1
|
Sedmidubská B, Kočišek J. Interaction of low-energy electrons with radiosensitizers. Phys Chem Chem Phys 2024; 26:9112-9136. [PMID: 38376461 DOI: 10.1039/d3cp06003a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
We provide an experimentalist's perspective on the present state-of-the-art in the studies of low-energy electron interactions with common radiosensitizers, including compounds used in combined chemo-radiation therapy and their model systems. Low-energy electrons are important secondary species formed during the interaction of ionizing radiation with matter. Their role in the radiation chemistry of living organisms has become an important topic for more than 20 years. With the increasing number of works and reviews in the field, we would like to focus here on a very narrow area of compounds that have been shown to have radio-sensitizing properties on the one hand, and high reactivity towards low-energy electrons on the other hand. Gas phase experiments studying electron attachment to isolated molecules and environmental effects on reaction dynamics are reviewed for modified DNA components, nitroimidazoles, and organometallics. In the end, we provide a perspective on the future directions that may be important for transferring the fundamental knowledge about the processes induced by low-energy electrons into practice in the field of rational design of agents for concomitant chemo-radiation therapy.
Collapse
Affiliation(s)
- Barbora Sedmidubská
- J. Heyrovský Institute of Physical Chemistry of the CAS, Dolejškova 3, 182223 Prague, Czech Republic.
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, 11519 Prague, Czech Republic
- Institut de Chimie Physique, UMR 8000 CNRS and Faculté des sciences d'Orsay, Université Paris Saclay, F-91405 Orsay Cedex, France
| | - Jaroslav Kočišek
- J. Heyrovský Institute of Physical Chemistry of the CAS, Dolejškova 3, 182223 Prague, Czech Republic.
| |
Collapse
|
2
|
Lippert B, Sanz Miguel PJ. Beyond sole models for the first steps of Pt-DNA interactions: Fundamental properties of mono(nucleobase) adducts of PtII coordination compounds. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Hreusova M, Brabec V, Novakova O. Processing and Bypass of a Site-Specific DNA Adduct of the Cytotoxic Platinum-Acridinylthiourea Conjugate by Polymerases Involved in DNA Repair: Biochemical and Thermodynamic Aspects. Int J Mol Sci 2021; 22:ijms221910838. [PMID: 34639179 PMCID: PMC8509567 DOI: 10.3390/ijms221910838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 11/24/2022] Open
Abstract
DNA-dependent DNA and RNA polymerases are important modulators of biological functions such as replication, transcription, recombination, or repair. In this work performed in cell-free media, we studied the ability of selected DNA polymerases to overcome a monofunctional adduct of the cytotoxic/antitumor platinum–acridinylthiourea conjugate [PtCl(en)(L)](NO3)2 (en = ethane-1,2-diamine, L = 1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea) (ACR) in its favored 5′-CG sequence. We focused on how a single site-specific ACR adduct with intercalation potency affects the processivity and fidelity of DNA-dependent DNA polymerases involved in translesion synthesis (TLS) and repair. The ability of the G(N7) hybrid ACR adduct formed in the 5′-TCGT sequence of a 24-mer DNA template to inhibit the synthesis of a complementary DNA strand by the exonuclease-deficient Klenow fragment of DNA polymerase I (KFexo−) and human polymerases eta, kappa, and iota was supplemented by thermodynamic analysis of the polymerization process. Thermodynamic parameters of a simulated translesion synthesis across the ACR adduct were obtained by using microscale thermophoresis (MST). Our results show a strong inhibitory effect of an ACR adduct on enzymatic TLS: there was only small synthesis of a full-length product (less than 10%) except polymerase eta (~20%). Polymerase eta was able to most efficiently bypass the ACR hybrid adduct. Incorporation of a correct dCMP opposite the modified G residue is preferred by all the four polymerases tested. On the other hand, the frequency of misinsertions increased. The relative efficiency of misinsertions is higher than that of matched cytidine monophosphate but still lower than for the nonmodified control duplex. Thermodynamic inspection of the simulated TLS revealed a significant stabilization of successively extended primer/template duplexes containing an ACR adduct. Moreover, no significant decrease of dissociation enthalpy change behind the position of the modification can contribute to the enzymatic TLS observed with the DNA-dependent, repair-involved polymerases. This TLS could lead to a higher tolerance of cancer cells to the ACR conjugate compared to its enhanced analog, where thiourea is replaced by an amidine group: [PtCl(en)(L)](NO3)2 (complex AMD, en = ethane-1,2-diamine, L = N-[2-(acridin-9-ylamino)ethyl]-N-methylpropionamidine).
Collapse
Affiliation(s)
- Monika Hreusova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ 61265 Brno, Czech Republic; (M.H.); (V.B.)
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ 61265 Brno, Czech Republic; (M.H.); (V.B.)
- Department of Biophysics, Faculty of Science, Palacky University, Slechtitelu 27, CZ 78371 Olomouc, Czech Republic
| | - Olga Novakova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ 61265 Brno, Czech Republic; (M.H.); (V.B.)
- Correspondence: ; Tel.: +420-541-517-135
| |
Collapse
|
4
|
Hyeraci M, Scalcon V, Folda A, Labella L, Marchetti F, Samaritani S, Rigobello MP, Dalla Via L. New Platinum(II) Complexes Affecting Different Biomolecular Targets in Resistant Ovarian Carcinoma Cells. ChemMedChem 2021; 16:1956-1966. [PMID: 33751814 PMCID: PMC8252049 DOI: 10.1002/cmdc.202100075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/04/2021] [Indexed: 12/15/2022]
Abstract
Resistance to platinum-based anticancer drugs represents an important limit for their clinical effectiveness and one of the most important field of investigation in the context of platinum compounds. From our previous studies, PtII complexes containing the triphenylphosphino moiety have been emerging as promising agents, showing significant cytotoxicity to resistant ovarian carcinoma cells. Two brominated triphenylphosphino trans-platinum derivatives were prepared and evaluated on human tumor cell lines, sensitive and resistant to cisplatin. The new complexes exert a notable antiproliferative effect on resistant ovarian carcinoma cells, showing a remarkable intracellular accumulation and the ability to interact with different intracellular targets. The interaction with DNA, the collapse of mitochondrial transmembrane potential, and the impairment of intracellular redox state were demonstrated. Moreover, a selectivity towards the selenocysteine of thioredoxin reductase was observed. The mechanism of action is discussed with regard to the resistance phenomenon in ovarian carcinoma cells.
Collapse
Affiliation(s)
- Mariafrancesca Hyeraci
- Department of Pharmaceutical and Pharmacological SciencesUniversity of PadovaVia F. Marzolo, 535131PadovaItaly
| | - Valeria Scalcon
- Department of Biomedical SciencesUniversity of PadovaVia U. Bassi 58/b35131PadovaItaly
| | - Alessandra Folda
- Department of Biomedical SciencesUniversity of PadovaVia U. Bassi 58/b35131PadovaItaly
| | - Luca Labella
- Department of Chemistry and Industrial ChemistryUniversity of PisaVia G. Moruzzi 1356124PisaItaly
| | - Fabio Marchetti
- Department of Chemistry and Industrial ChemistryUniversity of PisaVia G. Moruzzi 1356124PisaItaly
| | - Simona Samaritani
- Department of Chemistry and Industrial ChemistryUniversity of PisaVia G. Moruzzi 1356124PisaItaly
| | - Maria Pia Rigobello
- Department of Biomedical SciencesUniversity of PadovaVia U. Bassi 58/b35131PadovaItaly
| | - Lisa Dalla Via
- Department of Pharmaceutical and Pharmacological SciencesUniversity of PadovaVia F. Marzolo, 535131PadovaItaly
| |
Collapse
|
5
|
Liang Z, Lin J, Gong X, Cheng Y, Huang C, Zhang J, Wu X, Wang F, Zhao Y, Wu K. Reactions of a photoactivatable diazido Pt(iv) anticancer complex with a single-stranded oligodeoxynucleotide. Dalton Trans 2021; 49:11249-11259. [PMID: 32756682 DOI: 10.1039/d0dt02208j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Platinum based anticancer agents are widely applied in clinic and their major target is believed to be DNA. Herein, the interaction of a photoactivatable diazido Pt(iv) anticancer prodrug trans,trans,trans-[Pt(N3)2(OH)2(py)2] (py = pyridine; 1) with a 15-mer single-G-containing oligodeoxynucleotide (ODN I: 5'-CT2CTCTTG8T9CT11TCTC-3') was investigated by mass spectrometric methods. Up to penta-platinated ODN I adducts were identified from primary mass spectra while the mono- and di-platinated adducts had the highest intensity. Fragmentation of mono-, di- and tri-platinated I adducts in tandem MS revealed that T2, G8, T11 and T9 are binding sites. No cytosine sites were identified which may be due to the facile loss of Pt adducts from cytosine during CID. The intensity of {Pt(py)2}-bound adducts was comparable to that of {Pt(N3)(py)2}-bound adducts, indicating that the photo-reduction pathway of complex 1 from Pt(iv) to Pt(ii) through two one-electron donations from two azides was substantial. Moreover, no transformation of N3 to NH3 on the {Pt(N3)(py)2}-bound adducts was observed, whereas it is very popular during the reactions of complexes with short ODNs or mono-nucleotides. The oxidation on I induced by the reactive oxygen species (ROS) formed by the photodecomposition of complex 1 was significant, and the oxidation of G8 to 8-hydroxyguanine (8-OH-G), spiroiminodihydantoin (Sp) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) was discovered. These results unambiguously revealed a sequence-length-dependent photochemical reactivity of complex 1 when it interacted with different ODNs, providing deeper understanding in the reactivity of photoactivatable diazido anticancer Pt(iv) prodrugs to DNA.
Collapse
Affiliation(s)
- Zujun Liang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Jiafan Lin
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Xianxian Gong
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Yiyu Cheng
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Chao Huang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Jishuai Zhang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Xiaoqin Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Kui Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| |
Collapse
|
6
|
Nkabyo HA, Oyenihi OR, Olaoye O, Sikiti P, Bosman GW, Luckay RC. Photoactive Pt II and Pd II complexes of N, N-diethyl- N′-3,4,5-trimethoxybenzoylthiourea: synthesis, crystal structures, DFT and cytotoxicity studies. NEW J CHEM 2021. [DOI: 10.1039/d1nj02320a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
New trans-PdII/PtII acylthiourea complexes prepared by photo-induced isomerism are found to be more cytotoxic than cis-PdII/PtII against human prostate cancer and normal embryonic kidney cell lines.
Collapse
Affiliation(s)
- H. A. Nkabyo
- Department of Chemistry and Polymer Science
- Stellenbosch University
- South Africa
| | - O. R. Oyenihi
- Department of Pharmacology
- University of the Free State
- Bloemfontein 9300
- South Africa
| | - O. Olaoye
- Laser Research Institute
- Department of Physics
- Stellenbosch University
- South Africa
| | - P. Sikiti
- Department of Chemistry and Polymer Science
- Stellenbosch University
- South Africa
| | - G. W. Bosman
- Laser Research Institute
- Department of Physics
- Stellenbosch University
- South Africa
| | - R. C. Luckay
- Department of Chemistry and Polymer Science
- Stellenbosch University
- South Africa
| |
Collapse
|
7
|
Gallenito MJ, Qasim TS, Tutol JN, Prakash V, Dodani SC, Meloni G. A recombinant platform to characterize the role of transmembrane protein hTMEM205 in Pt(II)-drug resistance and extrusion. Metallomics 2020; 12:1542-1554. [PMID: 32789331 DOI: 10.1039/d0mt00114g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Platinum-coordination complexes are among the most effective chemotherapeutic drugs used in clinics for the treatment of cancer. Despite their efficacy, cancer cells can develop drug resistance leading to treatment failure and relapse. Cellular uptake and extrusion of Pt(ii)-complexes mediated by transmembrane proteins are critical in controlling the intracellular concentration of Pt(ii)-drugs and in developing pre-target resistance. TMEM205 is a human transmembrane protein (hTMEM205) overexpressed in cancer cells that are resistant to cisplatin, but its molecular function underlying - resistance remains elusive. We developed a low-cost and high-throughput recombinant expression platform coupled to in vivo functional resistance assays to study the molecular mechanism by which the orphan hTMEM205 protects against Pt(ii)-complex toxicity. Based on the original observation by the Rosenberg group, which led to the discovery of cisplatin, we performed quantitative analysis of the effects of Pt(ii)-coordination complexes on cellular growth and filamentation in E. coli cells expressing hTMEM205. By coupling our methods with Pt quantification and cellular profiling in control and hTMEM205-expressing cells, we demonstrate that hTMEM205 mediates Pt(ii)-drug export selectively towards cisplatin and oxaliplatin but not carboplatin. By mutation analysis, we reveal that hTMEM205 recognizes and allows Pt(ii)-extrusion by a putative sulfur-based translocation mechanism, thereby resulting in pre-target resistance. Thus, hTMEM205 represents a new potential target that can be exploited to reduce cellular resistance towards Pt(ii)-drugs.
Collapse
Affiliation(s)
- Marc J Gallenito
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Tahir S Qasim
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Jasmine N Tutol
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Ved Prakash
- Imaging and Histology Core and Olympus Discovery Center, Office of Research, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Sheel C Dodani
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Gabriele Meloni
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
| |
Collapse
|
8
|
Hreusova M, Novakova O, Brabec V. Thermodynamic Insights by Microscale Thermophoresis into Translesion DNA Synthesis Catalyzed by DNA Polymerases Across a Lesion of Antitumor Platinum-Acridine Complex. Int J Mol Sci 2020; 21:ijms21207806. [PMID: 33096927 PMCID: PMC7589001 DOI: 10.3390/ijms21207806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 11/16/2022] Open
Abstract
Translesion synthesis (TLS) through DNA adducts of antitumor platinum complexes has been an interesting aspect of DNA synthesis in cells treated with these metal-based drugs because of its correlation to drug sensitivity. We utilized model systems employing a DNA lesion derived from a site-specific monofunctional adduct formed by antitumor [PtCl(en)(L)](NO3)2 (complex AMD, en = ethane-1,2-diamine, L = N-[2-(acridin-9-ylamino)ethyl]-N-methylpropionamidine) at a unique G residue. The catalytic efficiency of TLS DNA polymerases, which differ in their processivity and fidelity for the insertion of correct dCTP, with respect to the other incorrect nucleotides, opposite the adduct of AMD, was investigated. For a deeper understanding of the factors that control the bypass of the site-specific adducts of AMD catalyzed by DNA polymerases, we also used microscale thermophoresis (MST) to measure the thermodynamic changes associated with TLS across a single, site-specific adduct formed in DNA by AMD. The relative catalytic efficiency of the investigated DNA polymerases for the insertion of correct dCTP, with respect to the other incorrect nucleotides, opposite the AMD adduct, was reduced. Nevertheless, incorporation of the correct C opposite the G modified by AMD of the template strand was promoted by an increasing thermodynamic stability of the resulting duplex. The reduced relative efficiency of the investigated DNA polymerases may be a consequence of the DNA intercalation of the acridine moiety of AMD and the size of the adduct. The products of the bypass of this monofunctional lesion produced by AMD and DNA polymerases also resulted from the misincorporation of dNTPs opposite the platinated G residues. The MST analysis suggested that thermodynamic factors may contribute to the forces that governed enhanced incorporation of the incorrect dNTPs by DNA polymerases.
Collapse
Affiliation(s)
- Monika Hreusova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic; (M.H.); (O.N.)
- Department of Biophysics, Faculty of Science, Palacky University, Slechtitelu 27, CZ 78371 Olomouc, Czech Republic
| | - Olga Novakova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic; (M.H.); (O.N.)
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic; (M.H.); (O.N.)
- Correspondence: ; Tel.: +420-541-517-148
| |
Collapse
|
9
|
Oliveira L, Caquito JM, Rocha MS. Transplatin ineffectiveness against cancer from a molecular perspective: A single-molecule force-spectroscopy study. Phys Rev E 2020; 101:062412. [PMID: 32688610 DOI: 10.1103/physreve.101.062412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/25/2020] [Indexed: 11/07/2022]
Abstract
By performing single-molecule force spectroscopy with optical tweezers, we have characterized the interaction between the platinum-based compound transplatin and the DNA molecule, establishing a critical comparison with its isomer cisplatin. While transplatin is ineffective against tumor cells, its isomer is one of the most used drugs in current chemotherapies, and a molecular study on this difference performed at the single-molecule level was lacking until the present work. Our experiments show that transplatin binds DNA under low chloride concentrations (a situation usually found inside many cells) with an equilibrium association binding constant about four orders of magnitude lower than cisplatin. In addition, we have found that, at saturation, transplatin binds preferentially forming interstrand cross links and monoadducts, a situation very different from cisplatin, which forms preferentially intrastrand cross links. Such differences explain the ineffectiveness of transplatin in killing tumor cells. From a physical point of view, the present study advances in using the mechanical properties of the DNA molecule as sensors to evaluate the therapeutic efficiency of drugs.
Collapse
Affiliation(s)
- L Oliveira
- Departamento de Física, Universidade Federal de Viçosa. Viçosa, Minas Gerais, Brazil
| | - J M Caquito
- Departamento de Física, Universidade Federal de Viçosa. Viçosa, Minas Gerais, Brazil
| | - M S Rocha
- Departamento de Física, Universidade Federal de Viçosa. Viçosa, Minas Gerais, Brazil
| |
Collapse
|
10
|
Kishimoto T, Yoshikawa Y, Yoshikawa K, Komeda S. Different Effects of Cisplatin and Transplatin on the Higher-Order Structure of DNA and Gene Expression. Int J Mol Sci 2019; 21:E34. [PMID: 31861648 PMCID: PMC6981875 DOI: 10.3390/ijms21010034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022] Open
Abstract
Despite the effectiveness of cisplatin as an anticancer agent, its trans-isomer, transplatin, is clinically ineffective. Although both isomers target nuclear DNA, there is a large difference in the magnitude of their biological effects. Here, we compared their effects on gene expression in an in vitro luciferase assay and quantified their effects on the higher-order structure of DNA using fluorescence microscopy (FM) and atomic force microscopy (AFM). The inhibitory effect of cisplatin on gene expression was about 7 times that of transplatin. Analysis of the fluctuation autocorrelation function of the intrachain Brownian motion of individual DNA molecules showed that cisplatin increases the spring and damping constants of DNA by one order of magnitude and these visco-elastic characteristics tend to increase gradually over several hours. Transplatin had a weaker effect, which tended to decrease with time. These results agree with a stronger inhibitory effect of cisplatin on gene expression. We discussed the characteristic effects of the two compounds on the higher-order DNA structure and gene expression in terms of the differences in their binding to DNA.
Collapse
Affiliation(s)
- Toshifumi Kishimoto
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan; (T.K.); (Y.Y.); (K.Y.)
| | - Yuko Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan; (T.K.); (Y.Y.); (K.Y.)
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan; (T.K.); (Y.Y.); (K.Y.)
| | - Seiji Komeda
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670, Japan
| |
Collapse
|
11
|
Brown S, Lockart MM, Thomas CS, Bowman MK, Woski SA, Vincent JB. Molecular Structure of Binary Chromium(III)-DNA Adducts. Chembiochem 2019; 21:628-631. [PMID: 31472032 DOI: 10.1002/cbic.201900436] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Indexed: 11/08/2022]
Abstract
Chromium(VI) is a carcinogen and mutagen, and its mechanisms of action are proposed to involve binding of its reduction product, chromium(III), to DNA. The manner in which chromium(III) binds DNA has not been established, particularly at a molecular level. Analysis of oligonucleotide duplex DNAs by NMR, EPR, and IR spectroscopies in the presence of chromium(III) allows the elucidation of the Cr binding site. The metal centers were found to interact exclusively with guanine N7 positions. No evidence of chromium interactions with other bases or backbone phosphates nor of Cr forming intra-strand crosslinks between neighboring guanine residues was observed.
Collapse
Affiliation(s)
- Silas Brown
- The University of Alabama, Department of Chemistry and Biochemistry, Box 870336, 250 Hackberry Lane, Tuscaloosa, AL, 43587-0336, USA
| | - Molly M Lockart
- The University of Alabama, Department of Chemistry and Biochemistry, Box 870336, 250 Hackberry Lane, Tuscaloosa, AL, 43587-0336, USA
| | - C Sumner Thomas
- The University of Alabama, Department of Chemistry and Biochemistry, Box 870336, 250 Hackberry Lane, Tuscaloosa, AL, 43587-0336, USA
| | - Michael K Bowman
- The University of Alabama, Department of Chemistry and Biochemistry, Box 870336, 250 Hackberry Lane, Tuscaloosa, AL, 43587-0336, USA
| | - Stephen A Woski
- The University of Alabama, Department of Chemistry and Biochemistry, Box 870336, 250 Hackberry Lane, Tuscaloosa, AL, 43587-0336, USA
| | - John B Vincent
- The University of Alabama, Department of Chemistry and Biochemistry, Box 870336, 250 Hackberry Lane, Tuscaloosa, AL, 43587-0336, USA
| |
Collapse
|
12
|
|
13
|
Hreusová M, Nováková O, Kostrhunová H, Prachařová J, Brabec V, Kašpárková J. DNA modification by cisplatin-like Pt(II) complexes containing 1,1′-binaphtyl-2,2′-diamine ligand does not correlate with their antiproliferative activity in cancer cells. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Sun T, Zhang G, Wang Q, Guo Z, Chen Q, Chen X, Lu Y, Zhang Y, Zhang Y, Guo Q, Gao X, Cheng Y, Jiang C. Pre-blocked molecular shuttle as an in-situ real-time theranostics. Biomaterials 2019; 204:46-58. [PMID: 30878796 DOI: 10.1016/j.biomaterials.2019.02.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/23/2019] [Accepted: 02/19/2019] [Indexed: 02/05/2023]
Abstract
Real-time monitor of drug-release from drug formulations in a noninvasive way can provide spatio-temporal information for drug activation and guide further clinical rational administration. In this work, a molecular shuttle, as a typical nanosized artificial molecular machine, was managed to act as a conceptually-new nanotheranostics for oxaliplatin. A post-recognition strategy was utilized, where a default supramolecular-dye couple was pre-blocked. The rational design, synthesis, characterization and proof-of-concept of this strategy were described in detail. The drug-release upon reducing environment can be translated into near-infrared (NIR) fluorescence signal (OFF-to-ON), allowing to track the drug-release procedure by multi-modal images including IVIS, FLECT and photoacoustic imaging. The versatile nanotheranostics system can target to triple negative breast tumor via conjugated F3 peptide, and show an improved anti-tumor efficacy with much lower side effect. The intelligent nanotheranostics system based on molecular shuttle provides new reference for precision medicine in preclinical trial and postclinical evaluation.
Collapse
Affiliation(s)
- Tao Sun
- Key Laboratory of Smart Drug Delivery (Ministry of Education), State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China
| | - Guangping Zhang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics & Institute of Materials and Clean Energy, Shandong Normal University, 1 University Road, Jinan, 250358, PR China
| | - Qingbing Wang
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, PR China
| | - Zhongyuan Guo
- Key Laboratory of Smart Drug Delivery (Ministry of Education), State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China
| | - Qinjun Chen
- Key Laboratory of Smart Drug Delivery (Ministry of Education), State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China
| | - Xinli Chen
- Key Laboratory of Smart Drug Delivery (Ministry of Education), State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China
| | - Yifei Lu
- Key Laboratory of Smart Drug Delivery (Ministry of Education), State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China
| | - Yu Zhang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China
| | - Yujie Zhang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China
| | - Qin Guo
- Key Laboratory of Smart Drug Delivery (Ministry of Education), State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy West China Hospital, West China Medical School, Sichuan University/Collaborative Innovation Center for Biotherapy, 24 Renmin Nan Road, Chengdu, 610041, PR China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy West China Hospital, West China Medical School, Sichuan University/Collaborative Innovation Center for Biotherapy, 24 Renmin Nan Road, Chengdu, 610041, PR China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China.
| |
Collapse
|
15
|
Novakova O, Farrell NP, Brabec V. Translesion DNA synthesis across double-base lesions derived from cross-links of an antitumor trinuclear platinum compound: primer extension, conformational and thermodynamic studies. Metallomics 2019; 10:132-144. [PMID: 29242879 DOI: 10.1039/c7mt00266a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polynuclear platinum complexes represent a unique structural class of DNA-binding agents of biological significance. They contain at least two platinum coordinating units bridged by a linker, which means that the formation of double-base lesions (cross-links) in DNA is possible. Here, we show that the lead compound, bifunctional [{trans-PtCl(NH3)2}2μ-trans-Pt(NH3)2{H2N(CH2)6NH2}2]4+ (Triplatin or BBR3464), forms in DNA specific double-base lesions which affect the biophysical and biochemical properties of DNA in a way fundamentally different compared to the analogous double-base lesions formed by two adducts of monofunctional chlorodiethylenetriamineplatinum(ii) chloride (dienPt). We find concomitantly that translesion DNA synthesis by the model A-family polymerase, the exonuclease deficient Klenow fragment, across the double-base lesions derived from the intrastrand CLs of Triplatin was markedly less extensive than that across the two analogous monofunctional adducts of dienPt. Collectively, these data provide convincing support for the hypothesis that the central noncovalent tetraamine platinum linker of Triplatin, capable of hydrogen-bonding and electrostatic interactions with DNA and bridging the two platinum adducts, represents an important factor responsible for the markedly lowered tolerance of DNA double-base adducts of Triplatin by DNA polymerases.
Collapse
Affiliation(s)
- O Novakova
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, CZ-61265 Brno, Czech Republic.
| | | | | |
Collapse
|
16
|
Shi H, Romero-Canelón I, Hreusova M, Novakova O, Venkatesh V, Habtemariam A, Clarkson GJ, Song JI, Brabec V, Sadler PJ. Photoactivatable Cell-Selective Dinuclear trans-Diazidoplatinum(IV) Anticancer Prodrugs. Inorg Chem 2018; 57:14409-14420. [PMID: 30365308 PMCID: PMC6257630 DOI: 10.1021/acs.inorgchem.8b02599] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
A series of dinuclear
octahedral PtIV complexes trans,trans,trans-[{Pt(N3)2(py)2(OH)(OC(O)CH2CH2C(O)NH)}2R] containing pyridine (py) and bridging
dicarboxylate [R = −CH2CH2– (1), trans-1,2-C6H10– (2), p-C6H4– (3), −CH2CH2CH2CH2– (4)] ligands have
been synthesized and characterized, including the X-ray crystal structures
of complexes 1·2MeOH and 4, the first
photoactivatable dinuclear PtIV complexes with azido ligands.
The complexes are highly stable in the dark, but upon photoactivation
with blue light (420 nm), they release the bridging ligand and mononuclear
photoproducts. Upon irradiation with blue light (465 nm), they generate
azidyl and hydroxyl radicals, detected using a 5,5-dimethyl-1-pyrroline N-oxide electron paramagnetic resonance spin trap, accompanied
by the disappearance of the ligand-to-metal charge-transfer (N3 → Pt) band at ca. 300 nm. The dinuclear complexes
are photocytotoxic to human cancer cells (465 nm, 4.8 mW/cm2, 1 h), including A2780 human ovarian and esophageal OE19 cells with
IC50 values of 8.8–78.3 μM, whereas cisplatin
is inactive under these conditions. Complexes 1, 3, and 4 are notably more photoactive toward
cisplatin-resistant ovarian A2780cis compared to A2780 cells. Remarkably,
all of the complexes were relatively nontoxic toward normal cells
(MRC5 lung fibroblasts), with IC50 values >100 μM,
even after irradiation. The introduction of an aromatic bridging ligand
(3) significantly enhanced cellular uptake. The populations
in the stages of the cell cycle remained unchanged upon treatment
with complexes in the dark, while the population of the G2/M phase
increased upon irradiation, suggesting that DNA is a target for these
photoactivated dinuclear PtIV complexes. Liquid chromatography–mass
spectrometry data show that the photodecomposition pathway of the
dinuclear complexes results in the release of two molecules of mononuclear
platinum(II) species. As a consequence, DNA binding of the dinuclear
complexes after photoactivation in cell-free media is, in several
respects, qualitatively similar to that of the photoactivated mononuclear
complex FM-190. After photoactivation, they were 2-fold
more effective in quenching the fluorescence of EtBr bound to DNA,
forming DNA interstrand cross-links and unwinding DNA compared to
the photoactivated FM-190. Novel all-trans dinuclear
PtIV complexes bridged
by a dicarboxylate linker, highly stable in the dark, generate azidyl
and hydroxyl radicals upon irradiation with blue light. They are photocytotoxic
to human cancer cells, whereas cisplatin was inactive under these
conditions and more photoactive toward cisplatin-resistant ovarian
cancer cells compared to wild-type cells. Remarkably, the dinuclear
complexes were relatively nontoxic toward normal human cells. Cell
cycle and DNA binding experiments suggested that DNA is a target.
Collapse
Affiliation(s)
- Huayun Shi
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K
| | - Isolda Romero-Canelón
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K.,School of Pharmacy, Institute of Clinical Sciences , University of Birmingham , Birmingham B15 2TT , U.K
| | - Monika Hreusova
- Department of Biophysics, Faculty of Science , Palacky University , 17 listopadu 12 , Olomouc CZ-77146 , Czech Republic.,Institute of Biophysics , Czech Academy of Sciences , Kralovopolska 135 , Brno CZ-61265 , Czech Republic
| | - Olga Novakova
- Institute of Biophysics , Czech Academy of Sciences , Kralovopolska 135 , Brno CZ-61265 , Czech Republic
| | - V Venkatesh
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K
| | - Abraha Habtemariam
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K
| | - Guy J Clarkson
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K
| | - Ji-Inn Song
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K
| | - Viktor Brabec
- Institute of Biophysics , Czech Academy of Sciences , Kralovopolska 135 , Brno CZ-61265 , Czech Republic
| | - Peter J Sadler
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K
| |
Collapse
|
17
|
Adeyemo AA, Shettar A, Bhat IA, Kondaiah P, Mukherjee PS. Coordination-driven self-assembly of ruthenium(ii) architectures: synthesis, characterization and cytotoxicity studies. Dalton Trans 2018; 47:8466-8475. [PMID: 29901668 DOI: 10.1039/c8dt00962g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Coordination-driven self-assembly of organometallic η6-arene ruthenium(ii) supramolecular architectures (MA1-MA4) was carried out by employing dinuclear ruthenium acceptors [Ru2(μ-η4-C2O4)(CH3OH)2(η6-p-cymene)2](CF3SO3)2 (Rua), [Ru2(μ-η4-C6H2O4)(CH3OH)2(η6-p-cymene)2](CF3SO3)2 (Rub), [Ru2(dhnq)(H2O)2(η6-p-cymene)2](CF3SO3)2 (Ruc) and [Ru2(dhtq)(H2O)2(η6-p-cymene)2](CF3SO3)2 (Rud) separately with a new tetratopic donor (TD) in methanol at room temperature [TD = N,N,N',N'-tetra(pyridin-4-yl)-[1,1'-biphenyl]-4,4'-diamine]. All the coordination architectures were characterized by using spectroscopic techniques. The potency of these self-assembled architectures against human cervical cancer HeLa and human lung adenocarcinoma A549 cell lines is explored in vitro using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), annexin V-FITC/PI and 2',7'-dichlorofluorescein-diacetate assays.
Collapse
Affiliation(s)
- Aderonke Ajibola Adeyemo
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India.
| | | | | | | | | |
Collapse
|
18
|
Kasparkova J, Kostrhunova H, Novohradsky V, Pracharova J, Curci A, Margiotta N, Natile G, Brabec V. Anticancer kiteplatin pyrophosphate derivatives show unexpected target selectivity for DNA. Dalton Trans 2018; 46:14139-14148. [PMID: 28972623 DOI: 10.1039/c7dt02633a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One of the promising new antitumor platinum complexes is a large-ring chelate complex [PtCl2(cis-1,4-DACH)] (DACH = diaminocyclohexane) (kiteplatin). Recently, new platinum(ii) derivatives of kiteplatin with pyrophosphate as a carrier ligand have been synthesized and tested on a panel of human cancer cell lines. These derivatives of kiteplatin were found to be more effective than clinically used anticancer platinum drugs. The design of kiteplatin pyrophosphate derivatives was based on the concept of pyrophosphate coordinated platinum complexes, phosphaplatins. Phosphaplatins have been shown to function without binding to DNA and hence DNA has been excluded as the target of phosphaplatins in contrast to conventional antitumor platinum drugs. Cytotoxicity, major cellular targets and DNA interactions of the new anticancer platinum drug were characterized by standard biochemical methods and methods of molecular and cellular biology. We demonstrate that, in contrast to what has been reported on closely related phosphaplatins, the derivatives of kiteplatin with the pyrophosphate carrier ligand are activated in the cellular environment. This activation, which yields species capable of platination of DNA, very likely comprises the hydrolytic release of the pyrophosphate ligand that could be enzymatically catalyzed. Collectively, these data provide convincing evidence that unexpectedly DNA is an important target for the biological activity of the kiteplatin pyrophosphate derivatives, although the overall mechanism of action might be different from those of conventional platinum drugs.
Collapse
Affiliation(s)
- Jana Kasparkova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-61265 Brno, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Liu HK, Kostrhunova H, Habtemariam A, Kong Y, Deeth RJ, Brabec V, Sadler PJ. "Head-to-head" double-hamburger-like structure of di-ruthenated d(GpG) adducts of mono-functional Ru-arene anticancer complexes. Dalton Trans 2018; 45:18676-18688. [PMID: 27830851 DOI: 10.1039/c6dt03356c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Guanine bases in DNA are targets for some Ru-arene anticancer complexes. We have investigated the structure of the novel di-ruthenated d(GpG) adduct Ru2-GpG (where Ru = {(η6-biphenyl)-Ru(en)}2+ (1')) in aqueous solution. 2D NMR results indicate that there are two conformers, supported by modeling studies. The major conformer I is a novel double-hamburger-like structure with a "head-to-head" (HH) base arrangement involving hydrophobic interactions between neighboring arene rings, the first example of a HH d(GpG) adduct constructed by weak interactions. Hence there are significant differences compared to Pt-d(GpG) adducts formed by cisplatin. There is no obviously rigid bending for the major conformer I. The minor conformer II of Ru2-GpG has a back-to-back structure, with two ruthenated guanine bases flipped away from each other. 19-23 base-pair oligodeoxyribonucleotides containing central TGGT sequences di-ruthenated by 1 show no directional bending, only slightly distorted di-ruthenated duplexes, consistent with the NMR data for conformer I. The structural differences and similarities of d(GpG) residues which are di-ruthenated or cross-linked by platination are discussed in the context of the biological activity of these metal complexes.
Collapse
Affiliation(s)
- Hong-Ke Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China.
| | - Hana Kostrhunova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 61265 Brno, Czech Republic.
| | - Abraha Habtemariam
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Yaqiong Kong
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China.
| | - Robert J Deeth
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Viktor Brabec
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 61265 Brno, Czech Republic.
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| |
Collapse
|
20
|
Wachter E, Zamora A, Heidary DK, Ruiz J, Glazer EC. Geometry matters: inverse cytotoxic relationship for cis/trans-Ru(ii) polypyridyl complexes from cis/trans-[PtCl2(NH3)2]. Chem Commun (Camb) 2018; 52:10121-4. [PMID: 27352966 DOI: 10.1039/c6cc04813g] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Two thermally activated ruthenium(ii) polypyridyl complexes, cis-Ru(bpy)2Cl2 and trans-Ru(qpy)Cl2 were investigated to determine the impact of the geometric arrangement of the exchangable ligands on the potential of the compounds to act as chemotherapeutics. In contrast to the geometry requirements for cisplatin, trans-Ru(qpy)Cl2 was 7.1-9.5× more cytotoxic than cis-Ru(bpy)2Cl2. This discovery could open up a new area of metal-based chemotherapeutic research.
Collapse
Affiliation(s)
- Erin Wachter
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA.
| | - Ana Zamora
- Departamento de Química Inorgánica and Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30771 Murcia, Spain
| | - David K Heidary
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA.
| | - José Ruiz
- Departamento de Química Inorgánica and Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30771 Murcia, Spain
| | - Edith C Glazer
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
21
|
Cai L, Yu C, Ba L, Liu Q, Qian Y, Yang B, Gao C. Anticancer platinum-based complexes with non-classical structures. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4228] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Linxiang Cai
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming 650500 China
| | - Congtao Yu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming 650500 China
| | - Linkui Ba
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming 650500 China
| | - Qinghua Liu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming 650500 China
| | - Yunxu Qian
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming 650500 China
| | - Bo Yang
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming 650500 China
| | - Chuanzhu Gao
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming 650500 China
| |
Collapse
|
22
|
Brabec V, Hrabina O, Kasparkova J. Cytotoxic platinum coordination compounds. DNA binding agents. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.04.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
23
|
Geng J, Aioub M, El-Sayed MA, Barry BA. An Ultraviolet Resonance Raman Spectroscopic Study of Cisplatin and Transplatin Interactions with Genomic DNA. J Phys Chem B 2017; 121:8975-8983. [PMID: 28925698 DOI: 10.1021/acs.jpcb.7b08156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ultraviolet resonance Raman (UVRR) spectroscopy is a label-free method to define biomacromolecular interactions with anticancer compounds. Using UVRR, we describe the binding interactions of two Pt(II) compounds, cisplatin (cis-diamminedichloroplatinum(II)) and its isomer, transplatin, with nucleotides and genomic DNA. Cisplatin binds to DNA and other cellular components and triggers apoptosis, whereas transplatin is clinically ineffective. Here, a 244 nm UVRR study shows that purine UVRR bands are altered in frequency and intensity when mononucleotides are treated with cisplatin. This result is consistent with previous suggestions that purine N7 provides the cisplatin-binding site. The addition of cisplatin to DNA also causes changes in the UVRR spectrum, consistent with binding of platinum to purine N7 and disruption of hydrogen-bonding interactions between base pairs. Equally important is that transplatin treatment of DNA generates similar UVRR spectral changes, when compared to cisplatin-treated samples. Kinetic analysis, performed by monitoring decreases of the 1492 cm-1 band, reveals biphasic kinetics and is consistent with a two-step binding mechanism for both platinum compounds. For cisplatin-DNA, the rate constants (6.8 × 10-5 and 6.5 × 10-6 s-1) are assigned to the formation of monofunctional adducts and to bifunctional, intrastrand cross-linking, respectively. In transplatin-DNA, there is a 3.4-fold decrease in the rate constant of the slow phase, compared with the cisplatin samples. This change is attributed to generation of interstrand, rather than intrastrand, adducts. This longer reaction time may result in increased competition in the cellular environment and account, at least in part, for the lower pharmacological efficacy of transplatin.
Collapse
Affiliation(s)
- Jiafeng Geng
- School of Chemistry and Biochemistry, ‡Parker H. Petit Institute of Bioengineering and Bioscience, and §Laser Dynamics Laboratory, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Mena Aioub
- School of Chemistry and Biochemistry, ‡Parker H. Petit Institute of Bioengineering and Bioscience, and §Laser Dynamics Laboratory, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Mostafa A El-Sayed
- School of Chemistry and Biochemistry, ‡Parker H. Petit Institute of Bioengineering and Bioscience, and §Laser Dynamics Laboratory, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Bridgette A Barry
- School of Chemistry and Biochemistry, ‡Parker H. Petit Institute of Bioengineering and Bioscience, and §Laser Dynamics Laboratory, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| |
Collapse
|
24
|
Perfahl S, Bodtke A, Pracharova J, Kasparkova J, Brabec V, Cuadrado J, Stürup S, Schulzke C, Bednarski PJ. Preparation of bis(5-phenyltetrazolato) Pt(II) and Pt(IV) analogues of transplatin and in vitro evaluation for antitumor activity. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Hrabina O, Kasparkova J, Suchankova T, Novohradsky V, Guo Z, Brabec V. Unique structural properties of DNA interstrand cross-links formed by a new antitumor dinuclear Pt(ii) complex. Metallomics 2017; 9:494-500. [DOI: 10.1039/c7mt00052a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Ahmad S, Seerat-ur-Rehman, Rüffer T, Khalid T, Isab AA, Al-Arfaj AR, Saleem M, Ejaz, Khan IU, Choudhary MA. Crystal structure and antimicrobial activity of a transplatin adduct of N,N′-dimethylthiourea, trans-[Pt(NH3)2(dmtu)2]Cl2. MONATSHEFTE FUR CHEMIE 2016. [DOI: 10.1007/s00706-016-1809-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Li W, Jiang M, Cao Y, Yan L, Qi R, Li Y, Jing X. Turning Ineffective Transplatin into a Highly Potent Anticancer Drug via a Prodrug Strategy for Drug Delivery and Inhibiting Cisplatin Drug Resistance. Bioconjug Chem 2016; 27:1802-6. [DOI: 10.1021/acs.bioconjchem.6b00302] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Wenliang Li
- National
Engineering Laboratory for Druggable Gene and Protein Screening, School
of Life Science, Northeast Normal University, Changchun 130024, People’s Republic of China
| | - Mo Jiang
- National
Engineering Laboratory for Druggable Gene and Protein Screening, School
of Life Science, Northeast Normal University, Changchun 130024, People’s Republic of China
| | - Yue Cao
- National
Engineering Laboratory for Druggable Gene and Protein Screening, School
of Life Science, Northeast Normal University, Changchun 130024, People’s Republic of China
| | - Lesan Yan
- Department
of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104-6321, United States
| | - Ruogu Qi
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Yuxin Li
- National
Engineering Laboratory for Druggable Gene and Protein Screening, School
of Life Science, Northeast Normal University, Changchun 130024, People’s Republic of China
| | - Xiabin Jing
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| |
Collapse
|
28
|
Johnson BW, Murray V, Temple MD. Characterisation of the DNA sequence specificity, cellular toxicity and cross-linking properties of novel bispyridine-based dinuclear platinum complexes. BMC Cancer 2016; 16:333. [PMID: 27225032 PMCID: PMC4880875 DOI: 10.1186/s12885-016-2368-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 05/18/2016] [Indexed: 12/21/2022] Open
Abstract
Background The anti-tumour activity of cisplatin is thought to be a result of its capacity to form DNA adducts which prevent cellular processes such as DNA replication and transcription. These DNA adducts can effectively induce cancer cell death, however, there are a range of clinical side effects and drug resistance issues associated with its use. In this study, the biological properties of three novel dinuclear platinum-based compounds (that contain alkane bridging linkers of eight, ten and twelve carbon atoms in length) were characterised to assess their potential as anticancer agents. Methods The properties of these compounds were determined using a DNA template containing seven tandem telomeric repeat sequences. A linear amplification reaction was used in combination with capillary electrophoresis to quantify the sequence specificity of DNA adducts formed by these compounds at base pair resolution. The DNA cross-linking ability of these compounds was assessed using denaturing agarose gel electrophoresis and cytotoxicity was determined in HeLa cells using a colorimetric cell viability assay. Results The dinuclear compounds were found to preferentially form DNA adducts at guanine bases and they exhibited different damage intensity profiles at the telomeric repeat sequences compared to that of cisplatin. The dinuclear compounds were found to exhibit a low level of cytotoxicity relative to cisplatin and their cytotoxicity increased as the linker length increased. Conversely, the interstrand cross-linking efficiency of the dinuclear compounds increased as the linker length decreased and the compound with the shortest alkane linker was six-fold more effective than cisplatin. Conclusions Since the bifunctional compounds exhibit variation in sequence specificity of adduct formation and a greater ability to cross-link DNA relative to cisplatin they warrant further investigation towards the goal of developing new cancer chemotherapeutic agents.
Collapse
Affiliation(s)
- Ben W Johnson
- School of Science and Health, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Vincent Murray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mark D Temple
- School of Science and Health, Western Sydney University, Campbelltown, NSW, 2560, Australia.
| |
Collapse
|
29
|
Marzo T, Pillozzi S, Hrabina O, Kasparkova J, Brabec V, Arcangeli A, Bartoli G, Severi M, Lunghi A, Totti F, Gabbiani C, Quiroga AG, Messori L. cis-Pt I2(NH3)2: a reappraisal. Dalton Trans 2016; 44:14896-905. [PMID: 26226326 DOI: 10.1039/c5dt01196e] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The investigation of cis-PtI2(NH3)2, the diiodido analogue of cisplatin (cisPtI2 hereafter), has been unjustly overlooked so far mainly because of old claims of pharmacological inactivity. Some recent - but still fragmentary - findings prompted us to reconsider more systematically the chemical and biological profile of cisPtI2 in comparison with cisplatin. Its solution behaviour, interactions with DNA and cytotoxic properties versus selected cancer cell lines were thus extensively analysed through a variety of biophysical and computational methods. Notably, we found that cisPtI2 is highly cytotoxic in vitro toward a few solid tumour cell lines and that its DNA platination pattern closely reproduces that of cisplatin; cisPtI2 is also shown to completely overcome resistance to cisplatin in a platinum resistant cancer cell line. The differences in the biological actions of these two Pt complexes are most likely related to slight but meaningful differences in their solution behaviour and reactivity. Overall, a very encouraging and unexpected pharmacological profile emerges for cisPtI2 with relevant implications both in terms of mechanistic knowledge and of prospective clinical application. An ab initio DFT study is also included to support the interpretation of the solution behaviour of cisPtI2 under physiological and slightly acidic pH conditions.
Collapse
Affiliation(s)
- Tiziano Marzo
- MetMed, Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Johnstone TC, Suntharalingam K, Lippard SJ. The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs. Chem Rev 2016; 116:3436-86. [PMID: 26865551 PMCID: PMC4792284 DOI: 10.1021/acs.chemrev.5b00597] [Citation(s) in RCA: 1759] [Impact Index Per Article: 195.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The platinum drugs, cisplatin, carboplatin, and oxaliplatin, prevail in the treatment of cancer, but new platinum agents have been very slow to enter the clinic. Recently, however, there has been a surge of activity, based on a great deal of mechanistic information, aimed at developing nonclassical platinum complexes that operate via mechanisms of action distinct from those of the approved drugs. The use of nanodelivery devices has also grown, and many different strategies have been explored to incorporate platinum warheads into nanomedicine constructs. In this Review, we discuss these efforts to create the next generation of platinum anticancer drugs. The introduction provides the reader with a brief overview of the use, development, and mechanism of action of the approved platinum drugs to provide the context in which more recent research has flourished. We then describe approaches that explore nonclassical platinum(II) complexes with trans geometry or with a monofunctional coordination mode, polynuclear platinum(II) compounds, platinum(IV) prodrugs, dual-threat agents, and photoactivatable platinum(IV) complexes. Nanoparticles designed to deliver platinum(IV) complexes will also be discussed, including carbon nanotubes, carbon nanoparticles, gold nanoparticles, quantum dots, upconversion nanoparticles, and polymeric micelles. Additional nanoformulations, including supramolecular self-assembled structures, proteins, peptides, metal-organic frameworks, and coordination polymers, will then be described. Finally, the significant clinical progress made by nanoparticle formulations of platinum(II) agents will be reviewed. We anticipate that such a synthesis of disparate research efforts will not only help to generate new drug development ideas and strategies, but also will reflect our optimism that the next generation of approved platinum cancer drugs is about to arrive.
Collapse
Affiliation(s)
- Timothy C Johnstone
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | | | - Stephen J Lippard
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
31
|
Copper(II), palladium(II) and platinum(II) complexes with 2,2-thiophen-yl-imidazole: Synthesis, spectroscopic characterization, X-ray crystallographic studies and interactions with calf-thymus DNA. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
32
|
Vrana O, Novohradsky V, Medrikova Z, Burdikova J, Stuchlikova O, Kasparkova J, Brabec V. Internalization of Ineffective Platinum Complex in Nanocapsules Renders It Cytotoxic. Chemistry 2016; 22:2728-35. [DOI: 10.1002/chem.201504671] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Oldrich Vrana
- Institute of Biophysics; Academy of Sciences of the Czech Republic, v.v.i.; Kralovopolska 135 612 65 Brno Czech Republic
| | - Vojtech Novohradsky
- Institute of Biophysics; Academy of Sciences of the Czech Republic, v.v.i.; Kralovopolska 135 612 65 Brno Czech Republic
| | - Zdenka Medrikova
- Regional Centre of Advanced Technologies and Materials; Department of Physical Chemistry; Faculty of Science; Palacky University; 17. listopadu 12 77146 Olomouc Czech Republic
| | - Jana Burdikova
- Materials Research Centre; Faculty of Chemistry; Brno University of Technology; Purkynova 118 61200 Brno Czech Republic
| | - Olga Stuchlikova
- Institute of Biophysics; Academy of Sciences of the Czech Republic, v.v.i.; Kralovopolska 135 612 65 Brno Czech Republic
- Department of Biophysics; Faculty of Science; Palacky University; 17. listopadu 12 77146 Olomouc Czech Republic
| | - Jana Kasparkova
- Institute of Biophysics; Academy of Sciences of the Czech Republic, v.v.i.; Kralovopolska 135 612 65 Brno Czech Republic
- Department of Biophysics; Faculty of Science; Palacky University; 17. listopadu 12 77146 Olomouc Czech Republic
| | - Viktor Brabec
- Institute of Biophysics; Academy of Sciences of the Czech Republic, v.v.i.; Kralovopolska 135 612 65 Brno Czech Republic
| |
Collapse
|
33
|
Brabec V, Vrana O, Novakova O, Kasparkova J. Comment on “Delivering a photosensitive transplatin prodrug to overcome cisplatin drug resistance” by H. Song, W. Li, R. Qi, L. Yan, X. Jing, M. Zheng and H. Xiao, Chem. Commun., 2015, 51, 11493. Chem Commun (Camb) 2016; 52:4096-8. [DOI: 10.1039/c5cc09589a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transplatin is cytotoxic when irradiated by UVA light, but does not isomerize in cisplatin.
Collapse
Affiliation(s)
- V. Brabec
- Institute of Biophysics
- Academy of Sciences of the Czech Republic
- v.v.i
- CZ-61265 Brno
- Czech Republic
| | - O. Vrana
- Institute of Biophysics
- Academy of Sciences of the Czech Republic
- v.v.i
- CZ-61265 Brno
- Czech Republic
| | - O. Novakova
- Institute of Biophysics
- Academy of Sciences of the Czech Republic
- v.v.i
- CZ-61265 Brno
- Czech Republic
| | - J. Kasparkova
- Institute of Biophysics
- Academy of Sciences of the Czech Republic
- v.v.i
- CZ-61265 Brno
- Czech Republic
| |
Collapse
|
34
|
Increasing DNA reactivity and in vitro antitumor activity of trans diiodido Pt(II) complexes with UVA light. J Inorg Biochem 2015; 153:211-218. [DOI: 10.1016/j.jinorgbio.2015.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/20/2015] [Accepted: 07/10/2015] [Indexed: 11/20/2022]
|
35
|
Kasparkova J, Kostrhunova H, Novakova O, Křikavová R, Vančo J, Trávníček Z, Brabec V. A Photoactivatable Platinum(IV) Complex Targeting Genomic DNA and Histone Deacetylases. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506533] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Kasparkova J, Kostrhunova H, Novakova O, Křikavová R, Vančo J, Trávníček Z, Brabec V. A Photoactivatable Platinum(IV) Complex Targeting Genomic DNA and Histone Deacetylases. Angew Chem Int Ed Engl 2015; 54:14478-82. [PMID: 26458068 DOI: 10.1002/anie.201506533] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/24/2015] [Indexed: 11/07/2022]
Abstract
We report toxic effects of a photoactivatable platinum(IV) complex conjugated with suberoyl-bis-hydroxamic acid in tumor cells. The conjugate exerts, after photoactivation, two functions: activity as both a platinum(II) anticancer drug and histone deacetylase (HDAC) inhibitor in cancer cells. This approach relies on the use of a Pt(IV) pro-drug, acting by two independent mechanisms of biological action in a cooperative manner, which can be selectively photoactivated to a cytotoxic species in and around a tumor, thereby increasing selectivity towards cancer cells. These results suggest that this strategy is a valuable route to design new platinum agents with higher efficacy for photodynamic anticancer chemotherapy.
Collapse
Affiliation(s)
- Jana Kasparkova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 61265 Brno (Czech Republic).
| | - Hana Kostrhunova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 61265 Brno (Czech Republic)
| | - Olga Novakova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 61265 Brno (Czech Republic)
| | - Radka Křikavová
- Regional Centre of Advanced Technologies and Materials, Department of Inorganic Chemistry, Faculty of Science, Palacky University in Olomouc, 17. listopadu 12, 77146 Olomouc (Czech Republic)
| | - Ján Vančo
- Regional Centre of Advanced Technologies and Materials, Department of Inorganic Chemistry, Faculty of Science, Palacky University in Olomouc, 17. listopadu 12, 77146 Olomouc (Czech Republic)
| | - Zdeněk Trávníček
- Regional Centre of Advanced Technologies and Materials, Department of Inorganic Chemistry, Faculty of Science, Palacky University in Olomouc, 17. listopadu 12, 77146 Olomouc (Czech Republic)
| | - Viktor Brabec
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 61265 Brno (Czech Republic).,Department of Biophysics, Faculty of Science, Palacky University in Olomouc, 17. listopadu 12, 77146 Olomouc (Czech Republic)
| |
Collapse
|
37
|
Weidmann AG, Barton JK. A monofunctional platinum complex coordinated to a rhodium metalloinsertor selectively binds mismatched DNA in the minor groove. Inorg Chem 2015; 54:9626-36. [PMID: 26397309 DOI: 10.1021/acs.inorgchem.5b01722] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We report the synthesis and characterization of a bimetallic complex derived from a new family of potent and selective metalloinsertors containing an unusual Rh-O axial coordination. This complex incorporates a monofunctional platinum center containing only one labile site for coordination to DNA, rather than two, and coordinates DNA nonclassically through adduct formation in the minor groove. This conjugate displays bifunctional, interdependent binding of mismatched DNA via metalloinsertion at a mismatch as well as covalent platinum binding. DNA sequencing experiments revealed that the preferred site of platinum coordination is not the traditional N7-guanine site in the major groove, but rather N3-adenine in the minor groove. The complex also displays enhanced cytotoxicity in mismatch repair-deficient and mismatch repair-proficient human colorectal carcinoma cell lines compared to the chemotherapeutic cisplatin, and it triggers cell death via an apoptotic pathway, rather than the necrotic pathway induced by rhodium metalloinsertors.
Collapse
Affiliation(s)
- Alyson G Weidmann
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - Jacqueline K Barton
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| |
Collapse
|
38
|
Štarha P, Trávníček Z, Dvořák Z, Radošová-Muchová T, Prachařová J, Vančo J, Kašpárková J. Potentiating effect of UVA irradiation on anticancer activity of Carboplatin derivatives involving 7-azaindoles. PLoS One 2015; 10:e0123595. [PMID: 25875850 PMCID: PMC4398499 DOI: 10.1371/journal.pone.0123595] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/19/2015] [Indexed: 11/18/2022] Open
Abstract
The moderate-to-high in vitro cytotoxicity against ovarian A2780 (IC50 = 4.7–14.4 μM), prostate LNCaP (IC50 = 18.7–30.8 μM) and prostate PC-3 (IC50 = 17.6–42.3 μM) human cancer cell lines of the platinum(II) cyclobutane-1,1'-dicarboxylato complexes [Pt(cbdc)(naza)2] (1–6; cbdc = cyclobutane-1,1'-dicarboxylate(2-); naza = halogeno-substituted 7-azaindoles), derived from the anticancer metallodrug carboplatin, are reported. The complexes containing the chloro- and bromo-substituted 7-azaindoles (1, 2, and 4–6) showed a significantly higher (p < 0.05) cytotoxicity against A2780 cell line as compared to cisplatin used as a reference drug. Addition of the non-toxic concentration (5.0 μM) of L-buthionine sulfoximine (L-BSO, an effective inhibitor of γ-glutamylcysteine synthase) markedly increases the in vitro cytotoxicity of the selected complex 3 against A2780 cancer cell line by a factor of about 4.4. The cytotoxicity against A2780 and LNCaP cells, as well as the DNA platination, were effectively enhanced by UVA light irradiation (λmax = 365 nm) of the complexes, with the highest phototoxicity determined for compound 3, resulting in a 4-fold decline in the A2780 cells viability from 25.1% to 6.1%. The 1H NMR and ESI-MS experiments suggested that the complexes did not interact with glutathione as well as their ability to interact with guanosine monophosphate. The studies also confirmed UVA light induced the formation of the cis [Pt(H2O)2(cbdc`)(naza)] intermediate, where cbdc` represents monodentate-coordinated cbdc ligand, which is thought to be responsible for the enhanced cytotoxicity. This is further supported by the results of transcription mapping experiments showing that the studied complexes preferentially form the bifunctional adducts with DNA under UVA irradiation, in contrast to the formation of the less effective monofunctional adducts in dark.
Collapse
Affiliation(s)
- Pavel Štarha
- Regional Centre of Advanced Technologies and Materials & Department of Inorganic Chemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Zdeněk Trávníček
- Regional Centre of Advanced Technologies and Materials & Department of Inorganic Chemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Zdeněk Dvořák
- Regional Centre of Advanced Technologies and Materials & Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Tereza Radošová-Muchová
- Centre of the Region Haná for Biotechnological and Agricultural Research & Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Jitka Prachařová
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Ján Vančo
- Regional Centre of Advanced Technologies and Materials & Department of Inorganic Chemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Jana Kašpárková
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
39
|
Nilforoushan A, Furrer A, Wyss LA, van Loon B, Sturla SJ. Nucleotides with altered hydrogen bonding capacities impede human DNA polymerase η by reducing synthesis in the presence of the major cisplatin DNA adduct. J Am Chem Soc 2015; 137:4728-34. [PMID: 25786104 DOI: 10.1021/ja512547g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human DNA polymerase η (hPol η) contributes to anticancer drug resistance by catalyzing the replicative bypass of DNA adducts formed by the widely used chemotherapeutic agent cis-diamminedichloroplatinum (cisplatin). A chemical basis for overcoming bypass-associated resistance requires greater knowledge of how small molecules influence the hPol η-catalyzed bypass of DNA adducts. In this study, we demonstrated how synthetic nucleoside triphosphates act as hPol η substrates and characterized their influence on hPol η-mediated DNA synthesis over unmodified and platinated DNA. The single nucleotide incorporation efficiency of the altered nucleotides varied by more than 10-fold and the higher incorporation rates appeared to be attributable to the presence of an additional hydrogen bond between incoming dNTP and templating base. Finally, full-length DNA synthesis in the presence of increasing concentrations of synthetic nucleotides reduced the amount of DNA product independent of the template, representing the first example of hPol η inhibition in the presence of a platinated DNA template.
Collapse
Affiliation(s)
- Arman Nilforoushan
- §Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Antonia Furrer
- ‡Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Wintherthurerstrasse 190, 8057 Zürich, Switzerland
| | - Laura A Wyss
- §Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Barbara van Loon
- ‡Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Wintherthurerstrasse 190, 8057 Zürich, Switzerland
| | - Shana J Sturla
- §Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| |
Collapse
|
40
|
Hoffmeister BR, Hejl M, Jakupec MA, Galanski M, Keppler BK. Bis- and Tris(carboxylato)platinum(IV) Complexes with Mixed Am(m)ine Ligands in thetransPosition Exhibiting Exceptionally High Cytotoxicity. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201403226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Brabec V, Pracharova J, Novakova O, Gibson D, Kasparkova J. The induction of lysis in lysogenic strains of Escherichia coli by a new antitumor transplatin derivative and its DNA interactions. Dalton Trans 2015; 44:3573-82. [DOI: 10.1039/c4dt02603a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
DNA is the cellular target for antitumor derivatives of transplatin including those containing small aliphatic amino ligands.
Collapse
Affiliation(s)
- Viktor Brabec
- Institute of Biophysics
- Academy of Sciences of the Czech Republic
- CZ-61265 Brno
- Czech Republic
| | - Jitka Pracharova
- Department of Biophysics
- Centre of the Region Hana for Biotechnological and Agricultural Research
- Palacky University
- 783 41 Olomouc
- Czech Republic
| | - Olga Novakova
- Institute of Biophysics
- Academy of Sciences of the Czech Republic
- CZ-61265 Brno
- Czech Republic
| | - Dan Gibson
- Institute for Drug Research
- School of Pharmacy
- The Hebrew University
- Jerusalem 91120
- Israel
| | - Jana Kasparkova
- Department of Biophysics
- Faculty of Science
- Palacky University
- CZ-77146 Olomouc
- Czech Republic
| |
Collapse
|
42
|
Pracharova J, Saltarella T, Radosova Muchova T, Scintilla S, Novohradsky V, Novakova O, Intini FP, Pacifico C, Natile G, Ilik P, Brabec V, Kasparkova J. Novel Antitumor Cisplatin and Transplatin Derivatives Containing 1-Methyl-7-Azaindole: Synthesis, Characterization, and Cellular Responses. J Med Chem 2014; 58:847-59. [DOI: 10.1021/jm501420k] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jitka Pracharova
- Department
of Biophysics, Centre of the Region Hana for Biotechnological and
Agricultural Research, Palacky University, Slechtitelu 11, 783 41 Olomouc, Czech Republic
| | - Teresa Saltarella
- Department
of Chemistry, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Tereza Radosova Muchova
- Department
of Biophysics, Centre of the Region Hana for Biotechnological and
Agricultural Research, Palacky University, Slechtitelu 11, 783 41 Olomouc, Czech Republic
| | - Simone Scintilla
- Department
of Chemistry, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Vojtech Novohradsky
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, v.v.i.,
Kralovopolska 135, CZ-61265 Brno, Czech Republic
- Department
of Biophysics, Faculty of Science, Palacky University in Olomouc, Slechtitelu 11, 78371 Olomouc, Czech Republic
| | - Olga Novakova
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, v.v.i.,
Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | | | - Concetta Pacifico
- Department
of Chemistry, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Giovanni Natile
- Department
of Chemistry, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Petr Ilik
- Department
of Biophysics, Centre of the Region Hana for Biotechnological and
Agricultural Research, Palacky University, Slechtitelu 11, 783 41 Olomouc, Czech Republic
| | - Viktor Brabec
- Department
of Biophysics, Faculty of Science, Palacky University in Olomouc, Slechtitelu 11, 78371 Olomouc, Czech Republic
| | - Jana Kasparkova
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, v.v.i.,
Kralovopolska 135, CZ-61265 Brno, Czech Republic
| |
Collapse
|
43
|
Haynes B, Saadat N, Myung B, Shekhar MPV. Crosstalk between translesion synthesis, Fanconi anemia network, and homologous recombination repair pathways in interstrand DNA crosslink repair and development of chemoresistance. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:258-66. [PMID: 25795124 DOI: 10.1016/j.mrrev.2014.11.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 12/12/2022]
Abstract
Bifunctional alkylating and platinum based drugs are chemotherapeutic agents used to treat cancer. These agents induce DNA adducts via formation of intrastrand or interstrand (ICL) DNA crosslinks, and DNA lesions of the ICL type are particularly toxic as they block DNA replication and/or DNA transcription. However, the therapeutic efficacies of these drugs are frequently limited due to the cancer cell's enhanced ability to repair and tolerate these toxic DNA lesions. This ability to tolerate and survive the DNA damage is accomplished by a set of specialized low fidelity DNA polymerases called translesion synthesis (TLS) polymerases since high fidelity DNA polymerases are unable to replicate the damaged DNA template. TLS is a crucial initial step in ICL repair as it synthesizes DNA across the lesion thus preparing the damaged DNA template for repair by the homologous recombination (HR) pathway and Fanconi anemia (FA) network, processes critical for ICL repair. Here we review the molecular features and functional roles of TLS polymerases, discuss the collaborative interactions and cross-regulation of the TLS DNA damage tolerance pathway, the FA network and the BRCA-dependent HRR pathway, and the impact of TLS hyperactivation on development of chemoresistance. Finally, since TLS hyperactivation results from overexpression of Rad6/Rad18 ubiquitinating enzymes (fundamental components of the TLS pathway), increased PCNA ubiquitination, and/or increased recruitment of TLS polymerases, the potential benefits of selectively targeting critical components of the TLS pathway for enhancing anti-cancer therapeutic efficacy and curtailing chemotherapy-induced mutagenesis are also discussed.
Collapse
Affiliation(s)
- Brittany Haynes
- Department of Oncology, Wayne State University, 110 East Warren Avenue, Detroit, MI 48201, United States; Karmanos Cancer Institute, Wayne State University, 110 East Warren Avenue, Detroit, MI 48201, United States
| | - Nadia Saadat
- Department of Oncology, Wayne State University, 110 East Warren Avenue, Detroit, MI 48201, United States; Karmanos Cancer Institute, Wayne State University, 110 East Warren Avenue, Detroit, MI 48201, United States
| | - Brian Myung
- Karmanos Cancer Institute, Wayne State University, 110 East Warren Avenue, Detroit, MI 48201, United States
| | - Malathy P V Shekhar
- Department of Oncology, Wayne State University, 110 East Warren Avenue, Detroit, MI 48201, United States; Karmanos Cancer Institute, Wayne State University, 110 East Warren Avenue, Detroit, MI 48201, United States; Department of Pathology, Wayne State University, 110 East Warren Avenue, Detroit, MI 48201, United States.
| |
Collapse
|
44
|
Abstract
We report the synthesis and characterization of a bimetallic conjugate (RhPt) in which an oxaliplatin derivative is tethered to a rhodium metalloinsertor through an aminomalonate leaving group ligand. The complex interacts with DNA through metalloinsertion at a base pair mismatch followed by formation of a covalent Pt-DNA adduct. Characterization of RhPt in mismatch repair-deficient HCT116O cells reveals increased cytotoxicity compared to cisplatin and oxaliplatin as well as relative to the unconjugated rhodium and platinum counterparts. Caspase and poly-ADP ribose polymerase inhibition assays indicate that RhPt induces apoptotic cell death. Inductively coupled plasma mass spectrometry (ICP-MS) experiments reveal that RhPt exhibits enhanced cellular uptake properties that contribute to its increased efficacy.
Collapse
Affiliation(s)
- Alyson G Weidmann
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | | |
Collapse
|
45
|
Frybortova M, Novakova O, Brabec V. The stability of DNA intrastrand cross-links of antitumor transplatin derivative containing non-bulky methylamine ligands. J Biol Inorg Chem 2014; 19:1203-8. [PMID: 24986778 DOI: 10.1007/s00775-014-1176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/14/2014] [Indexed: 11/24/2022]
Abstract
Oligonucleotides modified by clinically ineffective trans-diamminedichloridoplatinum(II) (transplatin) have been shown to be effective modulators of gene expression. This is so because in some nucleotide sequences the 1,3-GNG intrastrand adducts formed by transplatin in double-helical DNA readily rearrange into interstrand cross-links so that they can cross-link the oligonucleotides to their targets. On the other hand, in a number of other sequences these intrastrand adducts are relatively stable, which represents the major difficulty in the clinical use of the antisense transplatin-modified oligonucleotides. Therefore, we examined in this study, the stability of 1,3-GNG intrastrand adducts in double-helical DNA formed by a new antitumor derivative of transplatin, trans-[Pt(CH3NH2)2Cl2], in the sequence contexts in which transplatin formed relatively stable intrastrand cross-links which did not readily rearranged into interstrand cross-links. We have found that 1,3-GNG intrastrand adducts in double-helical DNA formed by trans-[Pt(CH3NH2)2Cl2] even in such sequences readily rearrange into interstrand cross-links. This work also suggests that an enhanced frequency of intrastrand cross-links yielded by trans-[Pt(CH3NH2)2Cl2] is a consequence of the fact that these DNA lesions considerably distort double-helical DNA in far more sequence contexts than parent transplatin. Our results suggest that trans-[Pt(CH3NH2)2Cl2]-modified oligonucleotides represent promising candidates for new agents in antisense or antigene approach.
Collapse
Affiliation(s)
- Michaela Frybortova
- Department of Biophysics, Faculty of Science, Palacky University, 17. listopadu 12, 77146, Olomouc, Czech Republic
| | | | | |
Collapse
|
46
|
Lando DY, Chang CL, Fridman AS, Grigoryan IE, Galyuk EN, Hsueh YW, Hu CK. Comparative thermal and thermodynamic study of DNA chemically modified with antitumor drug cisplatin and its inactive analog transplatin. J Inorg Biochem 2014; 137:85-93. [PMID: 24831492 DOI: 10.1016/j.jinorgbio.2014.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 04/14/2014] [Accepted: 04/15/2014] [Indexed: 12/11/2022]
Abstract
Antitumor activity of cisplatin is exerted by covalent binding to DNA. For comparison, studies of cisplatin-DNA complexes often employ the very similar but inactive transplatin. In this work, thermal and thermodynamic properties of DNA complexes with these compounds were studied using differential scanning calorimetry (DSC) and computer modeling. DSC demonstrates that cisplatin decreases thermal stability (melting temperature, Tm) of long DNA, and transplatin increases it. At the same time, both compounds decrease the enthalpy and entropy of the helix-coil transition, and the impact of transplatin is much higher. From Pt/nucleotide molar ratio rb=0.001, both compounds destroy the fine structure of DSC profile and increase the temperature melting range (ΔT). For cisplatin and transplatin, the dependences δTm vs rb differ in sign, while δΔT vs rb are positive for both compounds. The change in the parameter δΔT vs rb demonstrates the GC specificity in the location of DNA distortions. Our experimental results and calculations show that 1) in contrast to [Pt(dien)Cl]Cl, monofunctional adducts formed by transplatin decrease the thermal stability of long DNA at [Na(+)]>30mM; 2) interstrand crosslinks of cisplatin and transplatin only slightly increase Tm; 3) the difference in thermal stability of DNA complexes with cisplatin vs DNA complexes with transplatin mainly arises from the different thermodynamic properties of their intrastrand crosslinks. This type of crosslink appears to be responsible for the antitumor activity of cisplatin. At any [Na(+)] from interval 10-210mM, cisplatin and transplatin intrastrand crosslinks give rise to destabilization and stabilization, respectively.
Collapse
Affiliation(s)
- Dmitri Y Lando
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Belarus.
| | - Chun-Ling Chang
- Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Alexander S Fridman
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Belarus
| | | | - Elena N Galyuk
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Belarus
| | - Ya-Wei Hsueh
- Department of Physics, National Central University, Chungli 32001, Taiwan
| | - Chin-Kun Hu
- Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan.
| |
Collapse
|
47
|
“Turn off–on” fluorescent sensor for platinum drugs-DNA interactions based on quantum dots. Biosens Bioelectron 2014; 52:29-35. [DOI: 10.1016/j.bios.2013.08.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 08/18/2013] [Accepted: 08/19/2013] [Indexed: 01/11/2023]
|
48
|
Kasparkova J, Thibault T, Kostrhunova H, Stepankova J, Vojtiskova M, Muchova T, Midoux P, Malinge JM, Brabec V. Different affinity of nuclear factor-kappa B proteins to DNA modified by antitumor cisplatin and its clinically ineffective trans isomer. FEBS J 2014; 281:1393-1408. [PMID: 24418212 DOI: 10.1111/febs.12711] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 11/06/2013] [Accepted: 12/13/2013] [Indexed: 01/06/2023]
Abstract
Nuclear factor-kappa B (NF-кB) comprises a family of protein transcription factors that have a regulatory function in numerous cellular processes and are implicated in the cancer cell response to antineoplastic drugs, including cisplatin. We characterized the effects of DNA adducts of cisplatin and ineffective transplatin on the affinity of NF-кB proteins to their consensus DNA sequence (кB site). Although the кB site-NF-κB protein interaction was significantly perturbed by DNA adducts of cisplatin, transplatin adducts were markedly less effective both in cell-free media and in cellulo using a decoy strategy derivatized-approach. Moreover, NF-κB inhibitor JSH-23 [4-methyl-N¹-(3-phenylpropyl)benzene-1,2-diamine] augmented cisplatin cytotoxicity in ovarian cancer cells and the data showed strong synergy with JSH-23 for cisplatin. The distinctive structural features of DNA adducts of the two platinum complexes suggest a unique role for conformational distortions induced in DNA by the adducts of cisplatin with respect to inhibition of the binding of NF-кB to the platinated кB sites. Because thousands of κB sites are present in the DNA, the mechanisms underlying the antitumor efficiency of cisplatin in some tumor cells may involve downstream processes after inhibition of the binding of NF-κB to κB site(s) by DNA adducts of cisplatin, including enhanced programmed cell death in response to drug treatment.
Collapse
Affiliation(s)
- Jana Kasparkova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Zhao Y, Woods JA, Farrer NJ, Robinson KS, Pracharova J, Kasparkova J, Novakova O, Li H, Salassa L, Pizarro AM, Clarkson GJ, Song L, Brabec V, Sadler PJ. Diazido mixed-amine platinum(IV) anticancer complexes activatable by visible-light form novel DNA adducts. Chemistry 2013; 19:9578-91. [PMID: 23733242 PMCID: PMC4280898 DOI: 10.1002/chem.201300374] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Indexed: 01/09/2023]
Abstract
Platinum diam(m)ine complexes, such as cisplatin, are successful anticancer drugs, but suffer from problems of resistance and side-effects. Photoactivatable Pt(IV) prodrugs offer the potential of targeted drug release and new mechanisms of action. We report the synthesis, X-ray crystallographic and spectroscopic properties of photoactivatable diazido complexes trans,trans,trans-[Pt(N3)2(OH)2(MA)(Py)] (1; MA=methylamine, Py=pyridine) and trans,trans,trans-[Pt(N3)2(OH)2(MA)(Tz)] (2; Tz=thiazole), and interpret their photophysical properties by TD-DFT modelling. The orientation of the azido groups is highly dependent on H bonding and crystal packing, as shown by polymorphs 1p and 1q. Complexes 1 and 2 are stable in the dark towards hydrolysis and glutathione reduction, but undergo rapid photoreduction with UVA or blue light with minimal amine photodissociation. They are over an order of magnitude more potent towards HaCaT keratinocytes, A2780 ovarian, and OE19 oesophageal carcinoma cells than cisplatin and show particular potency towards cisplatin-resistant human ovarian cancer cells (A2780cis). Analysis of binding to calf-thymus (CT), plasmids, oligonucleotide DNA and individual nucleotides reveals that photoactivated 1 and 2 form both mono- and bifunctional DNA lesions, with preference for G and C, similar to transplatin, but with significantly larger unwinding angles and a higher percentage of interstrand cross-links, with evidence for DNA strand cross-linking further supported by a comet assay. DNA lesions of 1 and 2 on a 50 bp duplex were not recognised by HMGB1 protein, in contrast to cisplatin-type lesions. The photo-induced platination reactions of DNA by 1 and 2 show similarities with the products of the dark reactions of the Pt(II) compounds trans-[PtCl2(MA)(Py)] (5) and trans-[PtCl2(MA)(Tz)] (6). Following photoactivation, complex 2 reacted most rapidly with CT DNA, followed by 1, whereas the dark reactions of 5 and 6 with DNA were comparatively slow. Complexes 1 and 2 can therefore give rapid potent photocytotoxicity and novel DNA lesions in cancer cells, with no activity in the absence of irradiation.
Collapse
Affiliation(s)
- Yao Zhao
- Department of Chemistry, University of WarwickCoventry, CV4 7AL (UK)
| | - Julie A Woods
- Photobiology Unit, Department of Dermatology, University of DundeeNinewells Hospital and Medical School, Dundee, DD1 9SY (UK)
| | - Nicola J Farrer
- Department of Chemistry, University of WarwickCoventry, CV4 7AL (UK)
| | - Kim S Robinson
- Photobiology Unit, Department of Dermatology, University of DundeeNinewells Hospital and Medical School, Dundee, DD1 9SY (UK)
| | - Jitka Pracharova
- Faculty of Science, Palacky University, 17Listopadu 12, 77146 Olomouc (Czech Republic)
| | - Jana Kasparkova
- Faculty of Science, Palacky University, 17Listopadu 12, 77146 Olomouc (Czech Republic)
| | - Olga Novakova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i.Kralovopolska 135, 61265 Brno (Czech Republic)
| | - Huilin Li
- Department of Chemistry, University of WarwickCoventry, CV4 7AL (UK)
| | - Luca Salassa
- Department of Chemistry, University of WarwickCoventry, CV4 7AL (UK)
| | - Ana M Pizarro
- Department of Chemistry, University of WarwickCoventry, CV4 7AL (UK)
| | - Guy J Clarkson
- Department of Chemistry, University of WarwickCoventry, CV4 7AL (UK)
| | - Lijiang Song
- Department of Chemistry, University of WarwickCoventry, CV4 7AL (UK)
| | - Viktor Brabec
- Faculty of Science, Palacky University, 17Listopadu 12, 77146 Olomouc (Czech Republic)
| | - Peter J Sadler
- Department of Chemistry, University of WarwickCoventry, CV4 7AL (UK)
| |
Collapse
|
50
|
Frybortova M, Novakova O, Stepankova J, Novohradsky V, Gibson D, Kasparkova J, Brabec V. Activation of trans geometry in bifunctional mononuclear platinum complexes by a non-bulky methylamine ligand. J Inorg Biochem 2013; 126:46-54. [PMID: 23770803 DOI: 10.1016/j.jinorgbio.2013.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/23/2013] [Accepted: 05/23/2013] [Indexed: 10/26/2022]
Abstract
In order to shed light on the mechanism that underlies activity of bifunctional mononuclear Pt(II) analogs of transplatin we examined in the present work a DNA binding mode of the analog of transplatin, namely trans-[Pt(CH3NH2)2Cl2], in which NH3 groups were replaced only by a small, non-bulky methylamine ligand. This choice was made because we were interested to reveal the role of the bulkiness of the amines used to substitute NH3 in transplatin to produce antitumor-active Pt(II) drug. The results indicate that trans-[Pt(CH3NH2)2Cl2] forms a markedly higher amount of more distorting intrastrand cross-links than transplatin which forms in DNA preferentially less distorting and persisting monofunctional adducts. Also importantly, the accumulation of trans-[Pt(CH3NH2)2Cl2] in tumor cells was considerably greater than that of transplatin and cisplatin. In addition, the results of the present work demonstrate that the replacement of ammine groups by the non-bulky methylamine ligand in the molecule of ineffective transplatin results in a radical enhancement of its activity in tumor cell lines including cisplatin-resistant tumor cells. Thus, activation of the trans geometry in bifunctional mononuclear Pt(II) complexes can be also accomplished by replacement of ammine groups in transplatin by non-bulky methylamine ligands so that it is not limited only to the replacement by relatively bulky and stereochemically more demanding amino ligands.
Collapse
Affiliation(s)
- Michaela Frybortova
- Department of Biophysics, Faculty of Science, Palacky University, 17. listopadu 12, CZ-77146 Olomouc, Czech Republic
| | | | | | | | | | | | | |
Collapse
|