic organization, gene content, ratio between functional genes and pseudogenes, number and position of recombining genetic elements, and the different levels of divergence present at the germline of the Ig-encoding loci have been evolutionarily shaped and optimized in a lineage- and, in some cases, species-specific mode aiming to increase organismal fitness. Further, evolution favored the development of multiple mechanisms of primary and secondary antibody diversification, such as V(D)J recombination, class switch recombination, isotype exclusion, somatic hypermutation, and gene conversion. Diverse tetrapod species, based on their specific germline configurations, use these mechanisms in several different combinations to effectively generate a vast array of distinct antibody types and structures. This chapter summarizes our current knowledge on the Ig-encoding loci in tetrapods and discusses the different evolutionary mechanisms that shaped their diversification.
Collapse
Affiliation(s)
- Sabyasachi Das
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, School of Medicine, Emory University, Atlanta, Georgia, USA
| | | | | | | | | |
Collapse
|
15
|
Abstract
The adaptive immune system of jawed vertebrates is based on a vast, anticipatory repertoire of specific antigen receptors, immunoglobulins (Ig) in B-lymphocytes and T-cell receptors (TCR) in T-lymphocytes. The Ig and TCRdiversity is generated by a process called V(D)J recombination, which is initiated by the RAG recombinase. Although RAG activity is very well conserved, the regulated accessibility of the antigen receptor genes to RAG has evolved with the species' organizational structure, which differs most significantly between fishes and tetrapods. V(D)J recombination was primarily characterized in developing lymphocytes of mice and human beings and is often described as an ordered, two-stage program. Studies in rabbit, chicken and shark show that this process does not have to be ordered, nor does it need to take place in two stages to generate a diverse repertoire and enable the expression of a single species of antigen receptor per cell, a restriction called allelic exclusion.
Collapse
|
16
|
Tang ES, Martin A. Immunoglobulin gene conversion: Synthesizing antibody diversification and DNA repair. DNA Repair (Amst) 2007; 6:1557-71. [PMID: 17600774 DOI: 10.1016/j.dnarep.2007.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 05/15/2007] [Accepted: 05/15/2007] [Indexed: 10/23/2022]
Abstract
Recent developments in the field of antibody (Ab) diversification have rapidly advanced our understanding of the molecular mechanism underlying these events. Key to these developments was the identification of activation-induced cytidine deaminase (AID) as the central regulator of secondary Ab diversification, and the elucidation of its primary function as a DNA deaminase. Incredibly, current literature suggests the existence of a shared pathway, common to all secondary diversification processes, from which the separate outcomes branch outwards at various points. Immunoglobulin gene conversion (IGC) is one of these mechanisms and is used by a number of vertebrate species in both the development of the pre-immune repertoire and in affinity maturation. In a manner similar to other Ab diversification mechanisms, IGC has managed to co-opt a normal DNA repair pathway for the generation of receptor diversity. In the case of IGC specifically, that pathway is homologous recombination (HR). A burgeoning wealth of genetic, biochemical and structural data has clarified the roles of many key HR factors, allowing new insight into its molecular mechanism. These insights, combined with those from the common mechanism of AID action, synergize to develop an emerging picture of the mechanism underlying IGC.
Collapse
Affiliation(s)
- Ephraim S Tang
- Department of Immunology, University of Toronto, Medical Sciences Bldg. 5265, Toronto, Canada M5S 1A8
| | | |
Collapse
|
17
|
Pike KA, Ratcliffe MJH. Ligand-independent signaling during early avian B cell development. Immunol Res 2006; 35:103-16. [PMID: 17003513 DOI: 10.1385/ir:35:1:103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/20/2023]
Abstract
Surface immunoglobulin (sIg) expression has been conserved as a critical checkpoint in B lymphocyte development. In the chicken embryo, only sIg+ B cells are selectively expanded in the bursa of Fabricius, a primary lymphoid organ unique to the avian species. We have previously demonstrated that an interaction between the antigen- binding sites of sIg and a specific bursal ligand(s) is not required to regulate this developmental checkpoint. Rather, the requirement for sIg expression can be attributed to the surface expression of the Igalpha/beta heterodimer associated with sIg. More specifically, ligand-independent signaling downstream of the Igalpha cytoplasmic domain drives all bursal stages of B cell development during embryogenesis. We discuss here a site-directed mutagenesis approach to identify the critical membrane proximal events involved in ligand-independent signaling during B cell development.
Collapse
Affiliation(s)
- Kelly A Pike
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | | |
Collapse
|
18
|
Ratcliffe MJH. Antibodies, immunoglobulin genes and the bursa of Fabricius in chicken B cell development. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2006; 30:101-18. [PMID: 16139886 DOI: 10.1016/j.dci.2005.06.018] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The bursa of Fabricius is critical for the normal development of B lymphocytes in birds. It is productively colonized during embryonic life by a limited number of B cell precursors that have undergone the immunoglobulin gene rearrangements required for expression of cell surface immunoglobulin. Immunoglobulin gene rearrangement occurs in the absence of terminal deoxynucleotidyl transferase and generates minimal antibody diversity. In addition, observations that immunoglobulin heavy and light chain variable gene rearrangement occur at the same time and that allelic exclusion of immunoglobulin expression is regulated at the level of variable region gene rearrangement provide a striking contrast to rodent and primate models of immunoglobulin gene assembly. Following productive colonization of the bursa, developing B cells undergo rapid proliferation and the immunoglobulin V region genes that generate the specificity of the B cell surface immunoglobulin receptor undergo diversification. Immunoglobulin diversity in birds is generated by somatic gene conversion events in which sequences derived from upstream families of pseudogenes replace homologous sequences in unique and functionally rearranged immunoglobulin heavy and light chain variable region genes. This mechanism is distinct from and much more efficient than mechanisms of antibody diversification seen in rodents and primates. While the bursal microenvironment is not required for immunoglobulin gene rearrangement and expression, it is essential for the generation of antibody diversity by gene conversion. Following hatch, gut derived antigens are taken up by the bursa. While bursal development prior to hatch occurs in the absence of exogenous antigen, chicken B cell development after hatch may therefore be influenced by the presence of environmental antigen. This review focuses on the differences between B cell development in the chicken as compared to rodent and primate models.
Collapse
Affiliation(s)
- Michael J H Ratcliffe
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada.
| |
Collapse
|
19
|
Withers DR, Davison TF, Young JR. Developmentally programmed expression of AID in chicken B cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2004; 29:651-662. [PMID: 15784295 DOI: 10.1016/j.dci.2004.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 11/01/2004] [Accepted: 11/01/2004] [Indexed: 05/24/2023]
Abstract
In mice, activation induced deaminase, AID, is expressed only in germinal center B cells. It is required for the initiation of somatic hypermutation and class switch recombination. In chickens and most mammals immunoglobulin gene rearrangement generates limited diversity and the primary immunoglobulin repertoire depends on subsequent somatic hypermutation or gene conversion. Immunoglobulin gene conversion in chickens starts in the embryonic bursa, before antigen exposure. The demonstrated requirement for AID for gene conversion in the bursal lymphoma cell line, DT40, implies developmental regulation of AID expression. To test this prediction, we examined the timing and location of AID mRNA expression. An abrupt increase in AID mRNA coincided with the onset of extensive Ig gene conversion in the bursa. Expression was also detected at earlier stages, implying either that expression of AID is not the only controlling factor for gene conversion, or that gene conversion can precede the formation of bursal follicles.
Collapse
Affiliation(s)
- David R Withers
- Immunology and Pathology Division, Institute for Animal Health, Compton, Newbury, Berkshire RG20 7NN, UK
| | | | | |
Collapse
|
20
|
Fairbrother A, Smits J, Grasman K. Avian immunotoxicology. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2004; 7:105-137. [PMID: 14769546 DOI: 10.1080/10937400490258873] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Methods for studying the avian immune system have matured during the past two decades, with laboratory studies predominating in earlier years and field studies being conducted only in the past decade. One application has been to determine the potential for environmental contaminants to produce immune suppression, while another research direction is looking at the evolutionary significance of a robust immune system, and the relationship between immune competence and fitness parameters. Laboratory studies of immunosuppression following exposure of birds to environmental contaminants have adapted conventional mammalian methods to the avian immune system, and both lines of research have developed field-deployable measures of immune function. This review describes the avian immune system with emphasis on how it differs from the better known mammalian system, reviews the literature on contaminant-induced immunosuppression, and discusses the work on evolutionary biology of avian immunocompetence. Evidence indicates that the field of avian immunology is technically robust, even for nontraditional species such as passerines, seabirds, raptors, and other free-ranging species. It is now possible to screen chemicals for immunotoxicological properties following the same tiered approach that has been established for mammals. Despite the increased capacity and interest in avian field studies, there has not yet been a reported study of measured immune suppression associated with an avian epizootic. It is more likely that the immune suppression in adult birds resulting from low-level chronic stress (e.g., crowding onto poor quality habitat, food reductions, or climate stress) and (or) environmental contaminants causes slow but consistent morbidity and mortality associated with multiple pathogens, rather than an acute epizootic with a single pathogen. Increased fitness costs associated with such stress may significantly alter genetic diversity and species survival over time.
Collapse
Affiliation(s)
- Anne Fairbrother
- Western Ecology Division, U.S. Environmental Protection Agency, Corvallis, Oregon 97333, USA.
| | | | | |
Collapse
|
21
|
Pike KA, Iacampo S, Friedmann JE, Ratcliffe MJH. The Cytoplasmic Domain of Igα Is Necessary and Sufficient to Support Efficient Early B Cell Development. THE JOURNAL OF IMMUNOLOGY 2004; 172:2210-8. [PMID: 14764688 DOI: 10.4049/jimmunol.172.4.2210] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The B cell receptor complex (BcR) is essential for normal B lymphocyte function, and surface BcR expression is a crucial checkpoint in B cell development. However, functional requirements for chains of the BcR during development remain controversial. We have used retroviral gene transfer to introduce components of the BcR into chicken B cell precursors during embryonic development. A chimeric heterodimer, in which the cytoplasmic domains of chicken Igalpha and Igbeta are expressed by fusion with the extracellular and transmembrane domains of murine CD8alpha and CD8beta, respectively, targeted the cytoplasmic domains of the BcR to the cell surface in the absence of extracellular BcR domains. Expression of this chimeric heterodimer supported all early stages of embryo B cell development: bursal colonization, clonal expansion, and induction of repertoire diversification by gene conversion. Expression of the cytoplasmic domain of Igalpha, in the absence of the cytoplasmic domain of Igbeta, was not only necessary, but sufficient to support B cell development as efficiently as the endogenous BcR. In contrast, expression of the cytoplasmic domain of Igbeta in the absence of the cytoplasmic domain of Igalpha failed to support B cell development. The ability of the cytoplasmic domain of Igalpha to support early B cell development required a functional Igalpha immunoreceptor tyrosine-based activation motif. These results support a model in which expression of surface IgM following productive V(D)J recombination in developing B cell precursors serves to chaperone the cytoplasmic domain of Igalpha to the B cell surface, thereby initiating subsequent stages of development.
Collapse
MESH Headings
- Amino Acid Motifs/genetics
- Amino Acid Motifs/immunology
- Amino Acid Sequence
- Animals
- Antibody Diversity/genetics
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, CD/physiology
- B-Lymphocyte Subsets/cytology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- Bursa of Fabricius/cytology
- Bursa of Fabricius/immunology
- Bursa of Fabricius/metabolism
- CD79 Antigens
- CD8 Antigens/biosynthesis
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Line
- Cell Membrane/genetics
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Chick Embryo
- Chickens
- Cytoplasm/genetics
- Cytoplasm/immunology
- Down-Regulation/genetics
- Down-Regulation/immunology
- Gene Rearrangement, B-Lymphocyte/genetics
- Immunoglobulin M/metabolism
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/metabolism
- Mice
- Molecular Sequence Data
- Protein Structure, Tertiary/genetics
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/physiology
- Recombinant Fusion Proteins/physiology
- Signal Transduction/immunology
- Stem Cells/cytology
- Stem Cells/immunology
- Stem Cells/metabolism
Collapse
Affiliation(s)
- Kelly A Pike
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
22
|
Pike KA, Baig E, Ratcliffe MJH. The avian B-cell receptor complex: distinct roles of Igalpha and Igbeta in B-cell development. Immunol Rev 2004; 197:10-25. [PMID: 14962183 DOI: 10.1111/j.0105-2896.2004.0111.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The bursa of Fabricius has evolved in birds as a gut-associated site of B-cell lymphopoiesis that is segregated from the development of other hematopoietic lineages. Despite differences in the developmental progression of chicken as compared to murine B-cell lymphopoiesis, cell-surface immunoglobulin (sIg) expression has been conserved in birds as an essential checkpoint in B-cell development. B-cell precursors that express an sIg complex that includes the evolutionarily conserved Igalpha/beta heterodimer colonize lymphoid follicles in the bursa, whereas B-cell precursors that fail to express sIg due to non-productive V(D)J recombination are eliminated. Productive retroviral gene transfer has allowed us to introduce chimeric receptor constructs into developing B-cell precursors in vivo. Chimeric proteins comprising the extracellular and transmembrane regions of murine CD8alpha fused to the cytoplasmic domain of chicken Igalpha efficiently supported B-cell development in precursors that lacked endogenous sIg expression. By contrast, expression of an equivalent chimeric receptor containing the cytoplasmic domain of Igbeta actively inhibited B-cell development. Consequently, the cytoplasmic domains of Igalpha and Igbeta play functionally distinct roles in chicken B-cell development.
Collapse
Affiliation(s)
- Kelly A Pike
- Department of Immunology, University of Toronto,Toronto, Ontario, Canada
| | | | | |
Collapse
|
23
|
Arakawa H, Buerstedde JM. Immunoglobulin gene conversion: Insights from bursal B cells and the DT40 cell line. Dev Dyn 2004; 229:458-64. [PMID: 14991701 DOI: 10.1002/dvdy.10495] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Chicken B cells diversify their immunoglobulin (Ig) light and heavy chain genes by pseudogene templated gene conversion within the bursa of Fabricius. Although Ig gene conversion was initially believed to occur only in birds, it is now clear that most farm animals also use this elegant mechanism to develop an immunoglobulin gene repertoire. The best model to study Ig gene conversion remains the chicken Ig light chain locus due to its compact size and the fact that all the pseudogene donors are sequenced. Furthermore, gene conversion continues in the bursa-derived DT40 cell line whose genome can be easily modified by targeted integration of transfected constructs. Disruption of the AID gene, which had been shown to control somatic hypermutation and switch recombination in mammals leads to a complete block of gene conversion in DT40 indicating that all B-cell specific repertoire formation is controlled by the same gene. Here, we review the genetics and the molecular mechanism of Ig gene conversion based on sequence analysis of bursal B cells and gene disruption studies in the DT40 cell line.
Collapse
Affiliation(s)
- Hiroshi Arakawa
- GSF, Institute for Molecular Radiobiology, Neuherberg-Munich, Germany
| | | |
Collapse
|
24
|
Abstract
Expression of surface immunoglobulin (sIg) related receptors has been conserved in phylogenetically distinct species as a critical checkpoint in B cell development. The sIg receptor comprises extracellular IgM heavy and light chains, with the potential for ligand binding, complexed to the Igalpha/Igbeta heterodimer that is responsible for signal transduction through sIg. Experimental systems, from both avian and murine models of B cell development, have been designed to identify the function of individual receptor components in B cell development. In this review, we assess the regulatory functions of different components of the sIg receptor complex during early development in experimental systems from evolutionarily distinct species.
Collapse
Affiliation(s)
- Kelly A Pike
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, Ont., Canada M5S 1A8
| | | |
Collapse
|
25
|
Ratcliffe MJH, Pike KA. Influence of antibody diversification on the mechanism of haplotype exclusion of immunoglobulin gene expression. Semin Immunol 2002; 14:199-205; discussion 224-5. [PMID: 12160647 DOI: 10.1016/s1044-5323(02)00043-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Allelic, or haplotype, exclusion of immunoglobulin gene expression ensures that the products of a single allele or light chain isotype are expressed on the B cell surface. Evidence has accumulated in rodent and primate models to indicate that the products of successful rearrangement regulate this process. In contrast, haplotype exclusion of chicken immunoglobulin gene expression is regulated at the level of variable region gene rearrangement. We discuss here alternative models for ensuring haplotype exclusion that may operate in the chicken and extend the discussion to address the issue as to how two apparently distinct mechanisms may have evolved to yield the same outcome.
Collapse
Affiliation(s)
- Michael J H Ratcliffe
- Department of Immunology, University of Toronto, 1 King's College Circle, Ont., M5S 1A8, Toronto, Canada.
| | | |
Collapse
|
26
|
Affiliation(s)
- Jean-Claude Weill
- INSERM U373, Faculté de Médecine Necker-Enfnats Malades, 156 rue de Vaugirard, 75730 Paris Cedex 15, France.
| | | | | |
Collapse
|
27
|
|
28
|
Otsubo Y, Chen N, Kajiwara E, Horiuchi H, Matsuda H, Furusawa S. Role of bursin in the development of B lymphocytes in chicken embryonic Bursa of Fabricius. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2001; 25:485-493. [PMID: 11356228 DOI: 10.1016/s0145-305x(00)00070-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Localization and role of bursin during Bursa of Fabricius (BF) ontogeny were examined by immunohistochemical staining and by in ovo injection with anti-bursin antibody. Mouse monoclonal anti-bursin antibody HU2 was generated by immunization with synthetic bursin. It recognized reticular cells (REC), follicular associated epithelium (FAE), FAE-supporting cells, and the basal layer of interfollicular epithelium (IFE) in the mature BF. Bu-1(+) cells were first detectable in the mesenchyme area at 13 days of embryogenesis (E13) before bud formation, then lined up along the bud, and homed into the bud at around E15. IgM(+) cells were detected in the bud after E13. Bursin was first observed at the under edge of the bud. Injection of HU2 into embryonal vein at E13 suppressed the appearance of IgM(+) cells in the Bursa at E17. These results indicate that bursin exists beneath the bud and may act on the appearance of IgM(+) cells during BF ontogeny.
Collapse
Affiliation(s)
- Y Otsubo
- Department of Immunobiology, Faculty of Applied Biological Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528, Hiroshima, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
The bursa of Fabricius is critical for the development of B lymphocytes in avian species. Despite considerable advances in our understanding of the molecular mechanisms by which avian antibody diversity is generated, many stages of B-cell development in the bursa and the means by which they are regulated remain unclear. Here we discuss the use of productive chicken retroviral vectors which allow gene transfer in vitro or in vivo as tools to probe the requirements for bursal B-cell development. Expression of a truncated form of bursal cell surface IgM, lacking variable region encoded determinants, is sufficient to promote the initial colonization and clonal expansion of B-cells within the bursa. Expression of this truncated IgM does not, however, protect developing bursal cells against the apoptosis that occurs within the bursa after hatch. Conversely, over-expression of the proto-oncogene bcl-2, following retroviral gene transfer, protects cells against apoptotic cell death but is not sufficient to allow B lineage progression in the absence of sIgM expression. Finally we discuss the use of regulated promoters within the retroviral gene transfer system to show that while bursal cells are susceptible to transformation by the v-rel oncogene in vitro, this oncogene preferentially targets mature peripheral cells in vivo.
Collapse
Affiliation(s)
- C E Sayegh
- Department of Microbiology and Immunology, McGill University, Montreal, Que., Canada
| | | | | |
Collapse
|
30
|
Abstract
The avian Rev-T retrovirus encodes the v-Rel oncoprotein, which is a member of the Rel/NF-kappaB transcription factor family. v-Rel induces a rapidly fatal lymphoma/leukemia in young birds, and v-Rel can transform and immortalize a variety of avian cell types in vitro. Although Rel/NF-kappaB transcription factors have been associated with oncogenesis in mammals, v-Rel is the only member of this family that is frankly oncogenic in animal model systems. The potent oncogenicity of v-Rel is the consequence of a number of mutations that have altered its activity and regulation: for example, certain mutations decrease its ability to be regulated by IkappaBalpha, change its DNA-binding site specificity, and endow it with new transactivation properties. The study of v-Rel will continue to increase our knowledge of how cellular Rel proteins contribute to oncogenesis by affecting cell growth, altering cell-cycle regulation, and blocking apoptosis. This review will discuss biological and molecular activities of v-Rel, with particular attention to how these activities relate to structure - function aspects of the Rel/NF-kappaB transcription factors.
Collapse
Affiliation(s)
- T D Gilmore
- Biology Department, Boston University, 5 Cummington Street, Boston, Massachusetts, MA 02215-2406, USA
| |
Collapse
|
31
|
Sayegh CE, Demaries SL, Iacampo S, Ratcliffe MJ. Development of B cells expressing surface immunoglobulin molecules that lack V(D)J-encoded determinants in the avian embryo bursa of fabricius. Proc Natl Acad Sci U S A 1999; 96:10806-11. [PMID: 10485907 PMCID: PMC17964 DOI: 10.1073/pnas.96.19.10806] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Immunoglobulin gene rearrangement in avian B cell precursors generates surface Ig receptors of limited diversity. It has been proposed that specificities encoded by these receptors play a critical role in B lineage development by recognizing endogenous ligands within the bursa of Fabricius. To address this issue directly we have introduced a truncated surface IgM, lacking variable region domains, into developing B precursors by retroviral gene transfer in vivo. Cells expressing this truncated receptor lack endogenous surface IgM, and the low level of endogenous Ig rearrangements that have occurred within this population of cells has not been selected for having a productive reading frame. Such cells proliferate rapidly within bursal epithelial buds of normal morphology. In addition, despite reduced levels of endogenous light chain rearrangement, those light chain rearrangements that have occurred have undergone variable region diversification by gene conversion. Therefore, although surface expression of an Ig receptor is required for bursal colonization and the induction of gene conversion, the specificity encoded by the prediversified receptor is irrelevant and, consequently, there is no obligate ligand for V(D)J-encoded determinants of prediversified avian cell surface IgM receptor.
Collapse
Affiliation(s)
- C E Sayegh
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montreal, QC, Canada H3A 2B4
| | | | | | | |
Collapse
|
32
|
Novobrantseva TI, Martin VM, Pelanda R, Müller W, Rajewsky K, Ehlich A. Rearrangement and expression of immunoglobulin light chain genes can precede heavy chain expression during normal B cell development in mice. J Exp Med 1999; 189:75-88. [PMID: 9874565 PMCID: PMC1887695 DOI: 10.1084/jem.189.1.75] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In mouse mutants incapable of expressing mu chains, VkappaJkappa joints are detected in the CD43(+) B cell progenitors. In agreement with these earlier results, we show by a molecular single cell analysis that 4-7% of CD43(+) B cell progenitors in wild-type mice rearrange immunoglobulin (Ig)kappa genes before the assembly of a productive VHDHJH joint. Thus, mu chain expression is not a prerequisite to Igkappa light chain gene rearrangements in normal development. Overall, approximately 15% of the total CD43(+) B cell progenitor population carry Igkappa gene rearrangements in wild-type mice. Together with the results obtained in the mouse mutants, these data fit a model in which CD43(+) progenitors rearrange IgH and Igkappa loci independently, with a seven times higher frequency in the former. In addition, we show that in B cell progenitors VkappaJkappa joining rapidly initiates kappa chain expression, irrespective of the presence of a mu chain.
Collapse
Affiliation(s)
- T I Novobrantseva
- Institute for Genetics, University of Cologne,Weyertal 121, 50931 Cologne, Germany.
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Development of B cells in chickens proceeds via a series of discrete developmental stages that includes the maturation of committed B cell progenitors in the specialized microenvironment of the bursa of Fabricius. The bursa has been shown to be required for the amplification of the B cell pool and selects for cells with productive immunoglobulin rearrangement events. Other events regulating chicken B cell development such as lymphocyte trafficking and apoptosis are just beginning to be elucidated. Within the bursa, the variable regions of immunoglobulin genes of B cell progenitors are diversified by a process of intrachromosomal gene conversion, where blocks of sequence information are transferred from pseudo-V regions to the recombined variable regions of the immunoglobulin genes. Recently gene conversion has been determined to play a role in the diversification of the immune repertoire in other species. In this review we focus on the current understanding and recent advances of B cell development in the chicken.
Collapse
Affiliation(s)
- E L Masteller
- Department of Medicine, Howard Hughes Medical Institute, Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, IL 60637-5420, USA
| | | | | | | |
Collapse
|
34
|
Tregaskes CA, Bumstead N, Davison TF, Young JR. Chicken B-cell marker chB6 (Bu-1) is a highly glycosylated protein of unique structure. Immunogenetics 1996; 44:212-7. [PMID: 8662088 DOI: 10.1007/bf02602587] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The chB6 molecule is expressed on chicken B cells throughout most of their development, as well as on some non-lymphoid cells. It has long been used as an allotypic marker in important studies of B-cell development, though its function is unknown. We isolated a chB6 cDNA by expression cloning and sequenced two further alleles following polymerase chain reaction amplification. The results show that chB6 is a typical type I transmembrane protein, highly glycosylated in the extracellular region and carrying a large intracellular region. It has no recognizable similarity to known mammalian molecules and thus represents a unique B-cell marker. Its presence in chickens may be related to differences in the properties of B-cell development between chickens and mammalian species. The sequences of the different alleles of this gene revealed a higher level of polymorphism than expected. A restriction fragment length polymorphism linked to the CHB6 gene has been used to determine its location on the linkage map of the chicken genome, which will allow the definitive evaluation of reported associations with disease resistance.
Collapse
Affiliation(s)
- C A Tregaskes
- Institute for Animal Health, Compton, Berkshire, RG20 7NN, UK
| | | | | | | |
Collapse
|
35
|
Bulfone-Paus S, Reiners-Schramm L, Lauster R. The chicken immunoglobulin lambda light chain gene is transcriptionally controlled by a modularly organized enhancer and an octamer-dependent silencer. Nucleic Acids Res 1995; 23:1997-2005. [PMID: 7596829 PMCID: PMC306975 DOI: 10.1093/nar/23.11.1997] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Characterization of the regulatory elements involved in V(D)J recombination is crucial for understanding development of the B and T cell immune repertoire. Previously we have shown that the chicken immunoglobulin lambda light chain gene (CLLCG) undergoes lymphoid-specific rearrangement in transgenic mice. The whole gene is only 10 kb in length and contains all phylogenetically conserved target sites for recombinational and transcriptional regulation. In this study we have localized an enhancer element in a region 4 kb downstream of the constant (C) region. The 467 bp element can be subdivided into three subfragments. The previously detected silencer element on the V-J intervening sequence is shown to be localized on a 500 bp fragment. Partial silencer activity is retained on a 250 bp fragment, which includes an octamer motif. By mutational analysis this octamer is shown to be essential for B cell- but not for T cell-specific silencer function. The silencer represses transcription directed by heterologous elements like the SV 40 promoter or the Ig kappa 3' enhancer. We propose that transcription of the unrearranged and rearranged Ig genes is regulated by complex interactions between different modules from the promoter, enhancer and silencer, which is eliminated by recombination during B cell development.
Collapse
Affiliation(s)
- S Bulfone-Paus
- Institute for Immunology, Freie Universität Berlin, Germany
| | | | | |
Collapse
|
36
|
Paramithiotis E, Jacobsen KA, Ratcliffe MJ. Loss of surface immunoglobulin expression precedes B cell death by apoptosis in the bursa of Fabricius. J Exp Med 1995; 181:105-13. [PMID: 7806997 PMCID: PMC2191850 DOI: 10.1084/jem.181.1.105] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The vast majority of lymphocytes generated daily in the chicken bursa of Fabricius do not emigrate to the periphery but die in situ. Apoptotic cells in the bursa can be readily detected by the presence of fragmented DNA and by the large numbers of condensed cellular nuclei observed by electron microscopy. Consequently, most newly generated lymphocytes die by programmed cell death. We show that bursal cells divide rapidly and apoptotic cells are derived from rapidly dividing precursors. Analysis of the phenotype of bursal cells undergoing apoptosis demonstrated that cell death does not occur in the most mature bursal cell population and is therefore not random. High levels of surface Ig are expressed on bursal cells entering S phase of the cell cycle. In contrast, bursal cells in the early stages of apoptosis in vivo express very low to undetectable levels of surface Ig but were unequivocally confirmed as being of the B lineage by polymerase chain reaction (PCR) detection of rearranged Ig genes. Bursal cells induced to undergo apoptosis in vitro express high levels of surface Ig demonstrating that induction of apoptosis does not in itself induce a loss of surface Ig expression. Consequently, loss of surface Ig expression precedes bursal cell death by apoptosis in vivo, suggesting that maintenance of a threshold level of surface Ig may be a requirement for the continued progression of chicken B lymphocyte development in the bursa.
Collapse
Affiliation(s)
- E Paramithiotis
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | | | | |
Collapse
|
37
|
Reynaud CA, Bertocci B, Dahan A, Weill JC. Formation of the chicken B-cell repertoire: ontogenesis, regulation of Ig gene rearrangement, and diversification by gene conversion. Adv Immunol 1994; 57:353-78. [PMID: 7872160 DOI: 10.1016/s0065-2776(08)60676-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
38
|
Abstract
Developing lymphocytes in immune-deficient severe combined immunodeficient (scid) mice express a defective recombinase activity and rarely succeed in making an antigen receptor; those cells that do succeed account for the known B and T cell leakiness in this mutant mouse strain. To gain more insight into the nature of the scid defect, we assessed the status of heavy (H) and light (L)k, chain genes in immunoglobulin (Ig)Mk-secreting B cells from the peritoneal cavity of old leaky scid mice, the only lymphoid site where scid B cells have been routinely detected. We found these cells to be unusual in that their nonexpressed H chain alleles were either abnormally rearranged or in germline configuration (wild-type B cells generally show normal rearrangements at both H chain alleles). The VDJH junctions of the expressed alleles showed little or no nontemplated (N) addition, similar to neonatal B cells from wild-type mice. About half of the V(D)J junctions lacking N additions contained nucleotides that could have been encoded by either of the participating coding elements (VDH, DJH, or VJk), indicating that the recombination occurred between short stretches of homology. Unusually long templated (P) additions were seen in both VDJH and VJK junctions, and many recombinations appeared to involve P-based homologies. These findings suggest that: (a) B cell leakiness results from a low frequency of coding joint formation in cells expressing the defective scid recombinase activity; (b) joining of scid coding ends is facilitated when the ends contain short stretches of sequence homology, where in many cases, one of the homologous sequences results from a P addition; and (c) scid peritoneal B cells may arise early in ontogeny.
Collapse
Affiliation(s)
- D B Kotloff
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | | | | |
Collapse
|
39
|
Benatar T, Ratcliffe MJ. Polymorphism of the functional immunoglobulin variable region genes in the chicken by exchange of sequence with donor pseudogenes. Eur J Immunol 1993; 23:2448-53. [PMID: 8405044 DOI: 10.1002/eji.1830231011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have isolated a number of new allelic variants of the unique functional genes encoding chicken immunoglobulin heavy and light chain variable regions (VH1 and VL1, respectively). The distribution and nature of nucleotide variation among these and previously identified VH1 and VL1 alleles demonstrates that random point mutations are likely not the predominant cause of allelic variation at these loci. Comparison of the variant nucleotides with sequences from the pseudo-VH and pseudo-VL gene families, which lie 5' to VH1 and VL1, respectively, suggests that the great majority of allelic variants can be accounted for by segmental transfer of sequence from donor pseudogenes into the germ-line VH1 and VL1 genes. These results demonstrate that the chicken VH1 and VL1 genes are susceptible to sequence replacement at the germ-line level as well as somatically during antibody diversification. The limited repertoire of B cell specificities produced by gene rearrangement in the chicken has led to speculation that these specificities may play a critical role in the progression of chicken B cell development. The results presented here do not support this hypothesis since many of the allelic variant nucleotides described here encode non-conservative amino acid substitutions within the antigen-binding sites of the Ig molecule.
Collapse
Affiliation(s)
- T Benatar
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
40
|
Marmor MD, Benatar T, Ratcliffe MJ. Retroviral transformation in vitro of chicken T cells expressing either alpha/beta or gamma/delta T cell receptors by reticuloendotheliosis virus strain T. J Exp Med 1993; 177:647-56. [PMID: 8382253 PMCID: PMC2190938 DOI: 10.1084/jem.177.3.647] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Exposure of normal juvenile chicken bone marrow cells to the replication defective avian reticuloendotheliosis virus strain T (REV-T) (chicken syncytial virus [CSV]) in vitro resulted in the generation of transformed cell lines containing T cells. The transformed T cells derived from bone marrow included cells expressing either alpha/beta or gamma/delta T cell receptors (TCRs) in proportions roughly equivalent to the proportions of TCR-alpha/beta and TCR-gamma/delta T cells found in the normal bone marrow in vivo. Essentially all TCR-alpha/beta-expressing transformed bone marrow-derived T cells expressed CD8, whereas few, if any, expressed CD4. In contrast, among TCR-gamma/delta T cells, both CD8+ and CD8- cells were derived, all of which were CD4-. Exposure of ex vivo spleen cells to REV-T(CSV) yielded transformed polyclonal cell lines containing > 99% B cells. However, REV-T(CSV) infection of mitogen-activated spleen cells in vitro resulted in transformed populations containing predominantly T cells. This may be explained at least in part by in vitro activation resulting in dramatically increased levels of T cell REV-T(CSV) receptor expression. In contrast to REV-T(CSV)-transformed lines derived from normal bone marrow, transformed lines derived from activated spleen cells contained substantial numbers of CD4+ cells, all of which expressed TCR-alpha/beta. While transformed T cells derived from bone marrow were stable for extended periods of in vitro culture and were cloned from single cells, transformed T cells from activated spleen were not stable and could not be cloned. We have therefore dissociated the initial transformation of T cells with REV-T(CSV) from the requirements for long-term growth. These results provide the first demonstration of efficient in vitro transformation of chicken T lineage cells by REV-T(CSV). Since productive infection with REV-T(CSV) is not sufficient to promote long-term growth of transformed cells, these results further suggest that immortalization depends not only upon expression of the v-rel oncogene but also on intracellular factor(s) whose expression varies according to the state of T cell physiology and/or activation.
Collapse
Affiliation(s)
- M D Marmor
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | | | | |
Collapse
|