1
|
Stefano MED, Ferretti V, Mozzetta C. Synaptic alterations as a neurodevelopmental trait of Duchenne muscular dystrophy. Neurobiol Dis 2022; 168:105718. [PMID: 35390481 DOI: 10.1016/j.nbd.2022.105718] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 01/14/2023] Open
Abstract
Dystrophinopaties, e.g., Duchenne muscular dystrophy (DMD), Becker muscular dystrophy and X-linked dilated cardiomyopathy are inherited neuromuscular diseases, characterized by progressive muscular degeneration, which however associate with a significant impact on general system physiology. The more severe is the pathology and its diversified manifestations, the heavier are its effects on organs, systems, and tissues other than muscles (skeletal, cardiac and smooth muscles). All dystrophinopaties are characterized by mutations in a single gene located on the X chromosome encoding dystrophin (Dp427) and its shorter isoforms, but DMD is the most devasting: muscular degenerations manifests within the first 4 years of life, progressively affecting motility and other muscular functions, and leads to a fatal outcome between the 20s and 40s. To date, after years of studies on both DMD patients and animal models of the disease, it has been clearly demonstrated that a significant percentage of DMD patients are also afflicted by cognitive, neurological, and autonomic disorders, of varying degree of severity. The anatomical correlates underlying neural functional damages are established during embryonic development and the early stages of postnatal life, when brain circuits, sensory and motor connections are still maturing. The impact of the absence of Dp427 on the development, differentiation, and consolidation of specific cerebral circuits (hippocampus, cerebellum, prefrontal cortex, amygdala) is significant, and amplified by the frequent lack of one or more of its lower molecular mass isoforms. The most relevant aspect, which characterizes DMD-associated neurological disorders, is based on morpho-functional alterations of selective synaptic connections within the affected brain areas. This pathological feature correlates neurological conditions of DMD to other severe neurological disorders, such as schizophrenia, epilepsy and autistic spectrum disorders, among others. This review discusses the organization and the role of the dystrophin-dystroglycan complex in muscles and neurons, focusing on the neurological aspect of DMD and on the most relevant morphological and functional synaptic alterations, in both central and autonomic nervous systems, described in the pathology and its animal models.
Collapse
Affiliation(s)
- Maria Egle De Stefano
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy; Center for Research in Neurobiology Daniel Bovet, Sapienza University of Rome, 00185 Rome, Italy.
| | - Valentina Ferretti
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy; Center for Research in Neurobiology Daniel Bovet, Sapienza University of Rome, 00185 Rome, Italy
| | - Chiara Mozzetta
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy c/o Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
2
|
Naidoo M, Anthony K. Dystrophin Dp71 and the Neuropathophysiology of Duchenne Muscular Dystrophy. Mol Neurobiol 2020; 57:1748-1767. [PMID: 31836945 PMCID: PMC7060961 DOI: 10.1007/s12035-019-01845-w] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022]
Abstract
Duchenne muscular dystrophy (DMD) is caused by frameshift mutations in the DMD gene that prevent the body-wide translation of its protein product, dystrophin. Besides a severe muscle phenotype, cognitive impairment and neuropsychiatric symptoms are prevalent. Dystrophin protein 71 (Dp71) is the major DMD gene product expressed in the brain and mutations affecting its expression are associated with the DMD neuropsychiatric syndrome. As with dystrophin in muscle, Dp71 localises to dystrophin-associated protein complexes in the brain. However, unlike in skeletal muscle; in the brain, Dp71 is alternatively spliced to produce many isoforms with differential subcellular localisations and diverse cellular functions. These include neuronal differentiation, adhesion, cell division and excitatory synapse organisation as well as nuclear functions such as nuclear scaffolding and DNA repair. In this review, we first describe brain involvement in DMD and the abnormalities observed in the DMD brain. We then review the gene expression, RNA processing and functions of Dp71. We review genotype-phenotype correlations and discuss emerging cellular/tissue evidence for the involvement of Dp71 in the neuropathophysiology of DMD. The literature suggests changes observed in the DMD brain are neurodevelopmental in origin and that their risk and severity is associated with a cumulative loss of distal DMD gene products such as Dp71. The high risk of neuropsychiatric syndromes in Duchenne patients warrants early intervention to achieve the best possible quality of life. Unravelling the function and pathophysiological significance of dystrophin in the brain has become a high research priority to inform the development of brain-targeting treatments for Duchenne.
Collapse
Affiliation(s)
- Michael Naidoo
- Centre for Physical Activity and Life Sciences, Faculty of Arts, Science and Technology, University of Northampton, University Drive, Northampton, Northamptonshire, NN1 5PH, UK
| | - Karen Anthony
- Centre for Physical Activity and Life Sciences, Faculty of Arts, Science and Technology, University of Northampton, University Drive, Northampton, Northamptonshire, NN1 5PH, UK.
| |
Collapse
|
3
|
Annese T, Ruggieri S, De Giorgis M, Ribatti D, Tamma R, Nico B. α-Methyl-prednisolone normalizes the PKC mediated brain angiogenesis in dystrophic mdx mice. Brain Res Bull 2019; 147:69-77. [PMID: 30711624 DOI: 10.1016/j.brainresbull.2019.01.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 01/24/2019] [Indexed: 10/27/2022]
Abstract
A fraction of patients affected by Duchenne Muscular Dystrophy (DMD) shows mental disability as a consequence of neuronal and metabolic alteration. In this study, we evaluated the effect of α-methyl-prednisolone (PDN) on the expression of the angiogenic marker HIF1α, VEGFA and VEGFR-2 (FLK1) in correlation with PKC expression in the brain of mdx mouse, an experimental model of DMD. We demonstrated that HIF1α, VEGFA and FLK1 are overexpressed in the brain of dystrophic mdx mice in parallel with an increase of PKC expression and reduction of the tight junctions Occludin leading to altered angiogenesis. Moreover, we demonstrated that PDN treatment induces a significant reduction in the HIF1α, VEGF, FLK1, and PKC mRNA and proteins levels and restores Occludin expression reducing its phosphorylation pattern. Our results suggest a new mechanism of action of PDN that through PKC suppression normalizes the angiogenesis in dystrophic mdx brains.
Collapse
Affiliation(s)
- Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School Bari, University of Bari, Italy.
| | - Simona Ruggieri
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School Bari, University of Bari, Italy.
| | - Michela De Giorgis
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School Bari, University of Bari, Italy.
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School Bari, University of Bari, Italy.
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School Bari, University of Bari, Italy.
| | - Beatrice Nico
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School Bari, University of Bari, Italy.
| |
Collapse
|
4
|
Lopez JR, Uryash A, Kolster J, Estève E, Zhang R, Adams JA. Enhancing Endogenous Nitric Oxide by Whole Body Periodic Acceleration Elicits Neuroprotective Effects in Dystrophic Neurons. Mol Neurobiol 2018; 55:8680-8694. [DOI: 10.1007/s12035-018-1018-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 03/16/2018] [Indexed: 12/25/2022]
|
5
|
Lopez JR, Kolster J, Uryash A, Estève E, Altamirano F, Adams JA. Dysregulation of Intracellular Ca 2+ in Dystrophic Cortical and Hippocampal Neurons. Mol Neurobiol 2016; 55:603-618. [PMID: 27975174 DOI: 10.1007/s12035-016-0311-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 11/21/2016] [Indexed: 12/13/2022]
Abstract
Duchenne muscular dystrophy (DMD) is an inherited X-linked disorder characterized by skeletal muscle wasting, cardiomyopathy, as well as cognitive impairment. Lack of dystrophin in striated muscle produces dyshomeostasis of resting intracellular Ca2+ ([Ca2+]i), Na+ ([Na+]i), and oxidative stress. Here, we test the hypothesis that similar to striated muscle cells, an absence of dystrophin in neurons from mdx mice (a mouse model for DMD) is also associated with dysfunction of [Ca2+]i homeostasis and oxidative stress. [Ca2+]i and [Na+]i in pyramidal cortical and hippocampal neurons from 3 and 6 months mdx mice were elevated compared to WT in an age-dependent manner. Removal of extracellular Ca2+ reduced [Ca2+]i in both WT and mdx neurons, but the decrease was greater and age-dependent in the latter. GsMTx-4 (a blocker of stretch-activated cation channels) significantly decreased [Ca2+]i and [Na+]i in an age-dependent manner in all mdx neurons. Blockade of ryanodine receptors (RyR) or inositol triphosphate receptors (IP3R) reduced [Ca2+]i in mdx. Mdx neurons showed elevated and age-dependent reactive oxygen species (ROS) production and an increase in neuronal damage. In addition, mdx mice showed a spatial learning deficit compared to WT. GsMTx-4 intraperitoneal injection reduced neural [Ca2+]i and improved learning deficit in mdx mice. In summary, mdx neurons show an age-dependent dysregulation in [Ca2+]i and [Na+]i which is mediated by plasmalemmal cation influx and by intracellular Ca2+ release through the RyR and IP3R. Also, mdx neurons have elevated ROS production and more extensive cell damage. Finally, a reduction of [Ca2+]i improved cognitive function in mdx mice.
Collapse
Affiliation(s)
- José R Lopez
- Department of Molecular Biosciences, University of California, Davis, CA, 95616, USA.
| | - Juan Kolster
- Centro de Investigaciones Biomédicas, Mexico, México
| | - Arkady Uryash
- Division of Neonatology, Mount Sinai Medical Center, Miami, FL, 33140, USA
| | - Eric Estève
- HP2 INSERM 1042 Institut Jean Roget, Université Grenoble Alpes, BP170, 38042, Grenoble Cedex, France
| | - Francisco Altamirano
- Department of Molecular Biosciences, University of California, Davis, CA, 95616, USA.,Department of Internal Medicine - Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - José A Adams
- Division of Neonatology, Mount Sinai Medical Center, Miami, FL, 33140, USA
| |
Collapse
|
6
|
Miranda R, Laroche S, Vaillend C. Reduced neuronal density in the CA1 anterodorsal hippocampus of the mdx mouse. Neuromuscul Disord 2016; 26:775-781. [DOI: 10.1016/j.nmd.2016.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 06/22/2016] [Accepted: 08/10/2016] [Indexed: 01/05/2023]
|
7
|
Rae MG, O'Malley D. Cognitive dysfunction in Duchenne muscular dystrophy: a possible role for neuromodulatory immune molecules. J Neurophysiol 2016; 116:1304-15. [PMID: 27385793 DOI: 10.1152/jn.00248.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/29/2016] [Indexed: 11/22/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X chromosome-linked disease characterized by progressive physical disability, immobility, and premature death in affected boys. Underlying the devastating symptoms of DMD is the loss of dystrophin, a structural protein that connects the extracellular matrix to the cell cytoskeleton and provides protection against contraction-induced damage in muscle cells, leading to chronic peripheral inflammation. However, dystrophin is also expressed in neurons within specific brain regions, including the hippocampus, a structure associated with learning and memory formation. Linked to this, a subset of boys with DMD exhibit nonprogressing cognitive dysfunction, with deficits in verbal, short-term, and working memory. Furthermore, in the genetically comparable dystrophin-deficient mdx mouse model of DMD, some, but not all, types of learning and memory are deficient, and specific deficits in synaptogenesis and channel clustering at synapses has been noted. Little consideration has been devoted to the cognitive deficits associated with DMD compared with the research conducted into the peripheral effects of dystrophin deficiency. Therefore, this review focuses on what is known about the role of full-length dystrophin (Dp427) in hippocampal neurons. The importance of dystrophin in learning and memory is assessed, and the potential importance that inflammatory mediators, which are chronically elevated in dystrophinopathies, may have on hippocampal function is also evaluated.
Collapse
Affiliation(s)
- Mark G Rae
- Department of Physiology, University College Cork, Cork, Ireland; and
| | - Dervla O'Malley
- Department of Physiology, University College Cork, Cork, Ireland; and APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
8
|
Petkova MV, Morales-Gonzales S, Relizani K, Gill E, Seifert F, Radke J, Stenzel W, Garcia L, Amthor H, Schuelke M. Characterization of a Dmd (EGFP) reporter mouse as a tool to investigate dystrophin expression. Skelet Muscle 2016; 6:25. [PMID: 27382459 PMCID: PMC4932663 DOI: 10.1186/s13395-016-0095-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/08/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dystrophin is a rod-shaped cytoplasmic protein that provides sarcolemmal stability as a structural link between the cytoskeleton and the extracellular matrix via the dystrophin-associated protein complex (DAPC). Mutations in the dystrophin-encoding DMD gene cause X-linked dystrophinopathies with variable phenotypes, the most severe being Duchenne muscular dystrophy (DMD) characterized by progressive muscle wasting and fibrosis. However, dystrophin deficiency does not only impair the function of skeletal and heart muscle but may also affect other organ systems such as the brain, eye, and gastrointestinal tract. The generation of a dystrophin reporter mouse would facilitate research into dystrophin muscular and extramuscular pathophysiology without the need for immunostaining. RESULTS We generated a Dmd (EGFP) reporter mouse through the in-frame insertion of the EGFP coding sequence behind the last Dmd exon 79, which is known to be expressed in all major dystrophin isoforms. We analyzed EGFP and dystrophin expression in various tissues and at the single muscle fiber level. Immunostaining of various members of the DAPC was done to confirm the correct subsarcolemmal location of dystrophin-binding partners. We found strong natural EGFP fluorescence at all expected sites of dystrophin expression in the skeletal and smooth muscle, heart, brain, and retina. EGFP fluorescence exactly colocalized with dystrophin immunostaining. In the skeletal muscle, dystrophin and other proteins of the DAPC were expressed at their correct sarcolemmal/subsarcolemmal localization. Skeletal muscle maintained normal tissue architecture, suggesting the correct function of the dystrophin-EGFP fusion protein. EGFP expression could be easily verified in isolated myofibers as well as in satellite cell-derived myotubes. CONCLUSIONS The novel dystrophin reporter mouse provides a valuable tool for direct visualization of dystrophin expression and will allow the study of dystrophin expression in vivo and in vitro in various tissues by live cell imaging.
Collapse
Affiliation(s)
- Mina V Petkova
- Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany ; NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Susanne Morales-Gonzales
- Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany ; NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Karima Relizani
- Université de Versailles St-Quentin, INSERM U1179 and LIA BAHN Centre Scientifique de Monaco, Montigny-le Bretonneux, France
| | - Esther Gill
- Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany ; NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Franziska Seifert
- Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany ; NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Josefine Radke
- Institute of Neuropathology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Werner Stenzel
- Institute of Neuropathology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Luis Garcia
- Université de Versailles St-Quentin, INSERM U1179 and LIA BAHN Centre Scientifique de Monaco, Montigny-le Bretonneux, France
| | - Helge Amthor
- Université de Versailles St-Quentin, INSERM U1179 and LIA BAHN Centre Scientifique de Monaco, Montigny-le Bretonneux, France
| | - Markus Schuelke
- Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany ; NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
9
|
Murphy S, Zweyer M, Henry M, Meleady P, Mundegar RR, Swandulla D, Ohlendieck K. Label-free mass spectrometric analysis reveals complex changes in the brain proteome from the mdx-4cv mouse model of Duchenne muscular dystrophy. Clin Proteomics 2015; 12:27. [PMID: 26604869 PMCID: PMC4657206 DOI: 10.1186/s12014-015-9099-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/13/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND X-linked muscular dystrophy is a primary disease of the neuromuscular system. Primary abnormalities in the Dmd gene result in the absence of the full-length isoform of the membrane cytoskeletal protein dystrophin. Besides progressive skeletal muscle wasting and cardio-respiratory complications, developmental cognitive deficits and behavioural abnormalities are clinical features of Duchenne muscular dystrophy. In order to better understand the mechanisms that underlie impaired brain functions in Duchenne patients, we have carried out a proteomic analysis of total brain extracts from the mdx-4cv mouse model of dystrophinopathy. RESULTS The comparative proteomic profiling of the mdx-4cv brain revealed a significant increase in 39 proteins and a decrease in 7 proteins. Interesting brain tissue-associated proteins with an increased concentration in the mdx-4cv animal model were represented by the glial fibrillary acidic protein GFAP, the neuronal Ca(2+)-binding protein calretinin, annexin AnxA5, vimentin, the neuron-specific enzyme ubiquitin carboxyl-terminal hydrolase isozyme L1, the dendritic spine protein drebrin, the cytomatrix protein bassoon of the nerve terminal active zone, and the synapse-associated protein SAP97. Decreased proteins were identified as the nervous system-specific proteins syntaxin-1B and syntaxin-binding protein 1, as well as the plasma membrane Ca(2+)-transporting ATPase PMCA2 that is mostly found in the brain cortex. The differential expression patterns of GFAP, vimentin, PMCA2 and AnxA5 were confirmed by immunoblotting. Increased GFAP levels were also verified by immunofluorescence microscopy. CONCLUSIONS The large number of mass spectrometrically identified proteins with an altered abundance suggests complex changes in the mdx-4cv brain proteome. Increased levels of the glial fibrillary acidic protein, an intermediate filament component that is uniquely associated with astrocytes in the central nervous system, imply neurodegeneration-associated astrogliosis. The up-regulation of annexin and vimentin probably represent compensatory mechanisms involved in membrane repair and cytoskeletal stabilization in the absence of brain dystrophin. Differential alterations in the Ca(2+)-binding protein calretinin and the Ca(2+)-pumping protein PMCA2 suggest altered Ca(2+)-handling mechanisms in the Dp427-deficient brain. In addition, the proteomic findings demonstrated metabolic adaptations and functional changes in the central nervous system from the dystrophic phenotype. Candidate proteins can now be evaluated for their suitability as proteomic biomarkers and their potential in predictive, diagnostic, prognostic and/or therapy-monitoring approaches to treat brain abnormalities in dystrophinopathies.
Collapse
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare Ireland
| | - Margit Zweyer
- Department of Physiology II, University of Bonn, 53115 Bonn, Germany
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Rustam R Mundegar
- Department of Physiology II, University of Bonn, 53115 Bonn, Germany
| | - Dieter Swandulla
- Department of Physiology II, University of Bonn, 53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare Ireland
| |
Collapse
|
10
|
Nichols B, Takeda S, Yokota T. Nonmechanical Roles of Dystrophin and Associated Proteins in Exercise, Neuromuscular Junctions, and Brains. Brain Sci 2015; 5:275-98. [PMID: 26230713 PMCID: PMC4588140 DOI: 10.3390/brainsci5030275] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/29/2015] [Accepted: 07/21/2015] [Indexed: 02/06/2023] Open
Abstract
Dystrophin-glycoprotein complex (DGC) is an important structural unit in skeletal muscle that connects the cytoskeleton (f-actin) of a muscle fiber to the extracellular matrix (ECM). Several muscular dystrophies, such as Duchenne muscular dystrophy, Becker muscular dystrophy, congenital muscular dystrophies (dystroglycanopathies), and limb-girdle muscular dystrophies (sarcoglycanopathies), are caused by mutations in the different DGC components. Although many early studies indicated DGC plays a crucial mechanical role in maintaining the structural integrity of skeletal muscle, recent studies identified novel roles of DGC. Beyond a mechanical role, these DGC members play important signaling roles and act as a scaffold for various signaling pathways. For example, neuronal nitric oxide synthase (nNOS), which is localized at the muscle membrane by DGC members (dystrophin and syntrophins), plays an important role in the regulation of the blood flow during exercise. DGC also plays important roles at the neuromuscular junction (NMJ) and in the brain. In this review, we will focus on recently identified roles of DGC particularly in exercise and the brain.
Collapse
Affiliation(s)
- Bailey Nichols
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry.
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan.
| | - Toshifumi Yokota
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry.
- Muscular Dystrophy Canada Research Chair, 8812-112 St, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
11
|
Acetylcholine, GABA and neuronal networks: a working hypothesis for compensations in the dystrophic brain. Brain Res Bull 2014; 110:1-13. [PMID: 25445612 DOI: 10.1016/j.brainresbull.2014.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 10/02/2014] [Accepted: 10/06/2014] [Indexed: 11/22/2022]
Abstract
Duchenne muscular dystrophy (DMD), a genetic disease arising from a mutation in the dystrophin gene, is characterized by muscle failure and is often associated with cognitive deficits. Studies of the dystrophic brain on the murine mdx model of DMD provide evidence of morphological and functional alterations in the central nervous system (CNS) possibly compatible with the cognitive impairment seen in DMD. However, while some of the alterations reported are a direct consequence of the absence of dystrophin, others seem to be associated only indirectly. In this review we reevaluate the literature in order to formulate a possible explanation for the cognitive impairments associated with DMD. We present a working hypothesis, demonstrated as an integrated neuronal network model, according to which within the cascade of events leading to cognitive impairments there are compensatory mechanisms aimed to maintain functional stability via perpetual adjustments of excitatory and inhibitory components. Such ongoing compensatory response creates continuous perturbations that disrupt neuronal functionality in terms of network efficiency. We have theorized that in this process acetylcholine and network oscillations play a central role. A better understating of these mechanisms could provide a useful diagnostic index of the disease's progression and, perhaps, the correct counterbalance of this process might help to prevent deterioration of the CNS in DMD. Furthermore, the involvement of compensatory mechanisms in the CNS could be extended beyond DMD and possibly help to clarify other physio-pathological processes of the CNS.
Collapse
|
12
|
Lorusso ML, Civati F, Molteni M, Turconi AC, Bresolin N, D'Angelo MG. Specific profiles of neurocognitive and reading functions in a sample of 42 Italian boys with Duchenne Muscular Dystrophy. Child Neuropsychol 2012; 19:350-69. [PMID: 22385039 DOI: 10.1080/09297049.2012.660912] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A group of 42 Italian boys with Duchenne Muscular Dystrophy was compared with a control group of 10 boys with Spinal Muscular Atrophy and Osteogenesis Imperfecta on tests assessing general intellectual ability, language, neuropsychological functions, and reading skills with the aim of describing a comprehensive profile of the various functions and investigating their interrelationships. The influence of general intellectual level on performance was analyzed. Further, correlations between various neuropsychological measures and language performances were computed for the group with Duchenne Muscular Dystrophy, as well as the correlations between reading scores and other cognitive and linguistic measures. A general lowering in VIQ, PIQ, and FSIQ scores was found to characterize the group with Duchenne Muscular Dystrophy. Expressive language skills were within the normal range, while syntactic and grammatical comprehension were significantly impaired. The presence of below-average reading performances was further confirmed. However, unlike previous studies on irregular orthographies, the present results show that (a) the mild reading difficulties found in the sample essentially concern speed rather than accuracy; (b) they concern word rather than nonword reading; (c) lower reading performances are related to lower scores in general IQ; (d) no correlations emerge with phonological abilities, verbal short-term memory, or working memory, but rather with long-term memory and lexical skills. This may suggest that language-specific effects modulate the cognitive expressions of Duchenne Muscular Dystrophy and raises the possibility that the dysfunctions underlying the reading difficulties observed in affected readers of regular orthographies involve different neurocognitive systems than the cortico-cerebellar circuits usually invoked.
Collapse
Affiliation(s)
- Maria Luisa Lorusso
- Department of Neuro-Rehabilitation-II, Unit of Neuropsychology of Developmental Disorders, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy.
| | | | | | | | | | | |
Collapse
|
13
|
Comim CM, Moraz T, Abreu I, Fraga DB, Ghedim FV, Mildner N, Tuon L, Vainzof M, Zugno AI, Quevedo J. Reduction of acethylcolinesterase activity in the brain of mdx mice. Neuromuscul Disord 2011; 21:359-62. [PMID: 21441030 DOI: 10.1016/j.nmd.2011.02.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 01/26/2011] [Accepted: 02/18/2011] [Indexed: 11/19/2022]
Abstract
Lack of dystrophin in brain structures have been involved with impaired cognitive functions. Acethylcolinesterase (AChE) is implicated in many cognitive functions and probably plays important roles in neurodegenerative disorders. In the present study, we investigated AChE activity in the prefrontal cortex, hippocampus, striatum and cortex of mdx mice. To this aim, brain tissues from male dystrophic mdx and normal control mice were used. We observed that mdx mice display a reduction in AChE activity of 40-60% in all brain structures evaluated. In conclusion, dystrophin deficiency may be affecting AChE activity and contributing negatively, in part, to memory storage and restoring.
Collapse
Affiliation(s)
- Clarissa M Comim
- Laboratory of Neurosciences and National Institute for Translational Medicine (INCT-TM), Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, 88806-000 Criciúma, SC, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Dystrophins, utrophins, and associated scaffolding complexes: role in mammalian brain and implications for therapeutic strategies. J Biomed Biotechnol 2010; 2010:849426. [PMID: 20625423 PMCID: PMC2896903 DOI: 10.1155/2010/849426] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 03/14/2010] [Indexed: 12/23/2022] Open
Abstract
Two decades of molecular, cellular, and functional studies considerably increased our understanding of dystrophins function and unveiled the complex etiology of the cognitive deficits in Duchenne muscular dystrophy (DMD), which involves altered expression of several dystrophin-gene products in brain. Dystrophins are normally part of critical cytoskeleton-associated membrane-bound molecular scaffolds involved in the clustering of receptors, ion channels, and signaling proteins that contribute to synapse physiology and blood-brain barrier function. The utrophin gene also drives brain expression of several paralogs proteins, which cellular expression and biological roles remain to be elucidated. Here we review the structural and functional properties of dystrophins and utrophins in brain, the consequences of dystrophins loss-of-function as revealed by numerous studies in mouse models of DMD, and we discuss future challenges and putative therapeutic strategies that may compensate for the cognitive impairment in DMD based on experimental manipulation of dystrophins and/or utrophins brain expression.
Collapse
|
15
|
Tuon L, Comim CM, Fraga DB, Scaini G, Rezin GT, Baptista BR, Streck EL, Vainzof M, Quevedo J. Mitochondrial respiratory chain and creatine kinase activities in mdx
mouse brain. Muscle Nerve 2010; 41:257-60. [DOI: 10.1002/mus.21559] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Oxidative variables and antioxidant enzymes activities in the mdx mouse brain. Neurochem Int 2009; 55:802-5. [DOI: 10.1016/j.neuint.2009.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 07/11/2009] [Accepted: 08/04/2009] [Indexed: 11/23/2022]
|
17
|
Del Tongo C, Carretta D, Fulgenzi G, Catini C, Minciacchi D. Parvalbumin-positive GABAergic interneurons are increased in the dorsal hippocampus of the dystrophic mdx mouse. Acta Neuropathol 2009; 118:803-12. [PMID: 19588159 DOI: 10.1007/s00401-009-0567-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 06/17/2009] [Accepted: 06/26/2009] [Indexed: 02/07/2023]
Abstract
Duchenne muscular dystrophy (DMD) is characterized by variable alterations of the dystrophin gene and by muscle weakness and cognitive impairment. We postulated an association between cognitive impairment and architectural changes of the hippocampal GABAergic system. We investigated a major subpopulation of GABAergic neurons, the parvalbumin-immunopositive (PV-I) cells, in the dorsal hippocampus of the mdx mouse, an acknowledged model of DMD. PV-I neurons were quantified and their distribution was compared in CA1, CA2, CA3, and dentate gyrus in wild-type and mdx mice. The cell morphology and topography of PV-I neurons were maintained. Conversely, the number of PV-I neurons was significantly increased in the mdx mouse. The percent increase of PV-I neurons was from 45% for CA2, up to 125% for the dentate gyrus. In addition, the increased parvalbumin content in the mdx hippocampus was confirmed by Western blot. A change in the hippocampus processing abilities is the expected functional counterpart of the modification displayed by PV-I GABAergic neurons. Altered hippocampal functionality can be responsible for part of the cognitive impairment in DMD.
Collapse
Affiliation(s)
- Claudia Del Tongo
- Department of Anatomy, Histology and Forensic Medicine, University of Florence, Viale Morgagni, 85, 50134 Florence, Italy.
| | | | | | | | | |
Collapse
|
18
|
Comim CM, Tuon L, Stertz L, Vainzof M, Kapczinski F, Quevedo J. Striatum brain-derived neurotrophic factor levels are decreased in dystrophin-deficient mice. Neurosci Lett 2009; 459:66-8. [DOI: 10.1016/j.neulet.2009.04.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 04/27/2009] [Accepted: 04/30/2009] [Indexed: 01/13/2023]
|
19
|
Miranda R, Sebrie C, Degrouard J, Gillet B, Jaillard D, Laroche S, Vaillend C. Reorganization of Inhibitory Synapses and Increased PSD Length of Perforated Excitatory Synapses in Hippocampal Area CA1 of Dystrophin-Deficient mdx Mice. Cereb Cortex 2008; 19:876-88. [DOI: 10.1093/cercor/bhn135] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
20
|
Loss of neuronal projections in the dystrophin-deficient mdx mouse is not progressive. Brain Res 2008; 1224:127-32. [PMID: 18603229 DOI: 10.1016/j.brainres.2008.05.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 05/14/2008] [Accepted: 05/17/2008] [Indexed: 11/22/2022]
Abstract
Lack of dystrophin is known to reduce several cerebral fiber systems. To investigate if the loss of fibers is progressive, we analyzed projections of the trigeminal sensory system to the red nucleus in 3, 6, and 12 month old dystrophin-deficient mdx mice. The retrograde tracer fluorogold was injected in the magnocellular part of the red nucleus, and the number of labeled neurons in the oral part of the spinal trigeminal nucleus (Sp5O) was counted. We found that the number of labeled Sp5O neurons was reduced by 50% in mdx mice compared to age-matched control mice. The number of labeled Sp5O neurons did not change significantly between 3 and 12 months neither in mdx nor in control mice. In addition, the number of labeled neurons in the interstitial system of the trigeminal nerve was reduced by 43% in mdx mice. We conclude that fiber loss did not continue beyond the age of 3 months. Our data suggest that lack of full-length dystrophin impairs neuronal migration or axonal outgrowth, or increases neuronal death during fetal or early life.
Collapse
|
21
|
Cyrulnik SE, Hinton VJ. Duchenne muscular dystrophy: a cerebellar disorder? Neurosci Biobehav Rev 2007; 32:486-96. [PMID: 18022230 DOI: 10.1016/j.neubiorev.2007.09.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 08/28/2007] [Accepted: 09/09/2007] [Indexed: 01/27/2023]
Abstract
Cyrulnik, S.C., and V.J. Hinton. Duchenne muscular dystrophy: A cerebellar disorder? NEUROSCI. BIOBEHAV. REV. Duchenne muscular dystrophy (DMD) is a genetic disorder that is often associated with cognitive deficits. These cognitive deficits have been linked to the absence of dystrophin, a protein product which is normally found in multiple tissues throughout the body. In the current paper, we argue that it is the absence of dystrophin in the cerebellum that is responsible for the cognitive deficits observed. We begin by reviewing data that document structural and functional abnormalities in the brains of individuals with DMD and mdx mice. We briefly review the cognitive deficits associated with DMD, and then present neuroimaging and neuropsychological evidence to indicate that the cerebellum is involved in the same aspects of cognition that are impaired in children with DMD. It is our contention that the development of brain pathways in the cerebellum (e.g., cerebro-cerebellar loops) without dystrophin may result in altered brain function presenting as cognitive deficits in DMD.
Collapse
Affiliation(s)
- Shana E Cyrulnik
- The Graduate Center of the City University of New York, New York, NY 10016, USA.
| | | |
Collapse
|
22
|
Nico B, Mangieri D, Crivellato E, Longo V, De Giorgis M, Capobianco C, Corsi P, Benagiano V, Roncali L, Ribatti D. HIF activation and VEGF overexpression are coupled with ZO-1 up-phosphorylation in the brain of dystrophic mdx mouse. Brain Pathol 2007; 17:399-406. [PMID: 17784876 PMCID: PMC8095599 DOI: 10.1111/j.1750-3639.2007.00090.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In Duchenne muscular dystrophy (DMD) metabolic and structural alterations of the central nervous system are described. Here, we investigated in the brain of 10 mdx mice and in five control ones, the expression of hypoxia inducible factor-1alpha (HIF-1alpha) and we correlated it with the expression of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor-2 (VEGFR-2) and of the endothelial tight junction proteins zonula occludens-1 (ZO-1) and claudin-1. Results showed an activation of mRNA HIF-1alpha by reverse transcription polymerase chain reaction (RT-PCR) and a strong HIF1-alpha labeling of perivascular glial cells and cortical neurons by immunohistochemistry, in mdx mouse. Moreover, overexpression of VEGF and VEGFR-2, respectively, in neurons and in endothelial cells coupled with changes to endothelial ZO-1 and claudin-1 expression in the latter were detected by immunoblotting and immunohistochemistry, in the mdx brain. Furthermore, by immunoprecipitation, an up-phosphorylation of ZO-1 was demonstrated in mdx endothelial cells in parallel with the reduction in ZO-1 protein content. These data suggest that the activation of HIF-1alpha in the brain of dystrophic mice coupled with VEGF and VEGFR-2 up-regulation and ZO-1 and claudin-1 rearrangement might contribute to both blood-brain barrier opening and increased angiogenesis.
Collapse
MESH Headings
- Animals
- Blood-Brain Barrier/metabolism
- Blood-Brain Barrier/physiopathology
- Brain/metabolism
- Brain/physiopathology
- Brain Diseases, Metabolic, Inborn/genetics
- Brain Diseases, Metabolic, Inborn/metabolism
- Brain Diseases, Metabolic, Inborn/physiopathology
- Claudin-1
- Disease Models, Animal
- Endothelial Cells/metabolism
- Female
- Hypoxia-Inducible Factor 1/genetics
- Hypoxia-Inducible Factor 1/metabolism
- Immunohistochemistry
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Muscular Dystrophy, Duchenne/complications
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/physiopathology
- Neuroglia/metabolism
- Neurons/metabolism
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Phosphorylation
- RNA, Messenger/metabolism
- Up-Regulation/physiology
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
- Vascular Endothelial Growth Factor Receptor-2/genetics
- Vascular Endothelial Growth Factor Receptor-2/metabolism
- Zonula Occludens-1 Protein
Collapse
Affiliation(s)
- Beatrice Nico
- Department of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Duchenne muscular dystrophy (DMD) is a progressive pediatric disorder that affects both muscle and brain. Children with DMD have mean IQ scores that are about one standard deviation lower than population means, with lower Verbal IQ than Performance IQ scores. For the present study, verbal skills and verbal memory skills were examined in males with DMD with the Clinical Evaluation of Language Fundamentals, 3rd edition, and the California Verbal Learning Test for Children. Performance of 50 males with DMD (age range 6-14 y, mean 9 y 4 mo [SD 2 y 1 mo]) was compared to normative values. Two subsets of the probands were also compared with two comparison groups: unaffected siblings (n=24; DMD group age range 6-12 y, mean 9 y 1 mo [SD 1 y 8 mo]; sibling age range 6-15 y, mean 9 y 11 mo [SD 2 y 4 mo]) and males with cerebral palsy (CP); (n=23; DMD group age range 6-9 y, mean 7 y 8 mo [SD 1 y 2 mo]; CP age range 6-8 y, mean 6 y 8 mo [SD 0 y 8 mo]). Results demonstrated that although males with DMD performed slightly more poorly than normative values, they performed comparably to the controls on most measures. Consistent deficits were observed only on tests requiring immediate repetition for verbal material (Recalling Sentences, and Concepts and Directions). On other language tasks, including tests of understanding and use of grammar, and understanding of semantic relationships, the males with DMD performed well. Moreover, the males with DMD performed well on multiple indices of verbal recall, and there was no evidence of declarative memory deficits. DMD is a single-gene disorder that is selectively associated with decreased verbal span capacity, but not impaired recall.
Collapse
Affiliation(s)
- V J Hinton
- Gertrude H Sergievsky Center, College of Physicians And Surgeons, Columbia University, New York, NY 10032, USA.
| | | | | | | |
Collapse
|
24
|
Abstract
Duchenne muscular dystrophy (DMD) is a chronic, progressive pediatric disease that affects both muscle and brain. The objectives of the study were to examine parent reported behavior in children with DMD, investigate the influence of chronic illness, intellectual ability and etiology on behavior, and determine whether a specific behavioral profile is associated with DMD. Parental ratings of boys with DMD (n = 181) on the Child Behavior Checklist behavior scales were examined and compared to reported findings of children with other chronic illnesses, unaffected siblings of boys with DMD (n = 86), and children with cerebral palsy (CP) (n = 42). Increased ratings of general behavior problems were reported, and neither physical progression nor intellectual level contributed to behavioral ratings. Among the children with DMD, the Social Problem behavior scale had the greatest number of "clinically significant" ratings (34%). Between-group comparisons showed significantly more boys with DMD were rated as having social behavior problems than either the sibling or CP comparison groups. In addition to the increase in reported behavioral problems likely related to the effects of chronic illness, boys with DMD may be at heightened risk for specific social behavior problems. The specificity of the findings of the behavior profile in DMD may be partially due to the lack of dystrophin isoforms in the central nervous system, and not solely a reactive response to the illness.
Collapse
Affiliation(s)
- Veronica J Hinton
- Gertrude H. Sergievsky Center and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | | | | | | |
Collapse
|
25
|
Abstract
Several studies have suggested the presence of central nervous system involvement manifesting as cognitive impairment in diseases traditionally confined to the peripheral nervous system. The aim of this review is to highlight the character of clinical, genetic, neurofunctional, cognitive, and psychiatric deficits in neuromuscular disorders. A high correlation between cognitive features and cerebral protein expression or function is evident in Duchenne muscular dystrophy, myotonic dystrophy (Steinert disease), and mitochondrial encephalomyopathies; direct correlation between tissue-specific protein expression and cognitive deficits is still elusive in certain neuromuscular disorders presenting with or without a cerebral abnormality, such as congenital muscular dystrophies, congenital myopathies, amyotrophic lateral sclerosis, adult polyglucosan body disease, and limb-girdle muscular dystrophies. No clear cognitive deficits have been found in spinal muscular atrophy and facioscapulohumeral dystrophy.
Collapse
Affiliation(s)
- Maria Grazia D'Angelo
- Istituto di Ricerca e Cura a Carattere Scientifico E. Medea, La Nostra Famiglia, Via don Luigi Monza 20, 23842 Bosisio Parini, Italy.
| | | |
Collapse
|
26
|
Weinmann M, Belka C, Güner D, Goecke B, Müller I, Bamberg M, Jendrossek V. Array-based comparative gene expression analysis of tumor cells with increased apoptosis resistance after hypoxic selection. Oncogene 2005; 24:5914-22. [PMID: 15897868 DOI: 10.1038/sj.onc.1208748] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tumor hypoxia is an adverse prognostic factor. In a recent study, we could demonstrate that cyclic hypoxia selects for hypoxia-tolerant tumor cells, which are cross-resistant to other stimuli of mitochondrial death pathways. In contrast, sensitivity of the cells to death-receptor ligands was mainly not affected. The aim of the present study was to further elucidate cellular changes induced by cyclic hypoxia and to identify alterations in gene expression pattern upon hypoxic selection by means of DNA-microarray analysis. Our data reveal that cyclic hypoxia resulted in the selection of cells with resistance to doxorubicine and radiation. Furthermore, hypoxic selection was accompanied by constitutive changes of the gene expression pattern with downregulation of 156 and upregulation of 82 genes. Most of the differentially regulated genes were involved in cellular responses to hypoxia and reoxygenation. While many of the genes that were downregulated upon hypoxic selection represent genes that are usually upregulated by acute hypoxia, the genes that were upregulated represent genes that are involved in stress resistance and anti-apoptotic signalling. Most importantly, hypoxic selection was not associated with changes of single apoptosis relevant genes, but with alterations in gene expression levels of a wide variety of genes indicating a more complex adaptation process.
Collapse
Affiliation(s)
- Martin Weinmann
- Department of Radiation Oncology, University of Tuebingen, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Vaillend C, Billard JM, Laroche S. Impaired long-term spatial and recognition memory and enhanced CA1 hippocampal LTP in the dystrophin-deficient Dmd(mdx) mouse. Neurobiol Dis 2004; 17:10-20. [PMID: 15350961 DOI: 10.1016/j.nbd.2004.05.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Revised: 05/11/2004] [Accepted: 05/14/2004] [Indexed: 11/16/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is associated with cognitive deficits that may result from dystrophin deficiency in neurons. However, in the dystrophin-deficient Dmd(mdx) mouse model of DMD, the nature of the memory impairment is not well characterised and its biological substrate is uncertain. Here, we demonstrate that dystrophin deficiency in Dmd(mdx) mice impairs long-term, but not short-term, object recognition memory and impairs long-term spatial memory, but not acquisition, following massed training in the water maze. Furthermore, we show that the abnormal enhancement of CA1 hippocampal LTP in Dmd(mdx) mice is not restricted to short-lasting mechanisms, but also affects the maintenance phase of LTP of both synaptic efficacy and neuronal excitability. We conclude that dystrophin loss alters memory consolidation in both spatial and nonspatial learning tasks, at least in part due to altered synaptic plasticity mechanisms, and suggest that the severity of the deficits may depend on the nature of the training procedure.
Collapse
Affiliation(s)
- Cyrille Vaillend
- Laboratoire de Neurobiologie de la Mémoire, de l'Apprentissage et de la Communication, CNRS UMR 8620, Université Paris-Sud, 91405 Orsay, France.
| | | | | |
Collapse
|
28
|
De Sarro G, Ibbadu GF, Marra R, Rotiroti D, Loiacono A, Donato Di Paola E, Russo E. Seizure susceptibility to various convulsant stimuli in dystrophin-deficient mdx mice. Neurosci Res 2004; 50:37-44. [PMID: 15288497 DOI: 10.1016/j.neures.2004.05.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Accepted: 05/24/2004] [Indexed: 12/14/2022]
Abstract
In the present study, the susceptibility of the mdx mouse, a dystrophin-deficient genetic model of Duchenne muscular dystrophy (DMD), to various convulsant stimuli has been evaluated and compared to three related mice strains (C57BL/6J, C57BL/10 and DBA/2 mice). Animals were treated with chemical convulsants impairing gamma-aminobutyric acid (GABA) neurotransmission [pentylenetetrazole, picrotoxin, bicuculline, methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM), methyl-beta-carboline-3-carboxylate (beta-CCM)], enhancing glutamatergic neurotransmission [N-methyl-d-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and kainic acid (KA)] or a K(+) channel blocker (4-aminopyridine). Occurrence of clonic and/or tonic seizures was evaluated to observe possible differences in seizure susceptibility. In addition, all strains of mice were repeatedly treated with a subconvulsant dose of pentylenetetrazole (PTZ) for possible differences in kindling development. The mdx mice exhibited no difference in seizure susceptibility for all convulsant drugs with the exception of a significantly lower sensitivity to AMPA and KA than the other mice strains. This study demonstrates that mdx mice possess a decreased susceptibility to some convulsant stimuli. However, mdx mice showed an enhanced seizure severity and a shorter latency in the development of chemical kindling produced by administration of PTZ. The present data suggests that the dystrophin deficiency in mdx mice affects the pathophysiology and pharmacology of acute and chronic epileptic seizures in an opposite manner.
Collapse
Affiliation(s)
- Giovambattista De Sarro
- Department of Experimental and Clinical Medicine "G. Salvatore", School of Medicine, University "Magna Graecia" of Catanzaro, Policlinico Mater Domini, Via T. Campanella, 115, 88100 Catanzaro, Italy.
| | | | | | | | | | | | | |
Collapse
|
29
|
Yoshihara Y, Onodera H, Iinuma K, itoyama Y. Abnormal kainic acid receptor density and reduced seizure susceptibility in dystrophin-deficient mdx mice. Neuroscience 2003; 117:391-5. [PMID: 12614679 DOI: 10.1016/s0306-4522(02)00876-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Duchenne muscular dystrophy is characterized by a defect in dystrophin, which often causes mental retardation in addition to progressive muscular weakness. As dystrophin is localized in synaptic regions of the CNS, cognitive abnormalities associated with Duchenne muscular dystrophy are attributable to synaptic dysfunction. We report that dystrophin-deficient mdx mice were more resistant to kainic acid-induced seizures but not to GABA antagonist-induced seizures compared with the control mice. The kainic-acid receptor density in the brain was significantly lower in the mdx than in the control, although the density of muscarinic cholinergic receptors, another important neurotransmitter receptor for cognitive function, was normal. Moreover, mdx had significantly lower Timm staining intensity in the mossy fibers, which originate from the dentate granule cells and terminate on the pyramidal cells in the CA3 of the hippocampus. These results suggest that an instability of neurotransmitter receptors, such as kainate-type glutamate receptors, on synaptic membranes due to the disruption of dystrophin complex induces inefficient neurotransmission in Duchenne muscular dystrophy patients.
Collapse
Affiliation(s)
- Y Yoshihara
- Department of Pediatrics, Tohoku University School of Medicine, 1-1 Seiryo-Machi Aoba-ku, Sendai 980-8574, Japan
| | | | | | | |
Collapse
|
30
|
Vaillend C, Billard JM. Facilitated CA1 hippocampal synaptic plasticity in dystrophin-deficient mice: role for GABAA receptors? Hippocampus 2003; 12:713-7. [PMID: 12542223 DOI: 10.1002/hipo.10068] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Duchenne muscular dystrophy (DMD) is associated with cognitive deficits that may result from a deficiency in the brain isoform of the cytoskeletal membrane-associated protein, dystrophin. CA1 hippocampal short-term potentiation (STP) of synaptic transmission is increased in dystrophin-deficient mdx mice, which has been attributed to a facilitated activation of NMDA receptors. In this study, extracellular recordings in the hippocampal slice preparation were used first to determine the consequences of this alteration on short-term depression (STD). STD induction was facilitated in mdx as compared with wild-type mice in a control medium. Because brain dystrophin deficiency results in a decreased number of gamma-aminobutyric acid A (GABAA)-receptor clusters, we tested the hypothesis that neuronal disinhibition contributes to the enhanced synaptic plasticity in mdx mice. We found that the GABAA receptor antagonist, bicuculline, increased basal neurotransmission in wild-type, but not in mdx mice and prevented the enhanced STP and STD in the CA1 area of slices from mdx mice. The possibility that altered GABA mechanisms underlie the facilitation of NMDA receptor-dependent synaptic plasticity in mdx mice is discussed.
Collapse
Affiliation(s)
- Cyrille Vaillend
- Laboratoire de Neurobiologie de la Mémoire, de l'Apprentissage et de la Communication, CNRS UMR 8620, Orsay, France
| | | |
Collapse
|
31
|
Rae C, Griffin JL, Blair DH, Bothwell JH, Bubb WA, Maitland A, Head S. Abnormalities in brain biochemistry associated with lack of dystrophin: studies of the mdx mouse. Neuromuscul Disord 2002; 12:121-9. [PMID: 11738353 DOI: 10.1016/s0960-8966(01)00253-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Biochemical abnormalities have been reported in dystrophin-deficient muscle of boys with Duchenne (severe Xp21) muscular dystrophy or in the murine (mdx) model of the disease. These abnormalities include altered energy metabolism and responses to osmotic shock. In contrast, the situation in brain is less well understood and it is probable that dystrophin is playing a different role (or roles) in this organ. In this study we conclude that the elevation in choline-containing compounds reported in mdx brain is confined to cerebellum and hippocampus in older (> 6 months) mice. We report alterations in glucose metabolism in mdx brain under normal, awake conditions, and a reduced response of brain metabolism to the gamma-aminobutyric acid(A) receptor agonist muscimol. Using brain cortical slices we found no difference in the response of dystrophic tissue to hypoosmotic shock, but increased, substrate-dependent oxygen consumption rates at low oxygen partial pressures.
Collapse
Affiliation(s)
- Caroline Rae
- Department of Biochemistry, The University of Sydney, Sydney, NSW 2006, Australia.
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Duchenne muscular dystrophy (DMD) is the second most commonly occurring genetically inherited disease in humans. It is an X-linked condition that affects approximately one in 3300 live male births. It is caused by the absence or disruption of the protein dystrophin, which is found in a variety of tissues, most notably skeletal muscle and neurones in particular regions of the CNS. Clinically DMD is characterized by a severe pathology of the skeletal musculature that results in the premature death of the individual. An important aspect of DMD that has received less attention is the role played by the absence or disruption of dystrophin on CNS function. In this review we concentrate on insights into this role gained from investigation of boys with DMD and the genetically most relevant animal model of DMD, the dystrophin-deficient mdx mouse. Behavioural studies have shown that DMD boys have a cognitive impairment and a lower IQ (average 85), whilst the mdx mice display an impairment in passive avoidance reflex and in short-term memory. In DMD boys, there is evidence of disordered CNS architecture, abnormalities in dendrites and loss of neurones, all associated with neurones that normally express dystrophin. In the mdx mouse, there have been reports of a 50% decrease in neurone number and neural shrinkage in regions of the cerebral cortex and brainstem. Histological evidence shows that the density of GABA(A) channel clusters is reduced in mdx Purkinje cells and hippocampal CA1 neurones. At the biochemical level, in DMD boys the bioenergetics of the CNS is abnormal and there is an increase in the levels of choline-containing compounds, indicative of CNS pathology. The mdx mice also display abnormal bioenergetics, with an increased level of inorganic phosphate and increased levels of choline-containing compounds. Functionally, DMD boys have EEG abnormalities and there is some preliminary evidence that synaptic function is affected adversely by the absence of dystrophin. Electrophysiological studies of mdx mice have shown that hippocampal neurones have an increased susceptibility to hypoxia. These recent findings on the role of dystrophin in the CNS have implications for the clinical management of boys with DMD.
Collapse
Affiliation(s)
- J L Anderson
- School of Physiology and Pharmacology, University of New South Wales, Sydney, Australia
| | | | | | | |
Collapse
|
33
|
Mehler MF. Brain dystrophin, neurogenetics and mental retardation. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 32:277-307. [PMID: 10751678 DOI: 10.1016/s0165-0173(99)00090-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Duchenne muscular dystrophy (DMD) and the allelic disorder Becker muscular dystrophy (BMD) are common X-linked recessive neuromuscular disorders that are associated with a spectrum of genetically based developmental cognitive and behavioral disabilities. Seven promoters scattered throughout the huge DMD/BMD gene locus normally code for distinct isoforms of the gene product, dystrophin, that exhibit nervous system developmental, regional and cell-type specificity. Dystrophin is a complex plasmalemmal-cytoskeletal linker protein that possesses multiple functional domains, autosomal and X-linked homologs and associated binding proteins that form multiunit signaling complexes whose composition is unique to each cellular and developmental context. Through additional interactions with a variety of proteins of the extracellular matrix, plasma membrane, cytoskeleton and distinct intracellular compartments, brain dystrophin acquires the capability to participate in the modulatory actions of a large number of cellular signaling pathways. During neural development, dystrophin is expressed within the neural tube and selected areas of the embryonic and postnatal neuraxis, and may regulate distinct aspects of neurogenesis, neuronal migration and cellular differentiation. By contrast, in the mature brain, dystrophin is preferentially expressed by specific regional neuronal subpopulations within proximal somadendritic microdomains associated with synaptic terminal membranes. Increasing experimental evidence suggests that in adult life, dystrophin normally modulates synaptic terminal integrity, distinct forms of synaptic plasticity and regional cellular signal integration. At a systems level, dystrophin may regulate essential components of an integrated sensorimotor attentional network. Dystrophin deficiency in DMD/BMD patients and in the mdx mouse model appears to impair intracellular calcium homeostasis and to disrupt multiple protein-protein interactions that normally promote information transfer and signal integration from the extracellular environment to the nucleus within regulated microdomains. In DMD/BMD, the individual profiles of cognitive and behavioral deficits, mental retardation and other phenotypic variations appear to depend on complex profiles of transcriptional regulation associated with individual dystrophin mutations that result in the corresponding presence or absence of individual brain dystrophin isoforms that normally exhibit developmental, regional and cell-type-specific expression and functional regulation. This composite experimental model will allow fine-level mapping of cognitive-neurogenetic associations that encompass the interrelationships between molecular, cellular and systems levels of signal integration, and will further our understanding of complex gene-environmental interactions and the pathogenetic basis of developmental disorders associated with mental retardation.
Collapse
Affiliation(s)
- M F Mehler
- Departments of Neurology, Neuroscience and Psychiatry, the Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
34
|
Abstract
Several forms of inherited muscular dystrophy are associated with brain abnormalities and cognitive impairment. One of the most common and severe of these diseases is Duchenne muscular dystrophy (DMD). Dystrophin, the product of the DMD gene, is found in neurones, where it is associated with the postsynaptic membrane. Cognitive impairment in individuals with DMD is thought to be due to an abnormality in the neuronal membrane that is caused by lack of dystrophin. Recent experimental evidence has provided valuable clues in our understanding of the complex molecular neurobiology of muscular dystrophy.
Collapse
Affiliation(s)
- D J Blake
- Dept of Human Anatomy and Genetics, University of Oxford, UK OX1 3QX
| | | |
Collapse
|
35
|
Godfraind JM, Tekkök SB, Krnjević K. Hypoxia on hippocampal slices from mice deficient in dystrophin (mdx) and isoforms (mdx3cv). J Cereb Blood Flow Metab 2000; 20:145-52. [PMID: 10616803 DOI: 10.1097/00004647-200001000-00019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Slices from control C57, mdx, and mdx3cv mice were made hypoxic until both field excitatory postsynaptic potential (fEPSP) and presynaptic afferent volley (AV) disappeared (H1). After reoxygenation and recovery of fEPSP, a second and longer hypoxic test (H2) lasted 3 minutes beyond the time required to block AV. When slices were kept in 10 mmol/L glucose, HI abolished AV 37 and 19% earlier in slices from mdr and mdx3cv mutants than in control slices (where HI = 12 +/- 4.6 minutes, mean +/- SD). During H2 or when slices were kept in 4 mmol/L glucose, AV vanished even more quickly, but the times to block did not differ significantly between slices from controls and mutants. After reoxygenation, AV fully recovered in most slices. Rates of blockade of fEPSPs were comparable in all slices, and most fEPSPs recovered fully after HI. But even in the presence of 10 mmol/L glucose, the second hypoxia suppressed fEPSPs irreversibly in some slices: 2 of 10 from control, 3 of 7 from mdx, and 1 of 6 from mdx3cv mice. Most slices in 4 mmol/L glucose showed no recovery at all: six of seven from control, three of five from mdx, and four of five from mdx3cv mice. Thus, slices from mdx mice were more susceptible than other slices to irreversible hypoxic failure when slices were kept in 10 mmol/L glucose, but they were less susceptible than other slices when kept in 4 mmol/L glucose. In conclusion, the lack of full-length dystrophin (427 kDa) predisposes to quicker loss of nerve conduction in slices from mdx and mdx3cv mutants and improved posthypoxic recovery of fEPSPs in 4 mmol/L glucose in slices from mdx but not mdx3cv mutants, perhaps because the 70-kDa and other C-terminal isoforms are still present in mdx mice.
Collapse
Affiliation(s)
- J M Godfraind
- Département de Physiologie et Pharmacologie, Système Nerveux, Faculté de Médecine, UCL-Bruxelles, Brussels, Belgium
| | | | | |
Collapse
|
36
|
Blake DJ, Hawkes R, Benson MA, Beesley PW. Different dystrophin-like complexes are expressed in neurons and glia. J Cell Biol 1999; 147:645-58. [PMID: 10545507 PMCID: PMC2151186 DOI: 10.1083/jcb.147.3.645] [Citation(s) in RCA: 187] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Duchenne muscular dystrophy is a fatal muscle disease that is often associated with cognitive impairment. Accordingly, dystrophin is found at the muscle sarcolemma and at postsynaptic sites in neurons. In muscle, dystrophin forms part of a membrane-spanning complex, the dystrophin-associated protein complex (DPC). Whereas the composition of the DPC in muscle is well documented, the existence of a similar complex in brain remains largely unknown. To determine the composition of DPC-like complexes in brain, we have examined the molecular associations and distribution of the dystrobrevins, a widely expressed family of dystrophin-associated proteins, some of which are components of the muscle DPC. beta-Dystrobrevin is found in neurons and is highly enriched in postsynaptic densities (PSDs). Furthermore, beta-dystrobrevin forms a specific complex with dystrophin and syntrophin. By contrast, alpha-dystrobrevin-1 is found in perivascular astrocytes and Bergmann glia, and is not PSD-enriched. alpha-Dystrobrevin-1 is associated with Dp71, utrophin, and syntrophin. In the brains of mice that lack dystrophin and Dp71, the dystrobrevin-syntrophin complexes are still formed, whereas in dystrophin-deficient muscle, the assembly of the DPC is disrupted. Thus, despite the similarity in primary sequence, alpha- and beta-dystrobrevin are differentially distributed in the brain where they form separate DPC-like complexes.
Collapse
Affiliation(s)
- D J Blake
- Department of Human Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom.
| | | | | | | |
Collapse
|
37
|
Vaillend C, Ungerer A, Billard JM. Facilitated NMDA receptor-mediated synaptic plasticity in the hippocampal CA1 area of dystrophin-deficient mice. Synapse 1999; 33:59-70. [PMID: 10380851 DOI: 10.1002/(sici)1098-2396(199907)33:1<59::aid-syn6>3.0.co;2-k] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The contribution of the cytoskeletal membrane-associated protein dystrophin in glutamatergic transmission and related plasticity was investigated in the hippocampal CA1 area of wild-type and dystrophin-deficient (mdx) mice, using extracellular recordings in the ex vivo slice preparation. Presynaptic fiber volleys and field excitatory postsynaptic potentials (fEPSPs) mediated through N-methyl-D-Aspartate receptors (NMDAr) or non-NMDAr were compared in both strains. Comparable synaptic responses were observed in wild-type and mdx mice, suggesting that basal glutamatergic transmission is not altered in the mutants. By contrast, the synaptic strengthening induced by a conditioning stimulation of either 10, 30, or 100 Hz was significantly greater in mdx mice during the first minutes posttetanus. Because the posttetanic potentiation induced in the presence of the NMDAr antagonist D-APV was not affected in the mutants, a critical role of NMDAr in this increase was suggested. The magnitude of the potentiation induced by a 30 Hz stimulation in mdx mice was normalized as compared to wild-type mice by increasing the extracellular magnesium concentration from 1.5 to 3 mM. Moreover, the transitory depression of fEPSPs induced by bath-applied NMDA (50 microM for 30s) was more sensitive to an increased extracellular magnesium concentration in wild-type than in mdx mice. Our results suggest that the absence of dystrophin may facilitate NMDAr activation in the CA1 hippocampal subfield of mdx mice, which may be partly due to a reduction of the voltage-dependent block of this receptor by magnesium.
Collapse
Affiliation(s)
- C Vaillend
- Laboratoire d'Ethologie et Neurobiologie, Strasbourg, France
| | | | | |
Collapse
|
38
|
Vaillend C, Billard JM, Claudepierre T, Rendon A, Dutar P, Ungerer A. Spatial discrimination learning and CA1 hippocampal synaptic plasticity in mdx and mdx3cv mice lacking dystrophin gene products. Neuroscience 1998; 86:53-66. [PMID: 9692743 DOI: 10.1016/s0306-4522(98)00023-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Duchenne muscular dystrophy is frequently associated with a non-progressive cognitive deficit attributed to the absence of 427,000 mol. wt brain dystrophin, or to altered expression of other C-terminal products of this protein, Dp71 and/or Dp140. To further explore the role of these membrane cytoskeleton-associated proteins in brain function, we studied spatial learning and ex vivo synaptic plasticity in the mdx mouse, which lacks 427,000 mol. wt dystrophin, and in the mdx3cv mutant, which shows a dramatically reduced expression of all the dystrophin gene products known so far. We show that reference and working memories are largely unimpaired in the two mutant mice performing a spatial discrimination task in a radial maze. However, mdx3cv mice showed enhanced emotional reactivity and developed different strategies in learning the task, as compared to control mice. We also showed that both mutants display apparently normal levels of long-term potentiation and paired-pulse facilitation in the CA1 field of the hippocampus. On the other hand, an increased post-tetanic potentiation was shown by mdx, but not mdx3cv mice, which might be linked to calcium-regulatory defects. Otherwise, immunoblot analyses suggested an increased expression of a 400,000 mol. wt protein in brain extracts from both mdx and mdx3cv mice, but not in those from control mice. This protein might correspond to the dystrophin-homologue utrophin. The present results suggest that altered expression of dystrophin or C-terminal dystrophin proteins in brain did not markedly affect hippocampus-dependent spatial learning and CA1 hippocampal long-term potentiation in mdx and mdx3cv mice. The role of these membrane cytoskeleton-associated proteins in normal brain function and pathology remains to be elucidated. Furthermore, the possibility that redundant mechanisms could partially compensate for dystrophins' deficiency in the mdx and mdx3cv models should be further considered.
Collapse
Affiliation(s)
- C Vaillend
- Laboratoire d'Ethologie et Neurobiologie, URA 1295 CNRS, ULP, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
During a gene trap screen, an insertion of the gene trap vector into the dystrophin gene, creating a new allele for the Dmd gene, has been discovered. Because the ROSA beta geo vector was used, the new allele is called Dmd(mdx-beta geo). The insertion occurred 3' of exon 63 of the dystrophin gene, resulting in a mutation that affects all presently known dystrophin isoforms. In contrast to spontaneous or ENU-induced alleles, Dmd(mdx-beta geo) can be used to follow dystrophin expression by staining for beta-galactosidase activity. The high sensitivity of this method revealed additional and earlier expression of dystrophin during embryogenesis than that seen previously with other methods. Dystrophin promoters are active predominantly in the dermamyotome, limb buds, telencephalon, floor plate, eye, liver, pancreas anlagen, and cardiovascular system. Adult Dmd(mdx-beta geo) mice show reporter gene expression in brain, eye, liver, pancreas, and lung. In skeletal and heart muscle, beta-galactosidase activity is not detectable, confirming Western blot data that indicate the absence of the mutant full-length protein in these tissues. Hemizygous Dmd(mdx-beta geo) mice show muscular dystrophy with degenerating muscle fibers, cellular infiltration, and regenerated muscle fibers that have centrally located nuclei. Some mutant animals develop a dilated esophagus, probably due to constriction by the hypertrophic crura of the diaphragm.
Collapse
Affiliation(s)
- K Wertz
- Max-Planck-Institut für Immunbiologie, Freiburg, Germany.
| | | |
Collapse
|
40
|
Blake DJ, Nawrotzki R, Loh NY, Górecki DC, Davies KE. beta-dystrobrevin, a member of the dystrophin-related protein family. Proc Natl Acad Sci U S A 1998; 95:241-6. [PMID: 9419360 PMCID: PMC18188 DOI: 10.1073/pnas.95.1.241] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The importance of dystrophin and its associated proteins in normal muscle function is now well established. Many of these proteins are expressed in nonmuscle tissues, particularly the brain. Here we describe the characterization of beta-dystrobrevin, a dystrophin-related protein that is abundantly expressed in brain and other tissues, but is not found in muscle. beta-dystrobrevin is encoded by a 2.5-kb alternatively spliced transcript that is found throughout the brain. In common with dystrophin, beta-dystrobrevin is found in neurons of the cortex and hippocampal formation but is not found in the brain microvasculature. In the brain, beta-dystrobrevin coimmunoprecipitates with the dystrophin isoforms Dp71 and Dp140. These data provide evidence that the composition of the dystrophin-associated protein complex in the brain differs from that in muscle. This finding may be relevant to the cognitive dysfunction affecting many patients with Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- D J Blake
- Genetics Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom.
| | | | | | | | | |
Collapse
|
41
|
|
42
|
Sesay AK, Errington ML, Levita L, Bliss TV. Spatial learning and hippocampal long-term potentiation are not impaired in mdx mice. Neurosci Lett 1996; 211:207-10. [PMID: 8817577 DOI: 10.1016/0304-3940(96)12747-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Moderate non-progressive cognitive impairment is a consistent feature of Duchenne muscular dystrophy (DMD), although few central nervous system abnormalities have yet been identified. A model for DMD is provided by the mdx mouse which fails to produce full length dystrophin in muscle and brain. In this study we have compared performances in a hippocampal-dependent spatial learning task, the Morris water maze, in mdx mice and in age-matched normal (C57BL/10) mice. There was no difference in acquisition rates or in retention between the two groups. We also found no difference in the magnitude of long-term potentiation (LTP) between the two groups, either in the dentate gyrus or in area CA. These experiments demonstrate that neither spatial learning nor hippocampal synaptic plasticity are significantly affected by the lack of full-length dystrophin.
Collapse
Affiliation(s)
- A K Sesay
- Division of Neurophysiology, National Institute for Medical Research, London, UK
| | | | | | | |
Collapse
|
43
|
Affiliation(s)
- H G Lidov
- Department of Pathology, Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
44
|
Vaillend C, Rendon A, Misslin R, Ungerer A. Influence of dystrophin-gene mutation on mdx mouse behavior. I. Retention deficits at long delays in spontaneous alternation and bar-pressing tasks. Behav Genet 1995; 25:569-79. [PMID: 8540895 DOI: 10.1007/bf02327580] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
X-linked Duchenne muscular dystrophy (DMD) is frequently associated with a nonprogressive, cognitive defect attributed to the absence of dystrophin in the brain of DMD patients. The mutant mdx mouse, lacking in 427-kDa dystrophin in both muscle and brain tissues, is considered to be a valuable model of human DMD. In the present study, we compared mdx and C57BL/10 control mice and showed that mdx mice had impaired retention in a T-maze, delayed spontaneous alternation task 24 h, but not 6 h, after acquisition. mdx mice were not impaired in acquisition of a bar-pressing task on 4 consecutive days but showed poor retention 22 days after the last training session. Mutants and controls showed similar behavioral responses in free exploration and light/dark choice situations and did not differ in spontaneous locomotor activity or motor coordination. Retention impairments at long delays in mdx mice suggest a role of dystrophin in long-term consolidation processes.
Collapse
Affiliation(s)
- C Vaillend
- Laboratoire de Psychophysiologie, ULP, URA CNRS 1295, Strasbourg, France
| | | | | | | |
Collapse
|
45
|
Bushby KM, Appleton R, Anderson LV, Welch JL, Kelly P, Gardner-Medwin D. Deletion status and intellectual impairment in Duchenne muscular dystrophy. Dev Med Child Neurol 1995; 37:260-9. [PMID: 7890131 DOI: 10.1111/j.1469-8749.1995.tb12000.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The authors collected Verbal, Performance and Full-scale IQs for 74 patients in whom complete analysis of the dystrophin gene for deletions and duplications had been performed. There was a significant difference in the mean Full-scale IQ between patients with deletions at the 5' and 3' ends of the gene, with no patients with 5' deletions having mental retardation. No relationship was established between mental retardation and the presence or absence of deletions or length of deletions, and similar deletions were observed in the presence and absence of mental retardation. Although distal deletions were more commonly associated with mental retardation, there was no clear evidence for a particular region of the dystrophin gene being specifically responsible for IQ. The intellectual deficit seen in DMD may be a consequence of cerebral hypoxia, ue to malfunction of smooth muscle dystrophin.
Collapse
Affiliation(s)
- K M Bushby
- Department of Human Genetics, University of Newcastle upon Tyne, UK
| | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Fitzgerald KM, Cibis GW, Giambrone SA, Harris DJ. Retinal signal transmission in Duchenne muscular dystrophy: evidence for dysfunction in the photoreceptor/depolarizing bipolar cell pathway. J Clin Invest 1994; 93:2425-30. [PMID: 8200977 PMCID: PMC294450 DOI: 10.1172/jci117250] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
There have been reports of abnormal retinal neurotransmission determined by electroretinography in boys with Duchenne and Becker muscular dystrophy. Dystrophin may play a role in transmitting signals between photoreceptors and the excitatory synapse of the ON-bipolar cell. These electroretinographic changes appeared to be limited to the rod ON-pathway but we felt there was also similar abnormality in the cone ON-pathway. We used long-duration stimuli to separate ON-(depolarizing bipolar cell) and OFF (hyperpolarizing bipolar cell) contributions to the cone-dominated ERG to better understand how the retina functions in boys with Duchenne muscular dystrophy. We recorded the electroretinograms of 11 boys with Duchenne muscular dystrophy and found abnormal signal transmission at the level of the photoreceptor and ON-bipolar cell in both the rod and cone generated responses. The OFF-bipolar cell that responds to the offset of the stimulus continues to function normally. The results support our hypothesis that retinal dystrophin plays a role in receptor function or controlling ion channels at the level of the photoreceptor and depolarizing bipolar cell.
Collapse
Affiliation(s)
- K M Fitzgerald
- Vision Sciences Laboratory, Children's Mercy Hospital, Kansas City, Missouri 64108
| | | | | | | |
Collapse
|
48
|
Pillers DA, Bulman DE, Weleber RG, Sigesmund DA, Musarella MA, Powell BR, Murphey WH, Westall C, Panton C, Becker LE. Dystrophin expression in the human retina is required for normal function as defined by electroretinography. Nat Genet 1993; 4:82-6. [PMID: 8513332 DOI: 10.1038/ng0593-82] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have studied retinal function by electroretinography in five Becker and six Duchenne muscular dystrophy patients. All had abnormal electroretinograms with a markedly reduced amplitude for the b-wave in the dark-adapted state. Using three antisera raised to different domains of dystrophin, we identified dystrophin in the outer plexiform layer of human retina. The retinal dystrophin is present in multiple isoforms as the result of alternative splicing. The localization of dystrophin to the outer plexiform layer coincident with the abnormal b-wave suggests that dystrophin is required for normal retinal electrophysiology.
Collapse
Affiliation(s)
- D A Pillers
- Department of Pediatrics, Oregon Health Sciences University, Portland 97201
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Saitoh T, Masliah E, Baum L, Sundsmo M, Flanagan L, Vikramkumar R, Kay MM. Degradation of proteins in the membrane-cytoskeleton complex in Alzheimer's disease. Might amyloidogenic APP processing be just the tip of the iceberg? Ann N Y Acad Sci 1992; 674:180-92. [PMID: 1288363 DOI: 10.1111/j.1749-6632.1992.tb27487.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- T Saitoh
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla 92093-0624
| | | | | | | | | | | | | |
Collapse
|