1
|
Su HH, Lin ES, Huang YH, Lien Y, Huang CY. Inhibition of SARS-CoV-2 Nsp9 ssDNA-Binding Activity and Cytotoxic Effects on H838, H1975, and A549 Human Non-Small Cell Lung Cancer Cells: Exploring the Potential of Nepenthes miranda Leaf Extract for Pulmonary Disease Treatment. Int J Mol Sci 2024; 25:6120. [PMID: 38892307 PMCID: PMC11173125 DOI: 10.3390/ijms25116120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Carnivorous pitcher plants from the genus Nepenthes are renowned for their ethnobotanical uses. This research explores the therapeutic potential of Nepenthes miranda leaf extract against nonstructural protein 9 (Nsp9) of SARS-CoV-2 and in treating human non-small cell lung carcinoma (NSCLC) cell lines. Nsp9, essential for SARS-CoV-2 RNA replication, was expressed and purified, and its interaction with ssDNA was assessed. Initial tests with myricetin and oridonin, known for targeting ssDNA-binding proteins and Nsp9, respectively, did not inhibit the ssDNA-binding activity of Nsp9. Subsequent screenings of various N. miranda extracts identified those using acetone, methanol, and ethanol as particularly effective in disrupting Nsp9's ssDNA-binding activity, as evidenced by electrophoretic mobility shift assays. Molecular docking studies highlighted stigmast-5-en-3-ol and lupenone, major components in the leaf extract of N. miranda, as potential inhibitors. The cytotoxic properties of N. miranda leaf extract were examined across NSCLC lines H1975, A549, and H838, focusing on cell survival, apoptosis, and migration. Results showed a dose-dependent cytotoxic effect in the following order: H1975 > A549 > H838 cells, indicating specificity. Enhanced anticancer effects were observed when the extract was combined with afatinib, suggesting synergistic interactions. Flow cytometry indicated that N. miranda leaf extract could induce G2 cell cycle arrest in H1975 cells, potentially inhibiting cancer cell proliferation. Gas chromatography-mass spectrometry (GC-MS) enabled the tentative identification of the 19 most abundant compounds in the leaf extract of N. miranda. These outcomes underscore the dual utility of N. miranda leaf extract in potentially managing SARS-CoV-2 infection through Nsp9 inhibition and offering anticancer benefits against lung carcinoma. These results significantly broaden the potential medical applications of N. miranda leaf extract, suggesting its use not only in traditional remedies but also as a prospective treatment for pulmonary diseases. Overall, our findings position the leaf extract of N. miranda as a promising source of natural compounds for anticancer therapeutics and antiviral therapies, warranting further investigation into its molecular mechanisms and potential clinical applications.
Collapse
Affiliation(s)
- Hsin-Hui Su
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 717, Taiwan
| | - En-Shyh Lin
- Department of Beauty Science, National Taichung University of Science and Technology, Taichung City 403, Taiwan
| | - Yen-Hua Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Yi Lien
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| |
Collapse
|
2
|
Lee CY, Chen YC, Huang YH, Lien Y, Huang CY. Cytotoxicity and Multi-Enzyme Inhibition of Nepenthes miranda Stem Extract on H838 Human Non-Small Cell Lung Cancer Cells and RPA32, Elastase, Tyrosinase, and Hyaluronidase Proteins. PLANTS (BASEL, SWITZERLAND) 2024; 13:797. [PMID: 38592804 PMCID: PMC10974603 DOI: 10.3390/plants13060797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 04/11/2024]
Abstract
The carnivorous pitcher plants of the genus Nepenthes have long been known for their ethnobotanical applications. In this study, we prepared various extracts from the pitcher, stem, and leaf of Nepenthes miranda using 100% ethanol and assessed their inhibitory effects on key enzymes related to skin aging, including elastase, tyrosinase, and hyaluronidase. The cytotoxicity of the stem extract of N. miranda on H838 human lung carcinoma cells were also characterized by effects on cell survival, migration, proliferation, apoptosis induction, and DNA damage. The cytotoxic efficacy of the extract was enhanced when combined with the chemotherapeutic agent 5-fluorouracil (5-FU), indicating a synergistic effect. Flow cytometry analysis suggested that the stem extract might suppress H838 cell proliferation by inducing G2 cell cycle arrest, thereby inhibiting carcinoma cell proliferation. Gas chromatography-mass spectrometry (GC-MS) enabled the tentative identification of the 15 most abundant compounds in the stem extract of N. miranda. Notably, the extract showed a potent inhibition of the human RPA32 protein (huRPA32), critical for DNA replication, suggesting a novel mechanism for its anticancer action. Molecular docking studies further substantiated the interaction between the extract and huRPA32, highlighting bioactive compounds, especially the two most abundant constituents, stigmast-5-en-3-ol and plumbagin, as potential inhibitors of huRPA32's DNA-binding activity, offering promising avenues for cancer therapy. Overall, our findings position the stem extract of N. miranda as a promising source of natural compounds for anticancer therapeutics and anti-skin-aging treatments, warranting further investigation into its molecular mechanisms and potential clinical applications.
Collapse
Affiliation(s)
- Ching-Yi Lee
- Department of Internal Medicine, Tao Yuan General Hospital, Ministry of Health and Welfare, Taoyuan 330, Taiwan
| | - Yu-Cheng Chen
- Department of Internal Medicine, Tao Yuan General Hospital, Ministry of Health and Welfare, Taoyuan 330, Taiwan
| | - Yen-Hua Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Yi Lien
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| |
Collapse
|
3
|
Huang FF, Cui WH, Ma LY, Chen Q, Liu Y. Crosstalk of nervous and immune systems in pancreatic cancer. Front Cell Dev Biol 2023; 11:1309738. [PMID: 38099290 PMCID: PMC10720593 DOI: 10.3389/fcell.2023.1309738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
Pancreatic cancer is a highly malignant tumor known for its extremely low survival rate. The combination of genetic disorders within pancreatic cells and the tumor microenvironment contributes to the emergence and progression of this devastating disease. Extensive research has shed light on the nature of the microenvironmental cells surrounding the pancreatic cancer, including peripheral nerves and immune cells. Peripheral nerves release neuropeptides that directly target pancreatic cancer cells in a paracrine manner, while immune cells play a crucial role in eliminating cancer cells that have not evaded the immune response. Recent studies have revealed the intricate interplay between the nervous and immune systems in homeostatic condition as well as in cancer development. In this review, we aim to summarize the function of nerves in pancreatic cancer, emphasizing the significance to investigate the neural-immune crosstalk during the advancement of this malignant cancer.
Collapse
Affiliation(s)
- Fei-Fei Huang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| | - Wen-Hui Cui
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| | - Lan-Yue Ma
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qi Chen
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Yang Liu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
4
|
Zhong HL, Li PZ, Li D, Guan CX, Zhou Y. The role of vasoactive intestinal peptide in pulmonary diseases. Life Sci 2023; 332:122121. [PMID: 37742737 DOI: 10.1016/j.lfs.2023.122121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Vasoactive intestinal peptide (VIP) is an abundant neurotransmitter in the lungs and other organs. Its discovery dates back to 1970. And VIP gains attention again due to the potential application in COVID-19 after a research wave in the 1980s and 1990s. The diverse biological impacts of VIP extend beyond its usage in COVID-19 treatment, encompassing its involvement in various pulmonary and systemic disorders. This review centers on the function of VIP in various lung diseases, such as pulmonary arterial hypertension, chronic obstructive pulmonary disease, asthma, cystic fibrosis, acute lung injury/acute respiratory distress syndrome, pulmonary fibrosis, and lung tumors. This review also outlines two main limitations of VIP as a potential medication and gathers information on extended-release formulations and VIP analogues.
Collapse
Affiliation(s)
- Hong-Lin Zhong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Pei-Ze Li
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Di Li
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Cha-Xiang Guan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China.
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
5
|
Moody TW, Ramos-Alvarez I, Jensen RT. Peptide G-Protein-Coupled Receptors and ErbB Receptor Tyrosine Kinases in Cancer. BIOLOGY 2023; 12:957. [PMID: 37508387 PMCID: PMC10376828 DOI: 10.3390/biology12070957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023]
Abstract
The ErbB RTKs (EGFR, HER2, HER3, and HER4) have been well-studied in cancer. EGFR, HER2, and HER3 stimulate cancer proliferation, principally by activating the phosphatidylinositol-3-kinase and extracellular signal-regulated kinase (ERK) pathways, resulting in increased cancer cell survival and proliferation. Cancer cells have high densities of the EGFR, HER2, and HER3 causing phosphorylation of tyrosine amino acids on protein substrates and tyrosine amino acids near the C-terminal of the RTKs. After transforming growth factor (TGF) α binds to the EGFR, homodimers or EGFR heterodimers form. HER2 forms heterodimers with the EGFR, HER3, and HER4. The EGFR, HER2, and HER3 are overexpressed in lung cancer patient tumors, and monoclonal antibodies (mAbs), such as Herceptin against HER2, are used to treat breast cancer patients. Patients with EGFR mutations are treated with tyrosine kinase inhibitors, such as gefitinib or osimertinib. Peptide GPCRs, such as NTSR1, are present in many cancers, and neurotensin (NTS) stimulates the growth of cancer cells. Lung cancer proliferation is impaired by SR48692, an NTSR1 antagonist. SR48692 is synergistic with gefitinib at inhibiting lung cancer growth. Adding NTS to lung cancer cells increases the shedding of TGFα, which activates the EGFR, or neuregulin-1, which activates HER3. The transactivation process is impaired by SRC, matrix metalloprotease, and reactive oxygen species inhibitors. While the transactivation process is complicated, it is fast and occurs within minutes after adding NTS to cancer cells. This review emphasizes the use of tyrosine kinase inhibitors and SR48692 to impair transactivation and cancer growth.
Collapse
Affiliation(s)
- Terry W Moody
- Center for Cancer Training, NCI, and Digestive Diseases Branch, NIDDK, NIH, Bethesda, MD 20892, USA
| | - Irene Ramos-Alvarez
- Center for Cancer Training, NCI, and Digestive Diseases Branch, NIDDK, NIH, Bethesda, MD 20892, USA
| | - Robert T Jensen
- Center for Cancer Training, NCI, and Digestive Diseases Branch, NIDDK, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Rao IH, Waller EK, Dhamsania RK, Chandrasekaran S. Gene Expression Analysis Links Autocrine Vasoactive Intestinal Peptide and ZEB1 in Gastrointestinal Cancers. Cancers (Basel) 2023; 15:3284. [PMID: 37444395 DOI: 10.3390/cancers15133284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
VIP (vasoactive intestinal peptide) is a 28-amino acid peptide hormone expressed by cancer and the healthy nervous system, digestive tract, cardiovascular, and immune cell tissues. Many cancers express VIP and its surface receptors VPAC1 and VPAC2, but the role of autocrine VIP signaling in cancer as a targetable prognostic and predictive biomarker remains poorly understood. Therefore, we conducted an in silico gene expression analysis to study the mechanisms of autocrine VIP signaling in cancer. VIP expression from TCGA PANCAN tissue samples was analyzed against the expression levels of 760 cancer-associated genes. Of the 760 genes, 10 (MAPK3, ZEB1, TEK, NOS2, PTCH1 EIF4G1, GMPS, CDK2, RUVBL1, and TIMELESS) showed statistically meaningful associations with the VIP (Pearson's R-coefficient > |0.3|; p < 0.05) across all cancer histologies. The strongest association with the VIP was for the epithelial-mesenchymal transition regulator ZEB1 in gastrointestinal malignancies. Similar positive correlations between the VIP and ZEB1 expression were also observed in healthy gastrointestinal tissues. Gene set analysis indicates the VIP is involved in the EMT and cell cycle pathways, and a high VIP and ZEB1 expression is associated with higher median estimate and stromal scores These findings uncover novel mechanisms for VIP- signaling in cancer and specifically suggest a role for VIP as a biomarker of ZEB1-mediated EMT. Further studies are warranted to characterize the specific mechanism of this interaction.
Collapse
Affiliation(s)
- Ishani H Rao
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Edmund K Waller
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rohan K Dhamsania
- Philadelphia College of Osteopathic Medicine (PCOM)-Georgia Campus, Suwanee, GA 30024, USA
| | - Sanjay Chandrasekaran
- Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
7
|
Ravindranathan S, Passang T, Li JM, Wang S, Dhamsania R, Ware MB, Zaidi MY, Zhu J, Cardenas M, Liu Y, Gumber S, Robinson B, Sen-Majumdar A, Zhang H, Chandrakasan S, Kissick H, Frey AB, Thomas SN, El-Rayes BF, Lesinski GB, Waller EK. Targeting vasoactive intestinal peptide-mediated signaling enhances response to immune checkpoint therapy in pancreatic ductal adenocarcinoma. Nat Commun 2022; 13:6418. [PMID: 36302761 PMCID: PMC9613684 DOI: 10.1038/s41467-022-34242-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/18/2022] [Indexed: 12/25/2022] Open
Abstract
A paucity of effector T cells within tumors renders pancreatic ductal adenocarcinoma (PDAC) resistant to immune checkpoint therapies. While several under-development approaches target immune-suppressive cells in the tumor microenvironment, there is less focus on improving T cell function. Here we show that inhibiting vasoactive intestinal peptide receptor (VIP-R) signaling enhances anti-tumor immunity in murine PDAC models. In silico data mining and immunohistochemistry analysis of primary tumors indicate overexpression of the neuropeptide vasoactive intestinal peptide (VIP) in human PDAC tumors. Elevated VIP levels are also present in PDAC patient plasma and supernatants of cultured PDAC cells. Furthermore, T cells up-regulate VIP receptors after activation, identifying the VIP signaling pathway as a potential target to enhance T cell function. In mouse PDAC models, VIP-R antagonist peptides synergize with anti-PD-1 antibody treatment in improving T cell recruitment into the tumors, activation of tumor-antigen-specific T cells, and inhibition of T cell exhaustion. In contrast to the limited single-agent activity of anti-PD1 antibodies or VIP-R antagonist peptides, combining both therapies eliminate tumors in up to 40% of animals. Furthermore, tumor-free mice resist tumor re-challenge, indicating anti-cancer immunological memory generation. VIP-R signaling thus represents a tumor-protective immune-modulatory pathway that is targetable in PDAC.
Collapse
Affiliation(s)
- Sruthi Ravindranathan
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| | - Tenzin Passang
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jian-Ming Li
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Shuhua Wang
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Rohan Dhamsania
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Michael Brandon Ware
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Mohammad Y Zaidi
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jingru Zhu
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Maria Cardenas
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yuan Liu
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Sanjeev Gumber
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Brian Robinson
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Hanwen Zhang
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Haydn Kissick
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Centre, Emory University, Atlanta, GA, USA
| | | | - Susan N Thomas
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Bassel F El-Rayes
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Gregory B Lesinski
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Edmund K Waller
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
8
|
D'Amico AG, Maugeri G, Rasà DM, Reitano R, Saccone S, Federico C, Magro G, D'Agata V. Modulatory role of PACAP and VIP on HIFs expression in lung adenocarcinoma. Peptides 2021; 146:170672. [PMID: 34627957 DOI: 10.1016/j.peptides.2021.170672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/16/2022]
Abstract
Lung adenocarcinoma is the most frequent form of non-small cell lung cancer. Inside the tumor mass, uncontrolled cell proliferation generates hypoxic areas leading to activation of hypoxia-inducible factors (HIFs) responsible for neovascularization and tumor metastasis. Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are two neuropeptides widely distributed in respiratory organs. Previous studies have demonstrated that these peptides interfere with hypoxic pathways in various diseases, including tumors. However, their modulatory role in HIFs expression in lung adenocarcinomas has not yet been evaluated. In the present paper, we detected the expression profile of PACAP, VIP and related receptors in healthy and adenocarcinoma human lung tissue. To characterize peptides' modulatory effects on HIFs expression, we also exposed A549 lung adenocarcinoma cells and human normal bronchial epithelial BEAS-2B cells to microenvironmental hypoxia by treating them with deferoxamine (DFX). The results showed that PACAP and VIP significantly reduced HIF-1α and HIF-2α levels in both cell lines following hypoxic stress. The HIF-3α expression profile was related to cellular phenotype as it was lower in BEAS-2B and higher in A549 cells under low oxygen tension. In lung adenocarcinoma cells, peptide treatment restored HIF-3 α expression to control levels. These results suggest that endogenous PACAP and VIP exert controversial roles in cellular hypoxic microenvironments depending on the pathophysiological conditions of the lung tissue.
Collapse
Affiliation(s)
- Agata Grazia D'Amico
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100, Catania, Italy
| | - Daniela Maria Rasà
- Department of Neuroscience Rita Levi Montalcini, Neuroscience Institute Cavalieri Ottolenghi, Univer-sity of Turin, Turin, Italy
| | - Rita Reitano
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology, Universi-ty of Catania, 95123, Catania, Italy
| | - Concetta Federico
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology, Universi-ty of Catania, 95123, Catania, Italy
| | - Gaetano Magro
- Section of Anatomic Pathology, Department of Medical and Surgical Sciences and Advanced Technologies, G.F. Ingrassia, Azienda Ospedaliero-Universitaria "Policlinico-Vittorio Emanuele", University of Catania, Catania, Italy
| | - Velia D'Agata
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100, Catania, Italy.
| |
Collapse
|
9
|
Yu HB, Yang H, Allaire JM, Ma C, Graef FA, Mortha A, Liang Q, Bosman ES, Reid GS, Waschek JA, Osborne LC, Sokol H, Vallance BA, Jacobson K. Vasoactive intestinal peptide promotes host defense against enteric pathogens by modulating the recruitment of group 3 innate lymphoid cells. Proc Natl Acad Sci U S A 2021; 118:e2106634118. [PMID: 34625492 PMCID: PMC8521691 DOI: 10.1073/pnas.2106634118] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 01/10/2023] Open
Abstract
Group 3 innate lymphoid cells (ILC3s) control the formation of intestinal lymphoid tissues and play key roles in intestinal defense. They express neuropeptide vasoactive intestinal peptide (VIP) receptor 2 (VPAC2), through which VIP modulates their function, but whether VIP exerts other effects on ILC3 remains unclear. We show that VIP promotes ILC3 recruitment to the intestine through VPAC1 independent of the microbiota or adaptive immunity. VIP is also required for postnatal formation of lymphoid tissues as well as the maintenance of local populations of retinoic acid (RA)-producing dendritic cells, with RA up-regulating gut-homing receptor CCR9 expression by ILC3s. Correspondingly, mice deficient in VIP or VPAC1 suffer a paucity of intestinal ILC3s along with impaired production of the cytokine IL-22, rendering them highly susceptible to the enteric pathogen Citrobacter rodentium This heightened susceptibility to C. rodentium infection was ameliorated by RA supplementation, adoptive transfer of ILC3s, or by recombinant IL-22. Thus, VIP regulates the recruitment of intestinal ILC3s and formation of postnatal intestinal lymphoid tissues, offering protection against enteric pathogens.
Collapse
Affiliation(s)
- Hong Bing Yu
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The University of British Columbia, Vancouver, BC, V5Z 4H4, Canada;
| | - Hyungjun Yang
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Joannie M Allaire
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Caixia Ma
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Franziska A Graef
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Arthur Mortha
- Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Qiaochu Liang
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Else S Bosman
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Gregor S Reid
- Division of Oncology, Department of Pediatrics, The University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - James A Waschek
- The Semel Institute and Department of Psychiatry, The David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Lisa C Osborne
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Harry Sokol
- Gastroenterology Department, INSERM, Centre de Recherche Saint Antoine, Sorbonne Université, Paris, F-75012, France
- Institut national de la recherche agronomique, Micalis Institute and AgroParisTech, Jouy en Josas, F-78350, France
- Paris Center for Microbiome Medicine, Fédérations Hospitalo-universitaires, Paris, F-75012, France
| | - Bruce A Vallance
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The University of British Columbia, Vancouver, BC, V5Z 4H4, Canada;
| | - Kevan Jacobson
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The University of British Columbia, Vancouver, BC, V5Z 4H4, Canada;
| |
Collapse
|
10
|
Moody TW, Ramos-Alvarez I, Jensen RT. Bombesin, endothelin, neurotensin and pituitary adenylate cyclase activating polypeptide cause tyrosine phosphorylation of receptor tyrosine kinases. Peptides 2021; 137:170480. [PMID: 33385499 DOI: 10.1016/j.peptides.2020.170480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022]
Abstract
Numerous peptides including bombesin (BB), endothelin (ET), neurotensin (NTS) and pituitary adenylate cyclase-activating polypeptide (PACAP) are growth factors for lung cancer cells. The peptides bind to G protein-coupled receptors (GPCRs) resulting in elevated cAMP and/or phosphatidylinositol (PI) turnover. In contrast, growth factors such as epidermal growth factor (EGF) or neuregulin (NRG)-1 bind to receptor tyrosine kinases (RTKs) such as the EGFR or HER3, increasing tyrosine kinase activity, resulting in the phosphorylation of protein substrates such as PI3K or phospholipase (PL)C. Peptide GPCRs can transactivate numerous RTKs, especially members of the EGFR/HER family resulting in increased phosphorylation of ERK, leading to cellular proliferation or increased phosphorylation of AKT, leading to cellular survival. GRCR antagonists and tyrosine kinase inhibitors are useful agents to prevent RTK transactivation and inhibit proliferation of cancer cells.
Collapse
Affiliation(s)
- Terry W Moody
- Department of Health and Human Services, National Institutes of Health, National Cancer Institute, Center for Cancer Training, Bethesda, MD, 20892, USA.
| | - Irene Ramos-Alvarez
- National Institute of Diabetes, Digestive and Kidney Disease, Digestive Diseases Branch, 9000 Rockville Pike, Bethesda, MD, 20892 USA
| | - Robert T Jensen
- National Institute of Diabetes, Digestive and Kidney Disease, Digestive Diseases Branch, 9000 Rockville Pike, Bethesda, MD, 20892 USA
| |
Collapse
|
11
|
Identification of Prognostic Immune-Related Genes by Integrating mRNA Expression and Methylation in Lung Adenocarcinoma. Int J Genomics 2020; 2020:9548632. [PMID: 32695805 PMCID: PMC7368195 DOI: 10.1155/2020/9548632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/31/2020] [Accepted: 06/03/2020] [Indexed: 02/05/2023] Open
Abstract
Background There is plenty of evidence showing that immune-related genes (IRGs) and epigenetic modifications play important roles in the biological process of cancer. The purpose of this study is to establish novel IRG prognostic markers by integrating mRNA expression and methylation in lung adenocarcinoma (LUAD). Methods and Results The transcriptome profiling data and the RNA-seq data of LUAD with the corresponding clinical information of 543 LUAD cases were downloaded from The Cancer Genome Atlas (TCGA) database, which were analyzed by univariate Cox proportional regression and multivariate Cox proportional regression to develop an independent prognostic signature. On the basis of this signature, we could divide LUAD patients into the high-risk, medium-risk, and low-risk groups. Further survival analyses demonstrated that high-risk patients had significantly shorter overall survival (OS) than low-risk patients. The signature, which contains 8 IRGs (S100A16, FGF2, IGKV4-1, CX3CR1, INHA, ANGPTL4, TNFRSF11A, and VIPR1), was also validated by data from the Gene Expression Omnibus (GEO) database. We also conducted analyses of methylation levels of the relevant IRGs and their CpG sites. Meanwhile, their associations with prognosis were examined and validated by the GEO database, revealing that the methylation levels of INHA, S100A16, the CpG site cg23851011, and the CpG site cg06552037 may be used as the potential regulators for the treatment of LUAD. Conclusion Collectively, INHA, S100A16, the CpG site cg23851011, and the CpG site cg06552037 are promising biomarkers for monitoring the outcomes of LUAD.
Collapse
|
12
|
Mechanism of VIPR1 gene regulating human lung adenocarcinoma H1299 cells. Med Oncol 2019; 36:91. [PMID: 31560089 DOI: 10.1007/s12032-019-1312-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/29/2019] [Indexed: 12/24/2022]
Abstract
The vasoactive intestinal peptide receptor-1(VIPR1) has prominent growth effects on a number of common neoplasms. However, there were contradictions in the effect cross different cancers. We aimed to explore the effect of VIPR1 overexpression on a human lung adenocarcinoma cell line H1299. GEO dataset was used to screen differentially expressed genes in lung adenocarcinoma tissues. The expression of VIPR1 mRNA was determined in the cancer Genome Atlas (TCGA). Immunohistochemical analysis was performed to determine VIPR1 protein expression in lung adenocarcinoma and corresponding adjacent tissues (n = 22). Fluorescence real-time quantitative PCR detected the expression of VIPR1 in human normal lung epithelial cell line BEAS-2B and lung adenocarcinoma cell line H1299. Overexpression strategies were employed to assess functions of VIPR1 expression on several malignant phenotypes in H1299. The expression of VIPR1 was lower in lung adenocarcinoma tissues than that in adjacent tissues. Compared with the normal lung epithelial cells BEAS-2B, VIPR1 was down-regulated in lung cancer cells H1299 (P < 0.05). After the overexpression of VIPR1, we found that VIPR1 significantly inhibited growth, migration, and invasion of H1299 cells (P < 0.05). Our findings point out the tumor suppressor roles of VIPR1 in human LUAD pathogenesis.
Collapse
|
13
|
Moody TW. Peptide receptors as cancer drug targets. Ann N Y Acad Sci 2019; 1455:141-148. [PMID: 31074514 DOI: 10.1111/nyas.14100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/08/2019] [Accepted: 03/26/2019] [Indexed: 12/18/2022]
Abstract
Neuropeptides function as neuromodulators in the brain, whereby they are released in a paracrine manner and activate G protein-coupled receptors (GPCRs) in adjacent cells. Because neuropeptides are made in, and secreted from, cancer cells, then bind to cell surface receptors, they function in an autocrine manner. Bombesin (BB)-like peptides synthesized by neuroendocrine tumor small cell lung cancer (SCLC) bind to BB receptors (BBRs), causing phosphatidylinositol turnover and phosphorylation of extracellular signal-regulated kinase (ERK). Phosphorylated ERK enters the nucleus and alters gene expression of SCLC cells, stimulating growth. Vasoactive intestinal peptide (VIP) addition to SCLC cells increases their release rate of BB-like peptides via activation of VIP receptors (VIPR), leading to activation of adenylyl cyclase and subsequent elevation of cAMP. Protein kinase A is then stimulated, leading to phosphorylation of cyclic AMP response element binding protein (CREB), which alters gene expression and stimulates proliferation. The growth of SCLC is inhibited by BBR and VIPR antagonists. This review will focus on how GPCRs for VIP and BB are molecular targets for early detection and treatment of cancer.
Collapse
Affiliation(s)
- Terry W Moody
- Department of Health and Human Services, Center for Cancer Training, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
14
|
Moody TW, Ramos-Alvarez I, Jensen RT. Neuropeptide G Protein-Coupled Receptors as Oncotargets. Front Endocrinol (Lausanne) 2018; 9:345. [PMID: 30008698 PMCID: PMC6033971 DOI: 10.3389/fendo.2018.00345] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/11/2018] [Indexed: 12/15/2022] Open
Abstract
Neuropeptide G protein-coupled receptors (GPCRs) are overexpressed on numerous cancer cells. In a number of tumors, such as small cell lung cancer (SCLC), bombesin (BB) like peptides and neurotensin (NTS) function as autocrine growth factors whereby they are secreted from tumor cells, bind to cell surface receptors and stimulate growth. BB-drug conjugates and BB receptor antagonists inhibit the growth of a number of cancers. Vasoactive intestinal peptide (VIP) increases the secretion rate of BB-like peptide and NTS from SCLC leading to increased proliferation. In contrast, somatostatin (SST) inhibits the secretion of autocrine growth factors from neuroendocrine tumors (NETs) and decreases proliferation. SST analogs such as radiolabeled octreotide can be used to localize tumors, is therapeutic for certain cancer patients and has been approved for four different indications in the diagnosis/treatment of NETs. The review will focus on how BB, NTS, VIP, and SST receptors can facilitate the early detection and treatment of cancer.
Collapse
Affiliation(s)
- Terry W. Moody
- Department of Health and Human Services, National Cancer Institute, Center for Cancer Research, National Institute of Diabetes, Digestive, and Kidney Disease (NIDDK), Bethesda, MD, United States
| | - Irene Ramos-Alvarez
- Digestive Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Disease (NIDDK), Bethesda, MD, United States
| | - Robert T. Jensen
- Digestive Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Disease (NIDDK), Bethesda, MD, United States
| |
Collapse
|
15
|
Charron CL, Hickey JL, Nsiama TK, Cruickshank DR, Turnbull WL, Luyt LG. Molecular imaging probes derived from natural peptides. Nat Prod Rep 2017; 33:761-800. [PMID: 26911790 DOI: 10.1039/c5np00083a] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covering: up to the end of 2015.Peptides are naturally occurring compounds that play an important role in all living systems and are responsible for a range of essential functions. Peptide receptors have been implicated in disease states such as oncology, metabolic disorders and cardiovascular disease. Therefore, natural peptides have been exploited as diagnostic and therapeutic agents due to the unique target specificity for their endogenous receptors. This review discusses a variety of natural peptides highlighting their discovery, endogenous receptors, as well as their derivatization to create molecular imaging agents, with an emphasis on the design of radiolabelled peptides. This review also highlights methods for discovering new and novel peptides when knowledge of specific targets and endogenous ligands are not available.
Collapse
Affiliation(s)
- C L Charron
- Department of Chemistry, The University of Western Ontario, London, Canada.
| | - J L Hickey
- Department of Chemistry, The University of Western Ontario, London, Canada.
| | - T K Nsiama
- London Regional Cancer Program, Lawson Health Research Institute, London, Canada
| | - D R Cruickshank
- Department of Chemistry, The University of Western Ontario, London, Canada.
| | - W L Turnbull
- Department of Chemistry, The University of Western Ontario, London, Canada.
| | - L G Luyt
- Department of Chemistry, The University of Western Ontario, London, Canada. and Departments of Oncology and Medical Imaging, The University of Western Ontario, London, Canada and London Regional Cancer Program, Lawson Health Research Institute, London, Canada
| |
Collapse
|
16
|
Petersen CT, Li JM, Waller EK. Administration of a vasoactive intestinal peptide antagonist enhances the autologous anti-leukemia T cell response in murine models of acute leukemia. Oncoimmunology 2017. [PMID: 28638725 DOI: 10.1080/2162402x.2017.1304336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Vasoactive intestinal peptide (VIP) is a neuroendocrine peptide hormone that has potent anti-inflammatory activities. VIP signaling through its receptor VPAC1 on T cells leads to reduced proliferation and a reduction in pro-inflammatory cytokine secretion. We report here that inhibition of the VIP pathway with a peptide antagonist significantly enhances a T-cell-dependent, autologous anti-leukemia response in murine models of acute myeloid leukemia and T lymphoblastic leukemia. Subcutaneous administration of the VIP antagonist, VIPhyb, resulted in reduced tumor burden and significantly enhanced survival (30-50% survival) over vehicle-treated controls (0-20% survival). The T cells in mice treated with VIPhyb expressed lower levels of the co-inhibitory PD-1 and secreted higher levels of IFNγ. Furthermore, T cells from VIPhyb-treated survivors were protective against C1498 following adoptive transfer. These data highlight the potential for the VIP pathway as a novel target for immunomodulation in settings of hematological malignancies.
Collapse
Affiliation(s)
- Christopher T Petersen
- Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jian-Ming Li
- Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Edmund K Waller
- Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
17
|
Li JM, Petersen CT, Li JX, Panjwani R, Chandra DJ, Giver CR, Blazar BR, Waller EK. Modulation of Immune Checkpoints and Graft-versus-Leukemia in Allogeneic Transplants by Antagonizing Vasoactive Intestinal Peptide Signaling. Cancer Res 2016; 76:6802-6815. [PMID: 27671676 DOI: 10.1158/0008-5472.can-16-0427] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 08/16/2016] [Accepted: 09/11/2016] [Indexed: 12/23/2022]
Abstract
The goal of allogeneic bone marrow transplantation (allo-BMT) is elimination of leukemia cells through the graft-versus-leukemia (GvL) activity of donor cells, while limiting graft-versus-host disease (GvHD). Immune checkpoint pathways regulate GvL and GvHD activities, but blocking antibodies or genetic inactivation of these pathways can cause lethal GVHD. Vasoactive intestinal peptide (VIP) is an immunosuppressive neuropeptide that regulates coinhibitory pathways; its role in allo-BMT has not been studied. We found VIP transiently expressed in donor NK, NK-T, dendritic cells, and T cells after allo transplant, as well as host leukocytes. A peptide antagonist of VIP signaling (VIPhyb) increased T-cell proliferation in vitro and reduced IL10 expression in donor T cells. Treatment of allo-BMT recipients with VIPhyb, or transplanting donor grafts lacking VIP (VIP-KO), activated donor T-cells in lymphoid organs, reduced T-cell homing to GvHD target organs, and enhanced GvL without increasing GvHD in multiple allo-BMT models. Genetic or ex vivo depletion of donor NK cells or CD8+ T cells from allografts abrogated the VIPhyb-enhanced GvL activity. VIPhyb treatment led to downregulation of PD-1 and PD-L1 expression on donor immune cells, increased effector molecule expression, and expanded oligoclonal CD8+ T cells that protected secondary allo transplant recipients from leukemia. Blocking VIP signaling thus represents a novel pharmacologic approach to separate GvL from GvHD and enhance adaptive T-cell responses to leukemia-associated antigens in allo-BMT. Cancer Res; 76(23); 6802-15. ©2016 AACR.
Collapse
Affiliation(s)
- Jian-Ming Li
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia
| | | | - Jing-Xia Li
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia.,Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Reema Panjwani
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia
| | - Daniel J Chandra
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia
| | - Cynthia R Giver
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia
| | - Bruce R Blazar
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Edmund K Waller
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia.
| |
Collapse
|
18
|
Freitas S, Martins R, Costa M, Leão PN, Vitorino R, Vasconcelos V, Urbatzka R. Hierridin B Isolated from a Marine Cyanobacterium Alters VDAC1, Mitochondrial Activity, and Cell Cycle Genes on HT-29 Colon Adenocarcinoma Cells. Mar Drugs 2016; 14:md14090158. [PMID: 27589771 PMCID: PMC5039529 DOI: 10.3390/md14090158] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/01/2016] [Accepted: 08/24/2016] [Indexed: 02/07/2023] Open
Abstract
Background: Hierridin B was isolated from a marine cyanobacterium Cyanobium sp. strain and induced cytotoxicity selectively in HT-29 adenocarcinoma cells. The underlying molecular mechanism was not yet elucidated. Methods: HT-29 cells were exposed to the IC50 concentration of hierridin B (100.2 μM) for 48 h. Non-targeted proteomics was performed using 2D gel electrophoresis and MALDI-TOF/TOF mass spectrometry. The mRNA expression of apoptotic and cell cycle genes were analyzed by real-time PCR. Automated quantification of 160 cytoplasm and mitochondrial parameter was done by fluorescence microscopy using CellProfiler software. Results: Proteomics identified 21 significant different proteins, which belonged to protein folding/synthesis and cell structure amongst others. Increase of VDAC1 protein responsible for formation of mitochondrial channels was confirmed by mRNA expression. A 10-fold decrease of cytoskeleton proteins (STMN1, TBCA) provided a link to alterations of the cell cycle. CCNB1 and CCNE mRNA were decreased two-fold, and P21CIP increased 10-fold, indicative of cell cycle arrest. Morphological analysis of mitochondrial parameter confirmed a reduced mitochondrial activity. Conclusion: Hierridin B is a potential anticancer compound that targets mitochondrial activity and function.
Collapse
Affiliation(s)
- Sara Freitas
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal.
| | - Rosário Martins
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal.
- Health and Environmental Research Center (CISA), School of Apllied Health Sciences of Porto, Polytechnic Porto, Rua Valente Perfeito 322, 4400-330 Vila Nova de Gaia, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal.
- Institute for Molecular and Cell Biology (IBMC), University of Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal.
| | - Margarida Costa
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal.
| | - Pedro N Leão
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal.
| | - Rui Vitorino
- Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal.
| | - Vitor Vasconcelos
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal.
| | - Ralph Urbatzka
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal.
| |
Collapse
|
19
|
Moody TW, Moreno P, Jensen RT. Neuropeptides as lung cancer growth factors. Peptides 2015; 72:106-11. [PMID: 25836991 DOI: 10.1016/j.peptides.2015.03.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 03/20/2015] [Accepted: 03/20/2015] [Indexed: 12/28/2022]
Abstract
This manuscript is written in honor of the Festschrift for Abba Kastin. I met Abba at a Society for Neuroscience meeting and learned that he was Editor-in-Chief of the Journal Peptides. I submitted manuscripts to the journal on "Neuropeptides as Growth Factors in Cancer" and subsequently was named to the Editorial Advisory Board. Over the past 30 years I have published dozens of manuscripts in Peptides and reviewed hundreds of submitted manuscripts. It was always rewarding to interact with Abba, a consummate professional. When I attended meetings in New Orleans I would sometimes go out to dinner with him at the restaurant "Commanders Palace". When I chaired the Summer Neuropeptide Conference we were honored to have him receive the Fleur Strand Award one year in Israel. I think that his biggest editorial contribution has been the "Handbook of Biologically Active Peptides." I served as a Section Editor on "Cancer/Anticancer Peptides" and again found that it was a pleasure working with him. This review focuses on the mechanisms by which bombesin-like peptides, neurotensin and vasoactive intestinal peptide regulate the growth of lung cancer.
Collapse
Affiliation(s)
- Terry W Moody
- Department of Health and Human Services, National Cancer Institute, Center for Cancer Research, Office of the Director, Bethesda, MD 20892, USA.
| | - Paola Moreno
- National Institute of Diabetes, Digestive, and Kidney Disease, Digestive Diseases Branch, Bethesda, MD 20892, USA
| | - Robert T Jensen
- National Institute of Diabetes, Digestive, and Kidney Disease, Digestive Diseases Branch, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Neuronally released vasoactive intestinal polypeptide alters atrial electrophysiological properties and may promote atrial fibrillation. Heart Rhythm 2015; 12:1352-61. [PMID: 25748673 DOI: 10.1016/j.hrthm.2015.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Indexed: 11/22/2022]
Abstract
BACKGROUND Vagal hyperactivity promotes atrial fibrillation (AF), which has been almost exclusively attributed to acetylcholine. Vasoactive intestinal polypeptide (VIP) and acetylcholine are neurotransmitters co-released during vagal stimulation. Exogenous VIP has been shown to promote AF by shortening action potential duration (APD), increasing APD spatial heterogeneity, and causing intra-atrial conduction block. OBJECTIVE The purpose of this study was to investigate the effects of neuronally released VIP on atrial electrophysiologic properties during vagal stimulation. METHODS We used a specific VIP antagonist (H9935) to uncover the effects of endogenous VIP released during vagal stimulation in canine hearts. RESULTS H9935 significantly attenuated (1) the vagally induced shortening of atrial effective refractory period and widening of atrial vulnerability window during stimulation of cervical vagosympathetic trunks (VCNS) and (2) vagal effects on APD during stimulation through fat-pad ganglion plexus (VGPS). Atropine completely abolished these vagal effects during VCNS and VGPS. In contrast, VGPS-induced slowing of local conduction velocity was completely abolished by either VIP antagonist or atropine. In pacing-induced AF during VGPS, maximal dominant frequencies and their spatial gradients were reduced significantly by H9935 and, more pronouncedly, by atropine. Furthermore, VIP release in the atria during vagal stimulation was inhibited by atropine, which may account for the concealment of VIP effects with muscarinic blockade. CONCLUSION Neuronally released VIP contributes to vagal effects on atrial electrophysiologic properties and affects the pathophysiology of vagally induced AF. Neuronal release of VIP in the atria is inhibited by muscarinic blockade, a novel mechanism by which VIP effects are concealed by atropine during vagal stimulation.
Collapse
|
21
|
Vasoactive Intestinal Peptide (VIP) Nanoparticles for Diagnostics and for Controlled and Targeted Drug Delivery. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 98:145-68. [DOI: 10.1016/bs.apcsb.2014.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
VPAC1 overexpression is associated with poor differentiation in colon cancer. Tumour Biol 2014; 35:6397-404. [PMID: 24671823 DOI: 10.1007/s13277-014-1852-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/13/2014] [Indexed: 12/14/2022] Open
Abstract
Vasoactive intestinal peptide (VIP) is a neurotransmitter that primarily functions as a vasodilator. VIP plays its role through binding to its receptors known as VIP/pituitary adenylate cyclase-activating peptide receptors (VPACs). In this study, we examined the expression of VPAC1 in human colon cancer tissues, analyzed the relationship between VPAC1 expression and cancer malignancy, and explored the possible mechanisms using immunohistochemistry and immunofluorescence double staining. The results showed that (1) poorly differentiated colon cancers have significantly higher VPAC1 expression than well-differentiated colon cancers do (p < 0.01); (2) phospho-epithelial growth factor receptor (EGFR) overexpression/activation in the cytoplasm of cancer cells is related to VPAC1 overexpression; (3) blood vessels surrounding colon cancer have significantly more VPAC1-positive than normal colon mucosa does; (4) tumor-associated macrophages (TAMs) of colon cancer have a higher level of VPAC1 expression than macrophages in normal colon mucosa do. These data suggest that VPAC1 overexpression is associated with poorer differentiation of colon cancer, which is likely caused by subsequent EGFR activation in cancer cells. In addition, VPAC1 overexpression in both blood vessels and macrophages in tumors may also play an important role in the development of aggressive cancer.
Collapse
|
23
|
Tang B, Yong X, Xie R, Li QW, Yang SM. Vasoactive intestinal peptide receptor-based imaging and treatment of tumors (Review). Int J Oncol 2014; 44:1023-31. [PMID: 24481544 DOI: 10.3892/ijo.2014.2276] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/22/2013] [Indexed: 11/06/2022] Open
Abstract
Vasoactive intestinal peptide receptors (VIPRs) are members of the G-protein-coupled receptor superfamily. These receptors are overexpressed in many common malignant tumors and play a major role in the progression and angiogenesis of a number of malignancies. Therefore, VIPRs may be a valuable target for the molecular imaging of tumors and therapeutic interventions. The specific natural ligand or its analogs can be labeled with a radionuclide and used for tumor receptor imaging, which could be used to visualize VIPR-related surface protein expression in vivo and to monitor the in vivo effects of molecular drugs on tumors. Moreover, the involvement of VIPRs in malignant transformation and angiogenesis renders them potential therapeutic targets for cancer treatment. A variety of VIP antagonists and cytotoxic VIP conjugates have been synthesized and evaluated for VIPR-targeted molecular therapy. The importance of VIPRs in tumor biology and the ability to predict responses to targeted therapy and monitor drug interventions suggest that VIP receptor-based imaging and treatment will be critical for the early diagnosis and management of cancer. Here, we review the current literature regarding VIPRs and their natural ligands and the involvement of VIPRs in tumor growth and angiogenesis, with an emphasis on the present use of VIPRs for the molecular imaging of tumors and therapies targeting VIPRs.
Collapse
Affiliation(s)
- Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Xin Yong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Rui Xie
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Qian-Wei Li
- Department of Nuclear Medicine, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
24
|
Vu JP, Million M, Larauche M, Luong L, Norris J, Waschek JA, Pothoulakis C, Pisegna JR, Germano PM. Inhibition of vasoactive intestinal polypeptide (VIP) induces resistance to dextran sodium sulfate (DSS)-induced colitis in mice. J Mol Neurosci 2014; 52:37-47. [PMID: 24395090 DOI: 10.1007/s12031-013-0205-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/04/2013] [Indexed: 12/31/2022]
Abstract
VIP is highly expressed in the colon and regulates motility, vasodilatation, and sphincter relaxation. However, its role in the development and progress of colitis is still controversial. Our aim was to determine the participation of VIP on dextran sodium sulfate (DSS)-induced colonic mucosal inflammation using VIP(-/-) and WT mice treated with VIP antagonists. Colitis was induced in 32 adult VIP(-/-) and 14 age-matched WT litter-mates by giving 2.5 % DSS in the drinking water. DSS-treated WT mice were injected daily with VIP antagonists, VIPHyb (n = 22), PG 97-269 (n = 9), or vehicle (n = 31). After euthanasia, colons were examined; colonic cytokines mRNA were quantified. VIP(-/-) mice were remarkably resistant to DSS-induced colitis compared to WT. Similarly, DSS-treated WT mice injected with VIPHyb (1 μM) or PG 97-269 (1 nM) had significantly reduced clinical signs of colitis. Furthermore, colonic expression of IL-1ϐ, TNF-α, and IL-6 was significantly lower in VIP(-/-) and VIPHyb or PG 97-269 compared to vehicle-treated WT. Genetic deletion of VIP or pharmacological inhibition of VIP receptors resulted in resistance to colitis. These data demonstrate a pro-inflammatory role for VIP in murine colitis and suggest that VIP antagonists may be an effective clinical treatment for human inflammatory bowel diseases.
Collapse
Affiliation(s)
- John P Vu
- CURE/Digestive Diseases Research Center, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles and VA Greater Los Angeles Health Care System, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Screening of a specific peptide binding to VPAC1 receptor from a phage display peptide library. PLoS One 2013; 8:e54264. [PMID: 23365656 PMCID: PMC3554773 DOI: 10.1371/journal.pone.0054264] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 12/10/2012] [Indexed: 12/13/2022] Open
Abstract
Background/Purpose The VPAC1 receptor, a member of the vasoactive intestinal peptide receptors (VIPRs), is overexpressed in the most frequently occurring malignant tumors and plays a major role in the progression and angiogenesis of a number of malignancies. Recently, phage display has become widely used for many applications, including ligand generation for targeted imaging, drug delivery and therapy. In this work, we developed a panning procedure using a phage display peptide library to select a peptide that specifically binds to the VPAC1 receptor to develop a novel targeted probe for molecular imaging and therapy. Methods CHO-K1 cells stably expressing VPAC1 receptors (CHO-K1/VPAC1 cells) were used to select a VPAC1-binding peptide from a 12-mer phage peptide library. DNA sequencing and homologous analysis of the randomly selected phage clones were performed. A cellular ELISA was used to determine the most selectively binding peptide for further investigation. Binding specificity to the VPAC1 receptor was analyzed by competitive inhibition ELISA and flow cytometry. The binding ability of the selected peptide to CHO-K1/VPAC1 cells and colorectal cancer (CRC) cell lines was confirmed using fluorescence microscopy and flow cytometry. Results A significant enrichment of phages that specifically bound to CHO-K1/VPAC1 cells was obtained after four rounds of panning. Of the selected phage clones, 16 out of 60 shared the same peptide sequence, GFRFGALHEYNS, which we termed the VP2 peptide. VP2 and vasoactive intestinal peptide (VIP) competitively bound to the VPAC1 receptor. More importantly, we confirmed that VP2 specifically bound to CHO-K1/VPAC1 cells and several CRC cell lines. Conclusion Our results demonstrate that the VP2 peptide could specifically bind to VPAC1 receptor and several CRC cell lines. And VP2 peptide may be a potential candidate to be developed as a useful diagnostic molecular imaging probe for early detection of CRC.
Collapse
|
26
|
Xu J, Kawashima N, Fujiwara N, Harada H, Ota MS, Suda H. Promotional effects of vasoactive intestinal peptide on the development of rodent Hertwig's epithelial root sheath. Congenit Anom (Kyoto) 2012; 52:162-7. [PMID: 22925217 DOI: 10.1111/j.1741-4520.2012.00371.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hertwig's epithelial root sheath (HERS), a bilayered epithelial cell sheath located at the cervical loop of the enamel organ in a developing tooth, is at the forefront of root formation. However, little is known about the exact mechanisms that regulate the development of HERS. The neuropeptide vasoactive intestinal peptide (VIP) is involved in the development of various tissues and cells. In this study, we investigated the roles of VIP in HERS development. VIP-immunoreactive nerve fibers were found in the dental pulp and around the root apex of the tooth, while the expression of VIP receptor 1 (VPAC1) was observed in HERS. The expression level of VPAC1 correlated with the development of HERS and was elevated at postnatal days 14 and 21. Using ex vivo cultures of neonatal tooth germs, VIP enhanced the elongation and proliferation of HERS. In vitro, VIP also promoted the proliferation of cells from the HERS-derived cell line, HERS01a cells, and upregulated the mRNA expression of cytokeratin 14 and vimentin (typical molecular markers of HERS) in these cells. These results suggest that VIP may be an essential factor for HERS development.
Collapse
Affiliation(s)
- Jing Xu
- Pulp Biology and Endodontics Molecular Craniofacial Embryology GCOE Program, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Iwate, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Harikrishnan LS, Srivastava N, Kayser LE, Nirschl DS, K K, Roy A, Gupta A, Karmakar S, Karatt T, Mathur A, Burford NT, Chen J, Kong Y, Cvijic M, Cooper CB, Poss MA, Trainor GL, Wong TW. Identification and optimization of small molecule antagonists of vasoactive intestinal peptide receptor-1 (VIPR1). Bioorg Med Chem Lett 2012; 22:2287-90. [DOI: 10.1016/j.bmcl.2012.01.082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 01/17/2012] [Accepted: 01/20/2012] [Indexed: 10/14/2022]
|
28
|
Passemard S, El Ghouzzi V, Nasser H, Verney C, Vodjdani G, Lacaud A, Lebon S, Laburthe M, Robberecht P, Nardelli J, Mani S, Verloes A, Gressens P, Lelièvre V. VIP blockade leads to microcephaly in mice via disruption of Mcph1-Chk1 signaling. J Clin Invest 2011; 121:3071-87. [PMID: 21737879 DOI: 10.1172/jci43824] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 05/11/2011] [Indexed: 01/14/2023] Open
Abstract
Autosomal recessive primary microcephaly (MCPH) is a genetic disorder that causes a reduction of cortical outgrowth without severe interference with cortical patterning. It is associated with mutations in a number of genes encoding protein involved in mitotic spindle formation and centrosomal activities or cell cycle control. We have shown previously that blocking vasoactive intestinal peptide (VIP) during gestation in mice by using a VIP antagonist (VA) results in microcephaly. Here, we have shown that the cortical abnormalities caused by prenatal VA administration mimic the phenotype described in MCPH patients and that VIP blockade during neurogenesis specifically disrupts Mcph1 signaling. VA administration reduced neuroepithelial progenitor proliferation by increasing cell cycle length and promoting cell cycle exit and premature neuronal differentiation. Quantitative RT-PCR and Western blot showed that VA downregulated Mcph1. Inhibition of Mcph1 expression led to downregulation of Chk1 and reduction of Chk1 kinase activity. The inhibition of Mcph1 and Chk1 affected the expression of a specific subset of cell cycle–controlling genes and turned off neural stem cell proliferation in neurospheres. Furthermore, in vitro silencing of either Mcph1 or Chk1 in neurospheres mimicked VA-induced inhibition of cell proliferation. These results demonstrate that VIP blockade induces microcephaly through Mcph1 signaling and suggest that VIP/Mcph1/Chk1 signaling is key for normal cortical development.
Collapse
|
29
|
Pituitary adenylate cyclase-activating polypeptide causes increased tyrosine phosphorylation of focal adhesion kinase and paxillin. J Mol Neurosci 2011; 46:68-74. [PMID: 21898124 DOI: 10.1007/s12031-011-9639-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 08/21/2011] [Indexed: 01/04/2023]
Abstract
The effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin were investigated using lung cancer cells. Addition of PACAP-27 or PACAP-38 but not vasoactive intestinal peptide to NCI-H838 or NCI-H1299 human lung cancer cells significantly increased the tyrosine phosphorylation of FAK or paxillin. The increase in FAK or paxillin tyrosine phosphorylation caused by addition of PACAP-27 to NCI-H838 cells was inhibited by PACAP(6-38), a PAC1-receptor (R) antagonist. The increase in FAK or paxillin tyrosine phosphorylation caused by 100 nM PACAP-27 was maximal 2 min after addition to NCI-H838 cells. The effects of PACAP at stimulating FAK and paxillin tyrosine phosphorylation were reversed by cytochalasin D and genistein which inhibit actin polymerization and tyrosine kinase activity, respectively. The effects of PACAP at stimulating FAK and paxillin tyrosine phosphorylation were reversed by U-73122 but not H89 which inhibit phospholipase C and protein kinase A, respectively. The results show that PAC1-R regulates FAK and paxillin tyrosine phosphorylation in lung cancer cells as a result of increased phosphatidylinositol turnover but not adenylyl cylase stimulation.
Collapse
|
30
|
Cochaud S, Chevrier L, Meunier AC, Brillet T, Chadéneau C, Muller JM. The vasoactive intestinal peptide-receptor system is involved in human glioblastoma cell migration. Neuropeptides 2010; 44:373-83. [PMID: 20638719 DOI: 10.1016/j.npep.2010.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 05/14/2010] [Accepted: 06/12/2010] [Indexed: 12/31/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive form of brain tumor in adults. This cancer has an infiltrative nature and the median survival of patients is about one year. Vasoactive intestinal peptide (VIP) belongs to a structurally related family of polypeptides and is a major regulatory factor in the central and peripheral nervous systems. VIP regulates proliferation of astrocytes and of numerous cancer cell lines and modulates migration in prostatic and colonic cancer cell lines. Little is known about the involvement of VIP and its receptors (VIP-receptor system) in proliferation or migration of GBM cells. The effects of VIP, PACAP and of synthetic VIP antagonists were tested in two human GBM cell lines, M059K and M059J, established from two different parts of a single tumor. In these cells, the data revealed that the VIP-receptor system did not affect proliferation but controlled cell migration. Indeed, in M059K cells which express components of the VIP receptor system, the VIP receptor antagonists and a PACAP antibody enhanced migration. The VIP receptor antagonists increased generation of typical migration-associated processes: filopodia and lamellipodia, and activation of Rac1 and Cdc42 GTPases. Reciprocally, in M059J cells which poorly express the VIP-receptor system, treatments with the agonists VIP and PACAP resulted in decreased cell migration. Furthermore, the peptides appeared to act through a subclass of binding sites displaying an uncommon very high affinity for these ligands. Taken together, these observations suggest that components of the VIP-receptor system negatively regulate cell migration, thus showing potential anti-oncogenic properties.
Collapse
Affiliation(s)
- Stéphanie Cochaud
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers, CNRS, 40 Avenue du Recteur Pineau, Poitiers F-86022, France
| | | | | | | | | | | |
Collapse
|
31
|
Lee PH. Label-free optical biosensor: A tool for G protein-coupled receptors pharmacology profiling and inverse agonists identification. J Recept Signal Transduct Res 2009; 29:146-53. [DOI: 10.1080/10799890903064390] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
32
|
VIP, from gene to behavior and back: summarizing my 25 years of research. J Mol Neurosci 2008; 36:115-24. [PMID: 18607776 DOI: 10.1007/s12031-008-9105-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Accepted: 05/15/2008] [Indexed: 11/25/2022]
Abstract
Vasoactive intestinal peptide (VIP) is an interesting example of a 28-amino acid neuropeptide that is abundantly expressed in discrete brain regions/neurons and hence may contribute to brain function. This short review summarizes my own point of view and encompasses 25 years of work and over 100 publications targeting the understanding of VIP production and biological activity. The review starts with our original cloning of the VIP gene, it then continues to discoveries of regulation of VIP synthesis and the establishment of the first VIP transgenic mice. The review ends with the identification of novel VIP analogs that helped decipher VIP's important role during development, in regulation of the biological clock(s) and diurnal rhythms, sexual activity, learning and memory as well as social behavior, and cancer. This review cites only articles that I have coauthored and gives my own perspective of this exciting ever-growing field.
Collapse
|
33
|
Pan CQ, Hamren S, Roczniak S, Tom I, DeRome M. Generation of PEGylated VPAC1-selective antagonists that inhibit proliferation of a lung cancer cell line. Peptides 2008; 29:479-86. [PMID: 17942192 DOI: 10.1016/j.peptides.2007.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 09/05/2007] [Accepted: 09/06/2007] [Indexed: 11/18/2022]
Abstract
Vasoactive intestinal peptide (VIP) binds to two receptors, VPAC1 and VPAC2. Non-selective VIP antagonists have been shown to inhibit human cancer cell proliferation and reduce tumor growth in mice. Many human cancers over-express VPAC1 but not VPAC2. We show that VPAC1-selective antagonists can inhibit human cancer cell proliferation and identify five positions in the VPAC1-selective antagonist PG 97-269 that may be responsible for VPAC1 selectivity. Position 16 appears to be particularly critical for selectivity, as demonstrated in the replacement of Arg16 of PG 97-269 with the native VIP amino acid; this single change results in greatly reduced VPAC1 binding and selectivity. Finally, we show that site-specific conjugation with a 22kDa polyethylene glycol (PEG) at the C-terminus of VPAC1-selective antagonists further improves VPAC1-selective binding and has minimal effect on antagonistic activity. Our studies have further solidified VPAC1 as a cancer target and offer the possibility of generating highly potent VPAC1-selective antagonists with minimal number of mutations to reduce the risk of immunogenicity and potentially prolonged duration of action to allow more efficient treatment regimen.
Collapse
Affiliation(s)
- Clark Q Pan
- Department of Cancer Biology, Bayer HealthCare Pharmaceuticals, West Haven, CT 06516, USA
| | | | | | | | | |
Collapse
|
34
|
Hill JM, Hauser JM, Sheppard LM, Abebe D, Spivak-Pohis I, Kushnir M, Deitch I, Gozes I. Blockage of VIP during mouse embryogenesis modifies adult behavior and results in permanent changes in brain chemistry. J Mol Neurosci 2008; 31:183-200. [PMID: 17726225 DOI: 10.1385/jmn:31:03:185] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
Vasoactive intestinal peptide (VIP) regulates growth and development during the early postimplantation period of mouse embryogenesis. Blockage of VIP with a VIP antagonist during this period results in growth restriction, microcephaly, and developmental delays. Similar treatment of neonatal rodents also causes developmental delays and impaired diurnal rhythms, and the adult brains of these animals exhibit neuronal dystrophy and increased VIP binding. These data suggest that blockage of VIP during the development of the nervous system can result in permanent changes to the brain. In the current study, pregnant mice were treated with a VIP antagonist during embryonic days 8 through 10. The adult male offspring were examined in tests of novelty, paired activity, and social recognition. Brain tissue was examined for several measures of chemistry and gene expression of VIP and related compounds. Glial cells from the cortex of treated newborn mice were plated with neurons and examined for VIP binding and their ability to enhance neuronal survival. Treated adult male mice exhibited increased anxiety-like behavior and deficits in social behavior. Brain tissue exhibited regionally specific changes in VIP chemistry and a trend toward increased gene expression of VIP and related compounds that reached statistical significance in the VIP receptor, VPAC-1, in the female cortex. When compared to control astrocytes, astrocytes from treated cerebral cortex produced further increases in neuronal survival with excess synaptic connections and reduced VIP binding. In conclusion, impaired VIP activity during mouse embryogenesis resulted in permanent changes to both adult brain chemistry/cell biology and behavior with aspects of autism-like social deficits.
Collapse
Affiliation(s)
- Joanna M Hill
- Laboratory of Developmental Neuroscience, NICHD, NIH, Bethesda, MD 21029, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Moody TW, Mantey SA, Fuselier JA, Coy DH, Jensen RT. Vasoactive intestinal peptide-camptothecin conjugates inhibit the proliferation of breast cancer cells. Peptides 2007; 28:1883-90. [PMID: 17580098 PMCID: PMC2742204 DOI: 10.1016/j.peptides.2007.04.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 04/23/2007] [Accepted: 04/25/2007] [Indexed: 11/20/2022]
Abstract
The effects of vasoactive intestinal peptide-camptothecin (VIP-CPT) conjugates were investigated on breast cancer cells and cells transfected with VIP receptors (R). (Ala(2,8,9,19,24.25.27), Nle(17), Lys(28))VIP, (A-NL-K)VIP, was synthesized and Lys(28) was coupled to a linker, N-methyl-amino-ethyl-glycine, L2, which formed a carbamate bond with CPT. The resulting (A-NL-K)VIP-L2-CPT was cytotoxic for MCF7 breast cancer cells, which have VPAC(1)-R, with IC(50) values of 380 and 90 nM using the MTT and clonogenic assays, respectively. (A-NL-K)VIP, (A-NL-K)VIP-L2 and (A-NL-K)VIP-L2-CPT inhibited specific binding of (125)I-VIP to 3T3 cells transfected with VPAC(1)-R with IC(50) values of 1.9, 56 and 126 nM, respectively. In contrast, (A-NL-K)VIP, (A-NL-K)VIP-L2 and (A-NL-K)VIP-L2-CPT inhibited specific binding of (125)I-Ro25-1553 to 3T3 cells transfected with VPAC(2)-R with IC(50) values of 3.9, 3162 and 2690 nM, respectively. (A-NL-K)VIP, (A-NL-K)VIP-L2 and (A-NL-K)VIP-L2-CPT caused increased cAMP after addition to MCF7 cells. (125)I-(A-NL-K)VIP-L2-CPT was internalized by MCF7 cells at 37 degrees C but not 4 degrees C. These results indicate that (A-NL-K)VIP-L2-CPT is a VPAC(1)-R agonist which is cytotoxic for breast cancer cells.
Collapse
Affiliation(s)
- Terry W Moody
- Department of Health and Human Services, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, United States.
| | | | | | | | | |
Collapse
|
36
|
Abstract
The ability of thymosin alpha1 (Talpha1) to prevent lung and breast cancer was investigated. Lung adenomas developed in A/J mice injected with carcinogens, such as urethane. The lung adenoma number was reduced by 15-45% if animals were daily treated subcutaneously (s.c.) with Talpha1 (0.4 mg/kg). Talpha1 (1 microM) directly inhibited the growth of mouse lung cell lines. These results suggest that Talpha1 may prevent mouse lung carcinogenesis because it directly inhibits the growth of lung cancer cells. Talpha1 prevented mammary carcinogenesis in two animal models. In the Fisher rat, an animal model of mammary cancer that is estrogen receptor dependent, tumors were initiated by the injection of N-methylurea (NMU). The rat survival was significantly increased by the daily injection of Talpha1. In the SV40T antigen mouse, a transgenic female mouse that spontaneously gets mammary cancer in an estrogen receptor-independent manner, survival was increased and tumor burden was significantly decreased by daily injection of Talpha1. These results indicate that Talpha1 is a chemopreventive agent in animal models for lung and breast carcinogenesis.
Collapse
Affiliation(s)
- Terry W Moody
- Department of Health and Human Services, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
37
|
Hill JM, Cuasay K, Abebe DT. Vasoactive intestinal peptide antagonist treatment during mouse embryogenesis impairs social behavior and cognitive function of adult male offspring. Exp Neurol 2007; 206:101-13. [PMID: 17521630 DOI: 10.1016/j.expneurol.2007.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 03/23/2007] [Accepted: 04/09/2007] [Indexed: 01/01/2023]
Abstract
Vasoactive intestinal peptide (VIP) is a regulator of rodent embryogenesis during the period of neural tube closure. VIP enhanced growth in whole cultured mouse embryos; treatment with a VIP antagonist during embryogenesis inhibited growth and development. VIP antagonist treatment during embryogenesis also had permanent effects on adult brain chemistry and impaired social recognition behavior in adult male mice. The neurological deficits of autism appear to be initiated during neural tube closure and social behavior deficits are among the key characteristics of this disorder that is more common in males and is frequently accompanied by mental retardation. The current study examined the blockage of VIP during embryogenesis as a model for the behavioral deficits of autism. Treatment of pregnant mice with a VIP antagonist during embryonic days 8 through 10 had no apparent effect on the general health or sensory or motor capabilities of adult offspring. However, male offspring exhibited reduced sociability in the social approach task and deficits in cognitive function, as assessed through cued and contextual fear conditioning. Female offspring did not show these deficiencies. These results suggest that this paradigm has usefulness as a mouse model for aspects of autism as it selectively impairs male offspring who exhibit the reduced social behavior and cognitive dysfunction seen in autism. Furthermore, the study indicates that the foundations of some aspects of social behavior are laid down early in mouse embryogenesis, are regulated in a sex specific manner and that interference with embryonic regulators such as VIP can have permanent effects on adult social behavior.
Collapse
Affiliation(s)
- Joanna M Hill
- Laboratory of Behavioral Neuroscience, NIMH, NIH, Bethesda, MD 21029, USA.
| | | | | |
Collapse
|
38
|
McCurdy RD, Féron F, Perry C, Chant DC, McLean D, Matigian N, Hayward NK, McGrath JJ, Mackay-Sim A. Cell cycle alterations in biopsied olfactory neuroepithelium in schizophrenia and bipolar I disorder using cell culture and gene expression analyses. Schizophr Res 2006; 82:163-73. [PMID: 16406496 DOI: 10.1016/j.schres.2005.10.012] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 10/18/2005] [Accepted: 10/22/2005] [Indexed: 10/25/2022]
Abstract
We previously demonstrated that olfactory cultures from individuals with schizophrenia had increased cell proliferation compared to cultures from healthy controls. The aims of this study were to (a) replicate this observation in a new group of individuals with schizophrenia, (b) examine the specificity of these findings by including individuals with bipolar I disorder and (c) explore gene expression differences that may underlie cell cycle differences in these diseases. Compared to controls (n = 10), there was significantly more mitosis in schizophrenia patient cultures (n = 8) and significantly more cell death in the bipolar I disorder patient cultures (n = 8). Microarray data showed alterations to the cell cycle and phosphatidylinositol signalling pathways in schizophrenia and bipolar I disorder, respectively. Whilst caution is required in the interpretation of the array results, the study provides evidence indicating that cell proliferation and cell death in olfactory neuroepithelial cultures is differentially altered in schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Richard D McCurdy
- Eskitis Institute for Cell and Molecular Therapies, Griffith University, Brisbane, QLD 4111, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Moody TW, Czerwinski G, Tarasova NI, Moody DL, Michejda CJ. The development of VIP-ellipticine conjugates. ACTA ACUST UNITED AC 2005; 123:187-92. [PMID: 15518911 DOI: 10.1016/j.regpep.2004.03.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mechanism by which vasoactive intestinal peptide (VIP)-ellipticine (E) conjugates are cytotoxic for human lung cancer cells was investigated. VIP-alanyl-leucyl-alanyl-leucyl-alanine (ALALA)-E and VIP-leucyl-alanyl-leucyl-alanine (LALA)-E inhibited (125)I-VIP binding to NCI-H1299 cells with an IC50 values of 0.5 and 0.1 microM, respectively. VIP-ALALA-E and VIP-LALA-E caused elevation of cAMP in NCI-H1299 cells with ED50 values of 0.7 and 0.1 microM. Radiolabeled VIP-LALA-E was internalized at 37 degrees C and delivered the cytotoxic E into NCI-H1299 cells. VIP-LALA-E inhibited the growth of NCI-H1299 cells in vitro. Three days after the addition of VIP-LALA-E to NCI-H1299 cells, cell viability decreased based on trypan blue exclusion and reduced 3H-thymidine uptake. These results suggest that VIP-E conjugates are internalized in lung cancer cells as a result of VPAC1 receptor-mediated endocytosis.
Collapse
Affiliation(s)
- Terry W Moody
- Department of Health and Human Services, NCI Office of the Director, CCR, Building 31, Room 3A34, 31 Center Drive, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
40
|
Van Den Bossche B, Van de Wiele C. Receptor Imaging in Oncology by Means of Nuclear Medicine: Current Status. J Clin Oncol 2004; 22:3593-607. [PMID: 15337810 DOI: 10.1200/jco.2004.10.216] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
To date, our understanding of the role of receptors and their cognate ligands in cancer is being successfully translated into the design and development of an arsenal of new, less toxic, and more specific anticancer drugs. Because most of these novel drugs are cytostatic, objective response as measured by morphologic imaging modalities (eg, computed tomography or magnetic resonance imaging) cannot be used as a surrogate marker for drug development or for clinical decision making. Positron emission tomography (PET) can be used to image and quantify the in vivo distribution of positron-emitting radioisotopes such as oxygen-15, carbon-11, and fluorine-18 that can be substituted or added into biologically relevant and specific receptor radioligands. Similarly, single-photon emission computed tomography (SPECT) can be used to image and quantify the in vivo distribution of receptor targeting compounds labeled with indium-111, technetium-99m, and iodine-123. By virtue of their whole-body imaging capacity and the absence of errors of sampling and tissue manipulation as well as preparation, both techniques have the potential to address locoregional receptor status noninvasively and repetitively. This article reviews available data on the in vivo evaluation of receptor systems by means of PET or SPECT for identifying and monitoring patients with sufficient receptor overexpression for tailored therapeutic interventions, and also for depicting tumor tissue and determining the currently largely unknown heterogeneity in receptor expression among different tumor lesions within and between patients.
Collapse
|
41
|
Conformational studies of 3,4-dideoxy furanoid sugar amino acid containing analogs of the receptor binding inhibitor of vasoactive intestinal peptide. Tetrahedron 2004. [DOI: 10.1016/j.tet.2004.07.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Dufes C, Alleaume C, Montoni A, Olivier JC, Muller JM. Effects of the vasoactive intestinal peptide (VIP) and related peptides on glioblastoma cell growth in vitro. J Mol Neurosci 2004; 21:91-102. [PMID: 14593209 DOI: 10.1385/jmn:21:2:91] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2003] [Accepted: 03/29/2003] [Indexed: 11/11/2022]
Abstract
The growth rate of numerous cancer cell lines is regulated in part by actions of neuropeptides of the vasoactive intestinal peptide (VIP) family, which also includes pituitary adenylate cyclase-activating peptide (PACAP), glucagon, and peptide histidine/isoleucine (PHI). The aim of this work was to investigate the effect of these peptides on the growth of the rat glioblastoma cell line C6 in vitro. We also sought to determine which binding sites were correlated with the effects observed. Proliferation studies performed by means of a CyQuant trade mark assay showed that VIP and PACAP strongly stimulated C6 cell proliferation at most of the concentrations tested, whereas PHI increased cell proliferation only when associated with VIP. Two growth hormone-releasing factor (GRF) derivatives and the VIP antagonist hybrid peptide neurotensin-VIP were able to inhibit VIP-induced cell growth stimulation, even at very low concentrations. Binding experiments carried out on intact cultured C6 cells, using 125I-labeled VIP and PACAP as tracers, revealed that the effects of the peptides on cell growth were correlated with the expression on C6 cells of polyvalent high-affinity VIP-PACAP binding sites and of a second subtype corresponding to very high-affinity VIP-selective binding species. The latter subtype, which interacted poorly with PACAP with a 10,000-fold lower affinity than VIP, might mediate the antagonist effects of neurotensin- VIP and of both GRF derivatives on VIP-induced cell growth stimulation.
Collapse
Affiliation(s)
- Christine Dufes
- Laboratoire de Biologie des Interactions Cellulaires, CNRS UMR 6558, Faculté de Sciences, Université de Poitiers, 86022 Poitiers, France
| | | | | | | | | |
Collapse
|
43
|
Kenakin T. Efficacy as a vector: the relative prevalence and paucity of inverse agonism. Mol Pharmacol 2004; 65:2-11. [PMID: 14722230 DOI: 10.1124/mol.65.1.2] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
This article describes the expected phenotypic behavior of all types of ligands in constitutively active receptor systems and, in particular, the molecular mechanisms of inverse agonism. The possible physiological relevance of inverse agonism also is discussed. Competitive antagonists with the molecular property of negative efficacy demonstrate inverse agonism in constitutively active receptor systems. This is a phenotypic behavior that can only be observed in the appropriate assay; a lack of observed inverse agonism is evidence that the ligand does not possess negative efficacy only if it can be shown that constitutive receptor activity is present. In the absence of constitutive activity, inverse agonists behave as simple competitive antagonists. A survey of 105 articles on the activity of 380 antagonists on 73 biological G-protein-coupled receptor targets indicates that, in this sample dataset, 322 are inverse agonists and 58 (15%) are neutral antagonists. The predominance of inverse agonism agrees with theoretical predictions which indicate that neutral antagonists are the minority species in pharmacological space.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Assay Development and Compound Profiling, GlaxoSmithKline Research and Development, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
44
|
Abstract
During the past decade, proof of the principle that peptide receptors can be used successfully for in vivo targeting of human cancers has been provided. The molecular basis for targeting rests on the in vitro observation that peptide receptors can be expressed in large quantities in certain tumors. The clinical impact is at the diagnostic level: in vivo receptor scintigraphy uses radiolabeled peptides for the localization of tumors and their metastases. It is also at the therapeutic level: peptide receptor radiotherapy of tumors emerges as a serious treatment option. Peptides linked to cytotoxic agents are also considered for therapeutic applications. The use of nonradiolabeled, noncytotoxic peptide analogs for long-term antiproliferative treatment of tumors appears promising for only a few tumor types, whereas the symptomatic treatment of neuroendocrine tumors by somatostatin analogs is clearly successful. The present review summarizes and critically evaluates the in vitro data on peptide and peptide receptor expression in human cancers. These data are considered to be the molecular basis for peptide receptor targeting of tumors. The paradigmatic peptide somatostatin and its receptors are extensively reviewed in the light of in vivo targeting of neuroendocrine tumors. The role of the more recently described targeting peptides vasoactive intestinal peptide, gastrin-releasing peptide, and cholecystokinin/gastrin is discussed. Other emerging and promising peptides and their respective receptors, including neurotensin, substance P, and neuropeptide Y, are introduced. This information relates to established and potential clinical applications in oncology.
Collapse
Affiliation(s)
- Jean Claude Reubi
- Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, University of Berne, CH-3010 Berne, Switzerland
| |
Collapse
|
45
|
Abstract
This review is an attempt to illustrate the diversity of peptides reported for a potential or an established use in cancer therapy. With 612 references, this work aims at covering the patents and publications up to year 2000 with many inroads in years 2001-2002. The peptides are classed according to four categories of effective (or plausible) biological mechanisms of action: receptor-interacting compounds; inhibitors of protein-protein interaction; enzymes inhibitors; nucleic acid-interacting compounds. The fifth group is made of the peptides for which no mechanism of action has been found yet. Incidentally this work provides an overview of many of the modern targets of anticancer research.
Collapse
Affiliation(s)
- Y L Janin
- UMR 176 CNRS-Intitut Curie, Paris, France.
| |
Collapse
|
46
|
Busto R, Prieto JC, Bodega G, Zapatero J, Fogué L, Carrero I. VIP and PACAP receptors coupled to adenylyl cyclase in human lung cancer: a study in biopsy specimens. Peptides 2003; 24:429-36. [PMID: 12732341 DOI: 10.1016/s0196-9781(03)00058-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are important neuropeptides in the control of lung physiology. Both of these commonly bind to specific G protein coupled receptors named VPAC(1)-R and VPAC(2)-R, and PAC(1)-R (with higher affinity for PACAP). VIP and PACAP have been implicated in the control of cell proliferation and tumor growth. This study examined the presence of VIP and PACAP receptors in human lung cancer samples, as well as the functionality of adenylyl cyclase (AC) stimulated by both peptides. Results from RT-PCR and immunoblot experiments showed the expression of VPAC(1)-, VPAC(2)- and PAC(1)-R in lung cancer samples. Immunohistochemical studies showed the expression of VPAC(1) and VPAC(2) receptors. These receptors were positively coupled to AC, but the enzyme activity was impaired as compared to normal lung. There were no changes in Galpha(s) or Galpha(i) levels. Present results contribute to a better knowledge of VIP/PACAP actions in lung cancer and support the interest for the development of VIP/PACAP analogues with therapeutic roles.
Collapse
MESH Headings
- Adenylyl Cyclases/metabolism
- Aged
- Biopsy
- Blotting, Western
- Gene Expression Regulation, Neoplastic
- Humans
- Immunohistochemistry
- Lung Neoplasms/enzymology
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Middle Aged
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I
- Receptors, Pituitary Hormone/genetics
- Receptors, Pituitary Hormone/metabolism
- Receptors, Vasoactive Intestinal Peptide/genetics
- Receptors, Vasoactive Intestinal Peptide/metabolism
Collapse
Affiliation(s)
- Rebeca Busto
- Department of Biochemistry and Molecular Biology, University of Alcalá, E-28871 Alcalá de Henares, Spain
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
The effects of vasoactive intestinal peptide (VIP) on the proliferation of central nervous system (CNS) and cancer cells were investigated. VIP has important actions during CNS development. During neurogenesis, VIP stimulates the proliferation and differentiation of brain neurons. Addition of VIP to embryonic mouse spinal cord cultures increases neuronal survival and activity dependent neurotrophic factor (ADNF) secretion from astroglial cells. VIP is an integrative regulator of brain growth and development during neurogenesis and embryogenesis. Also, VIP causes increased proliferation of human breast and lung cancer cells in vitro. VIP binds with high affinity to cancer cells, elevates the cAMP and increases gene expression of c-fos, c-jun, c-myc and vascular endothelial cell growth factor. The effects of VIP on cancer cells are reversed by VIPhybrid, a synthetic VPAC(1) receptor antagonist. VIPhyb inhibits the basal growth of lung cancer cells in vitro and tumors in vivo and potentiates the ability of chemotherapeutic drugs to kill cancer cells. Due to the high density of VPAC(1) receptors in cancer cells, VIP has been radiolabeled with 123I, 18F and 99mTc to image tumors. It remains to be determined if radiolabeled VIP analogs will be useful agents for early detection of cancer in patients.
Collapse
Affiliation(s)
- Terry W Moody
- NCI Office of the Director, Center for Cancer Research, National Cancer Institute, Bldg 31, Rm 3A34, 31 Center Dr, Bethesda, MD, USA.
| | | | | |
Collapse
|
48
|
The Biological Significance of PACAP and PACAP Receptors in Human Tumors: From Cell Lines to Cancers. PITUITARY ADENYLATE CYCLASE-ACTIVATING POLYPEPTIDE 2003. [DOI: 10.1007/978-1-4615-0243-2_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
49
|
Levy A, Gal R, Granoth R, Dreznik Z, Fridkin M, Gozes I. In vitro and in vivo treatment of colon cancer by VIP antagonists. REGULATORY PEPTIDES 2002; 109:127-33. [PMID: 12409224 DOI: 10.1016/s0167-0115(02)00195-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Vasoactive intestinal peptide (VIP) is secreted from many cancer lines and VIP binding was observed in many tumors. We have shown before that VIP antagonists are potent inhibitors of neoplastic growth of neuroblastoma, lung and breast cancer cells in vitro. Here, the cultured colon cancer cell line HCT-15 that exhibited VIP receptor expression was treated with the VIP hybrid antagonist neurotensin(6-11)VIP(7-28). The antineoplastic activity was assessed by thymidine incorporation. Neurotensin(6-11)VIP(7-28) efficiently inhibited cancer growth with a maximal effect at nanomolar concentrations. Once the inhibitory properties of the VIP antagonist on colon cancer cells were established, the in vivo curative effects were analyzed. Sprague-Dawley rats were injected with azoxymethane (AOM) (15 mg/kg/week) for 2 weeks, providing artificial induction of colon tumors. The rats were then allocated into four experimental groups: (1) receiving no treatment; (2) receiving treatment with saline; (3, 4) receiving treatment with 10 or 20 microg of neurotensin(6-11)VIP(7-28), respectively. After 10 weeks of daily injections, rats were sacrificed and tumors assessed for stage, volume, location, differentiation and lymphocytic infiltrate. Embedded mucosa was assessed for dysplastic crypts. Results showed that the antagonist treatment reduced the tumor volume, staging, lymphocyte infiltrate and the number of dysplastic crypts. Thus, neurotensin(6-11)VIP(7-28) could serve as an effective cancer treatment and a preventing agent.
Collapse
Affiliation(s)
- Albert Levy
- Department of Clinical Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | | | | | | | | | |
Collapse
|
50
|
Steingart RA, Heldenberg E, Pinhasov A, Brenneman DE, Fridkin M, Gozes I. A vasoactive intestinal peptide receptor analog alters the expression of homeobox genes. Life Sci 2002; 71:2543-52. [PMID: 12270759 DOI: 10.1016/s0024-3205(02)02082-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A lipophilic analog of vasoactive intestinal peptide (VIP), stearyl-Nle(17)-neurotensin(6-11)VIP(7-28) (SNH), that inhibited lung cancer growth, has been previously described. The mechanism of SNH inhibition of cancer growth is still being elucidated. The present study examined the effects of SNH on homeobox genes in the colon cancer cell line HT 29 that expresses VIP receptors. Homeobox genes contain a characteristic DNA sequence, coding for a stretch of 61 amino acid homeodomain that binds specific DNA motifs. While the HOX gene family contains a single homeodomain, the POU gene family contains an additional DNA binding homeodomain. HT 29 cells were incubated with SNH; RNA was extracted and subjected to reverse-transcription-polymerase chain reaction (RT-PCR) with primers that matched the conserved area of the various HOX or POU genes. The PCR products that were altered by SNH treatment were sequenced. Three candidate SNH-responsive genes, the HOX A4, the HOX B5 and the PUO V transcription factor I (Oct-3) were identified. Semi-quantitative RT-PCR with specific primers confirmed the increase in HOX A4 and the decrease in Oct-3 expression levels following SNH treatment. Thus, the HOX A4 and the Oct-3 homeobox genes may partially mediate SNH activity on cancer cells.
Collapse
Affiliation(s)
- Ruth A Steingart
- Department of Clinical Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | | | | | | | | | |
Collapse
|