1
|
Roussaki M, Magoulas GE, Fotopoulou T, Santarem N, Barrias E, Pöhner I, Luelmo S, Afroudakis P, Georgikopoulou K, Nevado PT, Eick J, Bifeld E, Corral MJ, Jiménez-Antón MD, Ellinger B, Kuzikov M, Fragiadaki I, Scoulica E, Gul S, Clos J, Prousis KC, Torrado JJ, Alunda JM, Wade RC, de Souza W, Cordeiro da Silva A, Calogeropoulou T. Design, synthesis and biological evaluation of antiparasitic dinitroaniline-ether phospholipid hybrids. Bioorg Chem 2023; 138:106615. [PMID: 37244229 DOI: 10.1016/j.bioorg.2023.106615] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 05/29/2023]
Abstract
A series of nine novel ether phospholipid-dinitroaniline hybrids were synthesized in an effort to deliver more potent antiparasitic agents with improved safety profile compared to miltefosine. The compounds were evaluated for their in vitro antiparasitic activity against L. infantum, L.donovani, L. amazonensis, L. major and L. tropica promastigotes, L. infantum and L. donovani intracellular amastigotes, Trypanosoma brucei brucei and against different developmental stages of Trypanosoma cruzi. The nature of the oligomethylene spacer between the dinitroaniline moiety and the phosphate group, the length of the side chain substituent on the dinitroaniline and the choline or homocholine head group were found to affect both the activity and toxicity of the hybrids. The early ADMET profile of the derivatives did not reveal major liabilities. Hybrid 3, bearing an 11-carbon oligomethylene spacer, a butyl side chain and a choline head group, was the most potent analogue of the series. It exhibited a broad spectrum antiparasitic profile against the promastigotes of New and Old World Leishmania spp., against intracellular amastigotes of two L. infantum strains and L. donovani, against T. brucei and against T. cruzi Y strain epimastigotes, intracellular amastigotes and trypomastigotes. The early toxicity studies revealed that hybrid 3 showed a safe toxicological profile while its cytotoxicity concentration (CC50) against THP-1 macrophages being >100 μM. Computational analysis of binding sites and docking indicated that the interaction of hybrid 3 with trypanosomatid α-tubulin may contribute to its mechanism of action. Furthermore, compound 3 was found to interfere with the cell cycle in T. cruzi epimastigotes, while ultrastructural studies using SEM and TEM in T. cruzi showed that compound 3 affects cellular processes that result in changes in the Golgi complex, the mitochondria and the parasite's plasma membrane. The snapshot pharmacokinetic studies showed low levels of 3 after 24 h following oral administration of 100 mg/Kg, while, its homocholine congener compound 9 presented a better pharmacokinetic profile.
Collapse
Affiliation(s)
- Marina Roussaki
- National Hellenic Research Foundation, Institute of Chemical Biology, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | - George E Magoulas
- National Hellenic Research Foundation, Institute of Chemical Biology, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | - Theano Fotopoulou
- National Hellenic Research Foundation, Institute of Chemical Biology, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | - Nuno Santarem
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC-Instituto de Biologia Molecular e Celular, Parasite Disease Group, Porto, Portugal.
| | - Emile Barrias
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho s/n, Ilha do Fundão, 21941-900 Rio de Janeiro, Brazil.
| | - Ina Pöhner
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland.
| | - Sara Luelmo
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| | - Pantelis Afroudakis
- National Hellenic Research Foundation, Institute of Chemical Biology, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | - Kalliopi Georgikopoulou
- National Hellenic Research Foundation, Institute of Chemical Biology, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | - Paloma Tejera Nevado
- Bernhard Nocht Institute for Tropical Medicine, Leishmania Genetics Group, Bernhard Nocht St 74, D-20359 Hamburg, Germany.
| | - Julia Eick
- Bernhard Nocht Institute for Tropical Medicine, Leishmania Genetics Group, Bernhard Nocht St 74, D-20359 Hamburg, Germany.
| | - Eugenia Bifeld
- Bernhard Nocht Institute for Tropical Medicine, Leishmania Genetics Group, Bernhard Nocht St 74, D-20359 Hamburg, Germany.
| | - María J Corral
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - María Dolores Jiménez-Antón
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Bernhard Ellinger
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg, Germany; Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Hamburg, Germany.
| | - Maria Kuzikov
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg, Germany; Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Hamburg, Germany.
| | - Irini Fragiadaki
- University of Crete, Faculty of Medicine, Department of Clinical Microbiology and Microbial Pathogenesis, Voutes University Campus, 70013 Heraklion, Crete, Greece.
| | - Effie Scoulica
- University of Crete, Faculty of Medicine, Department of Clinical Microbiology and Microbial Pathogenesis, Voutes University Campus, 70013 Heraklion, Crete, Greece.
| | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg, Germany; Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Hamburg, Germany.
| | - Joachim Clos
- Bernhard Nocht Institute for Tropical Medicine, Leishmania Genetics Group, Bernhard Nocht St 74, D-20359 Hamburg, Germany.
| | - Kyriakos C Prousis
- National Hellenic Research Foundation, Institute of Chemical Biology, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | - Juan J Torrado
- Department of Pharmaceutics and Food Technology, Complutense University of Madrid, 28240 Madrid, Spain.
| | - José María Alunda
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), D-69118 Heidelberg, Germany; Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, D-69120 Heidelberg, Germany.
| | - Wanderley de Souza
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho s/n, Ilha do Fundão, 21941-900 Rio de Janeiro, Brazil.
| | - Anabela Cordeiro da Silva
- IBMC-Instituto de Biologia Molecular e Celular, Parasite Disease Group, Porto, Portugal; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Departmento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| | - Theodora Calogeropoulou
- National Hellenic Research Foundation, Institute of Chemical Biology, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| |
Collapse
|
2
|
Preliminary Results, Perspectives, and Proposal for a Screening Method of In Vitro Susceptibility of Prototheca Species to Antimicrotubular Agents. Antimicrob Agents Chemother 2020; 64:AAC.01392-19. [PMID: 31871079 DOI: 10.1128/aac.01392-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/02/2019] [Indexed: 11/20/2022] Open
Abstract
Microorganisms belonging to the genus Prototheca are achlorophyllous microalgae, occasionally behaving as environmental pathogens that cause severe mastitis in milk cows, as well as localized or systemic infections in humans and animals. Among the different species belonging to the genus, Prototheca zopfii genotype 2 (recently reclassified as P. bovis) and P. blaschkeae are most commonly associated with bovine mastitis. To date, no pharmacological treatment is available to cure protothecal mastitis, and infected animals must be quarantined to avoid spreading the infection. The few antibiotic and antifungal drugs effective in vitro against Prototheca give poor results in vivo This failure is likely due to the lack of specificity of such drugs. As microalgae are more closely related to plants than to bacteria or fungi, an alternative possibility is to test molecules with herbicidal properties, in particular, antimicrotubular herbicides, for which plant rather than animal tubulin is the selective target. Once a suitable test protocol was set up, a panel of 11 antimicrotubular agents belonging to different chemical classes and selective for plant tubulin were tested for the ability to inhibit growth of Prototheca cells in vitro Two dinitroanilines, dinitramine and chloralin, showed strong inhibitory effects on P. blaschkeae at low micromolar concentrations, with half-maximal inhibitory concentrations (IC50) of 4.5 and 3 μM, respectively, while both P. zopfii genotype 1 (now reclassified as P. ciferrii) and P. bovis showed susceptibility to dinitramine only, to different degrees. Suitable screening protocols for antimitotic agents are suggested.
Collapse
|
3
|
Veale CGL. Unpacking the Pathogen Box-An Open Source Tool for Fighting Neglected Tropical Disease. ChemMedChem 2019; 14:386-453. [PMID: 30614200 DOI: 10.1002/cmdc.201800755] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 12/13/2022]
Abstract
The Pathogen Box is a 400-strong collection of drug-like compounds, selected for their potential against several of the world's most important neglected tropical diseases, including trypanosomiasis, leishmaniasis, cryptosporidiosis, toxoplasmosis, filariasis, schistosomiasis, dengue virus and trichuriasis, in addition to malaria and tuberculosis. This library represents an ensemble of numerous successful drug discovery programmes from around the globe, aimed at providing a powerful resource to stimulate open source drug discovery for diseases threatening the most vulnerable communities in the world. This review seeks to provide an in-depth analysis of the literature pertaining to the compounds in the Pathogen Box, including structure-activity relationship highlights, mechanisms of action, related compounds with reported activity against different diseases, and, where appropriate, discussion on the known and putative targets of compounds, thereby providing context and increasing the accessibility of the Pathogen Box to the drug discovery community.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| |
Collapse
|
4
|
Herrera Acevedo C, Scotti L, Alves MF, de F.F.M. Diniz M, Tullius Scotti M. Hybrid Compounds in the Search for Alternative Chemotherapeutic Agents against Neglected Tropical Diseases. LETT ORG CHEM 2019. [DOI: 10.2174/1570178615666180402123057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neglected tropical diseases (NTDs) affect more than a billion people worldwide, mainly
populations living in poverty conditions. More than 56% of annual NTD deaths are caused by
Leishmaniasis, Sleeping sickness, and Chagas disease. For these three diseases, many problems have
been observed with the chemotherapeutic drugs commonly used, these being mainly resistance, high
toxicity, and low efficacy. In the search for alternative treatments, hybridization is an interesting approach,
which generates new molecules by merging two pharmacophores and then looking for improvements
in biological activity or reduced compound toxicity. Here, we review various studies that
present such hybrid molecules with promising in vitro and in vivo activities against Leishmania and
Trypanosoma parasites.
Collapse
Affiliation(s)
- Chonny Herrera Acevedo
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, 58051-900 Joao Pessoa, PB, Brazil
| | - Luciana Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, 58051-900 Joao Pessoa, PB, Brazil
| | - Mateus F. Alves
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, 58051-900 Joao Pessoa, PB, Brazil
| | - Margareth de F.F.M. Diniz
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, 58051-900 Joao Pessoa, PB, Brazil
| | - Marcus Tullius Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, 58051-900 Joao Pessoa, PB, Brazil
| |
Collapse
|
5
|
Casino AD, Lukinović V, Bhatt R, Randle LE, Dascombe MJ, Fennell DBJ, Drew MGB, Bell A, Fielding AJ, Ismail FMD. Synthesis, Structural Determination, and Pharmacology of Putative Dinitroaniline Antimalarials. ChemistrySelect 2018. [DOI: 10.1002/slct.201801723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alessio del Casino
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores University Byrom Street, Liverpool L3 3AF United Kingdom
| | - Valentina Lukinović
- School of Chemistry and the Photon Science InstituteThe University of Manchester, Manchester M13 9PL United Kingdom
| | - Rakesh Bhatt
- Henkel Loctite Adhesives LtdKelsey House, Wood Lane End Hemel Hempstead, Herts HP2 4RQ United Kingdom
| | - Laura E. Randle
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores University Byrom Street, Liverpool L3 3AF United Kingdom
| | - Michael J. Dascombe
- Faculty of BiologyMedicine and HealthStopford Building The University of Manchester Oxford Road, Manchester M13 9PT United Kingdom
| | - Dr Brian J. Fennell
- School of Genetics and MicrobiologyMoyne InstituteTrinity College, Dublin 2 Ireland
| | - Michael G. B. Drew
- Department of ChemistryUniversity of Reading, Reading, Berks, RG6 6AD United Kingdom
| | - Angus Bell
- School of Genetics and MicrobiologyMoyne InstituteTrinity College, Dublin 2 Ireland
| | - Alistair J. Fielding
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores University Byrom Street, Liverpool L3 3AF United Kingdom
| | - Fyaz M. D. Ismail
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores University Byrom Street, Liverpool L3 3AF United Kingdom
| |
Collapse
|
6
|
Antileishmanial activity and tubulin polymerization inhibition of podophyllotoxin derivatives on Leishmania infantum. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2017; 7:272-285. [PMID: 28719882 PMCID: PMC5512185 DOI: 10.1016/j.ijpddr.2017.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/16/2017] [Accepted: 06/27/2017] [Indexed: 12/21/2022]
Abstract
Leishmania microtubules play an important role not only in cell division, but also in keeping the shape of the parasite and motility of its free-living stages. Microtubules result from the self-assembly of alpha and beta tubulins, two phylogenetically conserved and very abundant eukaryotic proteins in kinetoplastids. The colchicine binding domain has inspired the discovery and development of several drugs currently in clinical use against parasites. However, this domain is less conserved in kinetoplastids and may be selectively targeted by new compounds. This report shows the antileishmanial effect of several series of compounds (53), derived from podophyllotoxin (a natural cyclolignan isolated from rhizomes of Podophyllum spp.) and podophyllic aldehyde, on a transgenic, fluorescence-emitting strain of Leishmania infantum. These compounds were tested on both promastigotes and amastigote-infected mouse splenocytes, and in mammalian – mouse non-infected splenocytes and liver HepG2 cells – in order to determine selective indexes of the drugs. Results obtained with podophyllotoxin derivatives showed that the hydroxyl group at position C-7α was a structural requisite to kill the parasites. On regards podophyllic aldehyde, derivatives with C9-aldehyde group integrated into a bicyclic heterostructure displayed more potent antileishmanial effects and were relatively safe for host cells. Docking studies of podophyllotoxin and podophyllic aldehyde derivatives showed that these compounds share a similar pattern of interaction at the colchicine site of Leishmania tubulin, thus pointing to a common mechanism of action. However, the results obtained suggested that despite tubulin is a remarkable target against leishmaniasis, there is a poor correlation between inhibition of tubulin polymerization and antileishmanial effect of many of the compounds tested, fact that points to alternative pathways to kill the parasites.
Collapse
|
7
|
Ogindo CO, Khraiwesh MH, George M, Brandy Y, Brandy N, Gugssa A, Ashraf M, Abbas M, Southerland WM, Lee CM, Bakare O, Fang Y. Novel drug design for Chagas disease via targeting Trypanosoma cruzi tubulin: Homology modeling and binding pocket prediction on Trypanosoma cruzi tubulin polymerization inhibition by naphthoquinone derivatives. Bioorg Med Chem 2016; 24:3849-55. [PMID: 27345756 PMCID: PMC4955813 DOI: 10.1016/j.bmc.2016.06.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/10/2016] [Accepted: 06/15/2016] [Indexed: 12/12/2022]
Abstract
Chagas disease, also called American trypanosomiasis, is a parasitic disease caused by Trypanosoma cruzi (T. cruzi). Recent findings have underscored the abundance of the causative organism, (T. cruzi), especially in the southern tier states of the US and the risk burden for the rural farming communities there. Due to a lack of safe and effective drugs, there is an urgent need for novel therapeutic options for treating Chagas disease. We report here our first scientific effort to pursue a novel drug design for treating Chagas disease via the targeting of T. cruzi tubulin. First, the anti T. cruzi tubulin activities of five naphthoquinone derivatives were determined and correlated to their anti-trypanosomal activities. The correlation between the ligand activities against the T. cruzi organism and their tubulin inhibitory activities was very strong with a Pearson's r value of 0.88 (P value <0.05), indicating that this class of compounds could inhibit the activity of the trypanosome organism via T. cruzi tubulin polymerization inhibition. Subsequent molecular modeling studies were carried out to understand the mechanisms of the anti-tubulin activities, wherein, the homology model of T. cruzi tubulin dimer was generated and the putative binding site of naphthoquinone derivatives was predicted. The correlation coefficient for ligand anti-tubulin activities and their binding energies at the putative pocket was found to be r=0.79, a high correlation efficiency that was not replicated in contiguous candidate pockets. The homology model of T. cruzi tubulin and the identification of its putative binding site lay a solid ground for further structure based drug design, including molecular docking and pharmacophore analysis. This study presents a new opportunity for designing potent and selective drugs for Chagas disease.
Collapse
Affiliation(s)
- Charles O Ogindo
- Department of Chemistry, Howard University, 525 College Street, NW, Washington, DC 20059, United States
| | - Mozna H Khraiwesh
- Department of Biology, Howard University, 415 College Street, NW, Washington, DC 20059, United States
| | - Matthew George
- Department of Biochemistry and Molecular Biology, Howard University, 520 W Street NW, Washington, DC 20059, United States
| | - Yakini Brandy
- Department of Chemistry, Howard University, 525 College Street, NW, Washington, DC 20059, United States
| | - Nailah Brandy
- Department of Chemistry, Howard University, 525 College Street, NW, Washington, DC 20059, United States
| | - Ayele Gugssa
- Department of Biology, Howard University, 415 College Street, NW, Washington, DC 20059, United States
| | - Mohammad Ashraf
- Department of Comprehensive Sciences, Howard University, 260 Locker Hall Street, NW, Washington, DC 20059, United States
| | - Muneer Abbas
- Department of Microbiology, Howard University, 520 W Street NW, Washington, DC 20059, United States; The National Human Genome Center, Howard University, 2041 Georgia Avenue NW, Washington, DC 20060, United States
| | - William M Southerland
- Department of Biochemistry and Molecular Biology, Howard University, 520 W Street NW, Washington, DC 20059, United States
| | - Clarence M Lee
- Department of Biology, Howard University, 415 College Street, NW, Washington, DC 20059, United States
| | - Oladapo Bakare
- Department of Chemistry, Howard University, 525 College Street, NW, Washington, DC 20059, United States
| | - Yayin Fang
- Department of Biochemistry and Molecular Biology, Howard University, 520 W Street NW, Washington, DC 20059, United States
| |
Collapse
|
8
|
Iqbal H, Ishfaq M, Wahab A, Abbas MN, Ahmad I, Rehman A, Zakir M. Therapeutic modalities to combat leishmaniasis, a review. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2016. [DOI: 10.1016/s2222-1808(15)60975-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Carvalheiro M, Esteves MA, Santos-Mateus D, Lopes RM, Rodrigues MA, Eleutério CV, Scoulica E, Santos-Gomes G, Cruz MEM. Hemisynthetic trifluralin analogues incorporated in liposomes for the treatment of leishmanial infections. Eur J Pharm Biopharm 2015; 93:346-52. [DOI: 10.1016/j.ejpb.2015.04.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 04/08/2015] [Accepted: 04/21/2015] [Indexed: 10/27/2022]
|
10
|
Nagle A, Khare S, Kumar AB, Supek F, Buchynskyy A, Mathison CJN, Chennamaneni N, Pendem N, Buckner FS, Gelb M, Molteni V. Recent developments in drug discovery for leishmaniasis and human African trypanosomiasis. Chem Rev 2014; 114:11305-47. [PMID: 25365529 PMCID: PMC4633805 DOI: 10.1021/cr500365f] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Indexed: 02/08/2023]
Affiliation(s)
- Advait
S. Nagle
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Shilpi Khare
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Arun Babu Kumar
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Frantisek Supek
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Andriy Buchynskyy
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Casey J. N. Mathison
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Naveen
Kumar Chennamaneni
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Nagendar Pendem
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Frederick S. Buckner
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Michael
H. Gelb
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Valentina Molteni
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| |
Collapse
|
11
|
Hashim S, Jan A, Sunohara Y, Hachinohe M, Ohdan H, Matsumoto H. Mutation of alpha-tubulin genes in trifluralin-resistant water foxtail (Alopecurus aequalis). PEST MANAGEMENT SCIENCE 2012; 68:422-9. [PMID: 21972152 DOI: 10.1002/ps.2284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 08/08/2011] [Accepted: 08/08/2011] [Indexed: 05/03/2023]
Abstract
BACKGROUND Trifluralin-resistant biotypes of water foxtail (Alopecurus aequalis) have been identified in wheat fields from northern Kyushu, Japan. Water foxtail is a winter-annual grassy weed, causing substantial crop losses. This study reports on mutation in α-tubulin (TUA) genes from water foxtail, the site of action of trifluralin. RESULTS Two trifluralin-sensitive (S) Chikugo and Ukiha biotypes and four trifluralin-resistant (R) Asakura-1, Asakura-2, Tamana and Tosu biotypes of water foxtail were used for herbicide resistance analysis. R biotypes showed 5.7-30.7-fold trifluralin resistance compared with the S biotypes. No differences in the uptake and translocation of (14)C-trifluralin were observed between Chikugo (S) biotype and Asakura-1 (R) biotype. Most of the (14)C detected in the plant material was in the root tissue, and no substantial increases were noted in shoot tissues. Comparative TUA sequence analysis revealed two independent single amino acid changes: change of Val into Phe at position 202 in TUA1 and change of Leu into Met at position 125 in TUA3 in Asakura-1 biotype. In the Tamana (R) biotype, two amino acid changes of Leu to Phe at position 136 and Val to Phe at position 202 were observed in the predicted amino acid sequence of TUA1, compared with Chikugo (S) biotype. CONCLUSION The results provide preliminary molecular explanation for the resistance of water foxtail to trifluralin, a phenomenon that has arisen as a result of repeated exposure to this class of herbicide. This is the first report of α-tubulin mutation in water foxtail and for any Alopecurus species reported in the literature.
Collapse
Affiliation(s)
- Saima Hashim
- Doctoral Program in Life Sciences and Bioengineering, Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Chatterji BP, Jindal B, Srivastava S, Panda D. Microtubules as antifungal and antiparasitic drug targets. Expert Opin Ther Pat 2011; 21:167-86. [PMID: 21204724 DOI: 10.1517/13543776.2011.545349] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Diseases caused by fungi and parasites are major illnesses in humans as well as in animals. Microtubule-targeted drugs are highly effective for the treatment of fungal and parasitic infections; however, several human parasitic infections such as malaria, trypanosomiasis and leishmaniasis do not have effective remedial drugs. In addition, the emergence of drug-resistant fungi and parasites makes the discovery of new drugs imperative. AREAS COVERED This article describes similarities and dissimilarities between parasitic, fungal and mammalian tubulins and focuses on microtubule-targeting agents and therapeutic approaches for the treatment of fungal and parasitic diseases. New microtubule-targeted antileishmanial, antimalarial and antifungal drugs, with structures, biological activities and related patents, are described. The potential of dsRNA against tubulin to inhibit proliferation of protozoan and helminthic parasites is also discussed. Patent documents up to 2010 have been searched on USPTO, Patentscope, and Espacenet resources. EXPERT OPINION The article suggests that vaccination with tubulin may offer novel opportunities for the antiparasitic treatment. Native or recombinant tubulin used as antigen has been shown to elicit immune response and cure infection partially or fully in animals upon challenge by protozoan parasites and helminths, thus indicating the suitability of tubulin as a vaccine against parasitic diseases.
Collapse
Affiliation(s)
- Biswa Prasun Chatterji
- Indian Institute of Technology Bombay, Department of Biosciences and Bioengineering, Powai, Mumbai-400076, India
| | | | | | | |
Collapse
|
13
|
Heterogeneity in the sensitivity of microtubules of Giardia lamblia to the herbicide oryzalin. Parasitol Res 2010; 107:47-54. [DOI: 10.1007/s00436-010-1831-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 03/04/2010] [Indexed: 10/19/2022]
|
14
|
Trifluralin liposomal formulations active against Leishmania donovani infections. Eur J Pharm Biopharm 2009; 71:292-6. [DOI: 10.1016/j.ejpb.2008.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 08/01/2008] [Accepted: 08/04/2008] [Indexed: 11/18/2022]
|
15
|
Characterization of trifluralin binding with recombinant tubulin from Trypanosoma brucei. Parasitol Res 2008; 104:893-903. [PMID: 19050925 DOI: 10.1007/s00436-008-1271-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 11/07/2008] [Indexed: 10/21/2022]
Abstract
The binding kinetics of five novel trifluralin analogs with recombinant alpha- and beta-tubulin proteins from Trypanosoma brucei rhodesiense was determined. Native tubulin from rats was used to determine the extent of binding of each analog to mammalian tubulin. The results of this study clearly demonstrate two important characteristics of the binding of these trifluralins to tubulin. Firstly, they have specific affinity for trypanosomal tubulin compared with mammalian tubulin irrespective of the chemical composition of the trifluralin analog tested. Secondly, they have a stronger affinity for trypanosomal alpha-tubulin compared with trypanosomal beta-tubulin. In addition, compounds 1007, 1008, 1016, and 1017 have strong binding affinities for alpha-tubulin, with limited binding affinity for mammalian tubulin, which indicates that these compounds selectively bind to trypanosomal tubulin.
Collapse
|
16
|
Morgan RE, Werbovetz KA. Selective lead compounds against kinetoplastid tubulin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 625:33-47. [PMID: 18365657 DOI: 10.1007/978-0-387-77570-8_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Kinetoplastid parasites are responsible for the potentially fatal diseases leishmaniasis, African sleeping sickness and Chagas disease. The current treatments for these diseases are far from ideal and new compounds are needed as antiparasitic drug candidates. Tubulin is the accepted target for treatments against cancer and helminths, suggesting that kinetoplastid tubulin is also a suitable target for antiprotozoal compounds. Selective lead compounds against kinetoplastid tubulin have been identified that could represent a starting point for the development of new drug candidates against these parasites.
Collapse
Affiliation(s)
- R E Morgan
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, Ohio 43210, USA
| | | |
Collapse
|
17
|
Fennell BJ, Naughton JA, Barlow J, Brennan G, Fairweather I, Hoey E, McFerran N, Trudgett A, Bell A. Microtubules as antiparasitic drug targets. Expert Opin Drug Discov 2008; 3:501-18. [DOI: 10.1517/17460441.3.5.501] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Zeiman E, Greenblatt CL, Elgavish S, Khozin-Goldberg I, Golenser J. Mode of action of fenarimol against Leishmania spp. J Parasitol 2008; 94:280-6. [PMID: 18372651 DOI: 10.1645/ge-1259.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
This paper evaluates the effects of certain herbicides on Leishmania spp., their mechanism of action, and the evolutionary origin of the relevant susceptible leishmanial targets. We demonstrated that a relatively nontoxic herbicide, fenarimol, successfully interferes with a leishmanial target, which is probably a relic of an ancient ancestor. Fenarimol impairs the function of leishmanial 14alpha-sterol demethylase, a key enzyme in the sterol biosynthetic pathway. Therefore, fenarimol or its derivatives may be candidates for development of anti-leishmanial drugs. Of the herbicides that have the capability to act as potential inhibitors of the metabolism of Leishmania spp., fenarimol was found as the most active substance against both promastigotes and amastigotes in culture. In addition, it ameliorated lesions caused by Leishmania major in mice. Light microscopy demonstrated rounding of the parasite shape. Increase of osmophilic vacuoles and autophagosomal structures were observed by transmission electron microscopy. Biochemical studies demonstrated that fenarimol inhibited sterol biosynthesis. Docking of fenarimol to the modeled catalytic binding site of 14alpha-lanosterol demethylase of L. major showed a geometrical fit. Fenarimol is stabilized via hydrophobic interactions with the residues that surround it and interactions with the heme ring. These results provide support to the hypothesis that fenarimol inhibits leishmanial sterol biosynthesis. Overall, the findings suggest an additional source of substances for development of anti-leishmanial drugs.
Collapse
Affiliation(s)
- Einat Zeiman
- Department of Parasitology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel 91120
| | | | | | | | | |
Collapse
|
19
|
Chavan HD, Singh G, Dey CS. Confocal microscopic investigation of tubulin distribution and effect of paclitaxel on posttranslationally modified tubulins in sodium arsenite resistant Leishmania donovani. Exp Parasitol 2007; 116:320-6. [PMID: 17367783 DOI: 10.1016/j.exppara.2007.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 01/15/2007] [Accepted: 01/21/2007] [Indexed: 11/26/2022]
Abstract
The affinity of arsenic towards the cytoskeleton leading to disturbance of tubulin polymerization is well known. Tubulin undergoes extensive posttranslational modifications which effect stability and dynamics of microtubules but little is known about the effect of antimicrotubule drugs on their distribution and function in kinetoplastid parasites such as Leishmania. The current study was undertaken to investigate the effect of continuous sodium arsenite exposure on the tubulin distribution profile in wild type and sodium arsenite resistant Leishmania donovani together with effect of paclitaxel, a tubulin-polymerizing agent, on that distribution using confocal microscopy. Immunofluorescence studies using specific monoclonal antibodies against alpha-tubulin and posttranslationally modified tubulins (acetylated and tyrosinated) have revealed distinct differences in the organization of microtubule arrays in wild type and sodium arsenite resistant L. donovani that is further affected by paclitaxel treatment. Microtubules are arranged in spiral arrays in wild type as compared to the longitudinal arrays in arsenite resistant L. donovani. The difference in microtubular structure organization may explain the parasite response to continuous drug pressure and illustrate the fundamental impact of arsenite on microtubules in arsenite resistant L. donovani.
Collapse
Affiliation(s)
- Hemantkumar D Chavan
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research(1), Sector 67, SAS Nagar, Punjab, India
| | | | | |
Collapse
|
20
|
George TG, Endeshaw MM, Morgan RE, Mahasenan KV, Delfín DA, Mukherjee MS, Yakovich AJ, Fotie J, Li C, Werbovetz KA. Synthesis, biological evaluation, and molecular modeling of 3,5-substituted-N1-phenyl-N4,N4-di-n-butylsulfanilamides as antikinetoplastid antimicrotubule agents. Bioorg Med Chem 2007; 15:6071-9. [PMID: 17618122 PMCID: PMC1994923 DOI: 10.1016/j.bmc.2007.06.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 06/18/2007] [Accepted: 06/19/2007] [Indexed: 01/08/2023]
Abstract
Dinitroanilines are of interest as antiprotozoal lead compounds because of their selective activity against the tubulin of these organisms, but concern has been raised due to the potentially mutagenic nitro groups. Analogues of N(1)-phenyl-3,5-dinitro-N(4),N(4)-di-n-butylsulfanilamide (GB-II-150, compound 2b), a selective antimitotic agent against African trypanosomes and Leishmania, have been prepared where the nitro groups are replaced with amino, chloro, cyano, carboxylate, methyl ester, amide, and methyl ketone moieties. Dicyano compound 5 displays IC(50) values that are comparable to 2b against purified leishmanial tubulin assembly (6.6 vs 7.4 microM), Trypanosoma brucei brucei growth in vitro (0.26 vs 0.18 microM), Leishmania donovani axenic amastigote growth in vitro (4.4 vs 2.3 microM), and in vitro toxicity against Vero cells (16 vs 9.7 microM). Computational studies provide a rationale for the antiparasitic order of activity of these analogues and further insight into the role of the substituents at the 3 and 5 positions of the sulfanilamide ring.
Collapse
Affiliation(s)
- Tesmol G George
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zaidenberg A, Luong T, Lirussi D, Bleiz J, Del Buono MB, Quijano G, Drut R, Kozubsky L, Marron A, Buschiazzo H. Treatment of experimental chronic chagas disease with trifluralin. Basic Clin Pharmacol Toxicol 2006; 98:351-6. [PMID: 16623857 DOI: 10.1111/j.1742-7843.2006.pto_253.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We tested trifluralin against Trypanosoma cruzi in a model of chronic Chagas disease in mice. CF1 mice (n=148) were intraperitoneally infected with 10(5) trypomastigotes of T. cruzi, H510C8C3 clone. One hundred mice were partially treated with benznidazole. Mortality was 100% at day 41 in the control group (n=48). At day 90 of the chronic disease (74% survival) mice were divided into three groups and treated orally with trifluralin (50 mg/kg/day, n=26), benznidazole (50 mg/kg/day, n=25) and vehicle (peanut oil; control group, n=23) for 60 days. Electrocardiography (under pentobarbital anaesthesia, 30 mg/kg/dose), serologic immunofluorescence and microstrout were performed at the beginning and at the end of the treatment. Mice were sacrificed at day 10 after treatment; cardiac tissue was studied histopathologically and polymerase chain reaction (PCR) was performed. Spontaneous mortality was 30.43%, 3.85% and 4% in the control, trifluralin and benznidazole groups, respectively (significant survival, P=0.03). Microstrouts were negative in all three groups. Negative immunofluorescence titers were 0%, 16% (P=0.05) and 29% (P<0.02) in the control, trifluralin and benznidazole groups, respectively. The prevailing electrocardiographic disorder was prolongation of the PR interval in the control group, which was not significantly altered in trifluralin- and benznidazole-treated mice, suggesting that trifluralin and benznidazole improve or even stop the damage caused by the disease on the conduction system. Trifluralin- and benznidazole-treated animals showed similar histologic patterns of myocarditis. PCR results were negative for benznidazole and trifluralin (100% and 70.8%, respectively). These results show the therapeutic potential of trifluralin in the treatment of chronic Chagas disease.
Collapse
Affiliation(s)
- Anibal Zaidenberg
- Institute of Paediatric Research (IDIP-CIC), Children's Hospital "Sor María Ludovica", Argentina.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
George TG, Johnsamuel J, Delfín DA, Yakovich A, Mukherjee M, Phelps MA, Dalton JT, Sackett DL, Kaiser M, Brun R, Werbovetz KA. Antikinetoplastid antimitotic activity and metabolic stability of dinitroaniline sulfonamides and benzamides. Bioorg Med Chem 2006; 14:5699-710. [PMID: 16675220 DOI: 10.1016/j.bmc.2006.04.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Accepted: 04/06/2006] [Indexed: 11/25/2022]
Abstract
N(1)-Phenyl-3,5-dinitro-N(4),N(4)-di-n-propylsulfanilamide (1) and N(1)-phenyl-3,5-dinitro-N(4),N(4)-di-n-butylsulfanilamide (2) show potent in vitro antimitotic activity against kinetoplastid parasites but display poor in vivo activity. Seventeen new dinitroaniline sulfonamide and eleven new benzamide analogs of these leads are reported here. Nine of the sulfonamides display in vitro IC(50) values under 500 nM against African trypanosomes, and the most active antikinetoplastid compounds also inhibit the in vitro assembly of purified leishmanial tubulin with potencies similar to that of 2. While several of the potent compounds are rapidly degraded by rat liver S9 fractions in vitro, N(1)-(3-hydroxy)phenyl-3,5-dinitro-N(4),N(4)-di-n-butylsulfanilamide (21) displays an IC(50) value of 260 nM against African trypanosomes in vitro and is more stable than 2 in the in vitro metabolism assay.
Collapse
Affiliation(s)
- Tesmol G George
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, 43210, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yakovich AJ, Ragone FL, Alfonzo JD, Sackett DL, Werbovetz KA. Leishmania tarentolae: purification and characterization of tubulin and its suitability for antileishmanial drug screening. Exp Parasitol 2006; 114:289-96. [PMID: 16753146 PMCID: PMC1986769 DOI: 10.1016/j.exppara.2006.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 04/17/2006] [Accepted: 04/24/2006] [Indexed: 12/31/2022]
Abstract
Previously, tubulin has been purified from Leishmania amazonensis and used to identify novel molecules with selective antimitotic activity. However, L. amazonensis is pathogenic and requires a relatively expensive medium for large-scale cultivation. Herein, the purification and characterization of tubulin from the non-pathogenic Leishmania tarentolae is reported, together with the sequence of alpha- and beta-tubulin from this organism. This protein was purified by sonication, diethylaminoethyl-Sepharose chromatography, and one assembly disassembly cycle in 1% overall recovery based on total cellular protein. Leishmania tarentolae tubulin was indistinguishable from the corresponding L. amazonensis protein in terms of binding affinity for dinitroaniline sulfanilamides and sensitivity to assembly inhibition by these compounds. The amino acid sequences derived from the L. tarentolae alpha- and beta-tubulin genes were 99.6 and 99.4% identical to the corresponding amino acid sequences from the Leishmania major Friedlin strain. These results indicate that tubulin from L. tarentolae is suitable for use in drug screening.
Collapse
Affiliation(s)
- Adam J. Yakovich
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, the Ohio State University, Columbus, OH 43210, USA
| | - Frank L. Ragone
- College of Biological Sciences, the Ohio State University, Columbus, OH 43210, USA
| | - Juan D. Alfonzo
- College of Biological Sciences, the Ohio State University, Columbus, OH 43210, USA
| | - Dan L. Sackett
- Laboratory of Integrative and Medical Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| | - Karl A. Werbovetz
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, the Ohio State University, Columbus, OH 43210, USA
- * Corresponding author. Tel.: +1 614 292 5499; fax: +1 614 292 2435; E-mail address:
| |
Collapse
|
24
|
Jayanarayan KG, Dey CS. Altered tubulin dynamics, localization and post-translational modifications in sodium arsenite resistant Leishmania donovani in response to paclitaxel, trifluralin and a combination of both and induction of apoptosis-like cell death. Parasitology 2005; 131:215-30. [PMID: 16145938 DOI: 10.1017/s0031182005007687] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this study the anti-leishmanial activity and anti-microtubule effects of paclitaxel, trifluralin and a combination of paclitaxel and trifluralin have been tested in a wild type and sodium arsenite-resistant strain of Leishmania donovani. Both paclitaxel and trifluralin have been shown to be effective in limiting parasite growth. Specific alterations in morphology, tubulin polymerization dynamics, post-translational modifications and cellular distribution of the tubulins have been confirmed to be a part of the intracellular anti-microtubule-events that occur in arsenite-resistant L. donovani in response to these agents, ultimately leading to death of the parasite. DNA analyses of the drug-treated wild type and arsenite-resistant strains revealed an apoptosis-like death in response to paclitaxel and the combination but not to trifluralin. Data provide valuable information for further development of chemotherapeutic strategies based on anti-microtubule agents against drug resistant Leishmania parasites.
Collapse
Affiliation(s)
- K G Jayanarayan
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.4S IVAGAR, Punjab 160062, India
| | | |
Collapse
|
25
|
Chan MMY, Adapala NS, Fong D. Curcumin overcomes the inhibitory effect of nitric oxide on Leishmania. Parasitol Res 2005; 96:49-56. [PMID: 15772867 DOI: 10.1007/s00436-005-1323-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Accepted: 02/09/2005] [Indexed: 10/25/2022]
Abstract
Upon Leishmania infection, macrophages are activated to produce nitrogen and oxygen radicals simultaneously. It is well established that the infected host cells rely on nitric oxide (NO) as the major weapon against the intracellular parasite. In India where leishmaniasis is endemic, the spice turmeric is used prolifically in food and for insect bites. Curcumin, the active principle of turmeric, is a scavenger of NO. This report shows that curcumin protects promastigotes and amastigotes of the visceral species, Leishmania donovani, and promastigotes of the cutaneous species, L. major, against the actions of S-nitroso-N-acetyl-D,L-penicillamine (SNAP) and DETANONOate, which release NO, 3-morpholino-sydnonimine hydrochloride (SIN-1), which releases NO and superoxide, and peroxynitrite, which is formed from the reaction of NO with superoxide. Thus, curcumin, as an antioxidant, is capable of blocking the action of both NO and NO congeners on the Leishmania parasite.
Collapse
Affiliation(s)
- Marion Man-Ying Chan
- Department of Microbiology and Immunology, Temple University School of Medicine, 3400 North Broad St., Philadelphia, PA 19140, USA.
| | | | | |
Collapse
|
26
|
Schiffelers RM, Bakker-Woudenberg IAJM. Innovations in liposomal formulations for antimicrobial therapy. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.13.8.1127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Downing KH. Structural basis for the action of drugs that affect microtubule dynamics. ACTA ACUST UNITED AC 2005. [DOI: 10.1517/14728222.4.2.219] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Délye C, Menchari Y, Michel S, Darmency H. Molecular bases for sensitivity to tubulin-binding herbicides in green foxtail. PLANT PHYSIOLOGY 2004; 136:3920-32. [PMID: 15531712 PMCID: PMC535825 DOI: 10.1104/pp.103.037432] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Revised: 06/29/2004] [Accepted: 08/04/2004] [Indexed: 05/19/2023]
Abstract
We investigated the molecular bases for resistance to several classes of herbicides that bind tubulins in green foxtail (Setaria viridis L. Beauv.). We identified two alpha- and two beta-tubulin genes in green foxtail. Sequence comparison between resistant and sensitive plants revealed two mutations, a leucine-to-phenylalanine change at position 136 and a threonine-to-isoleucine change at position 239, in the gene encoding alpha2-tubulin. Association of mutation at position 239 with herbicide resistance was demonstrated using near-isogenic lines derived from interspecific pairings between green foxtail and foxtail millet (Setaria italica L. Beauv.), and herbicide sensitivity bioassays combined with allele-specific PCR-mediated genotyping. Association of mutation at position 136 with herbicide resistance was demonstrated using herbicide sensitivity bioassays combined with allele-specific PCR-mediated genotyping. Both mutations were associated with recessive cross resistance to dinitroanilines and benzoic acids, no change in sensitivity to benzamides, and hypersensitivity to carbamates. Using three-dimensional modeling, we found that the two mutations are adjacent and located into a region involved in tubulin dimer-dimer contact. Comparison of three-dimensional alpha-tubulin models for organisms with contrasted sensitivity to tubulin-binding herbicides enabled us to propose that residue 253 and the vicinity of the side chain of residue 251 are critical determinants for the differences in herbicide sensitivity observed between organisms, and that positions 16, 24, 136, 239, 252, and 268 are involved in modulating sensitivity to these herbicides.
Collapse
Affiliation(s)
- Christophe Délye
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche Biologie et Gestion des Adventices, F-21065 Dijon cedex, France.
| | | | | | | |
Collapse
|
29
|
Werbovetz KA, Sackett DL, Delfín D, Bhattacharya G, Salem M, Obrzut T, Rattendi D, Bacchi C. Selective antimicrotubule activity of N1-phenyl-3,5-dinitro-N4,N4-di-n-propylsulfanilamide (GB-II-5) against kinetoplastid parasites. Mol Pharmacol 2004; 64:1325-33. [PMID: 14645662 DOI: 10.1124/mol.64.6.1325] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Analogs of the antimitotic herbicide oryzalin (3,5-dinitro-N4,N4-di-n-propylsulfanilamide) were recently prepared that were more potent in vitro than the parent compound against the kinetoplastid parasite Leishmania donovani (Bioorg Med Chem Lett 12:2395-2398, 2002). In the present work, we show that the most active molecule in the group, N1-phenyl-3,5-dinitro-N4,N4-di-n-propylsulfanilamide (GB-II-5), is a potent, selective antimitotic agent against kinetoplastid parasites. GB-II-5 possesses IC50 values of 0.41 and 0.73 microM in vitro against two strains of the related parasite Trypanosoma brucei but is much less toxic to J774 murine macrophages and PC3 prostate cancer cells, exhibiting IC50 values of 29 and 35 microM against these lines, respectively. Selectivity is also observed for GB-II-5 with purified leishmanial and mammalian tubulin. The assembly of 15 microM leishmanial tubulin is completely inhibited by 10 microM GB-II-5, whereas 40 microM GB-II-5 inhibits the assembly of 15 microM porcine brain tubulin by only 17%. In cultured L. donovani and T. brucei, treatment with 5 and 0.5 microM GB-II-5, respectively, causes a striking increase in the fraction of G2M cells compared with control. Given the potency and selectivity of this agent against kinetoplastid tubulin, GB-II-5 emerges as an exciting new antitrypanosomal and antileishmanial lead compound.
Collapse
Affiliation(s)
- Karl A Werbovetz
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Makioka A, Kumagai M, Kobayashi S, Takeuchi T. Inhibition of excystation and metacystic development of Entamoeba invadens by the dinitroaniline herbicide oryzalin. J Parasitol 2002; 88:994-9. [PMID: 12435143 DOI: 10.1645/0022-3395(2002)088[0994:ioeamd]2.0.co;2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The effect of oryzalin on excystation and metacystic development of Entamoeba invadens strain IP-1 was examined by transfer of cysts to a growth medium containing the drug. Excystation, which was assessed by counting the number of metacystic amoebae after induction of excystation, was inhibited by oryzalin in a concentration-dependent manner. Metacystic development, which was determined by the number of nuclei in metacystic amoebae, was also inhibited by oryzalin because the percentage of 4-nucleate amoebae at day 1 remained unchanged at day 3. The addition of oryzalin after the induction of excystation decreased the number of metacystic amoebae, compared with control cultures. When cysts were incubated for 1 day in growth medium plus oryzalin, little increase in the number of metacystic amoebae was observed after removal of the drug. Excystation and metacystic development were further inhibited when the cysts were incubated for 30 min in encystation medium containing oryzalin before transfer to growth medium with the drug. When cysts were incubated for 30 min in encystation medium before transfer to growth medium without the drug, metacystic amoebae decreased in number. Pretreatment of cysts with oryzalin for 30 min in phosphate-buffered saline markedly reduced viability and prevented excystation in growth medium with or without the drug. The results indicate that oryzalin inhibits excystation and metacystic development of E. invadens, suggesting that it may be an inhibitor of Entamoeba infection.
Collapse
Affiliation(s)
- Asao Makioka
- Department of Tropical Medicine, Jikei University School of Medicine, Tokyo, Japan.
| | | | | | | |
Collapse
|
31
|
Bhattacharya G, Salem MM, Werbovetz KA. Antileishmanial dinitroaniline sulfonamides with activity against parasite tubulin. Bioorg Med Chem Lett 2002; 12:2395-8. [PMID: 12161141 DOI: 10.1016/s0960-894x(02)00465-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Novel dinitroaniline sulfonamides based on the herbicide oryzalin 3 were synthesized and evaluated for activity against the parasitic protozoan Leishmania donovani and against leishmanial tubulin, the putative antiparasitic target of oryzalin. A subset of these compounds possess more activity against both Leishmania and the target protein in vitro. Compound 20 displays improved potency against leishmanial tubulin and is 13.4-fold more active against L. donovani axenic amastigotes than oryzalin.
Collapse
Affiliation(s)
- Gautam Bhattacharya
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus 43210, USA
| | | | | |
Collapse
|
32
|
Abstract
Current treatments for the parasitic disease leishmaniasis are unsatisfactory due to their route of administration, toxicity and expense. Resistance is also developing to first-line antimonial drugs. Fortunately, a handful of antileishmanial agents, such as the orally available compound miltefosine, are currently in clinical trials. In addition, several promising drug targets and lead molecules are being studied with the goal of developing new antileishmanial agents. Drug candidates have been identified through the continued investigation of parasite sterol metabolism and parasite proteases. New antileishmanial molecules have also been discovered through the study of novel targets and pathways, such as the bisphosphonate inhibitors of isoprenoid biosynthesis. This review presents a synopsis of the drug targets and lead compounds that have been investigated over the last few years against leishmaniasis, gives a perspective on the chemotherapeutic potential of each and discusses some of the obstacles to antileishmanial drug development.
Collapse
Affiliation(s)
- Karl A Werbovetz
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, 500 West 12th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
33
|
Dow GS, Armson A, Boddy MR, Itenge T, McCarthy D, Parkin JE, Thompson RCA, Reynoldson JA. Plasmodium: assessment of the antimalarial potential of trifluralin and related compounds using a rat model of malaria, Rattus norvegicus. Exp Parasitol 2002; 100:155-60. [PMID: 12173400 DOI: 10.1016/s0014-4894(02)00016-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A rodent model of malaria, Plasmodium berghei was used to assess the antimalarial potential of dinitroaniline herbicides. Trifluralin, pendimethalin, oryzalin, and benfluralin were all active against P. berghei in vitro at, or close to, submicromolar concentrations, with a rank order of potency similar to that against other protozoa. The dinitroanilines did not elicit a cytotoxic effect against a mammalian cell line at concentrations 100-fold higher than those for activity against P. berghei. Neither trifluralin nor oryzalin exhibited any antimalarial activity in vivo after oral administration at the maximum dose tolerated by the host. In a pharmacokinetic study, it was found that the lack of in vivo antimalarial activity was due to poor absorption. Other DNs which have better absorption characteristics than either trifluralin or oryzalin may offer more scope for antimalarial activity in vivo.
Collapse
Affiliation(s)
- G S Dow
- Centre for Biomolecular Control of Disease, Western Australian Biomedical Research Institute, Division of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Chen M, Zhai L, Christensen SB, Theander TG, Kharazmi A. Inhibition of fumarate reductase in Leishmania major and L. donovani by chalcones. Antimicrob Agents Chemother 2001; 45:2023-9. [PMID: 11408218 PMCID: PMC90595 DOI: 10.1128/aac.45.7.2023-2029.2001] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our previous studies have shown that chalcones exhibit potent antileishmanial and antimalarial activities in vitro and in vivo. Preliminary studies showed that these compounds destroyed the ultrastructure of Leishmania parasite mitochondria and inhibited the respiration and the activity of mitochondrial dehydrogenases of Leishmania parasites. The present study was designed to further investigate the mechanism of action of chalcones, focusing on the parasite respiratory chain. The data show that licochalcone A inhibited the activity of fumarate reductase (FRD) in the permeabilized Leishmania major promastigote and in the parasite mitochondria, and it also inhibited solubilized FRD and a purified FRD from L. donovani. Two other chalcones, 2,4-dimethoxy-4'-allyloxychalcone (24m4ac) and 2,4-dimethoxy-4'-butoxychalcone (24mbc), also exhibited inhibitory effects on the activity of solubilized FRD in L. major promastigotes. Although licochalcone A inhibited the activities of succinate dehydrogenase (SDH), NADH dehydrogenase (NDH), and succinate- and NADH-cytochrome c reductases in the parasite mitochondria, the 50% inhibitory concentrations (IC(50)) of licochalcone A for these enzymes were at least 20 times higher than that for FRD. The IC(50) of licochalcone A for SDH and NDH in human peripheral blood mononuclear cells were at least 70 times higher than that for FRD. These findings indicate that FRD, one of the enzymes of the parasite respiratory chain, might be the specific target for the chalcones tested. Since FRD exists in the Leishmania parasite and does not exist in mammalian cells, it could be an excellent target for antiprotozoal drugs.
Collapse
Affiliation(s)
- M Chen
- Centre for Medical Parasitology, Department of Clinical Microbiology, University Hospital of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
35
|
Inhibition of fumarate reductase in Leishmania major and L. donovani by chalcones. Antimicrob Agents Chemother 2001. [PMID: 11408218 DOI: 10.1128/aac.45.7.2023-2029-2001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our previous studies have shown that chalcones exhibit potent antileishmanial and antimalarial activities in vitro and in vivo. Preliminary studies showed that these compounds destroyed the ultrastructure of Leishmania parasite mitochondria and inhibited the respiration and the activity of mitochondrial dehydrogenases of Leishmania parasites. The present study was designed to further investigate the mechanism of action of chalcones, focusing on the parasite respiratory chain. The data show that licochalcone A inhibited the activity of fumarate reductase (FRD) in the permeabilized Leishmania major promastigote and in the parasite mitochondria, and it also inhibited solubilized FRD and a purified FRD from L. donovani. Two other chalcones, 2,4-dimethoxy-4'-allyloxychalcone (24m4ac) and 2,4-dimethoxy-4'-butoxychalcone (24mbc), also exhibited inhibitory effects on the activity of solubilized FRD in L. major promastigotes. Although licochalcone A inhibited the activities of succinate dehydrogenase (SDH), NADH dehydrogenase (NDH), and succinate- and NADH-cytochrome c reductases in the parasite mitochondria, the 50% inhibitory concentrations (IC(50)) of licochalcone A for these enzymes were at least 20 times higher than that for FRD. The IC(50) of licochalcone A for SDH and NDH in human peripheral blood mononuclear cells were at least 70 times higher than that for FRD. These findings indicate that FRD, one of the enzymes of the parasite respiratory chain, might be the specific target for the chalcones tested. Since FRD exists in the Leishmania parasite and does not exist in mammalian cells, it could be an excellent target for antiprotozoal drugs.
Collapse
|
36
|
Abstract
The vast commercial effort to utilize chemical and molecular tools to solve weed control problems has had a major impact on the basic biological sciences as well as benefits to agriculture, and the first generation of transgenic products has been successful, while somewhat crude. More sophisticated products are envisaged and expected. Biotechnologically-derived herbicide-resistant crops have been a considerable benefit, yet in some cases there is a risk that the same useful transgenes may introgress into related weeds, specifically the weeds that are hardest to control without such transgenic crops. Biotechnology can also be used to mitigate the risks. Molecular tools should be considered for weed control without the use of, or with less chemicals, whether by enhancing crop competitiveness with weeds for light, nutrients and water, or via allelochemicals. Biocontrol agents may become more effective as well as more safe when rendered hypervirulent yet non-spreading by biotechnology. There might be ways to disperse deleterious transposons throughout weed populations, obviating the need to modify the crops.
Collapse
Affiliation(s)
- J Gressel
- Plant Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
37
|
Kamau SW, Nunez R, Grimm F. Flow cytometry analysis of the effect of allopurinol and the dinitroaniline compound (Chloralin) on the viability and proliferation of Leishmania infantum promastigotes. BMC Pharmacol 2001; 1:1. [PMID: 11299045 PMCID: PMC30939 DOI: 10.1186/1471-2210-1-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2001] [Accepted: 04/05/2001] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Leishmaniasis is a major parasitic disease in the tropical regions. However, Leishmania infantum has recently emerged as a very important cause of opportunistic infections for individuals positive for human immunodeficiency virus (HIV). However, there is a lack of in vitro tests for assessing the effect of anti-parasitic drugs on the viability and proliferation of Leishmania infantum. The aim of this study is to assess the efficacy of anti-parasitic drugs like allopurinol and Chloralin on the viability and proliferation of L. infantum promastigotes by utilizing two complementary flow cytometric approaches after exposure of the promastigotes to various concentrations of the drugs. RESULTS The density of the cultures in the presence and absence of allopurinol was determined by haemocytometer enumeration. The two flow cytometric approaches used to monitor the drug effect were: (i) a quantitative method to measure cell division using 5-,6-carboxyfluorescein diacetate succinimidyl ester (CFSE) staining and (ii) evaluation of cell viability by dual-staining with the membrane-permeable nuclear stain, SBRY-14 and propidium iodide. It was found that concentrations of allopurinol above 50 microg/ml yielded a clear decrease in the proliferation rate of the promastigotes. However, the viability results showed that about 46.8% of the promastigotes incubated in the presence of 800 microg/ml of allopurinol were still alive after 96 hours. In sharp contrast, more than 90% of promastigotes treated with Chloralin 10 microM (2.7 microg/ml) were dead after 48 hours of treatment. These flow cytometric findings suggest that allopurinol has a leishmaniostatic effect while the dinitroaniline compound (Chloralin) has a leishmaniocidal effect against promastigotes. CONCLUSIONS The flow cytometric data on proliferation and viability were consistent with results obtained from haemocytometer counts and allowed us to develop a model for assessing in vitro the effects of medicaments like allopurinol and chloralin on L. infantum promastigotes on a cellular level.
Collapse
Affiliation(s)
| | - Rafael Nunez
- Institute of Virology, University of Zurich, Winterthurerstr. 266a, 8057 Zürich. Switzerland
- Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 98, New York, NY 10021 USA
| | - Felix Grimm
- Institute of Parasitology, University of Zurich
| |
Collapse
|
38
|
Traub-Cseko YM, Ramalho-Ortigão JM, Dantas AP, de Castro SL, Barbosa HS, Downing KH. Dinitroaniline herbicides against protozoan parasites: the case of Trypanosoma cruzi. Trends Parasitol 2001; 17:136-41. [PMID: 11286798 DOI: 10.1016/s1471-4922(00)01834-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The drugs presently in use against Chagas disease are very toxic, inducing a great number of side effects. Alternative treatments are necessary, not only for Chagas disease but also for other diseases caused by protozoan parasites where current drugs pose toxicity problems. The plant microtubule inhibitor trifluralin has previously been tested with success against Leishmania, Trypanosoma brucei and several other protozoan parasites. Trypanosoma cruzi, the causative agent of Chagas disease, is also sensitive to the drug. This sensitivity has been correlated with the deduced amino acid sequences of alpha- and beta-tubulin of T. cruzi as compared with plant, mammal and other parasite sequences.
Collapse
Affiliation(s)
- Y M Traub-Cseko
- Instituto Oswaldo Cruz, FIOCRUZ, POB 926, Rio de RJ 21045-900, Janeiro, Brazil.
| | | | | | | | | | | |
Collapse
|
39
|
Hill JE, Scott DA, Luo S, Docampo R. Cloning and functional expression of a gene encoding a vacuolar-type proton-translocating pyrophosphatase from Trypanosoma cruzi. Biochem J 2000; 351:281-8. [PMID: 10998372 PMCID: PMC1221360 DOI: 10.1042/0264-6021:3510281] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Acidocalcisomes are acidic Ca(2+)-storage organelles found in trypanosomatids that are similar to organelles known historically as volutin granules. Acidification of these organelles is driven in part by a vacuolar H(+)-pyrophosphatase (V-H(+)-PPase), an enzyme that is also present in plant vacuoles and in some bacteria. Here, we report the cloning and sequencing of a gene encoding the acidocalcisomal V-H(+)-PPase of Trypanosoma cruzi. The protein (T. cruzi pyrophosphatase, TcPPase) predicted from the nucleotide sequence of the gene has 816 amino acids and a molecular mass of 85 kDa. Several sequence motifs found in plant V-H(+)-PPases were present in TcPPase, explaining its sensitivity to N-ethylmaleimide and N,N'-dicyclohexylcarbodi-imide. Heterologous expression of the cDNA encoding TcPPase in the yeast Saccharomyces cerevisiae produced a functional enzyme. Phylogenetic analysis of the available V-H(+)-PPase sequences indicates that TcPPase is nearer to the vascular plant cluster and the branch containing Chara, a precursor to land plants, than to any of the other pyrophosphatase sequences included in the analysis. The apparent lack of such a V-H(+)-PPase in mammalian cells may provide a target for the development of new drugs.
Collapse
Affiliation(s)
- J E Hill
- Laboratory of Molecular Parasitology, Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802, USA
| | | | | | | |
Collapse
|
40
|
Makioka A, Kumagai M, Ohtomo H, Kobayashi S, Takeuchi T. Effect of dinitroaniline herbicides on the growth of Entamoeba histolytica. J Parasitol 2000; 86:607-10. [PMID: 10864261 DOI: 10.1645/0022-3395(2000)086[0607:eodhot]2.0.co;2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The effect of the dinitroaniline herbicides oryzalin and trifluralin on the growth of Entamoeba histolytica was examined. Oryzalin inhibited the growth of E. histolytica strain HM-1:IMSS. Trifluralin was less effective than oryzalin for this parasite. Entamoeba histolytica was more resistant to these dinitroanilines than other parasitic protozoa examined so far, including Leishmania spp., Trypanosoma brucei, Plasmodium falciparum, Toxoplasma gondii, and Cryptosporidium parvum. Colchicine, a potent microtubule inhibitor of animal cells, was much less effective for E. histolytica, even at very high concentrations. A reptilian parasite, Entamoeba invadens strain IP-1, examined for comparison, was more resistant to these dinitroanilines than E. histolytica. Accumulation of E. histolytica trophozoites in mitosis was observed after culture in 100 microM oryzalin. The inhibitory effect of oryzalin on the growth of E. histolytica trophozoites was abrogated by removal of the drug after exposure to 100 microM for 2 days. In parallel to the recovery of growth after removal of the drug, the percentage of trophozoites in mitosis was reduced to a normal level. The results indicate that treatment of trophozoites with oryzalin arrests mitosis and that its effect is reversible. Therefore, oryzalin is a useful tool for studies relating to the cell cycle of this parasite.
Collapse
Affiliation(s)
- A Makioka
- Department of Tropical Medicine, Jikei University School of Medicine, Tokyo, Japan
| | | | | | | | | |
Collapse
|
41
|
|
42
|
Armson A, Kamau SW, Grimm F, Reynoldson JA, Best WM, MacDonald LM, Thompson RC. A comparison of the effects of a benzimidazole and the dinitroanilines against Leishmania infantum. Acta Trop 1999; 73:303-11. [PMID: 10546848 DOI: 10.1016/s0001-706x(99)00034-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Leishmania infantum promastigotes and amastigotes were axenically cultured and exposed to the known tubulin binding compounds, the dinitroanilines, trifluralin, benfluralin, pendimethalin, oryzalin and the precursor of the dinitroanilines, chloralin, as well as isomers of chloralin and trifluralin and to the benzimidazole, albendazole. Drug induced inhibition was observed using [3H]thymidine uptake compared with untreated controls. In vitro analysis demonstrated a significant difference in the activity of five of the seven dinitroanilines between both life cycle stages of L. infantum. The amastigotes were 20-times more sensitive to chloralin and its isomer than to the dinitroanilines whereas the promastigotes were similar in sensitivity to the dinitroanilines and to chloralin and its isomer. This interesting finding suggests that the dinitroaniline precursors may have different target sites in the amastigotes to those within the promastigotes. Additionally, both chloralin and its isomer, and to a lesser extent benfluralin, caused a substantial stimulation of thymidine incorporation (up to 50%) at low concentrations. Dose response analysis suggests that the dinitroanilines may have more than one mode of action against L. infantum amastigotes and promastigotes. The inhibitory effects of the dinitroanilines against L. infantum vary from previous findings using the dinitroanilines against other Leishmania spp. The 348 base pair DNA sequence coding for beta-tubulin from amino acid residues 132 to 248 was obtained for L. infantum and used to compare the in vivo efficacy of albendazole with predicted activity based on beta-tubulin sequences of known benzimidazole sensitive protozoa. The use of beta-tubulin sequence as a predictive model of benzimidazole activity is discussed with particular reference to L. infantum.
Collapse
Affiliation(s)
- A Armson
- Division of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, Western Australia, Australia.
| | | | | | | | | | | | | |
Collapse
|
43
|
Zaidenberg A, Tournier H, Schinella G, Marín G, Buschiazzo H. Effects of trifluralin on Trypanosoma cruzi in vitro and in vivo. PHARMACOLOGY & TOXICOLOGY 1999; 84:98-100. [PMID: 10068154 DOI: 10.1111/j.1600-0773.1999.tb00881.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A Zaidenberg
- Department of Pharmacology, Faculty of Medicine, National University of La Plata, Argentina
| | | | | | | | | |
Collapse
|
44
|
Yamamoto E, Baird WV. Molecular characterization of four beta-tubulin genes from dinitroaniline susceptible and resistant biotypes of Eleusine indica. PLANT MOLECULAR BIOLOGY 1999; 39:45-61. [PMID: 10080708 DOI: 10.1023/a:1006108412801] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Dinitroaniline herbicides are antimicrotubule drugs that bind to tubulins and inhibit polymerization. As a result of repeated application of dinitroaniline herbicides, resistant biotypes of goosegrass (Eleusine indica) developed in previously susceptible wild-type populations. We have previously reported that alpha-tubulin missense mutations correlate with dinitroaniline response phenotypes (Drp) (Plant Cell 10: 297-308, 1998). In order to ascertain associations of other tubulins with dinitroaniline resistance, four beta-tubulin cDNA classes (designated TUB1, TUB2, TUB3, and TUB4) were isolated from dinitroaniline-susceptible and -resistant biotypes. Sequence analysis of the four beta-tubulin cDNA classes identified no missense mutations. Identified nucleotide substitutions did not result in amino acid replacements. These results suggest that the molecular basis of dinitroaniline resistance in goosegrass differs from those of colchicine/dinitroaniline cross-resistant Chlamydomonas reinhardtii and benzimidazole-resistant fungi and yeast. Expression of the four beta-tubulins was highest in inflorescences. This is in contrast to alpha-tubulin TUA1 that is expressed predominantly in roots. Collectively, these results imply that beta-tubulin genes are not associated with dinitroaniline resistance in goosegrass. Phylogenetic analysis of the four beta-tubulins, together with three alpha-tubulins, suggests that the resistant biotype developed independently in multiple locations rather than spreading from one location.
Collapse
Affiliation(s)
- E Yamamoto
- Department of Horticulture, Clemson University, SC 29634-0375, USA
| | | |
Collapse
|
45
|
Yamamoto E, Zeng L, Baird WV. Alpha-tubulin missense mutations correlate with antimicrotubule drug resistance in Eleusine indica. THE PLANT CELL 1998; 10:297-308. [PMID: 9490751 PMCID: PMC143984 DOI: 10.1105/tpc.10.2.297] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Dinitroaniline herbicides are antimicrotubule drugs that bind to tubulins and inhibit polymerization. As a result of repeated application of dinitroaniline herbicides, highly resistant and intermediately resistant biotypes of goosegrass (Eleusine indica) developed in previously wild-type populations. Three alpha-tubulin cDNA classes (designated TUA1, TUA2, and TUA3) were isolated from each biotype. Nucleotide differences between the susceptible and the resistant (R) alpha-tubulins were identified in TUA1 and TUA2. The most significant differences were missense mutations that occurred in TUA1 of the R and intermediately resistant (I) biotypes. Such mutations convert Thr-239 to Ile in the R biotype and Met-268 to Thr in the I biotype. These amino acid substitutions alter hydrophobicity; therefore, they may alter the dinitroaniline binding property of the protein. These mutations were correlated with the dinitroaniline response phenotypes (Drp). Plants homozygous for susceptibility possessed the wild-type TUA1 allele; plants homozygous for resistance possessed the mutant tua1 allele; and plants heterozygous for susceptibility possessed both wild-type and mutant alleles. Thus, we conclude that TUA1 is at the Drp locus. Using polymerase chain reaction primer-introduced restriction analysis, we demonstrated that goosegrass genomic DNA can be diagnosed for Drp alleles. Although not direct proof, these results suggest that a mutation in an alpha-tubulin gene confers resistance to dinitroanilines in goosegrass.
Collapse
Affiliation(s)
- E Yamamoto
- Department of Horticulture, Clemson University, Clemson, South Carolina 29634, USA
| | | | | |
Collapse
|
46
|
Benbow JW, Bernberg EL, Korda A, Mead JR. Synthesis and evaluation of dinitroanilines for treatment of cryptosporidiosis. Antimicrob Agents Chemother 1998; 42:339-43. [PMID: 9527782 PMCID: PMC105410 DOI: 10.1128/aac.42.2.339] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The efficacy of a series of dinitroaniline herbicide derivatives for the treatment of Cryptosporidium parvum infections has been studied. The lead compounds oryzalin (compound 1) and trifluralin (compound 2) have low water solubility (<3 ppm) which was alleged to be a major contributor to their poor pharmacokinetic availability. Derivatives of compounds 1 and 2 were synthesized. In these derivatives the functionality at the C-1 amine position or the C-4 position was substituted with groups with various hydrophilicities to determine if a direct relation existed between water solubility and overall activity. The chlorinated precursors of these derivatives were also examined and were found to be less active in the C. parvum assays, a result in direct contrast to earlier work with Leishmania. Enhanced water solubility alone did not overcome the drug availability problem; however, several candidates with similar activities but with toxicities lower than those of the lead compounds were produced.
Collapse
Affiliation(s)
- J W Benbow
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, USA.
| | | | | | | |
Collapse
|
47
|
Yamamoto E, Zeng L, Baird WV. Alpha-tubulin missense mutations correlate with antimicrotubule drug resistance in Eleusine indica. THE PLANT CELL 1998; 10:297-308. [PMID: 9490751 DOI: 10.2307/3870706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Dinitroaniline herbicides are antimicrotubule drugs that bind to tubulins and inhibit polymerization. As a result of repeated application of dinitroaniline herbicides, highly resistant and intermediately resistant biotypes of goosegrass (Eleusine indica) developed in previously wild-type populations. Three alpha-tubulin cDNA classes (designated TUA1, TUA2, and TUA3) were isolated from each biotype. Nucleotide differences between the susceptible and the resistant (R) alpha-tubulins were identified in TUA1 and TUA2. The most significant differences were missense mutations that occurred in TUA1 of the R and intermediately resistant (I) biotypes. Such mutations convert Thr-239 to Ile in the R biotype and Met-268 to Thr in the I biotype. These amino acid substitutions alter hydrophobicity; therefore, they may alter the dinitroaniline binding property of the protein. These mutations were correlated with the dinitroaniline response phenotypes (Drp). Plants homozygous for susceptibility possessed the wild-type TUA1 allele; plants homozygous for resistance possessed the mutant tua1 allele; and plants heterozygous for susceptibility possessed both wild-type and mutant alleles. Thus, we conclude that TUA1 is at the Drp locus. Using polymerase chain reaction primer-introduced restriction analysis, we demonstrated that goosegrass genomic DNA can be diagnosed for Drp alleles. Although not direct proof, these results suggest that a mutation in an alpha-tubulin gene confers resistance to dinitroanilines in goosegrass.
Collapse
Affiliation(s)
- E Yamamoto
- Department of Horticulture, Clemson University, Clemson, South Carolina 29634, USA
| | | | | |
Collapse
|
48
|
Edlind T, Li J, Katiyar S. Expression of Cryptosporidium parvum beta-tubulin sequences in yeast: potential model for drug development. J Eukaryot Microbiol 1996; 43:86S. [PMID: 8822877 DOI: 10.1111/j.1550-7408.1996.tb05012.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- T Edlind
- Medical College of Pennsylvania, Philadelphia 19129, USA
| | | | | |
Collapse
|
49
|
Salas V, Romero PJ. Effects of trifluralin and oryzalin on the human erythrocyte Ca-ATPase. PHARMACOLOGY & TOXICOLOGY 1996; 78:439-40. [PMID: 8829208 DOI: 10.1111/j.1600-0773.1996.tb00233.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- V Salas
- Institute of Experimental Biology, Faculty of Science, Central University, Venezuela
| | | |
Collapse
|
50
|
Callahan HL, Kelley C, Pereira T, Grogl M. Microtubule inhibitors: structure-activity analyses suggest rational models to identify potentially active compounds. Antimicrob Agents Chemother 1996; 40:947-52. [PMID: 8849257 PMCID: PMC163236 DOI: 10.1128/aac.40.4.947] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Trifluralin, a dinitroaniline microtubule inhibitor currently in use as an herbicide, has been shown to inhibit the proliferation of Plasmodium falciparum, Trypanosoma brucei, and several species of Leishmania, in vitro. As a topical formulation, trifluralin is also effective in vivo (in BALB/c mice) against Leishmania major and Leishmania mexicana. Although trifluralin and other dinitroaniline herbicides show significant activity as antiparasitic compounds, disputed indications of potential carcinogenicity will probably limit advanced development of these substances. However, researchers have suggested that the activity of trifluralin is due to an impurity or contaminant, not to trifluralin itself. We have pursued this lead and identified the structure of the active impurity. This compound, chloralin, is 100 times more active than trifluralin. On the basis of its structure, we developed a rational structure-activity model for chloralin. Using this model, we have successfully predicted and tested active analogs in a Leishmania promastigote assay; thus, we have identified the putative mechanism of action of this class of drugs in Leishmania species. Potentially, this will allow the design of noncarcinogenic, active drugs.
Collapse
|