1
|
Spin infection enables efficient gene delivery to muscle stem cells. Biotechniques 2017; 63:72-76. [PMID: 28803542 DOI: 10.2144/000114576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 06/28/2017] [Indexed: 11/23/2022] Open
Abstract
Viral vector-mediated foreign gene expression in cultured cells has been extensively used in stem cell studies to explore gene function. However, it is difficult to obtain high-quality stem cells and primary cells after viral vector infection. Here, we describe a new protocol for high-efficiency retroviral infection of primary muscle stem cell (satellite cell) cultures. We compared multiple commercially available transfection reagents to determine which was optimal for retroviral infections of primary myoblasts. Centrifugation force was also tested, and a spin infection protocol with centrifugation at 2800 × g for 90 min had the highest infection efficiency for primary myoblasts. We confirmed that infected muscle stem cells maintain cell proliferation and the capacity for in vitro and in vivo myogenic differentiation. Our new, efficient retroviral infection protocol for muscle stem cells can be applied to molecular biology experiments as well as translational studies.
Collapse
|
2
|
Azadbakhsh AS, Sam MR, Farokhi F. Bioengineering of differentiated hepatocytes with human factor IX-expressing plasmids in vitro. Bioengineered 2016; 7:497-503. [PMID: 27458870 DOI: 10.1080/21655979.2016.1207018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
For somatic gene therapy of hemophilia B, hepatocytes as the main cellular host for expression of hFIX are attractive targets. In gene therapy protocols, an efficient expression vector equipped with cis-regulatory elements such as introns is required. With this in mind, hFIX-expressing plasmids equipped with different combinations of 2 human β-globin (hBG) introns inside the hFIX-cDNA and Kozak element were used for bioengineering of HepG2 cells as a model for differentiated hepatocytes and CHO cells a cell line generally used to produce recombinant hFIX (rhFIX). In HepG2 cells, the highest hFIX secretion level occurred for the intron-less plasmid with 8.5 to 53.8- fold increases, while in CHO cells, the hBG intron-I containing plasmid induced highest hFIX secretion level with 2.3 to 14.3-fold increases as compared to other plasmids. The first hBG intron appears to be more effective than the second one in both cell lines. The expression level was further increased upon the inclusion of the Kozak element. The highest hFIX activity was obtained from the cells that carrying the intron-less plasmids with 470 mU/ml and 25 mU/ml for HepG2 and CHO cells respectively. Secretion of active hFIX by all constructs was documented except for hBG intron-II containing construct in both cell lines. HepG2 cells were able to secret higher hFIX levels by 0.6 to 112.2-fold increases with activity by 5.3 to 16.4-fold increases compared to CHO cells transfected with the same constructs. Presence of both hBG intron-I and II inside the hFIX-cDNA provides properly spliced hFIX transcripts in both cell lines. In conclusion, the advantages of hBG introns as attractive cis-regulatory elements to obtain higher expression level of hFIX particularly in CHO cells were demonstrated. Hepatocytes could be effectively bioengineered with the use of plasmid vectors and this strategy may provide a potential in-vitro source of functional hepatocytes for ex-vivo gene therapy of hemophilias and production of rhFIX in vitro.
Collapse
Affiliation(s)
- Azadeh Sadat Azadbakhsh
- a Department of Cellular and Molecular Biotechnology , Institute of Biotechnology, Urmia University , Urmia , Iran
| | - Mohammad Reza Sam
- a Department of Cellular and Molecular Biotechnology , Institute of Biotechnology, Urmia University , Urmia , Iran
| | - Farrah Farokhi
- b Department of Histology and Embryology , Faculty of Science, Urmia University , Urmia , Iran
| |
Collapse
|
3
|
Mingozzi F, High KA. Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev Genet 2011; 12:341-55. [PMID: 21499295 DOI: 10.1038/nrg2988] [Citation(s) in RCA: 686] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In vivo gene replacement for the treatment of inherited disease is one of the most compelling concepts in modern medicine. Adeno-associated virus (AAV) vectors have been extensively used for this purpose and have shown therapeutic efficacy in a range of animal models. Successful translation to the clinic was initially slow, but long-term expression of donated genes at therapeutic levels has now been achieved in patients with inherited retinal disorders and haemophilia B. Recent exciting results have raised hopes for the treatment of many other diseases. As we discuss here, the prospects and challenges for AAV gene therapy are to a large extent dependent on the target tissue and the specific disease.
Collapse
Affiliation(s)
- Federico Mingozzi
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, 3501 Civic Center Boulevard, 5th Floor CTRB, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
4
|
Bulyakova NV, Azarova VS. Morphofunctional characteristics of the thymus and muscle regenerates under laser irradiation and alloplasty of adult muscle tissue in the area of trauma. BIOL BULL+ 2009. [DOI: 10.1134/s1062359009010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
AAV-mediated gene transfer for the treatment of hemophilia B: problems and prospects. Gene Ther 2008; 15:870-5. [PMID: 18432276 DOI: 10.1038/gt.2008.71] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Adeno-associated viral vector-mediated gene transfer of coagulation factor IX to the skeletal muscle or to liver has resulted in sustained correction of hemophilia B in mice and dogs. The two initial phase I/II AAV clinical trials for hemophilia B, delivering a factor IX cDNA to skeletal muscle or liver, showed no serious adverse events. Although the muscle trial failed to achieve a therapeutic level of factor IX in the circulation, long-term expression of clotting factor was demonstrated on muscle biopsies taken up to 3 years after vector injection. Administration of vector to liver via the hepatic artery identified a therapeutic dose, which agreed closely with the doses predicted by studies in hemophilic dogs. However, expression in human subjects lasted for only a period of weeks, followed by a gradual decline in factor IX levels accompanied by a self-limited, asymptomatic rise and fall in liver enzymes. Immune responses to vector capsid may account for this difference in outcome between humans and other species. Here we review the results from both preclinical and clinical studies of adeno-associated viral vector gene transfer for hemophilia B, and the problems that have been identified and that must be overcome to achieve successful transduction and sustained expression.
Collapse
|
6
|
Yao F, Pomahac B, Visovatti S, Chen M, Johnson S, Augustinova H, Svensjo T, Eriksson E. Systemic and Localized Reversible Regulation of Transgene Expression by Tetracycline with tetR-Mediated Transcription Repression Switch. J Surg Res 2007; 138:267-74. [PMID: 17254606 DOI: 10.1016/j.jss.2006.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 04/26/2006] [Accepted: 05/01/2006] [Indexed: 10/23/2022]
Abstract
BACKGROUND We recently developed a new tetracycline-inducible gene switch employing the tetracycline operator-containing hCMV major immediate-early promoter and the tetracycline repressor, tetR, rather than the previously used tetR-mammalian cell transcription factor fusion derivatives. MATERIALS AND METHODS The present study demonstrates that this tetR-mediated transcription repression system can function as a powerful gene switch for On-and-Off regulation of therapeutic gene expression in ex vivo gene transfer protocols. Firstly, for achieving regulated gene expression in a localized tissue environment, R11/OEGF cells, a stable line that expresses hEGF under the control of the tetR-mediated transcription repression switch, were transplanted into porcine full-thickness wounds enclosed by wound chambers. RESULTS By topically applying tetracycline in wound chambers at various concentrations or at different time points post-transplantation, the levels and timing of hEGF expression in transplanted wounds could be reversibly regulated by tetracycline. Over 3000-fold induction in hEGF expression was achieved in the local wound microenvironment. Secondly, R11/OEGF cells were intramuscularly injected into NCr outbread nude mice to test the efficacy of intermittent systemic gene delivery of a soluble peptide(s). CONCLUSIONS Basal circulating hEGF was undetectable and induced up to at least 1,500-fold after administration of tetracycline. Furthermore, the timing and duration of hEGF expression could be finely adjusted by the presence or the absence of tetracycline in the drinking water.
Collapse
Affiliation(s)
- Feng Yao
- Laboratory of Tissue Repair and Gene Transfer, Plastic Surgery, Brigham and Women's Hospital, and Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Wen J, Xu N, Li A, Bourgeois J, Ofosu FA, Hortelano G. Encapsulated human primary myoblasts deliver functional hFIX in hemophilic mice. J Gene Med 2007; 9:1002-10. [PMID: 17868187 DOI: 10.1002/jgm.1098] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Hemophilia B is a bleeding disorder caused by defective factor IX (FIX), currently treated by regular infusions of plasma-derived or recombinant FIX. We propose a gene therapy strategy based on the implantation of cells secreting FIX enclosed in alginate microcapsules as a highly desirable alternative treatment. We have reported sustained delivery of human factor IX (hFIX) in immunocompetent mice implanted with encapsulated primary mouse myoblasts engineered to secrete hFIX. As a step towards the treatment of human patients, in this study we report the implantation of encapsulated human primary myoblasts secreting hFIX in hemophilia B mice. METHODS Human primary myoblasts were transfected with plasmids pKL4M-hFIX, pLNM-betaIXL, pMFG-hFIX, and transduced with retrovirus MFG-hFIX. Two human primary myoblast clones secreting approximately 1 microg hFIX/10(6) cells/day were enclosed in biocompatible alginate microcapsules and implanted intraperitoneally into SCID and hemophilic mice. RESULTS Circulating hFIX (peak of approximately 120 ng/ml) was detected in hemophilia B mice on day 1 after implantation. Human FIX delivery was transient, however, becoming undetectable on day 14. Concurrently, anti-hFIX antibodies were detected. At the same time, activated partial thromboplastin time (APTT) was reduced from 94 s before treatment to 78-80 s. Tail bleeding time decreased from 15 min to 1.5-7 min after treatment, some mice being normalised. These findings indicate that the delivered hFIX is biologically active. Similarly treated NOD/SCID mice had circulating hFIX levels of 170 ng/ml on day 1 that remained detectable for 1 month, albeit at low levels. Cell viability of microcapsules retrieved on day 60 was below 5%. CONCLUSIONS Our findings indicate that encapsulated human primary myoblasts secrete functional hFIX. Furthermore, implantation of encapsulated human primary myoblasts can partially correct the phenotype of hemophilia B mice, supporting the feasibility of this gene therapy approach for hemophilia B. However, the long-term viability of the encapsulated human myoblasts must first be improved.
Collapse
Affiliation(s)
- Jianping Wen
- Research & Development, Canadian Blood Services, McMaster University, Hamilton, Ontario, L8N 3Z5 Canada
| | | | | | | | | | | |
Collapse
|
8
|
POTTER M, LI A, CIRONE P, SHEN F, CHANG P. Artificial cells as a novel approach to gene therapy. ARTIFICIAL CELLS, CELL ENGINEERING AND THERAPY 2007:236-291. [DOI: 10.1533/9781845693077.3.236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Thorrez L, Vandenburgh H, Callewaert N, Mertens N, Shansky J, Wang L, Arnout J, Collen D, Chuah M, Vandendriessche T. Angiogenesis Enhances Factor IX Delivery and Persistence from Retrievable Human Bioengineered Muscle Implants. Mol Ther 2006; 14:442-51. [PMID: 16750937 DOI: 10.1016/j.ymthe.2006.03.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 02/27/2006] [Accepted: 03/01/2006] [Indexed: 10/24/2022] Open
Abstract
Human muscle progenitor cells transduced with lentiviral vectors secreted high levels of blood clotting factor IX (FIX). When bioengineered into postmitotic myofibers as human bioartificial muscles (HBAMs) and subcutaneously implanted into immunodeficient mice, they secreted FIX into the circulation for >3 months. The HBAM-derived FIX was biologically active, consistent with the cells' ability to conduct the necessary posttranslational modifications. These bioengineered muscle implants are retrievable, an inherent safety feature that distinguishes this "reversible" gene therapy approach from most other gene therapy strategies. When myofibers were bioengineered from human myoblasts expressing FIX and vascular endothelial growth factor, circulating FIX levels were increased and maintained long term within the therapeutic range, consistent with the generation of a vascular network around the HBAM. The present study implicates an important role for angiogenesis in the efficient delivery of therapeutic proteins using tissue engineered stem cell-based gene therapies.
Collapse
Affiliation(s)
- Lieven Thorrez
- Center for Transgene Technology and Gene Therapy, University of Leuven/Flanders Interuniversity Institute for Biotechnology, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Yong D, Zhuojia X, Tiyuan L. REGULATION OF ERYTHROPOIETIN EXPRESSION BY DOXYCYCLINE IN RAT PRIMARY SKELETAL MUSCLE CELLS FOLLOWING TRANSDUCTION BY TETRACYCLINE GENE EXPRESSION SYSTEM. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2006. [DOI: 10.29333/ejgm/82389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Wen J, Vargas AG, Ofosu FA, Hortelano G. Sustained and therapeutic levels of human factor IX in hemophilia B mice implanted with microcapsules: key role of encapsulated cells. J Gene Med 2006; 8:362-9. [PMID: 16311997 DOI: 10.1002/jgm.852] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND A gene therapy delivery system based on microcapsules enclosing recombinant cells engineered to secrete a therapeutic protein was explored in this study. In order to prevent immune rejection of the delivered cells, they were enclosed in non-antigenic biocompatible alginate microcapsules prior to being implanted intraperitoneally into mice. We have shown that encapsulated C2C12 myoblasts can temporarily deliver therapeutic levels of factor IX (FIX) in mice, but the C2C12 myoblasts elicited an immune response to FIX. In this study we report the use of mouse fetal G8 myoblasts secreting hFIX in hemophilia mice. METHODS Mouse G8 myoblasts were transduced with MFG-FIX vector. A pool of recombinant G8 myoblasts secreting approximately 1500 ng hFIX/10(6) cells/24 h in vitro were enclosed in biocompatible alginate microcapsules and implanted intraperitoneally into immunocompetent C57BL/6 and hemophilic mice. RESULTS Circulating levels of hFIX in treated mice reached approximately 400 ng/ml for at least 120 days (end of experiment). Interestingly, mice treated with encapsulated G8 myoblasts did not develop anti-hFIX antibodies. Activated partial thromboplastin time (APTT) of plasmas obtained from treated hemophilic mice was reduced from 107 to 82 sec on day 60 post-treatment, and whole blood clotting time (WBCT) was also corrected from 7-9 min before treatment to 3-5 min following microcapsule implantation. Further, mice were protected against bleeding following major trauma. Thus, the FIX delivery in vivo was biologically active. CONCLUSIONS Our findings suggest that the type of cells encapsulated play a key role in the generation of immune responses against the transgene. Further, a judicious selection of encapsulated cells is critical for achieving sustained gene expression. Our findings support the feasibility of encapsulated G8 myoblasts as a gene therapy approach for hemophilia B.
Collapse
Affiliation(s)
- Jianping Wen
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, L8N 3Z5 Canada
| | | | | | | |
Collapse
|
12
|
Kamelger FS, Marksteiner R, Margreiter E, Klima G, Wechselberger G, Hering S, Piza H. A comparative study of three different biomaterials in the engineering of skeletal muscle using a rat animal model. Biomaterials 2004; 25:1649-55. [PMID: 14697866 DOI: 10.1016/s0142-9612(03)00520-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Defects caused by traumatic or postsurgical loss of muscle mass may result in severe impairments of the functionality of skeletal muscle. Tissue engineering represents a possible approach to replace the lost or defective muscle. The aim of this study was to compare the suitability of three different biomaterials as scaffolds for rat myoblasts, using a new animal model. PKH26-fluorescent-stained cultured rat myoblasts were either seeded onto polyglycolic acid meshes or, alternatively, suspended in alginate or in hyaluronic acid-hydrogels. In each of the eight Fisher CDF-344 rats, four capsule pouches were induced by subcutaneous implantation of four silicone sheets. After two weeks the silicone sheets were removed and myoblast-biomaterial-constructs were implanted in the preformed capsules. Specimens were harvested after four weeks and examined histologically by H&E-staining and fluorescence microscopy. All capsules were well-vascularized. Implanted myoblasts fused by forming multinucleated myotubes. This study demonstrates that myoblasts seeded onto different biomaterials can be successfully transplanted into preformed highly vascularized capsule pouches. Our animal model has paved the way for studies of myoblast-biomaterial transplantations into an ectopic non-muscular environment.
Collapse
Affiliation(s)
- F S Kamelger
- Department of Plastic and Reconstructive Surgery, University Hospital of Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria.
| | | | | | | | | | | | | |
Collapse
|
13
|
Allen DL, Teitelbaum DH, Kurachi K. Growth factor stimulation of matrix metalloproteinase expression and myoblast migration and invasion in vitro. Am J Physiol Cell Physiol 2003; 284:C805-15. [PMID: 12466149 DOI: 10.1152/ajpcell.00215.2002] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the role of growth factors and fibronectin on matrix metalloproteinase (MMP) expression and on migration and invasion of mouse skeletal myoblasts in vitro. None of the growth factors tested significantly affected MMP-1 or MMP-2 activity as revealed by gelatin zymography, but both basic FGF (bFGF) and tumor necrosis factor (TNF)-alpha significantly increased MMP-9 activity (10- and 30-fold, respectively). The increase in secreted MMP-9 activity with TNF-alpha stimulation was due at least in part to an increase in MMP-9 gene transcription, because an MMP-9 promoter construct was approximately fivefold more active in TNF-alpha-treated myoblasts than in control myoblasts, as well as an increase in MMP-9 proteolytic activation. However, whereas fibronectin, bFGF, hepatocyte growth factor, and TGF-beta1 significantly augmented migration of mouse myoblasts, TNF-alpha did not, nor did PDGF-BB or IGF-I. Fibronectin and bFGF also significantly augmented invasion of myoblasts across a Matrigel barrier, and plasmin cotreatment potentiated whereas N-acetyl cysteine suppressed the effects of bFGF and fibronectin on myoblast migration and invasion. Finally, transient transfection with an MMP-9 overexpression construct had only minimal effects on myoblast migration/invasion, whereas overexpression of either MMP-2 or MMP-1 significantly augmented myoblast migration and invasion. These observations support the hypothesis that MMP activity is a necessary component of growth factor-mediated myoblast migration but suggest that other consequences of growth factor signaling are also necessary for migration to occur.
Collapse
Affiliation(s)
- David L Allen
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109-0672, USA
| | | | | |
Collapse
|
14
|
Krebsbach PH, Zhang K, Malik AK, Kurachi K. Bone marrow stromal cells as a genetic platform for systemic delivery of therapeutic proteins in vivo: human factor IX model. J Gene Med 2003; 5:11-7. [PMID: 12516047 DOI: 10.1002/jgm.292] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Hemophilia B is an X-linked bleeding disorder that results from a deficiency in functional coagulation factor IX (hFIX). In patients lacking FIX, the intrinsic coagulation pathway is disrupted leading to a lifelong, debilitating and sometimes fatal disease. METHODS We have developed an ex vivo gene therapy system using genetically modified bone marrow stromal cells (BMSCs) as a platform for sustained delivery of therapeutic proteins into the general circulation. This model exploits the ability of BMSCs to form localized ectopic ossicles when transplanted in vivo. BMSCs were transduced with MFG-hFIX, a retroviral construct directing the expression of hFIX. The biological activity of hFIX expressed by these cells was assessed in vitro and in vivo. RESULTS Transduced cells produced biologically active hFIX in vitro with a specific activity of 90% and expressed hFIX at levels of approximately 497 ng/10(6) cells/24 h and 322 ng/10(6) cells/24 h for human and porcine cells, respectively. The secretion of hFIX was confirmed by Western blot analysis of the conditioned medium using a hFIX-specific antibody. Transduced BMSCs (8 x 10(6) cells per animal) were transplanted within scaffolds into subcutaneous sites in immunocompromised mice. At 1 week post-implantation, serum samples contained hFIX at levels greater than 25 ng/ml. Circulating levels of hFIX gradually decreased to 11.5 ng/ml at 1 month post-implantation and declined to a stable level at 6.1 ng/ml at 4 months. CONCLUSIONS These findings demonstrate that genetically modified BMSCs can continuously secrete biologically active hFIX from self-contained ectopic ossicles in vivo, and thus represent a novel delivery system for releasing therapeutic proteins into the circulation.
Collapse
Affiliation(s)
- Paul H Krebsbach
- University of Michigan School of Dentistry, Department of Oral Medicine, Pathology, and Oncology, Ann Arbor, Michigan 48109-1078, USA.
| | | | | | | |
Collapse
|
15
|
High KA. Theodore E. Woodward Award. AAV-mediated gene transfer for hemophilia. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2003; 114:337-352. [PMID: 12813929 PMCID: PMC2194524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Our research efforts have been focussed on developing a gene transfer strategy for the treatment of the hemophilias. Hemophilia is an attractive target for studies in gene transfer because even small amounts of clotting factor can improve the clinical symptoms of the disease, the factor can be expressed in almost any tissue as long as it gains access to the circulation, and there are large and small animal models of the disease, so that promising approaches can be assessed for efficacy before moving into clinical studies (1). We have developed recombinant adeno-associated viral (AAV) vectors expressing blood coagulation Factor IX. AAV has a number of advantages as a gene transfer vector including: 1) the absence of viral coding sequences in the recombinant vector; 2) the ability to transduce a variety of non-dividing target cells, including liver, muscle and nervous system; 3) the ability to direct long-term expression of the transgene in immunocompetent animals. We have introduced AAV-F.IX vectors into skeletal muscle and liver, and shown long-term correction of the bleeding diatheses in both small and large animal models of hemophilia B (2-5). In the initial clinical trial, rAAV was introduced into skeletal muscle of subjects with severe hemophilia B. Results showed that the general characteristics of transduction were similar in mouse, canine and human muscle, and muscle biopsies of injected sites showed evidence of gene transfer and expression, but circulating levels of F.IX failed to reach the desired target of 3-10%. There were no serious adverse events associated with rAAV injection in skeletal muscle (6). Work has also proceeded on development of a liver-directed approach. Engineering of the expression cassette has resulted in better expression per particle, and circulating F.IX levels of 4-12% have now been achieved in hemophilia B dogs treated with vector doses lower than those already administered in the clinical study in skeletal muscle (5). After extensive safety studies in mice, rats, hemophilic dogs and non-human primates, a Phase I study of an AAV-mediated, liver-directed approach to treating hemophilia B has begun. There were no acute toxicities associated with administration of vector to the first two subjects, but subsequently a PCR assay on the subjects' semen was found to be positive for vector sequences. After a period of weeks, the positive signal disappeared. These findings were distinct from those seen in pre-clinical animal studies. To gain a clearer understanding of the biodistribution of vector to the gonads, we undertook additional studies in rabbits and mice. These showed that, following intravascular delivery of vector, there is hematogenous dissemination to the gonads and gradual washout of vector over time. Direct transduction of germ cells does not appear to occur (7). Based on these and other safety studies, the clinical trial has now resumed. A goal of this work will be to determine whether the therapeutic levels achieved in a large animal model of hemophilia can be realized in humans.
Collapse
|
16
|
Abstract
Gene transfer is an exciting and potentially important treatment approach for hemophilia A and B. Four phase I clinical trials of the safety of gene transfer in hemophilia A or B have been completed and two more trials are currently underway. The results of these trials indicate that gene transfer in hemophilia with the vectors and doses used is safe and well tolerated. Efforts continue to understand the basic biology and improve the efficiency of gene transfer.
Collapse
Affiliation(s)
- Paul E Monahan
- Department of Pediatrics, University of North Carolina at Chapel Hill, 418 MacNider Building, CB#7220 UNC-CH, School of Medicine, Chapel Hill, North Carolina 27599-7220, USA.
| | | |
Collapse
|
17
|
Abstract
Recent advances in the field of gene transfer are producing tantalizing results suggesting that the potential to correct disease at a molecular level may be at hand. Genetic correction of the hemophilias--bleeding disorders that stem from the deficiency of functional factor VIII or IX--represent models for the development of a basic understanding of how gene therapy will be achieved. The goals for hemophilia gene transfer are to produce therapeutic amounts of the coagulant protein while minimizing an immune response or antibody inhibitor. This requires the use of nontoxic vectors to deliver genes that express the protein in a functional form for the life of the patient. Based on a scientific understanding of the molecular and cellular defects leading to the bleeding phenotype, gene transfer studies at the laboratory and clinic have produced exciting results. The author here provides a critical assessment of the state of hemophilia gene transfer and its relevance to the field as a whole.
Collapse
Affiliation(s)
- Christopher E Walsh
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| |
Collapse
|
18
|
Affiliation(s)
- K J Pasi
- Division of Haematology, University of Leicester, Robert Kilpatrick Clinical Science Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK.
| |
Collapse
|
19
|
Abstract
Hemophilia is a particularly attractive model for developing a gene transfer approach for the treatment of disease. The protein is very well characterized, the genes are cloned and available, and there are large and small animal models of the disease. Moreover, in contrast to many diseases, there is no requirement for a specific target tissue for gene delivery, and the gene product itself does not require precise regulation of expression. Earlier efforts to establish a gene transfer approach to the treatment of hemophilia had failed to achieve the twin goals of long-term expression at levels that were adequate to result in phenotypic improvement of the disease. We have exploited advances in vector development that occurred in the mid-1990s to establish an experimental basis for an AAV (adeno-associated viral vector)-mediated gene transfer approach to the treatment of hemophilia B. Based on the observation that introduction of an AAV vector into skeletal muscle could result in sustained expression of beta-galactosidase, we engineered an AAV vector expressing human factor IX and demonstrated in immunodeficient mice that intramuscular injection of the vector resulted in long-term expression of the secreted transgene product factor IX. Subsequently, we generated an AAV vector expressing canine factor IX; intramuscular injection into dogs with severe hemophilia B resulted in a dose-dependent increase in circulating levels of factor IX. The animal treated at the highest dose showed prolonged expression (>3 years and still under observation) at a level (70 ng/ml, 1.4% of normal circulating levels of factor IX) likely to result in phenotypic improvement in humans. Detailed studies in tissue culture using human myotubes have shown that muscle cells are capable of executing the posttranslational modifications required for activity of factor IX, and that the specific activity of myotube-synthesized factor IX is similar to that of hepatocyte-synthesized material, although some details of posttranslational processing differ. Based on these and other safety and efficacy studies, a clinical trial of AAV-mediated, muscle-directed gene transfer for hemophilia B has been initiated. The study has a dose-escalation design, with three subjects to be enrolled in three dose cohorts beginning with a dose of 2 x 10(11) vg/kg. Results in the initial dose cohort showed no evidence of toxicity associated with vector administration or transgene expression. Analysis of muscle biopsies done on injected tissue showed clear evidence of gene transfer by PCR and Southern blot and of gene expression by immunocytochemistry. The general characteristics of muscle transduction appear similar in humans and in other animal models. The goal of dose escalation is to find a dose that is nontoxic but that results in circulating levels of factor IX >1% in all patients.
Collapse
Affiliation(s)
- K A High
- Department of Pediatrics, University of Pennsylvania School of Medicine, The Children's Hospital of Philadelphia, 19104, USA.
| |
Collapse
|
20
|
Blanco-Bose WE, Yao CC, Kramer RH, Blau HM. Purification of mouse primary myoblasts based on alpha 7 integrin expression. Exp Cell Res 2001; 265:212-20. [PMID: 11302686 DOI: 10.1006/excr.2001.5191] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fundamental insights have come from the study of myogenesis. Primary myoblasts isolated directly from muscle tissue more closely approximate myogenesis than established cell lines. However, contamination of primary muscle cultures with nonmyogenic cells can complicate the results. To overcome this problem, we previously described a method for myoblast purification based on novel culture conditions (T. A. Rando and H. M. Blau, 1994, J. Cell Biol. 125, 1275--1287). Here we report a refinement of this method that leads directly to an enriched population of mouse primary myoblasts, within significantly fewer population doublings. The method described here avoids using adhesion as a criterion for selection. This advance capitalizes on the ability of the antibody CA5.5 to recognize alpha 7 integrin, a muscle-specific cell surface antigen. Enrichment of myoblasts to greater than 95% of the cell population can be achieved by a single round of flow cytometry or magnetic bead separation. This is the first description of a mouse myoblast purification method based on a cell-type-specific antigen. The ease of this procedure for isolating primary myoblasts should expand the opportunities for (1) using these cells in cell transplantation studies in animal models of human disease, (2) isolating and characterizing mutant myoblasts from transgenic animals, and (3) allowing in vitro studies of molecules that regulate muscle cell growth, differentiation, and neoplasia.
Collapse
Affiliation(s)
- W E Blanco-Bose
- Department of Molecular Pharmacology, Stanford University School of Medicine, Stanford, California 94305-5175, USA
| | | | | | | |
Collapse
|
21
|
Hortelano G, Wang L, Xu N, Ofosu FA. Sustained and therapeutic delivery of factor IX in nude haemophilia B mice by encapsulated C2C12 myoblasts: concurrent tumourigenesis. Haemophilia 2001; 7:207-14. [PMID: 11260281 DOI: 10.1046/j.1365-2516.2001.00492.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study reports the generation of an immunodeficient murine model for haemophilia B, obtained by breeding factor IX-deficient mice with an immunodeficient mouse strain, and use of this mouse model to evaluate the long-term efficacy and safety of a gene therapy strategy for treating haemophilia B. Nude haemophilic mice were implanted with biocompatible microcapsules enclosing recombinant myoblasts secreting human factor IX. The activated partial thromboplastin time (APTT) of plasma of mice thus treated was invariably shortened 3 weeks after microcapsule implantation, and remained shortened for at least 77 days. Shortening of the APTT of the haemophilia mice coincided with the appearance of human factor IX in mice plasmas (up to 600 ng mL(-1) on day 77), and normalization of the tail-bleeding time. Thus, the microencapsulated myoblasts reversed the clinical phenotype of haemophilia B. In contrast, plasmas of immunocompetent haemophilic mice similarly implanted with microcapsules only showed a transient shortening of APTT, and coincident transient delivery of human factor IX antigen. Rapid disappearance of human factor IX from plasmas of immunocompetent mice also coincided with production of antibodies to the human transgene. Significantly, 86% of the nude haemophilia mice developed tumours of myoblast origin. Thus, while this study revealed the feasibility of this gene therapy approach to treat severe haemophilia B, it also highlights the importance of using safer cell lines to prevent tumour development.
Collapse
|
22
|
Schneider BL, Peduto G, Aebischer P. A self-immunomodulating myoblast cell line for erythropoietin delivery. Gene Ther 2001; 8:58-66. [PMID: 11402302 DOI: 10.1038/sj.gt.3301356] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2000] [Accepted: 09/30/2000] [Indexed: 11/08/2022]
Abstract
The transplantation of genetically engineered cells faces limitations associated with host immunity. Allogeneic cells are typically rejected in response to inherent histo-incompatibility. Even autologous cells can induce an immune response toward antigenic molecules expressed following transfer of foreign genes. The goal of the present study was to investigate the ability of immunomodulating molecules co-expressed with biotherapeutic factors to overcome these limitations both in syngeneic and allogeneic cell transplantation. The C(2)C(12) mouse myoblast cell line was engineered to express CTLA4Ig, a soluble factor blocking T cell costimulation, in conjunction with erythropoietin (Epo), a reporter biotherapeutic protein. In syngeneic C3H mice, myoblasts expressing only mouse Epo were mostly rejected within 2 weeks, as indicated by the transient increase in host hematocrit. In allogeneic recipients, the same cells induced only a 1-week increase in the hematocrit reflecting an acute rejection process. CTLA4Ig expression significantly extended the survival of mouse Epo-secreting myoblasts in approximately half of syngeneic hosts, whereas it led only to a 1-week improvement effect in allogeneic recipients. When combined with a transient anti-CD154 treatment, CTLA4Ig expression prevented Epo-secreting C(2)C(12)myoblasts from being rejected in allogeneic DBA/2J recipients for at least 1 month. In contrast, the same anti-CD154 treatment alone induced only a 1 week improvement. These results demonstrate that CTLA4Ig co-expression associated with a transient anti-CD154 treatment can prolong the delivery of recombinant proteins via transfer of ex vivo modified cells in allogeneic recipients.
Collapse
Affiliation(s)
- B L Schneider
- Division of Surgical Research and Gene Therapy Center, Centre Hospitalier Universitaire Vaudois, Lausanne University Medical School, Lausanne, Switzerland
| | | | | |
Collapse
|
23
|
Abstract
In the past year, three clinical trials of gene therapy for haemophilia have been initiated. Years of preclinical studies have culminated in translation of research findings into the clinical arena. It is too early to predict which, if any, of these strategies will show efficacy. This paper will review basic aspects of gene therapy for haemophilia and will briefly outline current clinical trials. The three clinical trials all share a dose escalation design. The ongoing trial for haemophilia B involves the intramuscular administration of an adeno-associated virus (AAV) vector expressing human factor IX. In preclinical studies, this strategy has produced therapeutic levels of circulating factor IX in haemophilic mice and dogs.
Collapse
Affiliation(s)
- K A High
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104-4318, USA
| |
Collapse
|
24
|
Abstract
Hemophilia A and B are X-chromosome linked recessive bleeding disorders that result from a deficiency in factor VIII (FVIII) and factor IX (FIX) respectively. Though factor substitution therapy has greatly improved the lives of hemophiliac patients, there are still limitations to the current treatment that have triggered interest in alternative treatments by gene therapy. Significant progress has recently been made in the development of gene therapy for the treatment of hemophilia A and B. These advances parallel the technical improvements of existing vector systems including MoMLV-based retroviral, adenoviral and AAV vectors, and the development of new delivery methods such as lentiviral vectors, helper-dependent adenoviral vectors and improved non-viral gene delivery methods. Therapeutic and physiologic levels of FVIII and FIX could be achieved in FVIII- and FIX-deficient mice and hemophilia dogs by different gene therapy approaches. Long-term correction of the bleeding disorders and in some cases a permanent cure has been realized in these preclinical studies. However, the induction of neutralizing antibodies often precludes stable phenotypic correction. Another complication is that certain promoters are prone to transcriptional inactivation in vivo, precluding long-term FVIII or FIX expression. Several gene therapy phase I clinical trials are currently ongoing in patients suffering from severe hemophilia A or B. No significant adverse side-effects were reported, and semen samples were negative for vector sequences by sensitive PCR assays. Most importantly, some subjects report fewer bleeding episodes and occasionally have very low levels of clotting factor activity detected. The results from the extensive preclinical studies in normal and hemophilic animal models and encouraging preliminary clinical data indicate that the simultaneous development of different strategies is likely to bring a permanent cure for hemophilia one step closer to reality.
Collapse
Affiliation(s)
- M K Chuah
- Center for Transgene Technology and Gene Therapy, Flanders Interuniversity Institute for Biotechnology, University of Leuven, Belgium
| | | | | |
Collapse
|
25
|
Arruda VR, Hagstrom JN, Deitch J, Heiman-Patterson T, Camire RM, Chu K, Fields PA, Herzog RW, Couto LB, Larson PJ, High KA. Posttranslational modifications of recombinant myotube-synthesized human factor IX. Blood 2001; 97:130-8. [PMID: 11133752 DOI: 10.1182/blood.v97.1.130] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent data demonstrate that the introduction into skeletal muscle of an adeno-associated viral (AAV) vector expressing blood coagulation factor IX (F.IX) can result in long-term expression of the transgene product and amelioration of the bleeding diathesis in animals with hemophilia B. These data suggest that biologically active F.IX can be synthesized in skeletal muscle. Factor IX undergoes extensive posttranslational modifications in the liver, the normal site of synthesis. In addition to affecting specific activity, these posttranslational modifications can also affect recovery, half-life in the circulation, and the immunogenicity of the protein. Before initiating a human trial of an AAV-mediated, muscle-directed approach for treating hemophilia B, a detailed biochemical analysis of F.IX synthesized in skeletal muscle was carried out. As a model system, human myotubes transduced with an AAV vector expressing F.IX was used. F.IX was purified from conditioned medium using a novel strategy designed to purify material representative of all species of rF.IX in the medium. Purified F.IX was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), N-terminal sequence analysis, chemical gamma-carboxyglutamyl analysis, carbohydrate analysis, assays for tyrosine sulfation, and serine phosphorylation, and for specific activity. Results show that myotube-synthesized F.IX has specific activity similar to that of liver-synthesized F.IX. Posttranslational modifications critical for specific activity, including removal of the signal sequence and propeptide, and gamma-carboxylation of the N-terminal glutamic acid residues, are also similar, but carbohydrate analysis and assessment of tyrosine sulfation and serine phosphorylation disclose differences. In vivo experiments in mice showed that these differences affect recovery but not half-life of muscle-synthesized F.IX.
Collapse
Affiliation(s)
- V R Arruda
- Department of Pediatrics and Pathology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Rinaldi M, Catapano AL, Parrella P, Ciafrè SA, Signori E, Seripa D, Uboldi P, Antonini R, Ricci G, Farace MG, Fazio VM. Treatment of severe hypercholesterolemia in apolipoprotein E-deficient mice by intramuscular injection of plasmid DNA. Gene Ther 2000; 7:1795-801. [PMID: 11110410 DOI: 10.1038/sj.gt.3301310] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We report on systemic delivery and long-term biological effects of apolipoprotein E (apoE) obtained by intramuscular (i.m.) plasmid DNA injection. ApoE plays an important role in lipoprotein catabolism and apoE knock-out mice develop severe hypercholesterolemia and diffuse atherosclerosis. We have injected apoE-deficient mice with 80 microg of a plasmid vector (pCMV-E3) encoding the human apoE3 cDNA under the control of the CMV promoter-enhancer in both posterior legs. Local expression of the transgene was demonstrated throughout 16 weeks. Human apoE3 recombinant protein reached 0.6 ng/ml serum level. After i.m. injection of pCMV-E3 expression vector the mean serum cholesterol concentrations decreased from 439 +/- 57 mg/dl to 253 +/- 99 mg/dl (P < 0.05) 2 weeks after injection and persisted at a significantly reduced level throughout the 16 weeks observation period (P < 0.005). Serum cholesterol was unaffected and reached an absolute level of 636 +/- 67 mg/dl in control groups. Finally, injection of pCMV-E3 into apoE-deficient mice resulted in a redistribution of cholesterol content between lipoprotein fractions, with a marked decrease in VLDL, IDL and LDL cholesterol content and an increase in HDL cholesterol. These results demonstrate that severe hypercholesterolemia in apoE-deficient mice can be effectively reversed by i.m. DNA injection, and indicate that this approach could represent a useful tool to correct several hyperlipidemic conditions resulting in atherosclerosis.
Collapse
Affiliation(s)
- M Rinaldi
- Laboratory for Molecular Medicine and Biotechnology, School of Medicine, Institute of Experimental Medicine, CNR, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ozawa CR, Springer ML, Blau HM. A novel means of drug delivery: myoblast-mediated gene therapy and regulatable retroviral vectors. Annu Rev Pharmacol Toxicol 2000; 40:295-317. [PMID: 10836138 DOI: 10.1146/annurev.pharmtox.40.1.295] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A potentially powerful approach to drug delivery in the treatment of disease involves the use of cells to introduce genes encoding therapeutic proteins into the body. Candidate genes for delivery include those encoding secreted factors that could have broad applications ranging from treatment of inherited single-gene deficiencies to acquired disorders of the vasculature or cancer. Myoblasts, the proliferative cell type of skeletal muscle tissues, are potent tools for stable delivery of a gene of interest into the body, as they become an integral part of the muscle into which they are injected, in close proximity to the circulation. The recent development of improved tetracycline-inducible retroviral vectors allows for fine control of recombinant gene expression levels. The combination of ex vivo gene transfer using myoblasts and regulatable retroviral vectors provides a powerful toolbox with which to develop gene therapies for a number of human diseases.
Collapse
Affiliation(s)
- C R Ozawa
- Department of Molecular Pharmacology, Stanford University School of Medicine, California 94305-5332, USA.
| | | | | |
Collapse
|
28
|
Coe S, Harron M, Winslet M, Goldspink G. The use of skeletal muscle to express genes for the treatment of cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 465:95-111. [PMID: 10810619 DOI: 10.1007/0-306-46817-4_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- S Coe
- Department of Anatomy and Developmental Biology, Royal Free and University College Medical School, University of London, UK
| | | | | | | |
Collapse
|
29
|
Morishita R, Gibbons GH, Kaneda Y, Ogihara T, Dzau VJ. Systemic administration of HVJ viral coat-liposome complex containing human insulin vector decreases glucose level in diabetic mouse: A model of gene therapy. Biochem Biophys Res Commun 2000; 273:666-74. [PMID: 10873662 DOI: 10.1006/bbrc.2000.2936] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we examined the feasibility of a systemic administration of HVJ-liposome complex containing human insulin construct into the blood in mice via the tail vein. Transfection of human insulin vector resulted in a transient decrease in serum glucose in streptozotocin (SZT)-induced diabetic mice, accompanied by the detection of human insulin in the liver and spleen. In accordance with the decreased glucose, plasma immunoreactive insulin could be detected up to 14 days after a single transfection in mice transfected with insulin vector. Repeated intravenous injection of human insulin vector every week resulted in a sustained decrease in serum glucose over a 4-week period, accompanied by the detection of C-peptide fragments and a significant decrease in BUN and creatinine. Here, we demonstrated the feasibility of intravenous systemic administration of an insulin vector that results in a sustained improvement of diabetic glucose metabolism.
Collapse
Affiliation(s)
- R Morishita
- Division of Gene Therapy Science, Osaka University Medical School, Suita, 565-0871, Japan
| | | | | | | | | |
Collapse
|
30
|
Pagel CN, Morgan JE, Gross JG, Partridge TA. Thymic myoid cells as a source of cells for myoblast transfer. Cell Transplant 2000; 9:531-8. [PMID: 11038069 DOI: 10.1177/096368970000900409] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Transplantation of disaggregated myoblasts from normal donor to the muscles of a diseased host, or reimplantation of genetically modified host myoblasts, has been suggested as a possible route to therapy for inherited myopathies such as Duchenne muscular dystrophy, or to supply missing proteins that are required systemically in diseases such as hemophilia. With two exceptions, studies of myoblast transfer in the mouse have involved transplantation of donor myoblasts isolated from adult or neonatal skeletal muscle satellite cells. In this study we present evidence that thymic myoid cells are capable of participating in the regeneration of postnatal skeletal muscle, resulting in the expression of donor-derived proteins such as dystrophin and retrovirally encoded proteins such as beta-galactosidase within host muscles. This leads us to conclude that thymic myoid cells may provide an alternative to myoblasts derived from skeletal muscle as a source of myogenic cells for myoblast transfer.
Collapse
Affiliation(s)
- C N Pagel
- MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London, UK
| | | | | | | |
Collapse
|
31
|
Vicat JM, Boisseau S, Jourdes P, Lainé M, Wion D, Bouali-Benazzouz R, Benabid AL, Berger F. Muscle transfection by electroporation with high-voltage and short-pulse currents provides high-level and long-lasting gene expression. Hum Gene Ther 2000; 11:909-16. [PMID: 10779167 DOI: 10.1089/10430340050015518] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene transfer into muscle by electroporation with low-voltage and long-pulse (LV/LP, 100 V/50 msec) currents was shown to be more efficient than simple intramuscular DNA injection. Nevertheless, transgene expression declined from day 7 and only reached 10% of the maximum 3 weeks after electroporation. We have optimized electroporation conditions including voltage, pulse number, and the amount of injected luciferase-encoding plasmid DNA in the tibialis anterior muscle. Using high-voltage and short-pulse (HV/SP, 900 V/100 microsec) currents, we observed an average 500-fold increase in luciferase expression, in comparison with nonelectroporated muscle. Moreover, sustained and long-lasting gene expression was observed for at least 6 months. When we compared HV/SP currents with LV/LP currents, luciferase expression was similar 24 hr after electroporation. One month later, whereas luciferase expression was stable in muscle electroporated with HV/SP currents, it decreased 600-fold in muscle electroporated with LV/LP currents. In conclusion, electroporation with high-voltage and short-pulse currents provides high-level and long-lasting gene expression in muscle.
Collapse
Affiliation(s)
- J M Vicat
- INSERM U 318, Laboratoire de Neurobiophysique-UJFG, Centre Hospitalier Universitaire, Grenoble, France.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Malik AK, Monahan PE, Allen DL, Chen BG, Samulski RJ, Kurachi K. Kinetics of recombinant adeno-associated virus-mediated gene transfer. J Virol 2000; 74:3555-65. [PMID: 10729130 PMCID: PMC111864 DOI: 10.1128/jvi.74.8.3555-3565.2000] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors have been shown to be useful for efficient gene delivery to a variety of dividing and nondividing cells. Mechanisms responsible for the long-term, persistent expression of the rAAV transgene are not well understood. In this study we investigated the kinetics of rAAV-mediated human factor IX (hFIX) gene transfer into human primary myoblasts and myotubes. Transduction of both myoblasts and myotubes occured with a similar and high efficiency. After 3 to 4 weeks of transduction, rAAV with a cytomegalovirus (CMV) promoter showed 10- to 15-fold higher expression than that with a muscle-specific creatine kinase enhancer linked to beta-actin promoter. Factor IX expression from transduced myoblasts as well as myotubes reached levels as high as approximately 2 microgram of hFIX/10(6) cells/day. Southern blot analyses of high-molecular-weight (HMW) cellular genomic and Hirt DNAs isolated from rAAV/CMVhFIXm1-transduced cells showed that the conversion of single-stranded vector genomes to double-stranded DNA forms, but not the level of the integrated forms in HMW DNA, correlated with increasing expression of the transgene. Together, these results indicate that rAAV can transduce both proliferating and terminally differentiated muscle cells at about the same efficiency, that expression of transgenes increases linearly over their lifetime with no initial lag phase, and that increasing expression correlates with the appearance of double-stranded episomal rAAV genomes. Evidence showing that the rAAV virions can copackage hFIX, presumably nonspecifically, was also obtained.
Collapse
Affiliation(s)
- A K Malik
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109-0618, USA
| | | | | | | | | | | |
Collapse
|
33
|
Hortelano G, Chang PL. Gene therapy for hemophilia. ARTIFICIAL CELLS, BLOOD SUBSTITUTES, AND IMMOBILIZATION BIOTECHNOLOGY 2000; 28:1-24. [PMID: 10676574 DOI: 10.3109/10731190009119782] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Hemophilia A and B are X-linked genetic disorders caused by deficiency of the coagulation factors VIII and IX, respectively. Because of the health hazards and costs of current product replacement therapy, much effort is devoted to the development of gene therapy for these disorders. Approaches to gene therapy for the hemophilias include: ex vivo gene therapy in which cells from the intended recipients are explanted, genetically modified to secrete Factor VIII or IX, and reimplanted into the donor; in vivo gene therapy in which Factor VIII or IX encoding vectors are directly injected into the recipient; and non-autologous gene therapy in which universal cell lines engineered to secrete Factor VIII or IX are enclosed in immuno-protective devices before implantation into recipients. Research into these approaches is aided by the many murine and canine models available. While problems of achieving high and sustained levels of factor delivery, and issues related to efficacy, safety and cost are still to be resolved, progress in gene therapy for the hemophilias has been encouraging and is likely to reach human clinical trial in the foreseeable future.
Collapse
Affiliation(s)
- G Hortelano
- Department of Pathology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
34
|
Lai L, Chen L, Wang J, Zhou H, Lu D, Wang Q, Gao X, Qiu X, Xue J. Skeletal muscle-specific expression of human blood coagulation factor IX rescues factor IX deficiency mouse by AAV-mediated gene transfer. ACTA ACUST UNITED AC 1999; 42:628-34. [DOI: 10.1007/bf02881581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/1999] [Indexed: 11/30/2022]
|
35
|
Schneider H, Adebakin S, Themis M, Cook T, Douar AM, Pavirani A, Coutelle C. Therapeutic plasma concentrations of human factor IX in mice after gene delivery into the amniotic cavity: a model for the prenatal treatment of haemophilia B. J Gene Med 1999; 1:424-32. [PMID: 10753068 DOI: 10.1002/(sici)1521-2254(199911/12)1:6<424::aid-jgm70>3.0.co;2-q] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several groups including our own have reported gene delivery to fetal organs by vector administration into the amniotic cavity. Based on these studies we hypothesised that the large surface of the fetal skin may be exploitable for high level production of systemically required gene products to be released into the fetal circulation. METHODS We administered E1/E3-deleted adenoviral vectors carrying a bacterial beta-galactosidase gene or the human coagulation factor IX gene into the amniotic cavities of mid- to late-gestation mouse fetuses. The concentrations of human factor IX in the plasma of fetal or new-born mice were determined by ELISA. Reverse transcription PCR was used to identify sites of transgene expression. RESULTS Application of 5 x 10(8) infectious units of the factor IX gene vector in utero resulted in plasma concentrations of human factor IX of up to 1.2 microg/ml without significant decrease in fetal survival. Transgenic protein was found to be produced in the fetal skin, mucosae and amniotic membranes and was shown to be present for several days after birth of healthy pups. CONCLUSION As ultrasound-guided amniocentesis in humans is a well-established diagnostic procedure, delivery of the factor IX gene into the amniotic cavity appears to be a safe route for prenatal treatment of haemophilia B and may prevent haemorrhagic complications such as intracranial bleeding during delivery. Our study allowed for the first time a quantification of the expression of a potentially therapeutic transgene in rodents after prenatal gene delivery. It thus provides a model for the prenatal treatment of haemophilia B, but may also serve as a pathfinder to gene therapy of inheritable skin disorders such as epidermolysis bullosa.
Collapse
Affiliation(s)
- H Schneider
- Division of Biomedical Sciences, Imperial College School of Medicine, London, UK.
| | | | | | | | | | | | | |
Collapse
|
36
|
Chao H, Samulski R, Bellinger D, Monahan P, Nichols T, Walsh C. Persistent expression of canine factor IX in hemophilia B canines. Gene Ther 1999; 6:1695-704. [PMID: 10516718 DOI: 10.1038/sj.gt.3301024] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We previously demonstrated that direct intramuscular injection of recombinant adeno-associated virus (rAAV) carrying the human FIX (hFIX) cDNA can safely be administered to hemophilic B canines and express human factor IX protein; however, the functional activity of the hFIX protein could not be assessed due to anti-human FIX antibody (inhibitor) formation. To test the therapeutic efficacy of rAAV in hemophilic dogs, rAAV type 2 (rAAV2) carrying canine FIX (cFIX) cDNA was injected into the skeletal muscle of two dogs at doses of 1012-13particles. Circulating cFIX protein levels were maintained for 1 year at levels of 1-2% of normal. Hemostatic correction (WBCT and APTT) paralleled plasma FIX antigen levels. Both dogs still required plasma infusion for spontaneous and traumatic bleeding events. Inhibitors to cFIX protein were not detected in either animal by Bethesda assay. Neutralizing antibodies directed against AAV-2 capsid were pronounced and persistent. Vector DNA and mRNA transcripts were detected only at the injected skeletal muscle tissue. Analysis of both high and low molecular weight DNA identified both replicative episomal and integrated AAV species. These results demonstrate that persistent secretion of the FIX transgene protein, necessary for successful gene therapy of hemophilia B, can be achieved using the parvovirus-based rAAV vector
Collapse
Affiliation(s)
- H Chao
- UNC Gene Therapy Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
37
|
DiEdwardo CA, Petrosko P, Acarturk TO, DiMilla PA, LaFramboise WA, Johnson PC. Muscle Tissue Engineering. Clin Plast Surg 1999. [DOI: 10.1016/s0094-1298(20)32663-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
|
39
|
Ljung R. Second Workshop of the European Paediatric Network for Haemophilia Management, 17-19 September 1998 in Vitznau/Switzerland. Haemophilia 1999; 5:286-91. [PMID: 10950622 DOI: 10.1046/j.1365-2516.1999.00328.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- R Ljung
- Department of Paediatrics, University of Lund, University Hospital, Malmö, Sweden.
| |
Collapse
|
40
|
Hortelano G, Xu N, Vandenberg A, Solera J, Chang PL, Ofosu FA. Persistent delivery of factor IX in mice: gene therapy for hemophilia using implantable microcapsules. Hum Gene Ther 1999; 10:1281-8. [PMID: 10365659 DOI: 10.1089/10430349950017969] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Severe hemophilia B is a life-threatening, life long condition caused by absence of or defective coagulation factor IX. Gene therapy could provide an alternative treatment to repeated injection of plasma-derived concentrate or recombinant factor IX. We have previously described the use of implantable microcapsules containing recombinant myoblasts to deliver human factor IX in mice. This study reports the generation of improved myoblast-specific expression vectors. Mouse myoblast clones transfected with the various vectors secreted factor IX in vitro, at rates between 70 and 1000 ng/10(6) cells/day. The recombinant myoblast clones were then encapsulated and implanted into mice. Immunocompetent mice implanted with encapsulated myoblasts had up to 65 ng of factor IX per milliliter in their plasma for up to 14 days, after which antibodies to human factor IX became detectable, and this coincided with decreased factor IX in mouse plasma. In immunodeficient mice, however, factor IX delivery was maintained at a constant level for at least 6 weeks (end of experiment). Interestingly, the highest-secreting myoblast clone in vitro did not deliver the highest level of hFIX in vivo. This discrepancy observed between performance in vitro and in vivo may have important implications for the development of gene therapy protocols based on recombinant cells.
Collapse
Affiliation(s)
- G Hortelano
- Department of Pathology and Molecular Medicine, Canadian Blood Services, McMaster University, Hamilton, Ontario
| | | | | | | | | | | |
Collapse
|
41
|
Powell C, Shansky J, Del Tatto M, Forman DE, Hennessey J, Sullivan K, Zielinski BA, Vandenburgh HH. Tissue-engineered human bioartificial muscles expressing a foreign recombinant protein for gene therapy. Hum Gene Ther 1999; 10:565-77. [PMID: 10094200 DOI: 10.1089/10430349950018643] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Murine skeletal muscle cells transduced with foreign genes and tissue engineered in vitro into bioartificial muscles (BAMs) are capable of long-term delivery of soluble growth factors when implanted into syngeneic mice (Vandenburgh et al., 1996b). With the goal of developing a therapeutic cell-based protein delivery system for humans, similar genetic tissue-engineering techniques were designed for human skeletal muscle stem cells. Stem cell myoblasts were isolated, cloned, and expanded in vitro from biopsied healthy adult (mean age, 42 +/- 2 years), and elderly congestive heart failure patient (mean age, 76 +/- 1 years) skeletal muscle. Total cell yield varied widely between biopsies (50 to 672 per 100 mg of tissue, N = 10), but was not significantly different between the two patient groups. Percent myoblasts per biopsy (73 +/- 6%), number of myoblast doublings prior to senescence in vitro (37 +/- 2), and myoblast doubling time (27 +/- 1 hr) were also not significantly different between the two patient groups. Fusion kinetics of the myoblasts were similar for the two groups after 20-22 doublings (74 +/- 2% myoblast fusion) when the biopsy samples had been expanded to 1 to 2 billion muscle cells, a number acceptable for human gene therapy use. The myoblasts from the two groups could be equally transduced ex vivo with replication-deficient retroviral expression vectors to secrete 0.5 to 2 microg of a foreign protein (recombinant human growth hormone, rhGH)/10(6) cells/day, and tissue engineered into human BAMs containing parallel arrays of differentiated, postmitotic myofibers. This work suggests that autologous human skeletal myoblasts from a potential patient population can be isolated, genetically modified to secrete foreign proteins, and tissue engineered into implantable living protein secretory devices for therapeutic use.
Collapse
Affiliation(s)
- C Powell
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Snyder RO, Miao C, Meuse L, Tubb J, Donahue BA, Lin HF, Stafford DW, Patel S, Thompson AR, Nichols T, Read MS, Bellinger DA, Brinkhous KM, Kay MA. Correction of hemophilia B in canine and murine models using recombinant adeno-associated viral vectors. Nat Med 1999; 5:64-70. [PMID: 9883841 DOI: 10.1038/4751] [Citation(s) in RCA: 223] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hemophilia B, or factor IX deficiency, is an X-linked recessive disorder occurring in about 1 in 25,000 males. Affected individuals are at risk for spontaneous bleeding into many organs; treatment mainly consists of the transfusion of clotting factor concentrates prepared from human blood or recombinant sources after bleeding has started. Small- and large-animal models have been developed and/or characterized that closely mimic the human disease state. As a preclinical model for gene therapy, recombinant adeno-associated viral vectors containing the human or canine factor IX cDNAs were infused into the livers of murine and canine models of hemophilia B, respectively. There was no associated toxicity with infusion in either animal model. Constitutive expression of factor IX was observed, which resulted in the correction of the bleeding disorder over a period of over 17 months in mice. Mice with a steady-state concentration of 25% of the normal human level of factor IX had normal coagulation. In hemophilic dogs, a dose of rAAV that was approximately 1/10 per body weight that given to mice resulted in 1% of normal canine factor IX levels, the absence of inhibitors, and a sustained partial correction of the coagulation defect for at least 8 months.
Collapse
Affiliation(s)
- R O Snyder
- Cell Genesys Inc., Foster City, California 94404, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The history of hemophilia diagnosis and therapy has been a turbulent one. We are coming full circle, back to the use of genetics as the main diagnostic tool for this disease. Therapeutically, the retroviruses that ravaged one generation of hemophiliac patients now may participate in the cure for the next generation. The hemophilia community hopes that the future of hemophilia care will follow a course guided by this modified quote from James Russell Lowell: "New times demand new measures, and men [and women]. As the world advances and in time outgrows the laws that in our fathers' [and mothers'] days were the best, doubtless after us some purer scheme will be shaped out by wiser man [and women] than we, made wiser by the steady growth of truth."
Collapse
Affiliation(s)
- D DiMichele
- Department of Pediatrics, New York Presbyterian Hospital--Cornell Medical Center, New York, New York, USA
| | | |
Collapse
|
44
|
Vandenburgh H, Tatto MD, Shansky J, Goldstein L, Russell K, Genes N, Chromiak J, Yamada S. Attenuation of Skeletal Muscle Wasting with Recombinant Human Growth Hormone Secreted from a Tissue-Engineered Bioartificial Muscle. Hum Gene Ther 1998. [DOI: 10.1089/10430349850019391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
45
|
Vandenburgh H, Del Tatto M, Shansky J, Goldstein L, Russell K, Genes N, Chromiak J, Yamada S. Attenuation of skeletal muscle wasting with recombinant human growth hormone secreted from a tissue-engineered bioartificial muscle. Hum Gene Ther 1998; 9:2555-64. [PMID: 9853522 DOI: 10.1089/hum.1998.9.17-2555] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Skeletal muscle wasting is a significant problem in elderly and debilitated patients. Growth hormone (GH) is an anabolic growth factor for skeletal muscle but is difficult to deliver in a therapeutic manner by injection owing to its in vivo instability. A novel method is presented for the sustained secretion of recombinant human GH (rhGH) from genetically modified skeletal muscle implants, which reduces host muscle wasting. Proliferating murine C2C12 skeletal myoblasts stably transduced with the rhGH gene were tissue engineered in vitro into bioartificial muscles (C2-BAMs) containing organized postmitotic myofibers secreting 3-5 microg of rhGH/day in vitro. When implanted subcutaneously into syngeneic mice, C2-BAMs delivered a sustained physiologic dose of 2.5 to 11.3 ng of rhGH per milliliter of serum. rhGH synthesized and secreted by the myofibers was in the 22-kDa monomeric form and was biologically active, based on downregulation of a GH-sensitive protein synthesized in the liver. Skeletal muscle disuse atrophy was induced in mice by hindlimb unloading, causing the fast plantaris and slow soleus muscles to atrophy by 21 to 35% ( < 0.02). This atrophy was significantly attenuated 41 to 55% (p < 0.02) in animals that received C2-BAM implants, but not in animals receiving daily injections of purified rhGH (1 mg/kg/day). These data support the concept that delivery of rhGH from BAMs may be efficacious in treating muscle-wasting disorders.
Collapse
Affiliation(s)
- H Vandenburgh
- Department of Pathology, Brown University School of Medicine and the Miriam Hospital, Providence, RI 02906, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Chen L, Nelson DM, Zheng Z, Morgan RA. Ex vivo fibroblast transduction in rabbits results in long-term (>600 days) factor IX expression in a small percentage of animals. Hum Gene Ther 1998; 9:2341-51. [PMID: 9829533 DOI: 10.1089/hum.1998.9.16-2341] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Delivery of human factor IX to the circulation was analyzed in rabbits by ex vivo fibroblast transduction followed by subcutaneous implantation. Kinetic studies of human factor IX in rabbits demonstrated a half-life of approximately 16 hr and a volume distribution of 22%, where intraperitoneal and subcutaneous bioavailability was three- to sevenfold lower than by intravenous administration. Ex vivo retroviral transduction of autologous fibroblasts was performed on 15 animals. After subcutaneous injection of fibroblast-collagen mixtures, the expression of human factor IX in rabbit plasma was followed by ELISA. Of 15 rabbits injected, expression of human factor IX was detected in 2 animals, and expression was long term (>600 days). One animal had stable levels of human factor IX, at 20 ng/ml, while the second animal had lower and gradually decreasing levels of human factor IX. There were no gross differences in pathology at the injection sites, when comparing animals with human factor IX in plasma and those without. Immunological studies demonstrated antibody formation in response to injection mixture components (including human factor IX), but again there was no correlation with immune response and long-term factor IX production in animals. Tissues at the implantation sites were positive for factor IX DNA by PCR analysis, regardless of whether there was detectable plasma factor IX or not. Small numbers of PCR-positive cells were detected in the internal organs of the long term-expressing rabbits while similar tissues were negative in nonexpressing animals.
Collapse
Affiliation(s)
- L Chen
- Gene Transfer Technology Section, Clinical Gene Therapy Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-1851, USA
| | | | | | | |
Collapse
|
47
|
Liu C, Dunigan JT, Watkins SC, Bahnson AB, Barranger JA. Long-term expression, systemic delivery, and macrophage uptake of recombinant human glucocerebrosidase in mice transplanted with genetically modified primary myoblasts. Hum Gene Ther 1998; 9:2375-84. [PMID: 9829536 DOI: 10.1089/hum.1998.9.16-2375] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A critical requirement for treatment of Gaucher disease via systemic delivery of recombinant GC is that secreted enzyme be in a form available for specific takeup by macrophages in vivo. In this article we investigated if transplanted primary myoblasts can sustain expression of human GC in vivo and if the secreted transgene product is taken up by macrophages. Transduced primary murine myoblasts were implanted into syngeneic C3H/HeJ mice. The results demonstrated that transplanted mice sustained long-term expression of transferred human GC gene in vivo. Furthermore, human GC is secreted into the circulation of mice transplanted with syngeneic primary myoblasts retrovirally transduced with human GC cDNA. The transplanted primary myoblasts differentiate and fuse with adjacent mature myofibers, and express the transgene product for up to 300 days. Human GC in the circulation reaches levels of 20-280 units/ml of plasma. Immunohistochemical studies of the target organs revealed that the secreted human GC is taken up by macrophages in liver and bone marrow. Immunochemical identification of reisolated myoblasts from transplanted mice showed that MFG-GC-transduced cells also survived as muscle stem cells in the implanted muscle. These results present in encouraging prospect for the treatment of Gaucher disease.
Collapse
Affiliation(s)
- C Liu
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- P A Fields
- Katherine Dormandy Haemophilia Centre, Department of Haematology, Royal Free Hospital and School of Medicine, London, UK
| | | |
Collapse
|
49
|
Abstract
Human gene therapy is based on the technology of genetic engineering of cells, either through ex vivo or in vivo methods of gene transfer. Many autologous cell types have been successfully modified to deliver recombinant gene products. An alternate form of gene therapy based on genetic modification of non-autologous cells is described. Protection within immuno-isolating devices would allow implantation of well-established recombinant cell lines in different allogeneic hosts, potentially offering a more cost-effective approach to gene therapy. Implantation with microencapsulated fibroblasts and myoblasts has resulted in successful recombinant product delivery in vivo. Correction of disease phenotypes in animal models of human genetic diseases has also been achieved. Cell types such as myoblasts which can differentiate terminally within the implantation device are particularly promising for the future development of this method of gene therapy.
Collapse
Affiliation(s)
- KM Bowie
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
50
|
Cherington V, Chiang GG, McGrath CA, Gaffney A, Galanopoulos T, Merrill W, Bizinkauskas CB, Hansen M, Sobolewski J, Levine PH, Greenberger JS, Hurwitz DR. Retroviral vector-modified bone marrow stromal cells secrete biologically active factor IX in vitro and transiently deliver therapeutic levels of human factor IX to the plasma of dogs after reinfusion. Hum Gene Ther 1998; 9:1397-407. [PMID: 9681411 DOI: 10.1089/hum.1998.9.10-1397] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Canine bone marrow stromal cells (BMSCs), transduced ex vivo with retroviral vectors, expressed and secreted biologically active human and canine coagulation factor IX (hFIX and cFIX) in vitro, and on autologous reinfusion expressed hFIX into the circulation of normal (nonhemophiliac) dogs. Human FIX, when expressed in vitro by BMSCs of two dogs at 1.22 and 1.39 microg/10(6) cells/24 hr in medium supplemented with vitamin K, respectively, exhibited 28.1 and 27.3% normal biological activity as determined on the basis of a one-stage clotting assay. BMSCs of two additional dogs expressed 1.54 and 4.81 microg of cFIX/10(6) cells/24 hr in vitamin K-supplemented medium and the expressed cFIX possessed 58.4 and 32.9% normal activity, respectively. Between 2.33 and 3.35 x 10(8) transduced BMSCs, expressing 1.22 and 2.61 microg of hFIX/10(6) cells/24 hr or 3.24 and 7.82 microg of cFIX/10(6) cells/24 hr were reintroduced into the four donor dogs by intravenous infusion. Human FIX was detected in plasma for 7 or 12 days after BMSC reinfusion, with peak levels of 85.8 and 233.0 ng/ml observed at 2 days. Canine anti-hFIX antibodies, which were detected as early as 2-4 days after reinfusion of BMSCs expressing hFIX, may have masked potentially longer duration expression in vivo. Peak plasma levels of hFIX represented 2.1 and 5.8% normal human hFIX levels. When adjusted for percent normal one-stage clotting activity determined in vitro, these levels represented 0.6 and 1.6% normal human hFIX activity levels. Thus, we have demonstrated that retroviral vector-modified BMSCs can deliver human therapeutic levels of hFIX to the circulation of dogs.
Collapse
|