1
|
Lei Q, Yu Q, Yang N, Xiao Z, Song C, Zhang R, Yang S, Liu Z, Deng H. Therapeutic potential of targeting polo-like kinase 4. Eur J Med Chem 2024; 265:116115. [PMID: 38199166 DOI: 10.1016/j.ejmech.2023.116115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
Polo-like kinase 4 (PLK4), a highly conserved serine/threonine kinase, masterfully regulates centriole duplication in a spatiotemporal manner to ensure the fidelity of centrosome duplication and proper mitosis. Abnormal expression of PLK4 contributes to genomic instability and associates with a poor prognosis in cancer. Inhibition of PLK4 is demonstrated to exhibit significant efficacy against various types of human cancers, further highlighting its potential as a promising therapeutic target for cancer treatment. As such, numerous small-molecule inhibitors with distinct chemical scaffolds targeting PLK4 have been extensively investigated for the treatment of different human cancers, with several undergoing clinical evaluation (e.g., CFI-400945). Here, we review the structure, distribution, and biological functions of PLK4, encapsulate its intricate regulatory mechanisms of expression, and highlighting its multifaceted roles in cancer development and metastasis. Moreover, the recent advancements of PLK4 inhibitors in patent or literature are summarized, and their therapeutic potential as monotherapies or combination therapies with other anticancer agents are also discussed.
Collapse
Affiliation(s)
- Qian Lei
- Department of Respiratory and Critical Care Medicine, West China Hospital and Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Quanwei Yu
- Department of Respiratory and Critical Care Medicine, West China Hospital and Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Na Yang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhaolin Xiao
- Department of Respiratory and Critical Care Medicine, West China Hospital and Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chao Song
- Department of Respiratory and Critical Care Medicine, West China Hospital and Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Rui Zhang
- Department of Pharmacy, Guizhou Provincial People's Hospital, Guizhou, Guiyang, 550002, China
| | - Shuxin Yang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhihao Liu
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Hui Deng
- Department of Respiratory and Critical Care Medicine, West China Hospital and Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
2
|
Jin H, Kim J, Lee O, Kim H, No KT. Leveraging the Fragment Molecular Orbital Method to Explore the PLK1 Kinase Binding Site and Polo-Box Domain for Potent Small-Molecule Drug Design. Int J Mol Sci 2023; 24:15639. [PMID: 37958623 PMCID: PMC10650754 DOI: 10.3390/ijms242115639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Polo-like kinase 1 (PLK1) plays a pivotal role in cell division regulation and emerges as a promising therapeutic target for cancer treatment. Consequently, the development of small-molecule inhibitors targeting PLK1 has become a focal point in contemporary research. The adenosine triphosphate (ATP)-binding site and the polo-box domain in PLK1 present crucial interaction sites for these inhibitors, aiming to disrupt the protein's function. However, designing potent and selective small-molecule inhibitors can be challenging, requiring a deep understanding of protein-ligand interaction mechanisms at these binding sites. In this context, our study leverages the fragment molecular orbital (FMO) method to explore these site-specific interactions in depth. Using the FMO approach, we used the FMO method to elucidate the molecular mechanisms of small-molecule drugs binding to these sites to design PLK1 inhibitors that are both potent and selective. Our investigation further entailed a comparative analysis of various PLK1 inhibitors, each characterized by distinct structural attributes, helping us gain a better understanding of the relationship between molecular structure and biological activity. The FMO method was particularly effective in identifying key binding features and predicting binding modes for small-molecule ligands. Our research also highlighted specific "hot spot" residues that played a critical role in the selective and robust binding of PLK1. These findings provide valuable insights that can be used to design new and effective PLK1 inhibitors, which can have significant implications for developing anticancer therapeutics.
Collapse
Affiliation(s)
- Haiyan Jin
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea; (H.J.); (O.L.)
| | - Jongwan Kim
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon 21983, Republic of Korea;
| | - Onju Lee
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea; (H.J.); (O.L.)
| | - Hyein Kim
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon 21983, Republic of Korea;
| | - Kyoung Tai No
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea; (H.J.); (O.L.)
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon 21983, Republic of Korea;
- Baobab AiBIO Co., Ltd., Incheon 21983, Republic of Korea
| |
Collapse
|
3
|
Moore XTR, Gheghiani L, Fu Z. The Role of Polo-Like Kinase 1 in Regulating the Forkhead Box Family Transcription Factors. Cells 2023; 12:cells12091344. [PMID: 37174744 PMCID: PMC10177174 DOI: 10.3390/cells12091344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Polo-like kinase 1 (PLK1) is a serine/threonine kinase with more than 600 phosphorylation substrates through which it regulates many biological processes, including mitosis, apoptosis, metabolism, RNA processing, vesicle transport, and G2 DNA-damage checkpoint recovery, among others. Among the many PLK1 targets are members of the FOX family of transcription factors (FOX TFs), including FOXM1, FOXO1, FOXO3, and FOXK1. FOXM1 and FOXK1 have critical oncogenic roles in cancer through their antagonism of apoptotic signals and their promotion of cell proliferation, metastasis, angiogenesis, and therapeutic resistance. In contrast, FOXO1 and FOXO3 have been identified to have broad functions in maintaining cellular homeostasis. In this review, we discuss PLK1-mediated regulation of FOX TFs, highlighting the effects of PLK1 on the activity and stability of these proteins. In addition, we review the prognostic and clinical significance of these proteins in human cancers and, more importantly, the different approaches that have been used to disrupt PLK1 and FOX TF-mediated signaling networks. Furthermore, we discuss the therapeutic potential of targeting PLK1-regulated FOX TFs in human cancers.
Collapse
Affiliation(s)
- Xavier T R Moore
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Lilia Gheghiani
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Zheng Fu
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| |
Collapse
|
4
|
Inhibition of PLK2 activity affects APP and tau pathology and improves synaptic content in a sex-dependent manner in a 3xTg mouse model of Alzheimer's disease. Neurobiol Dis 2022; 172:105833. [PMID: 35905928 DOI: 10.1016/j.nbd.2022.105833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022] Open
Abstract
Converging lines of evidence suggest that abnormal accumulation of the kinase Polo-like kinase 2 (PLK2) might play a role in the pathogenesis of Alzheimer's disease (AD), possibly through its role in regulating the amyloid β (Aβ) cascade. In the present study, we investigated the effect of inhibiting PLK2 kinase activity in in vitro and in vivo models of AD neuropathology. First, we confirmed that PLK2 overexpression modulated APP and Tau protein levels and phosphorylation in cell culture, in a kinase activity dependent manner. Furthermore, a transient treatment of triple transgenic mouse model of AD (3xTg-AD) with a potent and specific PLK2 pharmacological inhibitor (PLK2i #37) reduced some neuropathological aspects in a sex-dependent manner. In 3xTg-AD males, treatment with PLK2i #37 led to lower Tau burden, higher synaptic protein content, and prevented learning and memory deficits. In contrast, treated females showed an exacerbation of Tau pathology, associated with a reduction in amyloid plaque accumulation. Overall, our findings suggest that PLK2 inhibition alters key components of AD neuropathology in a sex-dependent manner and might display a therapeutic potential for the treatment for AD and related dementia.
Collapse
|
5
|
Zhang J, Zhang L, Wang J, Ouyang L, Wang Y. Polo-like Kinase 1 Inhibitors in Human Cancer Therapy: Development and Therapeutic Potential. J Med Chem 2022; 65:10133-10160. [PMID: 35878418 DOI: 10.1021/acs.jmedchem.2c00614] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Polo-like kinase 1 (PLK1) plays an important role in a variety of cellular functions, including the regulation of mitosis, DNA replication, autophagy, and the epithelial-mesenchymal transition (EMT). PLK1 overexpression is often associated with cell proliferation and poor prognosis in cancer patients, making it a promising antitumor target. To date, at least 10 PLK1 inhibitors (PLK1i) have been entered into clinical trials, among which the typical kinase domain (KD) inhibitor BI 6727 (volasertib) was granted "breakthrough therapy designation" by the FDA in 2013. Unfortunately, many other KD inhibitors showed poor specificity, resulting in dose-limiting toxicity, which has greatly impeded their development. Researchers recently discovered many PLK1i with higher selectivity, stronger potency, and better absorption, distribution, metabolism, and elimination (ADME) characteristics. In this review, we emphasize the structure-activity relationships (SARs) of PLK1i, providing insights into new drugs targeting PLK1 for antitumor clinical practice.
Collapse
Affiliation(s)
- Jifa Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lele Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis 38163, Tennessee, United States
| | - Liang Ouyang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
6
|
Singh P, Pesenti ME, Maffini S, Carmignani S, Hedtfeld M, Petrovic A, Srinivasamani A, Bange T, Musacchio A. BUB1 and CENP-U, Primed by CDK1, Are the Main PLK1 Kinetochore Receptors in Mitosis. Mol Cell 2021; 81:67-87.e9. [PMID: 33248027 PMCID: PMC7837267 DOI: 10.1016/j.molcel.2020.10.040] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/08/2020] [Accepted: 10/28/2020] [Indexed: 02/02/2023]
Abstract
Reflecting its pleiotropic functions, Polo-like kinase 1 (PLK1) localizes to various sub-cellular structures during mitosis. At kinetochores, PLK1 contributes to microtubule attachments and mitotic checkpoint signaling. Previous studies identified a wealth of potential PLK1 receptors at kinetochores, as well as requirements for various mitotic kinases, including BUB1, Aurora B, and PLK1 itself. Here, we combine ectopic localization, in vitro reconstitution, and kinetochore localization studies to demonstrate that most and likely all of the PLK1 is recruited through BUB1 in the outer kinetochore and centromeric protein U (CENP-U) in the inner kinetochore. BUB1 and CENP-U share a constellation of sequence motifs consisting of a putative PP2A-docking motif and two neighboring PLK1-docking sites, which, contingent on priming phosphorylation by cyclin-dependent kinase 1 and PLK1 itself, bind PLK1 and promote its dimerization. Our results rationalize previous observations and describe a unifying mechanism for recruitment of PLK1 to human kinetochores.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Marion E Pesenti
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Stefano Maffini
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Sara Carmignani
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Marius Hedtfeld
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Arsen Petrovic
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Anupallavi Srinivasamani
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Tanja Bange
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitätsstrasse, 45141 Essen, Germany.
| |
Collapse
|
7
|
Raab CA, Raab M, Becker S, Strebhardt K. Non-mitotic functions of polo-like kinases in cancer cells. Biochim Biophys Acta Rev Cancer 2021; 1875:188467. [PMID: 33171265 DOI: 10.1016/j.bbcan.2020.188467] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Inhibitors of mitotic protein kinases are currently being developed as non-neurotoxic alternatives of microtubule-targeting agents (taxanes, vinca alkaloids) which provide a substantial survival benefit for patients afflicted with different types of solid tumors. Among the mitotic kinases, the cyclin-dependent kinases, the Aurora kinases, the kinesin spindle protein and Polo-like kinases (PLKs) have emerged as attractive targets of cancer therapeutics. The functions of mammalian PLK1-5 are traditionally linked to the regulation of the cell cycle and to the stress response. Especially the key role of PLK1 and PLK4 in cellular growth and proliferation, their overexpression in multiple types of human cancer and their druggability, make them appealing targets for cancer therapy. Inhibitors for PLK1 and PLK4 are currently being tested in multiple cancer trials. The clinical success of microtubule-targeting agents is attributed not solely to the induction of a mitotic arrest in cancer cells, but also to non-mitotic effects like targeting intracellular trafficking on microtubules. This raises the question whether new cancer targets like PLK1 and PLK4 regulate critical non-mitotic functions in tumor cells. In this article we summarize the important roles of PLK1-5 for the regulation of non-mitotic signaling. Due to these functions it is conceivable that inhibitors for PLK1 or PLK4 can target interphase cells, which underscores their attractive potential as cancer drug targets. Moreover, we also describe the contribution of the tumor-suppressors PLK2, PLK3 and PLK5 to cancer cell signaling outside of mitosis. These observations highlight the urgent need to develop highly specific ATP-competitive inhibitors for PLK4 and for PLK1 like the 3rd generation PLK-inhibitor Onvansertib to prevent the inhibition of tumor-suppressor PLKs in- and outside of mitosis. The remarkable feature of PLKs to encompass a unique druggable domain, the polo-box-domain (PBD) that can be found only in PLKs offers the opportunity for the development of inhibitors that target PLKs exclusively. Beyond the development of mono-specific ATP-competitive PLK inhibitors, the PBD as drug target will support the design of new drugs that eradicate cancer cells based on the mitotic and non-mitotic function of PLK1 and PLK4.
Collapse
Affiliation(s)
| | - Monika Raab
- Department of Gynecology, Goethe-University, Frankfurt, Germany
| | - Sven Becker
- Department of Gynecology, Goethe-University, Frankfurt, Germany
| | - Klaus Strebhardt
- Department of Gynecology, Goethe-University, Frankfurt, Germany; German Cancer Consortium (DKTK), German Cancer Research Center, Partner Site Frankfurt am Main, Frankfurt, Germany.
| |
Collapse
|
8
|
Abdelfatah S, Berg A, Huang Q, Yang LJ, Hamdoun S, Klinger A, Greten HJ, Fleischer E, Berg T, Wong VK, Efferth T. MCC1019, a selective inhibitor of the Polo-box domain of Polo-like kinase 1 as novel, potent anticancer candidate. Acta Pharm Sin B 2019; 9:1021-1034. [PMID: 31649851 PMCID: PMC6804483 DOI: 10.1016/j.apsb.2019.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/20/2018] [Accepted: 12/22/2018] [Indexed: 01/01/2023] Open
Abstract
Polo-like kinase (PLK1) has been identified as a potential target for cancer treatment. Although a number of small molecules have been investigated as PLK1 inhibitors, many of which showed limited selectivity. PLK1 harbors a regulatory domain, the Polo box domain (PBD), which has a key regulatory function for kinase activity and substrate recognition. We report on 3-bromomethyl-benzofuran-2-carboxylic acid ethyl ester (designated: MCC1019) as selective PLK1 inhibitor targeting PLK1 PBD. Cytotoxicity and fluorescence polarization-based screening were applied to a library of 1162 drug-like compounds to identify potential inhibitors of PLK1 PBD. The activity of compound MC1019 against the PLK1 PBD was confirmed using fluorescence polarization and microscale thermophoresis. This compound exerted specificity towards PLK1 over PLK2 and PLK3. MCC1019 showed cytotoxic activity in a panel of different cancer cell lines. Mechanistic investigations in A549 lung adenocarcinoma cells revealed that MCC1019 induced cell growth inhibition through inactivation of AKT signaling pathway, it also induced prolonged mitotic arrest—a phenomenon known as mitotic catastrophe, which is followed by immediate cell death via apoptosis and necroptosis. MCC1019 significantly inhibited tumor growth in vivo in a murine lung cancer model without affecting body weight or vital organ size, and reduced the growth of metastatic lesions in the lung. We propose MCC1019 as promising anti-cancer drug candidate.
Collapse
Key Words
- 3-MA, 3-methyladenine
- ABC, avidin-biotin complex
- APC/C, anaphase-promoting complex/cyclosome
- BUBR1, budding uninhibited by benzimidazole-related 1
- CDC2, cell division cycle protein 2 homolog
- CDC25, cell division cycle 25
- CDK, cyclin-dependent kinase
- Cell cycle
- DAPI, 4′,6-diamidino-2-phenylindole
- DAPKs, death-associated protein kinase
- FBS, fetal bovine serum
- FOXO, forkhead box O
- HIF-1α, hypoxia-inducible factor 1 α
- IC50, 50% inhibition concentration
- IHC, immunohistochemistry
- Kd, the dissociation constant
- LC3, light chain 3
- MFP, M phase promoting factor
- MST, microscale thermophoresis
- MTD, maximal tolerance dose
- Mono-targeted therapy
- Nec-1, necrostatin 1
- Necroptosis
- PARP-1, poly(ADP-ribose) polymerase-1
- PBD, Polo box domain
- PDB, Protein Data Bank
- PI, propidium iodide
- PLK1
- PLK1, Polo-like kinase
- Polo box domain
- Polo-like kinase
- SAC, spindle assembly checkpoint
- Spindle damage
Collapse
Affiliation(s)
- Sara Abdelfatah
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz 55128, Germany
| | - Angela Berg
- Leipzig University, Institute of Organic Chemistry, Leipzig 04103, Germany
| | - Qi Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Li Jun Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Sami Hamdoun
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz 55128, Germany
| | | | - Henry J. Greten
- Abel Salazar Institute of Biomedical Sciences, University of Porto, Porto 4099-003, Portugal
| | | | - Thorsten Berg
- Leipzig University, Institute of Organic Chemistry, Leipzig 04103, Germany
| | - Vincent K.W. Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz 55128, Germany
- Corresponding author. Tel.: +49 6131 3925751; fax: +49 6131 23752.
| |
Collapse
|
9
|
Abdullah M, Guruprasad L. Structural insights into the inhibitor binding and new inhibitor design to Polo-like kinase-1 Polo-box domain using computational studies. J Biomol Struct Dyn 2019; 37:3410-3421. [PMID: 30146942 DOI: 10.1080/07391102.2018.1515663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 08/13/2018] [Indexed: 12/27/2022]
Abstract
Polo box domain (PBD) from Polo-Like Kinase-1 (PLK-1) a cell cycle regulator is one of the important non-kinase targets implicated in various cancers. The crystal structure of PLK-1 PBD bound to phosphopeptide inhibitor is available and acylthiourea derivatives have been reported as potent PBD inhibitors. In this work, structure and ligand-based pharmacophore methods have been used to identify new PBD inhibitors. The binding of acylthiourea analogs and new inhibitors to PBD were assessed using molecular docking and molecular dynamics simulations to understand their binding interactions, investigate the complex stability and reveal the molecular basis for inhibition. This study provides the binding free energies and residue-wise contributions to decipher the essential interactions in the protein-inhibitor complementarity for complex formation and the design of new PBD inhibitors with better binding. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Maaged Abdullah
- a School of Chemistry , University of Hyderabad , Hyderabad , India
| | | |
Collapse
|
10
|
Czudor Z, Balogh M, Bánhegyi P, Boros S, Breza N, Dobos J, Fábián M, Horváth Z, Illyés E, Markó P, Sipos A, Szántai-Kis C, Szokol B, Őrfi L. Novel compounds with potent CDK9 inhibitory activity for the treatment of myeloma. Bioorg Med Chem Lett 2018; 28:769-773. [PMID: 29329658 DOI: 10.1016/j.bmcl.2018.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/14/2017] [Accepted: 01/01/2018] [Indexed: 12/17/2022]
Abstract
Cyclin-dependent kinases (CDKs) and Polo-like kinases (PLKs) play key role in the regulation of the cell cycle. The aim of our study was originally the further development of our recently discovered polo-like kinase 1 (PLK1) inhibitors. A series of new 2,4-disubstituted pyrimidine derivatives were synthesized around the original hit, but their PLK1 inhibitory activity was very poor. However the novel compounds showed nanomolar CDK9 inhibitory activity and very good antiproliferative effect on multiple myeloma cell lines (RPMI-8226).
Collapse
Affiliation(s)
- Zsófia Czudor
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre u. 9, 1092 Budapest, Hungary
| | - Mária Balogh
- Vichem Chemie Research Ltd., Herman Ottó u. 15., 1022 Budapest, Hungary
| | - Péter Bánhegyi
- Vichem Chemie Research Ltd., Herman Ottó u. 15., 1022 Budapest, Hungary
| | - Sándor Boros
- Vichem Chemie Research Ltd., Herman Ottó u. 15., 1022 Budapest, Hungary
| | - Nóra Breza
- Vichem Chemie Research Ltd., Herman Ottó u. 15., 1022 Budapest, Hungary
| | - Judit Dobos
- Vichem Chemie Research Ltd., Herman Ottó u. 15., 1022 Budapest, Hungary
| | - Márk Fábián
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre u. 9, 1092 Budapest, Hungary
| | - Zoltán Horváth
- Vichem Chemie Research Ltd., Herman Ottó u. 15., 1022 Budapest, Hungary
| | - Eszter Illyés
- Vichem Chemie Research Ltd., Herman Ottó u. 15., 1022 Budapest, Hungary
| | - Péter Markó
- Vichem Chemie Research Ltd., Herman Ottó u. 15., 1022 Budapest, Hungary
| | - Anna Sipos
- Vichem Chemie Research Ltd., Herman Ottó u. 15., 1022 Budapest, Hungary
| | - Csaba Szántai-Kis
- Vichem Chemie Research Ltd., Herman Ottó u. 15., 1022 Budapest, Hungary
| | - Bálint Szokol
- Vichem Chemie Research Ltd., Herman Ottó u. 15., 1022 Budapest, Hungary
| | - László Őrfi
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre u. 9, 1092 Budapest, Hungary; Vichem Chemie Research Ltd., Herman Ottó u. 15., 1022 Budapest, Hungary.
| |
Collapse
|
11
|
Maniswami RR, Prashanth S, Karanth AV, Koushik S, Govindaraj H, Mullangi R, Rajagopal S, Jegatheesan SK. PLK4: a link between centriole biogenesis and cancer. Expert Opin Ther Targets 2017; 22:59-73. [PMID: 29171762 DOI: 10.1080/14728222.2018.1410140] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Polo like kinase (PLK) is known to play a pivotal role in various cell cycle processes to perpetuate proper division and growth of the cells. Polo like kinase-4 (PLK4) is one such kinase that appears in low abundance and plays a well-characterized role in centriole duplication. PLK4 deregulation (i.e. both overexpression and depletion of PLK4), leads to altered mitotic fidelity and thereby triggers tumorigenesis. Hence, over the last few years PLK4 has emerged as a potential therapeutic target for the treatment of various advanced cancers. Areas covered: In this review, we discuss the basic structure, expression, localization and functions of PLK4 along with its regulation by various proteins. We also discuss the role of altered PLK4 activity in the onset of cancer and the current pre-clinical and clinical inhibitors to regulate PLK4. Expert opinion: PLK4 mediated centriole duplication has a crucial role in maintaining mitotic correctness in normal cells, while its deregulation has a greater impact on genesis of cancer. Henceforth, a deep knowledge of the PLK4 levels, its role and interactions with various proteins in cancer is required to design effective inhibitors for clinical use.
Collapse
Affiliation(s)
| | | | | | - Sindhu Koushik
- a Jubilant Biosys Ltd, Bioinformatics , Bangalore , India
| | | | | | | | | |
Collapse
|
12
|
Shin CH, Lee H, Kim HR, Choi KH, Joung JG, Kim HH. Regulation of PLK1 through competition between hnRNPK, miR-149-3p and miR-193b-5p. Cell Death Differ 2017; 24:1861-1871. [PMID: 28708135 PMCID: PMC5635212 DOI: 10.1038/cdd.2017.106] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 04/19/2017] [Accepted: 05/29/2017] [Indexed: 11/09/2022] Open
Abstract
Polo-like kinase 1 (PLK1) is a critical regulator of cell cycle progression and apoptosis. However, its regulation remains poorly understood. In the present study, we investigated the molecular mechanism underlying the post-transcriptional regulation of PLK1. We observed that heterogeneous nuclear ribonucleoprotein K (hnRNPK) and PLK1 were positively associated in several different cancers and high expression levels of them correlated with poor prognosis in patients with cancer. Knockdown of hnRNPK resulted in reduced expression of PLK1, whereas conversely, PLK1 expression was increased in hnRNPK-overexpressing cells. We found that hnRNPK regulated PLK1 expression through KH1- and KH2-dependent interactions with the 3'UTR of PLK1 mRNA. In addition, microRNA-149-3p (miR-149-3p) and miR-193b-5p suppressed PLK1 expression by targeting the 3'UTR of PLK1 mRNA. MicroRNA-elicited enrichment of PLK1 mRNA in Ago2 immunoprecipitation was altered by the presence or absence of hnRNPK. Furthermore, the deletion of the cytosine (C)-rich sequences of the 3'UTR of PLK1 mRNA abolished the decreased PLK1 expression observed via hnRNPK silencing and administration of miRNAs, a finding that suggests that hnRNPK shares this C-rich motif with miR-149-3p and miR-193b-5p. We also found that downregulation of PLK1 by either silencing hnRNPK or overexpression of miR-149-3p and miR-193b-5p decreased clonogenicity and induced apoptosis. Our findings from this study demonstrate that hnRNPK regulates PLK1 expression by competing with the PLK1-targeting miRNAs, miR-149-3p and miR-193b-5p.
Collapse
Affiliation(s)
- Chang Hoon Shin
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
| | - Hong Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
| | - Hye Ree Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
| | - Kyung Hee Choi
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
| | - Je-Gun Joung
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Hyeon Ho Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
13
|
Wachowicz P, Fernández-Miranda G, Marugán C, Escobar B, de Cárcer G. Genetic depletion of Polo-like kinase 1 leads to embryonic lethality due to mitotic aberrancies. Bioessays 2016; 38 Suppl 1:S96-S106. [PMID: 27417127 DOI: 10.1002/bies.201670908] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/17/2015] [Accepted: 07/21/2015] [Indexed: 12/18/2022]
Abstract
Polo-like kinase 1 (PLK1) is a serine/threonine kinase that plays multiple and essential roles during the cell division cycle. Its inhibition in cultured cells leads to severe mitotic aberrancies and cell death. Whereas previous reports suggested that Plk1 depletion in mice leads to a non-mitotic arrest in early embryos, we show here that the bi-allelic Plk1 depletion in mice certainly results in embryonic lethality due to extensive mitotic aberrations at the morula stage, including multi- and mono-polar spindles, impaired chromosome segregation and cytokinesis failure. In addition, the conditional depletion of Plk1 during mid-gestation leads also to severe mitotic aberrancies. Our data also confirms that Plk1 is completely dispensable for mitotic entry in vivo. On the other hand, Plk1 haploinsufficient mice are viable, and Plk1-heterozygous fibroblasts do not harbor any cell cycle alterations. Plk1 is overexpressed in many human tumors, suggesting a therapeutic benefit of inhibiting Plk1, and specific small-molecule inhibitors for this kinase are now being evaluated in clinical trials. Therefore, the different Plk1 mouse models here presented are a valuable tool to reexamine the relevance of the mitotic kinase Plk1 during mammalian development and animal physiology.
Collapse
Affiliation(s)
- Paulina Wachowicz
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Ecole polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Gonzalo Fernández-Miranda
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Carlos Marugán
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Beatriz Escobar
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Spanish National Cardiovascular Research Centre (CNIC), Madrid, Spain
| | | |
Collapse
|
14
|
Abstract
Acute myeloid leukemia (AML) is a disease diagnosed mostly in patients >65 years of age. Despite its heterogeneous nature, the different types of AMLs are still managed by standard induction chemotherapy for those who can tolerate it in the beginning. For the elderly and infirm patients, however, this approach leads to unacceptably high induction mortality rate. This article reviews past and current efforts searching for low-intensiveness treatments for the elderly and infirm patients who cannot tolerate the standard induction regimen. Volasertib, currently in Phase III clinical trials in combination with cytarabine, is reviewed as a promising agent for this patient population with AML, from the viewpoints of potential compliance and efficacy.
Collapse
Affiliation(s)
- Zhonglin Hao
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Vamsi Kota
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
15
|
Howitt J, Low LH, Putz U, Doan A, Lackovic J, Goh CP, Gunnersen J, Silke J, Tan SS. Ndfip1 represses cell proliferation by controlling Pten localization and signaling specificity. J Mol Cell Biol 2015; 7:119-31. [PMID: 25801959 DOI: 10.1093/jmcb/mjv020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 12/28/2014] [Indexed: 01/16/2023] Open
Abstract
Pten controls a signaling axis that is implicated to regulate cell proliferation, growth, survival, migration, and metabolism. The molecular mechanisms underlying the specificity of Pten responses to such diverse cellular functions are currently poorly understood. Here we report the control of Pten activity and signaling specificity during the cell cycle by Ndfip1 regulation of Pten spatial distribution. Genetic deletion of Ndfip1 resulted in a loss of Pten nuclear compartmentalization and increased cell proliferation, despite cytoplasmic Pten remaining active in regulating PI3K/Akt signaling. Cells lacking nuclear Pten were found to have dysregulated levels of Plk1 and cyclin D1 that could drive cell proliferation. In vivo, transgene expression of Ndfip1 in the developing brain increased nuclear Pten and lengthened the cell cycle of neuronal progenitors, resulting in microencephaly. Our results show that local partitioning of Pten from the cytoplasm to the nucleus represents a key mechanism contributing to the specificity of Pten signaling during cell proliferation.
Collapse
Affiliation(s)
- Jason Howitt
- Brain Development and Regeneration Division, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ley-Hian Low
- Brain Development and Regeneration Division, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ulrich Putz
- Brain Development and Regeneration Division, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anh Doan
- Brain Development and Regeneration Division, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jenny Lackovic
- Brain Development and Regeneration Division, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Choo-Peng Goh
- Brain Development and Regeneration Division, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jenny Gunnersen
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - John Silke
- Cell Signalling and Cell Death Laboratory, Walter and Eliza Hall Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Seong-Seng Tan
- Brain Development and Regeneration Division, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
16
|
Akdeli N, Riemann K, Westphal J, Hess J, Siffert W, Bachmann HS. A 3'UTR polymorphism modulates mRNA stability of the oncogene and drug target Polo-like Kinase 1. Mol Cancer 2014; 13:87. [PMID: 24767679 PMCID: PMC4020576 DOI: 10.1186/1476-4598-13-87] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 04/15/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The Polo-like Kinase 1 (PLK1) protein regulates cell cycle progression and is overexpressed in many malignant tissues. Overexpression is associated with poor prognosis in several cancer entities, whereby expression of PLK1 shows high inter-individual variability. Although PLK1 is extensively studied, not much is known about the genetic variability of the PLK1 gene. The function of PLK1 and the expression of the corresponding gene could be influenced by genomic variations. Hence, we investigated the gene for functional polymorphisms. Such polymorphisms could be useful to investigate whether PLK1 alters the risk for and the course of cancer and they could have an impact on the response to PLK1 inhibitors. METHODS The coding region, the 5' and 3'UTRs and the regulatory regions of PLK1 were systematically sequenced. We determined the allele frequencies and genotype distributions of putatively functional SNPs in 120 Caucasians and analyzed the linkage and haplotype structure using Haploview. The functional analysis included electrophoretic mobility shift assay (EMSA) for detected variants of the silencer and promoter regions and reporter assays for a 3'UTR polymorphism. RESULTS Four putatively functional polymorphisms were detected and further analyzed, one in the silencer region (rs57973275), one in the core promoter region (rs16972787), one in intron 3 (rs40076) and one polymorphism in the 3'untranslated region (3'UTR) of PLK1 (rs27770). Alleles of rs27770 display different secondary mRNA structures and showed a distinct allele-dependent difference in mRNA stability with a significantly higher reporter activity of the A allele (p < 0.01). CONCLUSION The present study provides evidence that at least one genomic variant of PLK1 has functional properties and influences expression of PLK1. This suggests polymorphisms of the PLK1 gene as an interesting target for further studies that might affect cancer risk, tumor progression as well as the response to PLK1 inhibitors.
Collapse
Affiliation(s)
- Neval Akdeli
- Institute of Pharmacogenetics, University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Kathrin Riemann
- Institute of Pharmacogenetics, University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Jana Westphal
- Institute of Pharmacogenetics, University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Jochen Hess
- Institute of Pharmacogenetics, University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
- Department of Urology, University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Winfried Siffert
- Institute of Pharmacogenetics, University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Hagen S Bachmann
- Institute of Pharmacogenetics, University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
| |
Collapse
|
17
|
Lee KS, Park JE, Kang YH, Kim TS, Bang JK. Mechanisms underlying Plk1 polo-box domain-mediated biological processes and their physiological significance. Mol Cells 2014; 37:286-94. [PMID: 24722413 PMCID: PMC4012076 DOI: 10.14348/molcells.2014.0002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 01/12/2014] [Indexed: 12/31/2022] Open
Abstract
Mammalian polo-like kinase 1 (Plk1) has been studied intensively as a key regulator of various cell cycle events that are critical for proper M-phase progression. The polobox domain (PBD) present in Plk1's C-terminal noncatalytic region has been shown to play a central role in targeting the N-terminal kinase domain of Plk1 to specific subcellular locations. Subsequent studies reveal that PBD binds to a phosphorylated motif generated by one of the two mechanisms-self-priming by Plk1 itself or non-selfpriming by a Pro-directed kinase, such as Cdc2. Here, we comparatively review the differences in the biochemical steps of these mechanisms and discuss their physiological significance. Considering the diverse functions of Plk1 during the cell cycle, a better understanding of how the catalytic activity of Plk1 functions in concert with its cisacting PBD and how this coordinated process is intricately regulated to promote Plk1 functions will be important for providing new insights into different mechanisms underlying various Plk1-mediated biological events that occur at the multiple stages of the cell cycle.
Collapse
Affiliation(s)
- Kyung S. Lee
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892,
USA
| | - Jung-Eun Park
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892,
USA
| | | | - Tae-Sung Kim
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892,
USA
| | | |
Collapse
|
18
|
Plk1-targeted therapies in TP53- or RAS-mutated cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 761:31-39. [PMID: 24630986 DOI: 10.1016/j.mrrev.2014.02.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/27/2014] [Accepted: 02/27/2014] [Indexed: 11/23/2022]
Abstract
Despite advances in treatment, prognosis for many types of carcinoma remains poor. Polo-like kinase 1 (Plk1) has been explored as a target for the development of anticancer drugs. As a mitotic master Ser/Thr kinase, Plk1 is involved in centrosomal maturation, microtubule nucleation, chromosomal segregation, and cytokinesis. Additional functions in interphase and in response to DNA damage have been revealed. The multiple locations of Plk1 correspond to distinct functions, mediated by phosphorylation of multiple substrates. Since it is highly expressed in several carcinomas, and expression of Plk1 is inversely correlated with the survival rate of patients in non-small cell lung, head and neck, and esophageal cancer, Plk1 is recognized as a valid prognostic marker. Connections between Plk1 and p53 or KRAS in carcinoma provide a rationale and several possible routes to the development of therapies. Tumors with both p53-deficiency and high Plk1 expression may be particularly sensitive to Plk1 inhibitors, although some controversial data exist. In KRAS-mutant cancers, on the other hand, Plk1 may be essential for tumor cell survival, but detailed studies as to whether Plk1 inhibitors are more effective in KRAS-mutant cancers must be performed in order to determine whether this is the case. Here, we present evidence for Plk1 as a prognostic marker and potentially effective target for the treatment of patients with carcinoma, to demonstrate the value of Plk1 as a target for the development of cancer treatment, especially for patients with solid tumors. In addition, the effects of Plk1 inhibition in p53- or KRAS-mutated cancer are discussed with respect to clinical implications. Structural specifics of Plk1 are presented, as well as current strategies for discovering new Plk1 inhibitors by targeting the conserved ATP binding site or polo-box domain of Plk1, in order to develop Plk1-specific anticancer drugs.
Collapse
|
19
|
Schwarz J, Schmidt S, Will O, Koudelka T, Köhler K, Boss M, Rabe B, Tholey A, Scheller J, Schmidt-Arras D, Schwake M, Rose-John S, Chalaris A. Polo-like kinase 2, a novel ADAM17 signaling component, regulates tumor necrosis factor α ectodomain shedding. J Biol Chem 2013; 289:3080-93. [PMID: 24338472 DOI: 10.1074/jbc.m113.536847] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
ADAM17 (a disintegrin and metalloprotease 17) controls pro- and anti-inflammatory signaling events by promoting ectodomain shedding of cytokine precursors and cytokine receptors. Despite the well documented substrate repertoire of ADAM17, little is known about regulatory mechanisms, leading to substrate recognition and catalytic activation. Here we report a direct interaction of the acidophilic kinase Polo-like kinase 2 (PLK2, also known as SNK) with the cytoplasmic portion of ADAM17 through the C-terminal noncatalytic region of PLK2 containing the Polo box domains. PLK2 activity leads to ADAM17 phosphorylation at serine 794, which represents a novel phosphorylation site. Activation of ADAM17 by PLK2 results in the release of pro-TNFα and TNF receptors from the cell surface, and pharmacological inhibition of PLK2 leads to down-regulation of LPS-induced ADAM17-mediated shedding on primary macrophages and dendritic cells. Importantly, PLK2 expression is up-regulated during inflammatory conditions increasing ADAM17-mediated proteolytic events. Our findings suggest a new role for PLK2 in the regulation of inflammatory diseases by modulating ADAM17 activity.
Collapse
Affiliation(s)
- Jeanette Schwarz
- From the Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Polo-like kinase 1 (Plk1) is a well-established mitotic regulator with a diverse range of biologic functions continually being identified throughout the cell cycle. Preclinical evidence suggests that the molecular targeting of Plk1 could be an effective therapeutic strategy in a wide range of cancers; however, that success has yet to be translated to the clinical level. The lack of clinical success has raised the question of whether there is a true oncogenic addiction to Plk1 or if its overexpression in tumors is solely an artifact of increased cellular proliferation. In this review, we address the role of Plk1 in carcinogenesis by discussing the cell cycle and DNA damage response with respect to their associations with classic oncogenic and tumor suppressor pathways that contribute to the transcriptional regulation of Plk1. A thorough examination of the available literature suggests that Plk1 activity can be dysregulated through key transformative pathways, including both p53 and pRb. On the basis of the available literature, it may be somewhat premature to draw a definitive conclusion on the role of Plk1 in carcinogenesis. However, evidence supports the notion that oncogene dependence on Plk1 is not a late occurrence in carcinogenesis and it is likely that Plk1 plays an active role in carcinogenic transformation.
Collapse
Affiliation(s)
- Brian D. Cholewa
- Department of Dermatology, University of Wisconsin, Madison, WI
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI
| | - Xiaoqi Liu
- Department of Biochemistry, Purdue University, West Lafayette, IN
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, WI
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI
- William S. Middleton Memorial VA Hospital, Madison, WI
| |
Collapse
|
21
|
Luo J, Liu X. Polo-like kinase 1, on the rise from cell cycle regulation to prostate cancer development. Protein Cell 2012; 3:182-97. [PMID: 22447658 PMCID: PMC4875424 DOI: 10.1007/s13238-012-2020-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 02/04/2012] [Indexed: 01/19/2023] Open
Abstract
Polo-like kinase 1 (Plk1), a well-characterized member of serine/threonine kinases Plk family, has been shown to play pivotal roles in mitosis and cytokinesis in eukaryotic cells. Recent studies suggest that Plk1 not only controls the process of mitosis and cytokinesis, but also, going beyond those previously described functions, plays critical roles in DNA replication and Pten null prostate cancer initiation. In this review, we briefly summarize the functions of Plk1 in mitosis and cytokinesis, and then mainly focus on newly discovered functions of Plk1 in DNA replication and in Pten-null prostate cancer initiation. Furthermore, we briefly introduce the architectures of human and mouse prostate glands and the possible roles of Plk1 in human prostate cancer development. And finally, the newly chemotherapeutic development of small-molecule Plk1 inhibitors to target Plk1 in cancer treatment and their translational studies are also briefly reviewed.
Collapse
Affiliation(s)
- Jijing Luo
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907 USA
| | - Xiaoqi Liu
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
22
|
Evans RP, Dueck G, Sidhu R, Ghosh S, Toman I, Loree J, Bahlis N, Klimowicz AC, Fung J, Jung M, Lai R, Pilarski LM, Belch AR, Reiman T. Expression, adverse prognostic significance and therapeutic small molecule inhibition of Polo-like kinase 1 in multiple myeloma. Leuk Res 2011; 35:1637-43. [PMID: 21816470 DOI: 10.1016/j.leukres.2011.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 05/05/2011] [Accepted: 07/11/2011] [Indexed: 01/15/2023]
Abstract
The amplified myeloma centrosome has been identified as a therapeutic target. The present study explored the expression and prognostic significance of the centrosome-associated protein PLK1 in myeloma and the effect of BI 2536, a potent and selective inhibitor of PLK1, on myeloma cells. High plasma cell expression of PLK1 protein in myeloma patient bone marrow biopsies is an independent adverse prognostic factor (HR=2.3, p=0.003 unadjusted; HR=1.9, p=0.03 in multivariable model). BI 2536 inhibits myeloma cell lines at nanomolar concentrations, and is therapeutic for xenografts in NOD/SCID mice. PLK1 inhibition is a potential new strategy for the treatment of multiple myeloma.
Collapse
Affiliation(s)
- Robert P Evans
- Department of Oncology; Saint John Regional Hospital, Saint John, NB, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Park JS, Sohn HJ, Park GS, Chung YJ, Kim TG. Induction of antitumor immunity using dendritic cells electroporated with Polo-like kinase 1 (Plk1) mRNA in murine tumor models. Cancer Sci 2011; 102:1448-54. [PMID: 21545375 DOI: 10.1111/j.1349-7006.2011.01974.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Polo-like kinase 1 (Plk1), a serine-threonine kinase, plays a key role in the regulation of the cell cycle. Elevated Plk1 expression in various cancers is correlated with poor prognosis and poor patient survival rates. Several Plk1 inhibitors are currently being developed as potential treatments for cancer. In the present study, we investigated whether dendritic cells (DC) electroporated with mouse Plk1RNA (mPlk1RNA/DC) can induce Plk1-specific immune responses and exert antitumor effects in various murine tumor models. Overexpression of Plk1 protein was confirmed in several mouse and human tumor cell lines and various cancer tissues. Furthermore, Plk1-specific CD4(+) and CD8(+) T cells were induced by vaccination with mPlk1RNA/DC and the cytotoxic activity of the T cells was demonstrated against several Plk1-expressing tumor cell lines. Vaccination with mPlk1RNA/DC inhibited the growth of MC-38 and B16F10 tumors in C57BL/6 mice and the growth of CT26 tumors in BALB/c mice. Depletion of CD8(+) T cells reversed the inhibition of tumor growth by mPlk1RNA/DC vaccination. Homologous human Plk1RNA-electroporated DC also inhibited tumor growth in MC-38 tumor-bearing mice. In addition, Plk1-specific cytotoxic T lymphocytes from PBMC of healthy donors could be induced using autologous monocyte-derived DC electroporated with RNA encoding the whole gene of human Plk1. Taken together, the results of the present study suggest that Plk1 could be a universal tumor antigen recognized by cytotoxic T lymphocytes for cancer immunotherapy.
Collapse
Affiliation(s)
- Jung-Sun Park
- Catholic Hematopoietic Stem Cell Bank, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | |
Collapse
|
24
|
Abstract
BACKGROUND Polo-like kinase 1 (Plk1) has multiple functions throughout mitosis. Plk1 levels are high in a number of cancers and haematological malignancies while being low in most differentiated tissues. OBJECTIVES To assess the immunoreactivity of Plk1 in cutaneous T-cell lymphoma (CTCL) as a potential therapeutic target, to differentiate Plk1 levels among lesion types and to compare the detection level of Plk1 in fresh frozen (f) vs. paraffin-embedded (p) tissue. METHODS Immunohistochemical staining of CTCL skin lesions with anti-Plk1 antibody was performed in a total of 65 biopsies from 49 patients with CTCL. Both f and p tissue was available for comparison in 46 biopsies. RESULTS Tumour-stage CTCL lesions displayed significantly more Plk1 (mean f 7·7%, p 8·8%) than patch (mean f 0·7%, p 2·0%) and plaque-stage lesions (mean f 1·1%, p 2·0%) (P < 0·05). Plk1 ranged from 0% to 18% in f and 0% to 24% in p samples. p tissue revealed a higher mean Plk1 detection rate of 4·4% compared with 2·9% in f tissue with no statistical significance. CONCLUSIONS Our results indicate that in CTCL, Plk1 is increased mainly in advanced lesions. Several Plk1 inhibitors have already shown promising results in preclinical and clinical phase I and II trials for different types of cancers with low adverse effects. Immunohistochemical detection of high Plk1 levels in patients with CTCL could help select individuals who might benefit from treatment with small molecule Plk1 inhibitors.
Collapse
Affiliation(s)
- N Stutz
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | | | | |
Collapse
|
25
|
Kawata E, Ashihara E, Maekawa T. RNA interference against polo-like kinase-1 in advanced non-small cell lung cancers. J Clin Bioinforma 2011; 1:6. [PMID: 21884621 PMCID: PMC3143898 DOI: 10.1186/2043-9113-1-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Accepted: 01/20/2011] [Indexed: 01/26/2023] Open
Abstract
Worldwide, approximately one and a half million new cases of lung cancer are diagnosed each year, and about 85% of lung cancer are non-small cell lung cancer (NSCLC). As the molecular pathogenesis underlying NSCLC is understood, new molecular targeting agents can be developed. However, current therapies are not sufficient to cure or manage the patients with distant metastasis, and novel strategies are necessary to be developed to cure the patients with advanced NSCLC.RNA interference (RNAi) is a phenomenon of sequence-specific gene silencing in mammalian cells and its discovery has lead to its wide application as a powerful tool in post-genomic research. Recently, short interfering RNA (siRNA), which induces RNAi, has been experimentally introduced as a cancer therapy and is expected to be developed as a nucleic acid-based medicine. Recently, several clinical trials of RNAi therapies against cancers are ongoing. In this article, we discuss the most recent findings concerning the administration of siRNA against polo-like kinase-1 (PLK-1) to liver metastatic NSCLC. PLK-1 regulates the mitotic process in mammalian cells. These promising results demonstrate that PLK-1 is a suitable target for advanced NSCLC therapy.
Collapse
Affiliation(s)
- Eri Kawata
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto, Japan.
| | | | | |
Collapse
|
26
|
Naik MU, Pham NT, Beebe K, Dai W, Naik UP. Calcium-dependent inhibition of polo-like kinase 3 activity by CIB1 in breast cancer cells. Int J Cancer 2011; 128:587-96. [PMID: 20473878 DOI: 10.1002/ijc.25388] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Members of the polo-like kinases (Plk1, Plk2, Plk3 and Plk4) are involved in the regulation of various stages of the cell cycle and have been implicated in cancer progression. Unlike its other family members, the expression of Plk3 remains steady during cell cycle progression, suggesting that its activity may be spatiotemporally regulated. However, the mechanism of regulation of Plk3 activity is not well understood. Here, we show that calcium- and integrin-binding protein 1 (CIB1), a Plk3 interacting protein, is widely expressed in various cancer cell lines. Expression of CIB1 mRNA as well as protein is increased in breast cancer tissue as compared to normal tissue. CIB1 constitutively interacts with Plk3 as determined by both in vitro and in vivo assays. This interaction of CIB1 with Plk3 is independent of intracellular Ca(2+). Furthermore, binding of CIB1 results in inhibition of Plk3 kinase activity both in vitro and in vivo. Interestingly, this inhibition of the Plk3 activity by CIB1 is Ca(2+)-dependent. Taken together, our results suggest that CIB1 is a regulatory subunit of Plk3 and it regulates Plk3 activity in a Ca(2+)-dependent manner. Furthermore, upregulation of CIB1 in cancer cells could thus inhibit Plk3 activity leading to abnormal cell cycle regulation in breast cancer cells. Thus, in addition to Plk3, CIB1 may be a potential biomarker and target for therapeutic intervention of breast cancer.
Collapse
Affiliation(s)
- Meghna U Naik
- Delaware Cardiovascular Research Center, University of Delaware, Newark, DE 19716, USA.
| | | | | | | | | |
Collapse
|
27
|
Naik MU, Naik UP. Calcium- and integrin-binding protein 1 regulates microtubule organization and centrosome segregation through polo like kinase 3 during cell cycle progression. Int J Biochem Cell Biol 2010; 43:120-9. [PMID: 20951827 DOI: 10.1016/j.biocel.2010.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 09/28/2010] [Accepted: 10/10/2010] [Indexed: 10/18/2022]
Abstract
Polo-like kinases (Plks) are a family of serine/threonine protein kinases that are involved in the regulation of the various stages of the cell cycle. Plk2 and Plk3, two members of this family, are known to interact with calcium- and integrin-binding protein 1 (CIB1). Activity of both Plk2 and Plk3 is inhibited by CIB1 in a calcium-dependent manner. However, the physiological consequences of this inhibition are not known. Here, we show that overexpression of CIB1 inhibits T47D cell proliferation. Overexpression of CIB1 or knockdown of Plk3 using shRNA produced a multinucleated phenotype in T47D cells. This phenotype was not cancer cell specific, since it also occurred in normal cells. The cells overexpressing CIB1 appear to undergo proper nuclear division, but are unable to complete the process of cytokinesis, thus forming large multinucleated cells. Both CIB1 overexpression and Plk3 knockdown disrupted microtubule organization and centrosomal segregation, which may have led to incomplete cytokinesis. The observed effect of CIB1 overexpression is not due to the inhibition of Plk2 by CIB1. Plk3 and CIB1 both colocalize at the centrosomes, however, localization of CIB1 is dependent on the expression of Plk3. Furthermore, expression of Plk3 blocks the multinucleated phenotype induced by expression of CIB1 in these cells. These results suggest that CIB1 tightly regulates Plk3 activity during cell division and that either over- or underexpression results in a multinucleated phenotype.
Collapse
Affiliation(s)
- Meghna U Naik
- Delaware Cardiovascular Research Center, Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States
| | | |
Collapse
|
28
|
Strebhardt K. Multifaceted polo-like kinases: drug targets and antitargets for cancer therapy. Nat Rev Drug Discov 2010; 9:643-60. [PMID: 20671765 DOI: 10.1038/nrd3184] [Citation(s) in RCA: 535] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The polo-like kinase 1 (PLK1) acts in concert with cyclin-dependent kinase 1-cyclin B1 and Aurora kinases to orchestrate a wide range of critical cell cycle events. Because PLK1 has been preclinically validated as a cancer target, small-molecule inhibitors of PLK1 have become attractive candidates for anticancer drug development. Although the roles of the closely related PLK2, PLK3 and PLK4 in cancer are less well understood, there is evidence showing that PLK2 and PLK3 act as tumour suppressors through their functions in the p53 signalling network, which guards the cell against various stress signals. In this article, recent insights into the biology of PLKs will be reviewed, with an emphasis on their role in malignant transformation, and progress in the development of small-molecule PLK1 inhibitors will be examined.
Collapse
Affiliation(s)
- Klaus Strebhardt
- Department of Obstetrics and Gynaecology, School of Medicine, J.W. Goethe University, Theodor Stern Kai 7, 60590 Frankfurt, Germany.
| |
Collapse
|
29
|
Park JE, Soung NK, Johmura Y, Kang YH, Liao C, Lee KH, Park CH, Nicklaus MC, Lee KS. Polo-box domain: a versatile mediator of polo-like kinase function. Cell Mol Life Sci 2010; 67:1957-70. [PMID: 20148280 PMCID: PMC2877763 DOI: 10.1007/s00018-010-0279-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 01/13/2010] [Accepted: 01/19/2010] [Indexed: 12/23/2022]
Abstract
Members of the polo subfamily of protein kinases have emerged as important regulators in diverse aspects of the cell cycle and cell proliferation. A large body of evidence suggests that a highly conserved polo-box domain (PBD) present in the C-terminal non-catalytic region of polo kinases plays a pivotal role in the function of these enzymes. Recent advances in our comprehension of the mechanisms underlying mammalian polo-like kinase 1 (Plk1)-dependent protein-protein interactions revealed that the PBD serves as an essential molecular mediator that brings the kinase domain of Plk1 into proximity with its substrates, mainly through phospho-dependent interactions with its target proteins. In this review, current understanding of the structure and functions of PBD, mode of PBD-dependent interactions and substrate phosphorylation, and other phospho-independent functions of PBD are discussed.
Collapse
Affiliation(s)
- Jung-Eun Park
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bldg. 37, Rm. 3118, Bethesda, MD 20892-4258 USA
| | - Nak-Kyun Soung
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bldg. 37, Rm. 3118, Bethesda, MD 20892-4258 USA
| | - Yoshikazu Johmura
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bldg. 37, Rm. 3118, Bethesda, MD 20892-4258 USA
| | - Young H. Kang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bldg. 37, Rm. 3118, Bethesda, MD 20892-4258 USA
| | - Chenzhong Liao
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD 21702 USA
| | - Kyung H. Lee
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bldg. 37, Rm. 3118, Bethesda, MD 20892-4258 USA
| | - Chi Hoon Park
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bldg. 37, Rm. 3118, Bethesda, MD 20892-4258 USA
| | - Marc C. Nicklaus
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD 21702 USA
| | - Kyung S. Lee
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bldg. 37, Rm. 3118, Bethesda, MD 20892-4258 USA
| |
Collapse
|
30
|
Mbefo MK, Paleologou KE, Boucharaba A, Oueslati A, Schell H, Fournier M, Olschewski D, Yin G, Zweckstetter M, Masliah E, Kahle PJ, Hirling H, Lashuel HA. Phosphorylation of synucleins by members of the Polo-like kinase family. J Biol Chem 2010; 285:2807-22. [PMID: 19889641 PMCID: PMC2807335 DOI: 10.1074/jbc.m109.081950] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Indexed: 01/22/2023] Open
Abstract
Phosphorylation of alpha-synuclein (alpha-syn) at Ser-129 is a hallmark of Parkinson disease and related synucleinopathies. However, the identity of the natural kinases and phosphatases responsible for regulating alpha-syn phosphorylation remain unknown. Here we demonstrate that three closely related members of the human Polo-like kinase (PLK) family (PLK1, PLK2, and PLK3) phosphorylate alpha-syn and beta-syn specifically at Ser-129 and Ser-118, respectively. Unlike other kinases reported to partially phosphorylate alpha-syn at Ser-129 in vitro, phosphorylation by PLK2 and PLK3 is quantitative (>95% conversion). Only PLK1 and PLK3 phosphorylate beta-syn at Ser-118, whereas no phosphorylation of gamma-syn was detected by any of the four PLKs (PLK1 to -4). PLK-mediated phosphorylation was greatly reduced in an isolated C-terminal fragment (residues 103-140) of alpha-syn, suggesting substrate recognition via the N-terminal repeats and/or the non-amyloid component domain of alpha-syn. PLKs specifically co-localized with phosphorylated Ser-129 (Ser(P)-129) alpha-syn in various subcellular compartments (cytoplasm, nucleus, and membranes) of mammalian cell lines and primary neurons as well as in alpha-syn transgenic mice, especially cortical brain areas involved in synaptic plasticity. Furthermore, we report that the levels of PLK2 are significantly increased in brains of Alzheimer disease and Lewy body disease patients. Taken together, these results provide biochemical and in vivo evidence of alpha-syn and beta-syn phosphorylation by specific PLKs. Our results suggest a need for further studies to elucidate the potential role of PLK-syn interactions in the normal biology of these proteins as well as their involvement in the pathogenesis of Parkinson disease and other synucleinopathies.
Collapse
Affiliation(s)
- Martial K. Mbefo
- From the Laboratory of Molecular Neurobiology and Neuroproteomics and
| | | | - Ahmed Boucharaba
- the Laboratory of Cellular Neurobiology, Brain Mind Institute, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Abid Oueslati
- From the Laboratory of Molecular Neurobiology and Neuroproteomics and
| | - Heinrich Schell
- the Laboratory for Functional Neurogenetics, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University Clinics Tübingen, D-72076 Tübingen, Germany
| | - Margot Fournier
- From the Laboratory of Molecular Neurobiology and Neuroproteomics and
| | - Diana Olschewski
- From the Laboratory of Molecular Neurobiology and Neuroproteomics and
| | - Guowei Yin
- the Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Markus Zweckstetter
- the Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
- the Deutsche Forschungsgemeinschaft Research Center for the Molecular Physiology of the Brain D-37073 Göttingen, Germany, and
| | - Eliezer Masliah
- the Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Philipp J. Kahle
- the Laboratory for Functional Neurogenetics, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University Clinics Tübingen, D-72076 Tübingen, Germany
| | - Harald Hirling
- the Laboratory of Cellular Neurobiology, Brain Mind Institute, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Hilal A. Lashuel
- From the Laboratory of Molecular Neurobiology and Neuroproteomics and
| |
Collapse
|
31
|
Lee MS, Huang YH, Huang SP, Lin RI, Wu SF, Li C. Identification of a nuclear localization signal in the polo box domain of Plk1. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1793:1571-8. [PMID: 19631697 DOI: 10.1016/j.bbamcr.2009.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 07/10/2009] [Accepted: 07/10/2009] [Indexed: 12/29/2022]
Abstract
Polo-like kinase 1 plays an essential role in mitosis and cytokinesis. Expression and nuclear localization of Plk1 during the S phase are necessary for its functions. Although it was reported that a bipartite nuclear localization signal located at the N-terminal kinase domain is required for nuclear import of Plk1, Plk1 carrying mutations in the polo box I of the polo box domain exhibited increased cytoplasmic accumulation. We further showed that the polo box domain was able to confer nuclear import of beta-galactosidase in vivo and GST-EGFP in vitro. The import carriers transportin and importin alpha were found to interact with the polo box domain directly in a Ran-GTP sensitive manner. These results indicate the presence of a nuclear localization signal in the polo box domain. A 38 amino acid sequence with the function of nuclear localization signal was identified to interact with transportin. Our findings demonstrated that a transportin-dependent nuclear localization signal is present in the polo box domain of Plk1, possibly required for efficient nuclear import. Showing little similarity to the M9 sequence, the 38 amino acid sequence identified here likely represents a novel nuclear localization signal.
Collapse
Affiliation(s)
- Moon-Sing Lee
- Department of Radiation Oncology, Buddhist Dalin Tzu Chi General Hospital, Chia-Yi, Taiwan
| | | | | | | | | | | |
Collapse
|
32
|
Schöffski P. Polo-like kinase (PLK) inhibitors in preclinical and early clinical development in oncology. Oncologist 2009; 14:559-70. [PMID: 19474163 DOI: 10.1634/theoncologist.2009-0010] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Polo-like kinases (PLKs) are a group of highly conserved serine/threonine protein kinases that play a key role in processes such as cell division and checkpoint regulation of mitosis. About 80% of human tumors, of various origins, express high levels of PLK transcripts. However, PLK mRNA is mostly absent in surrounding healthy tissues. Overexpression of PLK is associated with a poor prognosis in several tumor types and a lower overall survival rate. The overexpression of PLKs in human tumors, but not in healthy nondividing cells, makes them an attractive, selective target for cancer drug development. PLK inhibitors interfere with different stages of mitosis, such as centrosome maturation, spindle formation, chromosome separation, and cytokinesis. They induce mitotic chaos and severely perturb cell cycle progression, eventually leading to cancer cell death. Several PLK inhibitors are in development and are undergoing evaluations as potential cancer treatments. This review includes an overview of PLK inhibitors in early clinical development (i.e., BI 2536, BI 6727, GSK461364, ON 019190.Na, and HMN-214) and in advanced preclinical development (i.e., ZK-thiazolidinone, NMS-1, CYC-800, DAP-81, and LC-445). If proof of principle is confirmed in large studies, PLK inhibitors will offer a new targeted antitumor therapy for cancer patients.
Collapse
Affiliation(s)
- Patrick Schöffski
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospital Gasthuisberg, Catholic University Leuven, Leuven, Belgium.
| |
Collapse
|
33
|
Otsuki J, Nagai Y, Chiba K. Association of spindle midzone particles with polo-like kinase 1 during meiosis in mouse and human oocytes. Reprod Biomed Online 2009; 18:522-8. [PMID: 19400994 DOI: 10.1016/s1472-6483(10)60129-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Polo-like kinase 1 (Plk1) has been reported to localize to the spindle midzone during meiosis in mouse oocytes. However, it has not been reported in human oocytes. In this study, the interaction of the meiotic structures and chromosome segregation in mouse and human oocytes were studied by time-lapse differential interference contrast microscopy. Using immunocytochemical studies, the localization of polo-like kinase 1 and its association with microtubules were examined during the extrusion of first and second polar bodies. It was found that Plk1 was localized in the spindle midzone in human oocytes at anaphase I and telophase I. Also, three-dimensional confocal laser microscopy showed that the meiotic spindle midzone contained numerous dot-like particles that were stained by anti-Plk1 antibody. These particles were aligned in the plane of the meiotic midzone in mouse and human oocytes.
Collapse
Affiliation(s)
- Junko Otsuki
- Nagai Clinic, 607-1 Kamihikona, Misato, Saitama, Japan.
| | | | | |
Collapse
|
34
|
Abstract
Polo-like protein kinase 3 (Plk3) has been proposed to regulate entry into S phase and promote apoptosis in response to oxidative stress. Its mRNA contains three AU-rich elements (AREs) in its 3' untranslated region (3'-UTR) that can contribute to the rapid degradation of labile transcripts. We investigated the possibility that tristetraprolin (TTP), a tandem CCCH zinc finger protein, could promote the decay of Plk3 transcripts. TTP is known to stimulate the deadenylation and decay of mRNAs possessing one or more copies of the consensus nonamer motif UUAUUUAUU. In stable mouse fibroblast cell lines derived from wild-type and TTP knockout littermates, the decay of Plk3 transcripts after serum stimulation was slowed in the absence of TTP. The specificity of TTP for promoting the degradation of Plk3 was demonstrated by the unaltered decay of Plk3 mRNA in cell lines deficient in the TTP family members ZFP36L1 and ZFP36L2. We also found that the AREs present in the Plk3 transcript were essential for both the binding of TTP to the 3'-UTR and promoting the destruction of target transcripts in cotransfection experiments. The regulation of Plk3 mRNA stability by TTP may influence the control of the cell cycle by this protein kinase.
Collapse
|
35
|
Lee KH, Yang SC. Relation between Cyclooxygenase-2 and Polo-like Kinase-1 in Non-Small Cell Lung Cancer. Tuberc Respir Dis (Seoul) 2009. [DOI: 10.4046/trd.2009.67.4.303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Kyu-Hwa Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and Lung Institute, Seoul National University, College of Medicine, Seoul, Korea
| | - Seok-Chul Yang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and Lung Institute, Seoul National University, College of Medicine, Seoul, Korea
| |
Collapse
|
36
|
Higashimoto T, Chan N, Lee YK, Zandi E. Regulation of I(kappa)B kinase complex by phosphorylation of (gamma)-binding domain of I(kappa)B kinase (beta) by Polo-like kinase 1. J Biol Chem 2008; 283:35354-67. [PMID: 18957422 PMCID: PMC2602907 DOI: 10.1074/jbc.m806258200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 10/24/2008] [Indexed: 01/09/2023] Open
Abstract
IkappaB kinase (IKK) complex is a key regulator of NF-kappaB pathways. Signal-induced interaction of the IKKgamma (NEMO) subunit with the C-terminal IKKgamma/NEMO-binding domain (gammaBD) of IKKbeta is an essential interaction for IKK regulation. Underlying regulatory mechanism(s) of this interaction are not known. Phosphorylation of gammaBD has been suggested to play a regulatory role for IKK activation. However, a kinase that phosphorylates gammaBD has not been identified. In this study, we used a C-terminal fragment of IKKbeta as substrate and purified Polo-like kinase 1 (Plk1) from HeLa cell extracts by standard chromatography as a gammaBD kinase. Plk1 phosphorylates serines 733, 740, and 750 in the gammaBD of IKKbeta in vitro. Phosphorylating gammaBD with Plk1 decreased its affinity for IKKgamma in pulldown assay. We generated phosphoantibodies against serine 740 and showed that gammaBD is phosphorylated in vivo. Expressing a constitutively active Plk1 in mammalian cells reduced tumor necrosis factor (TNF)-induced IKK activation, resulting in decreased phosphorylation of endogenous IkappaBalpha and reduced NF-kappaB activation. To activate endogenous Plk1, cells were treated with nocodazole, which reduced TNF-induced IKK activation, and increased the phosphorylation of gammaBD. Knocking down Plk1 in mammalian cells restored TNF-induced IKK activation in nocodazole-treated cells. Activation of Plk1 inhibited TNF-induced expression of cyclin D1. In cells in which Plk1 was knocked down, TNFalpha increased expression of cyclin D1 and the proportion of cells in the S phase of the cell cycle. Taken together, this study shows that phosphorylation regulates the interaction of gammaBD of IKKbeta with IKKgamma and therefore plays a critical role for IKK activation. Moreover, we identify Plk1 as a gammaBD kinase, which negatively regulates TNF-induced IKK activation and cyclin D1 expression, thereby affecting cell cycle regulation. Untimely activation of cyclin D1 by TNFalpha can provide a potential mechanism for an involvement of TNFalpha in inflammation-induced cancer.
Collapse
Affiliation(s)
- Tomoyasu Higashimoto
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90089-9176, USA
| | | | | | | |
Collapse
|
37
|
Kawata E, Ashihara E, Kimura S, Takenaka K, Sato K, Tanaka R, Yokota A, Kamitsuji Y, Takeuchi M, Kuroda J, Tanaka F, Yoshikawa T, Maekawa T. Administration of PLK-1 small interfering RNA with atelocollagen prevents the growth of liver metastases of lung cancer. Mol Cancer Ther 2008; 7:2904-12. [PMID: 18790771 DOI: 10.1158/1535-7163.mct-08-0473] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Liver metastasis is one of the most important prognostic factors in lung cancer patients. However, current therapies are not sufficient. RNA interference provides us a powerful and promising approach for treating human diseases including cancers. Herein, we investigated the in vitro effects of PLK-1 small interfering RNA (siRNA) on human lung cancer cell lines and the in vivo usage of PLK-1 siRNA with atelocollagen as a drug delivery system in a murine liver metastasis model of lung cancer. PLK-1 was overexpressed in cell lines and in cancerous tissues from lung cancer patients. PLK-1 siRNA treatment inhibited growth and induced apoptosis in a concentration-dependent manner. To verify in vivo efficacy, we confirmed that atelocollagen was a useful drug delivery system in our model of implanted luciferase-labeled A549LUC cells by detecting reduced bioluminescence after an i.v. injection of luciferase GL3 siRNA/atelocollagen. PLK-1 siRNA/atelocollagen was also successfully transfected into cells and inhibited the progression of metastases. This study shows the efficacy of i.v. administration of PLK-1 siRNA/atelocollagen for liver metastases of lung cancer. We believe siRNA therapy will be a powerful and promising strategy against advanced lung cancer.
Collapse
Affiliation(s)
- Eri Kawata
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ito J, Yoon SY, Lee B, Vanderheyden V, Vermassen E, Wojcikiewicz R, Alfandari D, De Smedt H, Parys JB, Fissore RA. Inositol 1,4,5-trisphosphate receptor 1, a widespread Ca2+ channel, is a novel substrate of polo-like kinase 1 in eggs. Dev Biol 2008; 320:402-13. [PMID: 18621368 PMCID: PMC2895400 DOI: 10.1016/j.ydbio.2008.05.548] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 05/22/2008] [Accepted: 05/22/2008] [Indexed: 12/16/2022]
Abstract
To initiate embryo development, the sperm induces in the egg release of intracellular calcium ([Ca2+](i)). During oocyte maturation, the inositol 1,4,5-trisphosphate receptor (IP(3)R1), the channel implicated, undergoes modifications that enhance its function. We found that IP(3)R1 becomes phosphorylated during maturation at an MPM-2 epitope and that this persists until the fertilization-associated [Ca2+](i) responses cease. We also reported that maturation without ERK activity diminishes IP(3)R1 MPM-2 reactivity and [Ca2+](i) responses. Here, we show that IP(3)R1 is a novel target for Polo-like kinase1 (Plk1), a conserved M-phase kinase, which phosphorylates it at an MPM-2 epitope. Plk1 and IP(3)R1 interact in an M-phase preferential manner, and they exhibit close co-localization in the spindle/spindle poles area. This co-localization is reduced in the absence of ERK activity, as the ERK pathway regulates spindle organization and IP(3)R1 cortical re-distribution. We propose that IP(3)R1 phosphorylation by Plk1, and possibly by other M-phase kinases, underlies the delivery of spatially and temporally regulated [Ca2+](i) signals during meiosis/mitosis and cytokinesis.
Collapse
Affiliation(s)
- Junya Ito
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Matsuoka Y, Kobayashi T, Kihara K, Nagahama Y. Molecular cloning of Plk1 and Nek2 and their expression in mature gonads of the teleost fish Nile tilapia (Oreochromis niloticus). Mol Reprod Dev 2008; 75:989-1001. [PMID: 18095313 DOI: 10.1002/mrd.20843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Polo-like kinase 1 (Plk1) and NIMA-related kinase 2 (Nek2) are serine/threonine kinases that are involved in the G2/M phase transition of the cell cycle in vertebrates. Although they also play critical roles in the regulation of spermatogenesis and oogenesis, their characterization in meiosis has not been elucidated fully, particularly in teleost fish. To investigate the evolutionary significance of serine/threonine kinases in the reproductive system of fish, we cloned the cDNAs of Plk1 and Nek2 from a Nile tilapia (Oreochromis niloticus) testicular cDNA library. Tilapia Plk1 encodes a protein of 582 amino acids that shares 75% homology with human Plk1, while tilapia Nek2 encodes a putative protein of 446 amino acids that shares 70% homology with human Nek2. Analyses of tissue distribution by RT-PCR and Southern blotting revealed that Plk1 and Nek2 are strongly expressed in the ovary and testis. Northern blot analysis revealed two Nek2 transcripts in the ovary and testis with different expression patterns, which indicates the presence of two structural variants for tilapia Nek2. Moreover, the localization of Plk1 and Nek2 mRNAs in tilapia gonads was determined by in situ hybridization analysis. In the ovary, Plk1 and Nek2 were expressed predominantly in oocytes. In the testis, on the other hand, Plk1 was expressed in primary spermatocytes, while Nek2 was generally expressed in primary and secondary spermatocytes. These results suggest that Plk1 and Nek2 are key factors in the progression of meiosis in fish.
Collapse
Affiliation(s)
- Yoh Matsuoka
- Laboratory of Reproductive Biology, Department of Developmental Biology, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | | | | | | |
Collapse
|
40
|
Nishi Y, Rogers E, Robertson SM, Lin R. Polo kinases regulate C. elegans embryonic polarity via binding to DYRK2-primed MEX-5 and MEX-6. Development 2008; 135:687-97. [PMID: 18199581 DOI: 10.1242/dev.013425] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Polo kinases are known key regulators of cell divisions. Here we report a novel, non-cell division function for polo kinases in embryonic polarity of newly fertilized Caenorhabditis elegans embryos. We show that polo kinases, via their polo box domains, bind to and regulate the activity of two key polarity proteins, MEX-5 and MEX-6. These polo kinases are asymmetrically localized along the anteroposterior axis of newly fertilized C. elegans embryos in a pattern identical to that of MEX-5 and MEX-6. This asymmetric localization of polo kinases depends on MEX-5 and MEX-6, as well as genes regulating MEX-5 and MEX-6 asymmetry. We identify an amino acid of MEX-5, T(186), essential for polo binding and show that T(186) is important for MEX-5 function in vivo. We also show that MBK-2, a developmentally regulated DYRK2 kinase activated at meiosis II, primes T(186) for subsequent polo kinase-dependent phosphorylation. Prior phosphorylation of MEX-5 at T(186) greatly enhances phosphorylation of MEX-5 by polo kinases in vitro. Our results provide a mechanism by which MEX-5 and MEX-6 function is temporally regulated during the crucial oocyte-to-embryo transition.
Collapse
Affiliation(s)
- Yuichi Nishi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | |
Collapse
|
41
|
Abstract
The serum/glucocorticoid-induced kinase Sgk1 plays an important role in the regulation of epithelial ion transport. This kinase is very rapidly regulated at the transcriptional level as well as via posttranslational modifications involving phosphorylation by the MAP or PI-3 kinase pathways and/or ubiquitylation. Although Sgk1 is a cell survival kinase, its primary role likely concerns the regulation of epithelial ion transport, as suggested by the phenotype of Sgk1-null mice, which display a defect in Na( homeostasis owing to disturbed renal tubular Na+ handling. In this review we first discuss the molecular, cellular, and regulatory aspects of Sgk1 and its paralogs. We then discuss its roles in the physiology and pathophysiology of epithelial ion transport.
Collapse
Affiliation(s)
- Johannes Loffing
- Department of Medicine: Unit of Anatomy, University of Fribourg, CH-1700 Fribourg, Switzerland.
| | | | | |
Collapse
|
42
|
Abstract
Human polo-like kinase 1 (PLK1) is essential during mitosis and in the maintenance of genomic stability. PLK1 is overexpressed in human tumours and has prognostic potential in cancer, indicating its involvement in carcinogenesis and its potential as a therapeutic target. The use of different PLK1 inhibitors has increased our knowledge of mitotic regulation and allowed us to assess their ability to suppress tumour growth in vivo. We address the structural features of the kinase domain and the unique polo-box domain of PLK1 that are most suited for drug development and discuss our current understanding of the therapeutic potential of PLK1.
Collapse
Affiliation(s)
- Klaus Strebhardt
- Department of Obstetrics and Gynecology, School of Medicine, J.W. Goethe-University, Theodore-Stern-Kai 7, 60590 Frankfurt, Germany.
| | | |
Collapse
|
43
|
Nair SV, Del Valle H, Gross PS, Terwilliger DP, Smith LC. Macroarray analysis of coelomocyte gene expression in response to LPS in the sea urchin. Identification of unexpected immune diversity in an invertebrate. Physiol Genomics 2005; 22:33-47. [PMID: 15827237 DOI: 10.1152/physiolgenomics.00052.2005] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The purple sea urchin, Strongylocentrotus purpuratus, is a member of the phylum Echinodermata, which is basal to the phylum Chordata within the deuterostome lineage of the animal kingdom. This relationship makes the analysis of the sea urchin immune system relevant to understanding the evolution of the deuterostome immune system leading to the Vertebrata. Subtractive suppression hybridization was employed to generate cDNA probes for screening high-density arrayed, conventional cDNA libraries to identify genes that were upregulated in coelomocytes responding to lipopolysaccharide. Results from 1,247 expressed sequence tags (ESTs) were used to infer that coelomocytes upregulated genes involved in RNA splicing, protein processing and targeting, secretion, endosomal activities, cell signaling, and alterations to the cytoskeletal architecture including interactions with the extracellular matrix. Of particular note was a set of transcripts represented by 60% of the ESTs analyzed, which encoded a previously uncharacterized family of closely related proteins, provisionally designated as 185/333. These transcripts exhibited a significant level of variation in their nucleotide sequence and evidence of putative alternative splicing that could yield up to 15 translatable elements. On the basis of the striking increase in gene expression in response to lipopolysaccharide and the unexpected level of diversity of the 185/333 messages, we propose that this set of transcripts encodes a family of putative immune response proteins that may represent a major component of an immunological response to bacterial challenge.
Collapse
Affiliation(s)
- Sham V Nair
- Department of Biological Sciences, George Washington University, Washington, District of Columbia 20052, USA
| | | | | | | | | |
Collapse
|
44
|
Glover DM. Polo kinase and progression through M phase in Drosophila: a perspective from the spindle poles. Oncogene 2005; 24:230-7. [PMID: 15640838 DOI: 10.1038/sj.onc.1208279] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genes for the mitotic kinases Polo and Aurora A were first identified in Drosophila through screens of maternal effect lethal mutations for defects in spindle pole behaviour. These enzymes have been shown to be highly conserved and required for multiple functions in mitosis. Polo is stabilized at the centrosome by association with Hsp90. It is required for centrosome maturation on M-phase entry in order to recruit the gamma-tubulin ring complex and activate the abnormal spindle protein, Asp. These events facilitate the nucleation of minus ends of microtubules at the centrosome. The localization of Polo at the kinetochore and the mid-zone of the central spindle together with the phenotypes of polo mutants point to functions at the metaphase to anaphase transition and in cytokinesis. The latter are mediated, at least in part, through the Pavarotti kinesin-like motor protein and its conserved counterparts in other metazoans.
Collapse
Affiliation(s)
- David M Glover
- Cancer Research UK Cell Cycle Genetics Research Group, Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK.
| |
Collapse
|
45
|
Abstract
Polo-like kinases (Plks) play pivotal roles in the regulation of cell cycle progression. Plk1, the best characterized family member among mammalian Plks, strongly promotes the progression of cells through mitosis. Furthermore, Plk1 is found to be overexpressed in a variety of human tumors and its expression correlates with cellular proliferation and prognosis of tumor patients. Although all Plks share two conserved elements, the N-terminal Ser/Thr kinase domain and a highly homologues C-terminal region termed the polo-box motif, their functions diverge considerably. While Plk1 is inhibited by different checkpoint pathways, Plk2 and Plk3 are activated by the spindle checkpoint or the DNA damage checkpoint. Thus, Plk2 and Plk3 seem to inhibit oncogenic transformation. Deregulation of Plk1 activity contributes to genetic instability, which in turn leads to oncogenic transformation. In contrast, Plk2 and Plk3 are involved in checkpoint-mediated cell cycle arrest to ensure genetic stability, thereby inhibiting the accumulation of genetic defects. In this review, we shall discuss the roles of Plks in oncogenesis and Plk1 as a target for therapeutic intervention against cancer.
Collapse
Affiliation(s)
- Frank Eckerdt
- Department of Gynecology and Obstetrics, Medical School, JW Goethe-University, Theodor-Stern-Kai 7, Frankfurt D-60590, Germany.
| | | | | |
Collapse
|
46
|
Winkles JA, Alberts GF. Differential regulation of polo-like kinase 1, 2, 3, and 4 gene expression in mammalian cells and tissues. Oncogene 2005; 24:260-6. [PMID: 15640841 DOI: 10.1038/sj.onc.1208219] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The four mammalian polo-like kinase (Plk) family members are critical regulators of cell cycle progression, mitosis, cytokinesis, and the DNA damage response. Research conducted to date has primarily investigated the expression patterns, structural features, substrates, and subcellular distribution of these important serine-threonine kinases. Here, we review the published data describing the regulation of Plk1, 2, 3, or 4 gene expression either during mammalian cell cycle progression or in tissue samples. These studies have demonstrated that the Plk family genes are differentially expressed following growth factor stimulation of quiescent fibroblasts. Furthermore, although Plk1 and Plk2 mRNA and protein levels are coordinately regulated during cell cycle progression, this is not the case for Plk3. In addition, the Plk1, 2 and 4 proteins have relatively short intracellular half-lives, but Plk3 is very stable. The Plk family genes are also differentially regulated in stressed cells; for example, when DNA-damaging agents are added to cycling cells, Plk1 expression decreases, but Plk2 and Plk3 expression increases. Finally, Plk1, 2, 3, and 4 are expressed to varying degrees in different human tissue types and it has been reported that Plk1 expression is increased and Plk3 expression is decreased in tumor specimens. These results indicate that the differential regulation of Plk family member gene expression is one cellular strategy for controlling Plk activity in mammalian cells.
Collapse
Affiliation(s)
- Jeffrey A Winkles
- Department of Surgery, University of Maryland Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | |
Collapse
|
47
|
D'Amours D, Amon A. At the interface between signaling and executing anaphase--Cdc14 and the FEAR network. Genes Dev 2005; 18:2581-95. [PMID: 15520278 DOI: 10.1101/gad.1247304] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Anaphase is the stage of the cell cycle when the duplicated genome is separated to opposite poles of the cell. The irreversible nature of this event confers a unique burden on the cell and it is therefore not surprising that the regulation of this cell cycle stage is complex. In budding yeast, a signaling network known as the Cdc fourteen early anaphase release (FEAR) network and its effector, the protein phosphatase Cdc14, play a key role in the coordination of the multiple events that occur during anaphase, such as partitioning of the DNA, regulation of spindle stability, activation of microtubule forces, and initiation of mitotic exit. These functions of the FEAR network contribute to genomic stability by coordinating the completion of anaphase and the execution of mitotic exit.
Collapse
Affiliation(s)
- Damien D'Amours
- Center for Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
48
|
Bachewich C, Masker K, Osmani S. The polo-like kinase PLKA is required for initiation and progression through mitosis in the filamentous fungus Aspergillus nidulans. Mol Microbiol 2005; 55:572-87. [PMID: 15659171 DOI: 10.1111/j.1365-2958.2004.04404.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polo-like kinases (PLK) function during multiple stages of mitotic progression and in cytokinesis. We identified and cloned a PLK homologue in Aspergillus nidulans, plkA, which is the first PLK reported in a filamentous fungus and the largest member of the PLK family to date. As plkA was essential, the effects of overexpression and localization of protein in living cells were explored to determine PLKA function. Overexpression of PLKA permitted hyphal formation, but blocked nuclear division in interphase. In NIMA or NIMT temperature-sensitive backgrounds, overexpression of PLKA impaired normal entry into mitosis upon release from restrictive temperature, supporting a role for PLKA during G2/M. In the few mitotic cells present, spindles were monopolar or disorganized, and chromatin condensation and segregation were impaired, suggesting additional roles for PLKA in spindle formation and in chromosome dynamics. Consistent with this, green fluorescent protein (GFP)-tagged PLKA could localize to the spb during interphase, and to the spb and nucleus throughout mitosis. Intriguingly, PLKA remained on the spb during telophase and into G1, in contrast to other PLK. In addition, spb localization was independent of NIMA function, unlike that demonstrated in Schizosaccharomyces pombe where PLK localization to the spb required the NIMA homologue Fin1. PLKA was not detected at cortical, septation-associated sites, and overexpression did not drive septum formation, also in contrast to that observed with other PLK. Therefore, PLKA is important for multiple events during mitosis, similar to PLK in higher organisms, but exhibits differences in size, localization and influence on septation/cytokinesis, suggesting additional novel regulatory features.
Collapse
Affiliation(s)
- Catherine Bachewich
- Department of Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, QC, H4B 1R6, Canada.
| | | | | |
Collapse
|
49
|
Yamada SI, Ohira M, Horie H, Ando K, Takayasu H, Suzuki Y, Sugano S, Hirata T, Goto T, Matsunaga T, Hiyama E, Hayashi Y, Ando H, Suita S, Kaneko M, Sasaki F, Hashizume K, Ohnuma N, Nakagawara A. Expression profiling and differential screening between hepatoblastomas and the corresponding normal livers: identification of high expression of the PLK1 oncogene as a poor-prognostic indicator of hepatoblastomas. Oncogene 2004; 23:5901-11. [PMID: 15221005 DOI: 10.1038/sj.onc.1207782] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Revised: 03/26/2004] [Accepted: 04/01/2004] [Indexed: 12/12/2022]
Abstract
Hepatoblastoma is one of the most common malignant liver tumors in young children. Recent evidences have suggested that the abnormalities in Wnt signaling pathway, as seen in frequent mutation of the beta-catenin gene, may play a role in the genesis of hepatoblastoma. However, the precise mechanism to cause the tumor has been elusive. To identify novel hepatoblastoma-related genes for unveiling the molecular mechanism of the tumorigenesis, a large-scale cloning of cDNAs and differential screening of their expression between hepatoblastomas and the corresponding normal livers were performed. We constructed four full-length-enriched cDNA libraries using an oligo-capping method from the primary tissues which included two hepatoblastomas with high levels of alpha-fetoprotein (AFP), a hepatoblastoma without production of AFP, and a normal liver tissue corresponded to the tumor. Among the 10,431 cDNAs randomly picked up and successfully sequenced, 847 (8.1%) were the genes with unknown function. Of interest, the expression profile among the two subsets of hepatoblastoma and a normal liver was extremely different. A semiquantitative RT-PCR analysis showed that 86 out of 1188 genes tested were differentially expressed between hepatoblastomas and the corresponding normal livers, but that only 11 of those were expressed at high levels in the tumors. Notably, PLK1 oncogene was expressed at very high levels in hepatoblastomas as compared to the normal infant's livers. Quantitative real-time RT-PCR analysis for the PLK1 mRNA levels in 74 primary hepatoblastomas and 29 corresponding nontumorous livers indicated that the patients with hepatoblastoma with high expression of PLK1 represented significantly poorer outcome than those with its low expression (5-year survival rate: 55.9 vs 87.0%, respectively, p=0.042), suggesting that the level of PLK1 expression is a novel marker to predict the prognosis of hepatoblastoma. Thus, the differentially expressed genes we have identified may become a useful tool to develop new diagnostic as well as therapeutic strategies of hepatoblastoma.
Collapse
Affiliation(s)
- Shin-ichi Yamada
- Division of Biochemistry, Chiba Cancer Center Research Institute, Chiba 260-8717, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Liu X, Zhou T, Kuriyama R, Erikson RL. Molecular interactions of Polo-like-kinase 1 with the mitotic kinesin-like protein CHO1/MKLP-1. J Cell Sci 2004; 117:3233-46. [PMID: 15199097 DOI: 10.1242/jcs.01173] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polo-like kinases and kinesin-like motor proteins are among the many proteins implicated in the execution of cytokinesis. Polo-like-kinase 1 (Plk1) interacts with the mitotic kinesin-like motor protein CHO1/MKLP-1 during anaphase and telophase, and CHO1/MKLP-1 is a Plk1 substrate in vitro. Here, we explore the molecular interactions of these two key contributors to mitosis and cytokinesis. Using the transient transfection approach, we show that the C-terminus of Plk1 binds CHO1/MKLP-1 in a Polo-box-dependent manner and that the stalk domain of CHO1/MKLP-1 is responsible for its binding to Plk1. The stalk domain was found to localize with Plk1 to the mid-body, and Plk1 appears to be mislocalized in CHO1/MKLP-1-depleted cells during late mitosis. We showed that Ser904 and Ser905 are two major Plk1 phosphorylation sites. Using the vector-based RNA interference approach, we showed that depletion of CHO1/MKLP-1 causes the formation of multinucleate cells with more centrosomes, probably because of a defect in the early phase of cytokinesis. Overexpression of a non-Plk1-phosphorylatable CHO1 mutant caused cytokinesis defects, presumably because of dominant negative effect of the construct. Finally, CHO1-depletion-induced multinucleation could be partially rescued by co-transfection of a non-degradable hamster wild-type CHO1 construct, but not an unphosphorylatable mutant. These data provide more detailed information about the interaction between Plk1 and CHO1/MKLP-1, and the significance of this is discussed.
Collapse
Affiliation(s)
- Xiaoqi Liu
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.
| | | | | | | |
Collapse
|