1
|
Qin PP, Chen PR, Tan L, Chu X, Ye BC, Yin BC. Programming ADAR-recruiting hairpin RNA sensor to detect endogenous molecules. Nucleic Acids Res 2025; 53:gkae1146. [PMID: 39673485 PMCID: PMC11724285 DOI: 10.1093/nar/gkae1146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 10/25/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024] Open
Abstract
RNA editing leveraging ADARs (adenosine deaminases acting on RNA) shows promising potential for in vivo biosensing beyond gene therapy. However, current ADAR sensors sense only a single target of RNA transcripts, thus limiting their use in different biosensing scenarios. Here, we report a hairpin RNA sensor that exploits new mechanisms to generate intramolecular duplex substrates for efficient ADAR recruitment and editing and apply it to detection of various intracellular molecules, including messenger RNA, small molecules and proteins. We utilize the base pairing interactions between neighbouring bases for enhanced stability, as well as the reverse effects to sense RNA transcripts and single-nucleotide variants with high sensitivity and specificity, irrespective of sequence requirement for complementarity to an UAG stop codon. In addition, we integrate RNA aptamers into the hairpin RNA sensor to realize the detection of the primary energy-supplying molecule, ATP, and a transcription factor, nuclear factor-kappa B (NF-κB), in live cells via a simple conformational change for programming the activation of hairpin RNA. This sensor not only broadens the detection of applicable molecules, but also offers potential for diverse cell manipulation.
Collapse
Affiliation(s)
- Pei-Pei Qin
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18 Chao Wang Road, Gongshu District, Hangzhou 310014, China
| | - Pin-Ru Chen
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18 Chao Wang Road, Gongshu District, Hangzhou 310014, China
| | - Liu Tan
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18 Chao Wang Road, Gongshu District, Hangzhou 310014, China
| | - Xiaohe Chu
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18 Chao Wang Road, Gongshu District, Hangzhou 310014, China
| | - Bang-Ce Ye
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18 Chao Wang Road, Gongshu District, Hangzhou 310014, China
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, No.130 Meilong Road, Xuhui District, Shanghai 200237, China
| | - Bin-Cheng Yin
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18 Chao Wang Road, Gongshu District, Hangzhou 310014, China
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, No.130 Meilong Road, Xuhui District, Shanghai 200237, China
- School of Chemistry and Chemical Engineering, Shihezi University, No.221 North Fourth Road, Uighur autonomous region, Shihezi 832000, Xinjiang, China
| |
Collapse
|
2
|
Nair JD, Wilkinson KA, Yucel BP, Mulle C, Vissel B, Mellor J, Henley JM. GluK2 Q/R editing regulates kainate receptor signaling and long-term potentiation of AMPA receptors. iScience 2023; 26:107708. [PMID: 37720087 PMCID: PMC10504484 DOI: 10.1016/j.isci.2023.107708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/18/2023] [Accepted: 08/23/2023] [Indexed: 09/19/2023] Open
Abstract
Q/R editing of the kainate receptor (KAR) subunit GluK2 radically alters recombinant KAR properties, but the effects on endogenous KARs in vivo remain largely unexplored. Here, we compared GluK2 editing-deficient mice that express ∼95% unedited GluK2(Q) to wild-type counterparts that express ∼85% edited GluK2(R). At mossy fiber-CA3 (MF-CA3) synapses GluK2(Q) mice displayed increased postsynaptic KAR function and KAR-mediated presynaptic facilitation, demonstrating enhanced ionotropic function. Conversely, GluK2(Q) mice exhibited reduced metabotropic KAR function, assessed by KAR-mediated inhibition of slow after-hyperpolarization currents (ISAHP). GluK2(Q) mice also had fewer GluA1-and GluA3-containing AMPA receptors (AMPARs) and reduced postsynaptic AMPAR currents at both MF-CA3 and CA1-Schaffer collateral synapses. Moreover, long-term potentiation of AMPAR-mediated transmission at CA1-Schaffer collateral synapses was reduced in GluK2(Q) mice. These findings suggest that GluK2 Q/R editing influences ionotropic/metabotropic balance of KAR signaling to regulate synaptic expression of AMPARs and plasticity.
Collapse
Affiliation(s)
- Jithin D. Nair
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Kevin A. Wilkinson
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Busra P. Yucel
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Christophe Mulle
- CNRS UMR 5297, Interdisciplinary Institute of Neuroscience, University of Bordeaux, France
| | - Bryce Vissel
- Centre for Neuroscience and Regenerative Medicine, St Vincent’s Hospital, Sydney, NSW, Australia
| | - Jack Mellor
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Jeremy M. Henley
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
3
|
Booth BJ, Nourreddine S, Katrekar D, Savva Y, Bose D, Long TJ, Huss DJ, Mali P. RNA editing: Expanding the potential of RNA therapeutics. Mol Ther 2023; 31:1533-1549. [PMID: 36620962 PMCID: PMC9824937 DOI: 10.1016/j.ymthe.2023.01.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
RNA therapeutics have had a tremendous impact on medicine, recently exemplified by the rapid development and deployment of mRNA vaccines to combat the COVID-19 pandemic. In addition, RNA-targeting drugs have been developed for diseases with significant unmet medical needs through selective mRNA knockdown or modulation of pre-mRNA splicing. Recently, RNA editing, particularly antisense RNA-guided adenosine deaminase acting on RNA (ADAR)-based programmable A-to-I editing, has emerged as a powerful tool to manipulate RNA to enable correction of disease-causing mutations and modulate gene expression and protein function. Beyond correcting pathogenic mutations, the technology is particularly well suited for therapeutic applications that require a transient pharmacodynamic effect, such as the treatment of acute pain, obesity, viral infection, and inflammation, where it would be undesirable to introduce permanent alterations to the genome. Furthermore, transient modulation of protein function, such as altering the active sites of enzymes or the interface of protein-protein interactions, opens the door to therapeutic avenues ranging from regenerative medicine to oncology. These emerging RNA-editing-based toolsets are poised to broadly impact biotechnology and therapeutic applications. Here, we review the emerging field of therapeutic RNA editing, highlight recent laboratory advancements, and discuss the key challenges on the path to clinical development.
Collapse
Affiliation(s)
| | - Sami Nourreddine
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | | | | | | | | | | | - Prashant Mali
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Shevchenko VP, Andreeva LA, Nagaev IY, Myasoedov NF. Synthesis of Deuterium-Labeled N-Methyl-D-Aspartate. DOKLADY CHEMISTRY 2022. [DOI: 10.1134/s0012500821090056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Niescier RF, Lin YC. The Potential Role of AMPA Receptor Trafficking in Autism and Other Neurodevelopmental Conditions. Neuroscience 2021; 479:180-191. [PMID: 34571086 DOI: 10.1016/j.neuroscience.2021.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022]
Abstract
Autism Spectrum Disorder (ASD) is a multifaceted condition associated with difficulties in social interaction and communication. It also shares several comorbidities with other neurodevelopmental conditions. Intensive research examining the molecular basis and characteristics of ASD has revealed an association with a large number and variety of low-penetrance genes. Many of the variants associated with ASD are in genes underlying pathways involved in long-term potentiation (LTP) or depression (LTD). These mechanisms then control the tuning of neuronal connections in response to experience by modifying and trafficking ionotropic glutamate receptors at the post-synaptic areas. Despite the high genetic heterogeneity in ASD, surface trafficking of the α-amino-3-hydroxy-5-Methyl-4-isoxazolepropionate (AMPA) receptor is a vulnerable pathway in ASD. In this review, we discuss autism-related alterations in the trafficking of AMPA receptors, whose surface density and composition at the post-synapse determine the strength of the excitatory connection between neurons. We highlight genes associated with neurodevelopmental conditions that share the autism comorbidity, including Fragile X syndrome, Rett Syndrome, and Tuberous Sclerosis, as well as the autism-risk genes NLGNs, IQSEC2, DOCK4, and STXBP5, all of which are involved in regulating AMPAR trafficking to the post-synaptic surface.
Collapse
Affiliation(s)
- Robert F Niescier
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201, USA.
| | - Yu-Chih Lin
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201, USA.
| |
Collapse
|
6
|
Goncharov AO, Kliuchnikova AA, Nasaev SS, Moshkovskii SA. RNA Editing by ADAR Adenosine Deaminases: From Molecular Plasticity of Neural Proteins to the Mechanisms of Human Cancer. BIOCHEMISTRY (MOSCOW) 2019; 84:896-904. [PMID: 31522671 DOI: 10.1134/s0006297919080054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RNA editing by adenosine deaminases of the ADAR family attracts a growing interest of researchers, both zoologists studying ecological and evolutionary plasticity of invertebrates and medical biochemists focusing on the mechanisms of cancer and other human diseases. These enzymes deaminate adenosine residues in the double-stranded (ds) regions of RNA with the formation of inosine. As a result, some RNAs change their three-dimensional structure and functions. Adenosine-to-inosine editing in the mRNA coding sequences may cause amino acid substitutions in the encoded proteins. Here, we reviewed current concepts on the functions of two active ADAR isoforms identified in mammals (including humans). The ADAR1 protein, which acts non-specifically on extended dsRNA regions, is capable of immunosuppression via inactivation of the dsRNA interactions with specific sensors inducing the cell immunity. Expression of a specific ADAR1 splicing variant is regulated by the type I interferons by the negative feedback mechanism. It was shown that immunosuppressing effects of ADAR1 facilitate progression of some types of cancer. On the other hand, changes in the amino acid sequences resulting from the mRNA editing by the ADAR enzymes can result in the formation of neoantigens that can activate the antitumor immunity. The ADAR2 isoform acts on RNA more selectively; its function is associated with the editing of mRNA coding regions and can lead to the amino acid substitutions, in particular, those essential for the proper functioning of some neurotransmitter receptors in the central nervous system.
Collapse
Affiliation(s)
- A O Goncharov
- Institute of Biomedical Chemistry, Moscow, 119121, Russia.
| | - A A Kliuchnikova
- Institute of Biomedical Chemistry, Moscow, 119121, Russia.,Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - S S Nasaev
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - S A Moshkovskii
- Institute of Biomedical Chemistry, Moscow, 119121, Russia. .,Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| |
Collapse
|
7
|
Abstract
Long double-stranded RNAs (dsRNAs) are abundantly expressed in animals, in which they frequently occur in introns and 3' untranslated regions of mRNAs. Functions of long, cellular dsRNAs are poorly understood, although deficiencies in adenosine deaminases that act on RNA, or ADARs, promote their recognition as viral dsRNA and an aberrant immune response. Diverse dsRNA-binding proteins bind cellular dsRNAs, hinting at additional roles. Understanding these roles is facilitated by mapping the genomic locations that express dsRNA in various tissues and organisms. ADAR editing provides a signature of dsRNA structure in cellular transcripts. In this review, we detail approaches to map ADAR editing sites and dsRNAs genome-wide, with particular focus on high-throughput sequencing methods and considerations for their successful application to the detection of editing sites and dsRNAs.
Collapse
Affiliation(s)
- Daniel P Reich
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112
| | - Brenda L Bass
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
8
|
Gurung S, Evans AJ, Wilkinson KA, Henley JM. ADAR2-mediated Q/R editing of GluK2 regulates kainate receptor upscaling in response to suppression of synaptic activity. J Cell Sci 2018; 131:jcs222273. [PMID: 30559217 PMCID: PMC6307878 DOI: 10.1242/jcs.222273] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/19/2018] [Indexed: 12/29/2022] Open
Abstract
Kainate receptors (KARs) regulate neuronal excitability and network function. Most KARs contain the subunit GluK2 (also known as GRIK2), and the properties of these receptors are determined in part by ADAR2 (also known as ADARB1)-mediated mRNA editing of GluK2, which changes a genomically encoded glutamine residue into an arginine residue (Q/R editing). Suppression of synaptic activity reduces ADAR2-dependent Q/R editing of GluK2 with a consequential increase in GluK2-containing KAR surface expression. However, the mechanism underlying this reduction in GluK2 editing has not been addressed. Here, we show that induction of KAR upscaling, a phenomenon in which surface expression of receptors is increased in response to a chronic decrease in synaptic activity, results in proteasomal degradation of ADAR2, which reduces GluK2 Q/R editing. Because KARs incorporating unedited GluK2(Q) assemble and exit the ER more efficiently, this leads to an upscaling of KAR surface expression. Consistent with this, we demonstrate that partial ADAR2 knockdown phenocopies and occludes KAR upscaling. Moreover, we show that although the AMPA receptor (AMPAR) subunit GluA2 (also known as GRIA2) also undergoes ADAR2-dependent Q/R editing, this process does not mediate AMPAR upscaling. These data demonstrate that activity-dependent regulation of ADAR2 proteostasis and GluK2 Q/R editing are key determinants of KAR, but not AMPAR, trafficking and upscaling.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sonam Gurung
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Ashley J Evans
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Kevin A Wilkinson
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Jeremy M Henley
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
9
|
Exciting Times: New Advances Towards Understanding the Regulation and Roles of Kainate Receptors. Neurochem Res 2017; 44:572-584. [PMID: 29270706 PMCID: PMC6420428 DOI: 10.1007/s11064-017-2450-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/27/2017] [Accepted: 12/07/2017] [Indexed: 12/11/2022]
Abstract
Kainate receptors (KARs) are glutamate-gated ion channels that play fundamental roles in regulating neuronal excitability and network function in the brain. After being cloned in the 1990s, important progress has been made in understanding the mechanisms controlling the molecular and cellular properties of KARs, and the nature and extent of their regulation of wider neuronal activity. However, there have been significant recent advances towards understanding KAR trafficking through the secretory pathway, their precise synaptic positioning, and their roles in synaptic plasticity and disease. Here we provide an overview highlighting these new findings about the mechanisms controlling KARs and how KARs, in turn, regulate other proteins and pathways to influence synaptic function.
Collapse
|
10
|
Abstract
Glutamate was shown to excite central neurons almost 40 years ago, but it was not until the mid-1980s that it was widely accepted as a neurotransmitter in the mammalian CNS. In the past decade, the ability to make high-resolution electrophysiological recordings from CNS neurons and the application of molecular biology techniques to the study of glutamate receptors has begun to elucidate the relationship between the structure of these receptors and their functional characteristics. Somewhat surprisingly, these investigations have shown that the ionotropic glutamate receptors make up a novel family of ligand-gated ion channels. Recent work has revealed the protein domains involved in ion permeation and ligand binding, and has begun to identify structural elements involved in channel gating, especially receptor desensitization. Additional se quence motifs have been found that are important for the synaptic localization of glutamate-receptor sub units. Although the subunit composition and stoichiometry of native receptors is still partially unresolved, work over the past decade has shown that the glutamate receptor family exhibits an unexpectedly rich diversity and that the regulation of the structure and function of these receptors is both complex and highly dynamic. NEUROSCIENTIST 5:311-323, 1999
Collapse
Affiliation(s)
- James R. Howe
- Department of Pharmacology Yale University School of
Medicine New Haven, Connecticut
| |
Collapse
|
11
|
Kutszegi N, Semsei ÁF, Gézsi A, Sági JC, Nagy V, Csordás K, Jakab Z, Lautner-Csorba O, Gábor KM, Kovács GT, Erdélyi DJ, Szalai C. Subgroups of Paediatric Acute Lymphoblastic Leukaemia Might Differ Significantly in Genetic Predisposition to Asparaginase Hypersensitivity. PLoS One 2015; 10:e0140136. [PMID: 26457809 PMCID: PMC4601692 DOI: 10.1371/journal.pone.0140136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/22/2015] [Indexed: 01/16/2023] Open
Abstract
L-asparaginase (ASP) is a key element in the treatment of paediatric acute lymphoblastic leukaemia (ALL). However, hypersensitivity reactions (HSRs) to ASP are major challenges in paediatric patients. Our aim was to investigate genetic variants that may influence the risk to Escherichia coli-derived ASP hypersensitivity. Sample and clinical data collection was carried out from 576 paediatric ALL patients who were treated according to protocols from the Berlin—Frankfurt—Münster Study Group. A total of 20 single nucleotide polymorphisms (SNPs) in GRIA1 and GALNT10 genes were genotyped. Patients with GRIA1 rs4958351 AA/AG genotype showed significantly reduced risk to ASP hypersensitivity compared to patients with GG genotype in the T-cell ALL subgroup (OR = 0.05 (0.01–0.26); p = 4.70E-04), while no such association was found in pre-B-cell ALL. In the medium risk group two SNPs of GRIA1 (rs2055083 and rs707176) were associated significantly with the occurrence of ASP hypersensitivity (OR = 0.21 (0.09–0.53); p = 8.48E-04 and OR = 3.02 (1.36–6.73); p = 6.76E-03, respectively). Evaluating the genders separately, however, the association of rs707176 with ASP HSRs was confined only to females. Our results suggest that genetic variants of GRIA1 might influence the risk to ASP hypersensitivity, but subgroups of patients can differ significantly in this respect.
Collapse
Affiliation(s)
- Nóra Kutszegi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Ágnes F Semsei
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - András Gézsi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Judit C Sági
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Viktória Nagy
- 2nd Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Katalin Csordás
- 2nd Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Jakab
- 2nd Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Orsolya Lautner-Csorba
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Krisztina Míta Gábor
- Department of Pediatrics and Pediatric Health Care Center, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Gábor T Kovács
- 2nd Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Dániel J Erdélyi
- 2nd Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Csaba Szalai
- 2nd Department of Paediatrics, Semmelweis University, Budapest, Hungary; Central Laboratory, Heim Pal Children Hospital, Budapest, Hungary
| |
Collapse
|
12
|
Rajić V, Debeljak M, Goričar K, Jazbec J. Polymorphisms in GRIA1 gene are a risk factor for asparaginase hypersensitivity during the treatment of childhood acute lymphoblastic leukemia. Leuk Lymphoma 2015; 56:3103-8. [PMID: 25697915 DOI: 10.3109/10428194.2015.1020802] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
l-asparaginase is an effective antineoplastic agent used in chemotherapy of acute lymphoblastic leukemia. The drug effect may be compromised by an elicited immune response, resulting in the production of anti-asparaginase antibodies causing an anaphylactic reaction or silent inactivation of the enzyme. To elucidate possible genetic predisposition for inter-individual differences in asparaginase hypersensitivity, we studied single nucleotide polymorphisms (SNPs) in the GRIA1 gene in 146 pediatric patients treated with l-asparaginase. Allergic reaction to l-asparaginase occurred in 49.3% of patients. We observed a statistically significant association between SNPs in the GRIA1 gene and the occurrence of asparaginase allergy: rs4958351 with p = 0.003, rs4958676 with p = 0.005, rs6889909 with p = 0.005, rs6890057 with p = 0.005 and rs10070447 with p = 0.006. We found a statistically significant correlation between asparaginase allergy and event-free survival (p-value 0.005).
Collapse
Affiliation(s)
- Vladan Rajić
- a Department of Hematology and Oncology , University Children's Hospital , Ljubljana , Slovenia
| | - Maruša Debeljak
- b Unit of Special Laboratory Diagnostics, Centre for Medical Genetics, University Medical Centre Ljubljana , Ljubljana , Slovenia
| | - Katja Goričar
- c Institute of Biochemistry, Medical Faculty, University of Ljubljana , Ljubljana , Slovenia
| | - Janez Jazbec
- a Department of Hematology and Oncology , University Children's Hospital , Ljubljana , Slovenia
| |
Collapse
|
13
|
Penn AC, Balik A, Greger IH. Steric antisense inhibition of AMPA receptor Q/R editing reveals tight coupling to intronic editing sites and splicing. Nucleic Acids Res 2012; 41:1113-23. [PMID: 23172291 PMCID: PMC3553965 DOI: 10.1093/nar/gks1044] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Adenosine-to-Inosine (A-to-I) RNA editing is a post-transcriptional mechanism, evolved to diversify the transcriptome in metazoa. In addition to wide-spread editing in non-coding regions protein recoding by RNA editing allows for fine tuning of protein function. Functional consequences are only known for some editing sites and the combinatorial effect between multiple sites (functional epistasis) is currently unclear. Similarly, the interplay between RNA editing and splicing, which impacts on post-transcriptional gene regulation, has not been resolved. Here, we describe a versatile antisense approach, which will aid resolving these open questions. We have developed and characterized morpholino oligos targeting the most efficiently edited site—the AMPA receptor GluA2 Q/R site. We show that inhibition of editing closely correlates with intronic editing efficiency, which is linked to splicing efficiency. In addition to providing a versatile tool our data underscore the unique efficiency of a physiologically pivotal editing site.
Collapse
Affiliation(s)
- Andrew C Penn
- Neurobiology Division, MRC Laboratory of Molecular Biology, CB2 0QH Cambridge, UK.
| | | | | |
Collapse
|
14
|
Rodriguez J, Menet JS, Rosbash M. Nascent-seq indicates widespread cotranscriptional RNA editing in Drosophila. Mol Cell 2012; 47:27-37. [PMID: 22658416 DOI: 10.1016/j.molcel.2012.05.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 03/08/2012] [Accepted: 04/16/2012] [Indexed: 01/31/2023]
Abstract
The RNA editing enzyme ADAR chemically modifies adenosine (A) to inosine (I), which is interpreted by the ribosome as a guanosine. Here we assess cotranscriptional A-to-I editing in Drosophila by isolating nascent RNA from adult fly heads and subjecting samples to high throughput sequencing. There are a large number of edited sites within nascent exons. Nascent RNA from an ADAR-null strain was also sequenced, indicating that almost all A-to-I events require ADAR. Moreover, mRNA editing levels correlate with editing levels within the cognate nascent RNA sequence, indicating that the extent of editing is set cotranscriptionally. Surprisingly, the nascent data also identify an excess of intronic over exonic editing sites. These intronic sites occur preferentially within introns that are poorly spliced cotranscriptionally, suggesting a link between editing and splicing. We conclude that ADAR-mediated editing is more widespread than previously indicated and largely occurs cotranscriptionally.
Collapse
Affiliation(s)
- Joseph Rodriguez
- Howard Hughes Medical Institute, National Center for Behavioral Genomics, and Department of Biology, Brandeis University, Waltham, MA 02451, USA
| | | | | |
Collapse
|
15
|
Wang Q. RNA editing catalyzed by ADAR1 and its function in mammalian cells. BIOCHEMISTRY (MOSCOW) 2012; 76:900-11. [PMID: 22022963 DOI: 10.1134/s0006297911080050] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In mammalian cells two active enzymes, ADAR1 and ADAR2, carry out A-to-I RNA editing. These two editases share many common features in their protein structures, catalytic activities, and substrate requirements. However, the phenotypes of the knockout animals are remarkably different, which indicate the distinct functions they play. The most striking effect of ADAR1 knockout is cell death and interruption of embryonic development that are not observed in ADAR2 knockout. Evidences have shown that ADAR1 plays critical roles in the differentiating cells in embryo and adult tissues to support the cell's survival and permit their further differentiation and maturation. However, our knowledge in understanding of the mechanism by which ADAR1 exerts its unique effects is very limited. Many efforts had been made trying to understand why ADAR1 is so important that it is indispensible for animal survival, including studies that identify the RNA editing substrates and studies on non-editing mechanisms. The interest of this review is focused on the question why ADAR1 and not ADAR2 is required for cell survival. Therefore, only the data, published and unpublished, potentially connecting ADAR1 to its cell death effect is selectively cited and discussed here. The features of cell death caused by ADAR1 deletion are summarized. Potential involvement of interferon and protein kinase RNA-activated (PKR) pathways is proposed, but obviously more experimental evaluations are needed.
Collapse
Affiliation(s)
- Qingde Wang
- University of Pittsburgh, Department of Medicine, Division of Hematology and Oncology, University of Pittsburgh Cancer Institute, PA 15232, USA.
| |
Collapse
|
16
|
Silberberg G, Lundin D, Navon R, Öhman M. Deregulation of the A-to-I RNA editing mechanism in psychiatric disorders. Hum Mol Genet 2012; 21:311-21. [PMID: 21984433 DOI: 10.1093/hmg/ddr461] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia and bipolar disorder (BPD) are common neurodevelopmental disorders, characterized by various life-crippling symptoms and high suicide rates. Multiple studies support a strong genetic involvement in the etiology of these disorders, although patterns of inheritance are variable and complex. Adenosine-to-inosine RNA editing is a cellular mechanism, which has been implicated in mental disorders and suicide. To examine the involvement of altered RNA editing in these disorders, we: (i) quantified the mRNA levels of the adenosine deaminase acting on RNA (ADAR) editing enzymes by real-time quantitative polymerase chain reaction, and (ii) measured the editing levels in transcripts of several neuroreceptors using 454 high-throughput sequencing, in dorsolateral-prefrontal cortices of schizophrenics, BPD patients and controls. Increased expression of specific ADAR2 variants with diminished catalytic activity was observed in schizophrenia. Our results also indicate that the I/V editing site in the glutamate receptor, ionotropic kainate 2 (GRIK2) transcript is under-edited in BPD (type I) patients (45.8 versus 53.9%, P= 0.023). GRIK2 has been implicated in mood disorders, and editing of its I/V site can modulate Ca(+2) permeability of the channel, consistent with numerous observations of elevated intracellular Ca(+2) levels in BPD patients. Our findings may therefore, at least partly, explain a molecular mechanism underlying the disorder. In addition, an intriguing correlation was found between editing events on separate exons of GRIK2. Finally, multiple novel editing sites were detected near previously known sites, albeit most with very low editing rates. This supports the hypothesis raised previously regarding the existence of wide-spread low-level 'background' editing as a mechanism that enhances adaptation and evolvability.
Collapse
Affiliation(s)
- Gilad Silberberg
- Department of Molecular Biology and Functional Genomics, Stockholm University, Stockholm 10691, Sweden.
| | | | | | | |
Collapse
|
17
|
Wahlstedt H, Ohman M. Site-selective versus promiscuous A-to-I editing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:761-71. [PMID: 21976281 DOI: 10.1002/wrna.89] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
RNA editing by adenosine deamination is acting on polymerase II derived transcripts in all metazoans. Adenosine-to-inosine (A-to-I) editing is mediated by the adenosine deaminase that acts on RNA (ADAR) enzymes. Two types of adenosine to inosine (A-to-I) RNA editing have been defined: site selective and hyper-editing. Typically, in site selectively edited substrates, one or a few A-to-I sites are edited in double-stranded RNA structures, frequently interrupted by single-stranded bulges and loops. Hyper-editing occurs in long stretches of duplex RNA where multiple adenosines are subjected to deamination. In this review, recent findings on editing within noncoding RNA as well as examples of site selective editing within coding regions are presented. We discuss how these two editing events have evolved and the structural differences between a site selective and hyper-edited substrate.
Collapse
Affiliation(s)
- Helene Wahlstedt
- Department of Molecular Biology and Functional Genomics, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
18
|
Genetic variations in GRIA1 on chromosome 5q33 related to asparaginase hypersensitivity. Clin Pharmacol Ther 2010; 88:191-6. [PMID: 20592726 DOI: 10.1038/clpt.2010.94] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The genetic variations that result in allergy to asparaginase are as yet undetermined. We interrogated more than 500,000 single-nucleotide polymorphisms (SNPs) in 485 children with acute lymphoblastic leukemia (ALL), 322 in a discovery cohort, and 163 in a validation cohort. In the top 100 SNPs associated with allergy in the discovery cohort, chromosome 5 was overrepresented as compared with other chromosomes (P = 0.00032), hosting 10 SNPs annotated to genes. Among these 10 SNPs, one SNP (rs4958351) [corrected], in GRIA1 on chromosome 5q33, was replicated in the validation cohort (P = 1.8 x 10(-5), 2.9 x 10(-3), and 3.5 x 10(-7) in the discovery, validation, and combined cohorts, respectively). Four additional SNPs annotated to GRIA1 were also significantly associated with allergy (P < 0.05) in both cohorts. Chromosome 5q33 has previously been associated with asthma and atopy. These data contribute to the growing body of evidence that there is an inherited component to predisposition to drug allergy.
Collapse
|
19
|
Kerner B, Jasinska AJ, DeYoung J, Almonte M, Choi OW, Freimer NB. Polymorphisms in the GRIA1 gene region in psychotic bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2009; 150B:24-32. [PMID: 18484081 PMCID: PMC4130207 DOI: 10.1002/ajmg.b.30780] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We reported previously a significant linkage signal between psychotic bipolar disorder (BP) and microsatellite markers on chromosome 5q31-34 in the National Institute of Mental Health Bipolar Genetics Initiative (NIMH-BPGI) data set, Wave 1. In an attempt to fine-map this linkage signal we genotyped 1,134 single nucleotide polymorphisms (SNPs) under the linkage peak in 23 informative families (131 individuals) with evidence of linkage. We tested family based association in the presence of linkage with the computer software package FBAT. The most significant association in these families was with a SNP in the second intron of GRIA1 (alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid (AMPA) subunit 1 receptor gene) (rs490922, Z-score = 3.3, P = 0.001). The analysis of 37 additional families with psychotic BP from NIMH-BPGI data sets, Waves 2, 3, and 4 revealed a signal at a SNP in intron 5 of the GRIA1 gene (rs4385264, Z-score = 3.2, P-value = 0.002). A combined analysis of all 60 families continued to support evidence for association of GRIA1 with psychotic BP; however, individual SNPs could not be replicated across datasets. The AMPA1 receptor has been shown to influence cognitive function, such as working memory and reward learning. Our findings suggest that variations in this receptor may contribute to the pathophysiology of BP with psychotic features in some families.
Collapse
Affiliation(s)
- Berit Kerner
- Center for Neurobehavioral Genetics, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, 90095-1761, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Lev-Maor G, Ram O, Kim E, Sela N, Goren A, Levanon EY, Ast G. Intronic Alus influence alternative splicing. PLoS Genet 2008; 4:e1000204. [PMID: 18818740 PMCID: PMC2533698 DOI: 10.1371/journal.pgen.1000204] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 08/20/2008] [Indexed: 01/25/2023] Open
Abstract
Examination of the human transcriptome reveals higher levels of RNA editing than in any other organism tested to date. This is indicative of extensive double-stranded RNA (dsRNA) formation within the human transcriptome. Most of the editing sites are located in the primate-specific retrotransposed element called Alu. A large fraction of Alus are found in intronic sequences, implying extensive Alu-Alu dsRNA formation in mRNA precursors. Yet, the effect of these intronic Alus on splicing of the flanking exons is largely unknown. Here, we show that more Alus flank alternatively spliced exons than constitutively spliced ones; this is especially notable for those exons that have changed their mode of splicing from constitutive to alternative during human evolution. This implies that Alu insertions may change the mode of splicing of the flanking exons. Indeed, we demonstrate experimentally that two Alu elements that were inserted into an intron in opposite orientation undergo base-pairing, as evident by RNA editing, and affect the splicing patterns of a downstream exon, shifting it from constitutive to alternative. Our results indicate the importance of intronic Alus in influencing the splicing of flanking exons, further emphasizing the role of Alus in shaping of the human transcriptome.
Collapse
Affiliation(s)
- Galit Lev-Maor
- Department of Human Molecular Genetics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Oren Ram
- Department of Human Molecular Genetics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eddo Kim
- Department of Human Molecular Genetics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noa Sela
- Department of Human Molecular Genetics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amir Goren
- Department of Human Molecular Genetics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Erez Y. Levanon
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gil Ast
- Department of Human Molecular Genetics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
21
|
Bannerman P, Horiuchi M, Feldman D, Hahn A, Itoh A, See J, Jia ZP, Itoh T, Pleasure D. GluR2-free ?-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors intensify demyelination in experimental autoimmune encephalomyelitis. J Neurochem 2007; 102:1064-70. [PMID: 17472701 DOI: 10.1111/j.1471-4159.2007.04612.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We adopted a genetic approach to test the importance of edited GluR2-free, Ca(2+)-permeable, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors in the pathophysiology of experimental autoimmune encephalomyelitis, an inflammatory demyelinative disorder resembling multiple sclerosis. Initial studies showed that oligodendroglial lineage cells from mice lacking functional copies of the gene encoding the GluR3 AMPA receptor subunit (Gria3) had a diminished capacity to assemble edited GluR2-free AMPA receptors, and were resistant to excitotoxicity in vitro. Neurological deficits and spinal cord demyelination elicited by immunization with myelin oligodendrocyte glycoprotein peptide were substantially milder in these Gria3 mutant mice than in their wild-type littermates. These results support the hypothesis that oligodendroglial excitotoxicity mediated by AMPA receptors that do not contain edited GluR2 subunits contributes to demyelination in experimental autoimmune encephalomyelitis, and suggest that inhibiting these Ca(2+)-permeable AMPA receptors would be therapeutic in multiple sclerosis.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Brain/cytology
- Brain/metabolism
- Brain/pathology
- Cells, Cultured
- Demyelinating Diseases/genetics
- Demyelinating Diseases/pathology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Excitatory Amino Acid Agents/pharmacology
- Female
- Gene Expression Regulation/genetics
- Kainic Acid/pharmacology
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Mice
- Mice, Knockout
- Neuroglia/physiology
- Patch-Clamp Techniques/methods
- RNA, Messenger/biosynthesis
- Receptors, AMPA/deficiency
- Receptors, AMPA/metabolism
- Receptors, Glutamate/genetics
- Receptors, Glutamate/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Spermine/analogs & derivatives
- Spermine/pharmacology
- Statistics, Nonparametric
Collapse
Affiliation(s)
- Peter Bannerman
- UC Davis School of Medicine, Shriners Hospital, Sacramento, California 95817, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The conversion of adenosine to inosine (A-to-I) by RNA editing is a widespread RNA processing event by which genomically encoded sequences are altered through site-specific deamination of adenosine residue(s) in RNA transcripts through the actions of a family of double-stranded RNA-specific adenosine deaminases (ADARs). While significant advances have been made regarding the functional consequences of A-to-I editing using heterologous expression systems, the physiological relevance of such RNA modifications in mammals has been addressed effectively using gene-targeting strategies in mice via homologous recombination in embryonic stem (ES) cells. These gene-targeting approaches have allowed the generation of mutant mouse strains in which site-specific editing events can be fixed in the fully edited or nonedited state for individual ADAR targets, expression of ADAR proteins can be selectively ablated, or a combination of ADAR elimination and ADAR target modification can be used for a more in-depth understanding of the biological consequences of A-to-I editing dysregulation.
Collapse
Affiliation(s)
- Elizabeth Y Rula
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | |
Collapse
|
23
|
Wang Q, Carmichael GG. Effects of length and location on the cellular response to double-stranded RNA. Microbiol Mol Biol Rev 2004; 68:432-52, table of contents. [PMID: 15353564 PMCID: PMC515255 DOI: 10.1128/mmbr.68.3.432-452.2004] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Since double-stranded RNA (dsRNA) has not until recently generally been thought to be deliberately expressed in cells, it has commonly been assumed that the major source of cellular dsRNA is viral infections. In this view, the cellular responses to dsRNA would be natural and perhaps ancient antiviral responses. While the cell may certainly react to some dsRNAs as an antiviral response, this does not represent the only response or even, perhaps, the major one. A number of recent observations have pointed to the possibility that dsRNA molecules are not seen only as evidence of viral infection or recognized for degradation because they cannot be translated. In some instances they may also play important roles in normal cell growth and function. The purpose of this review is to outline our current understanding of the fate of dsRNA in cells, with a focus on the apparent fact that their fates and functions appear to depend critically not only on where in the cell dsRNA molecules are found, but also on how long they are and perhaps on how abundant they are.
Collapse
Affiliation(s)
- Qiaoqiao Wang
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030-3301, USA
| | | |
Collapse
|
24
|
Flomen R, Knight J, Sham P, Kerwin R, Makoff A. Evidence that RNA editing modulates splice site selection in the 5-HT2C receptor gene. Nucleic Acids Res 2004; 32:2113-22. [PMID: 15087490 PMCID: PMC407821 DOI: 10.1093/nar/gkh536] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Adenosine to inosine editing of mRNA from the human 5-HT2C receptor gene (HTR2C) occurs at five exonic positions (A-E) in a stable stem-loop that includes the normal 5' splice site of intron 5 and is flanked by two alternative splice sites. Using in vitro editing, we identified a novel editing site (F) located in the intronic part of the stem-loop and demonstrated editing at this site in human brain. We have shown that in cell culture, base substitutions to mimic editing at different combinations of the six sites profoundly affect relative splicing at the normal and the upstream alternative splice site, but splicing at the downstream alternative splice site was consistently rare. Editing combinations in different splice variants from human brain were determined and are consistent with the effects of editing on splicing observed in cell culture. As RNA editing usually occurs close to exon/intron boundaries, this is likely to be a general phenomenon and suggests an important novel role for RNA editing.
Collapse
Affiliation(s)
- Rachel Flomen
- Division of Psychological Medicine, Institute of Psychiatry, London SE5 7AF, UK
| | | | | | | | | |
Collapse
|
25
|
Jaikaran DCJ, Collins CH, MacMillan AM. Adenosine to inosine editing by ADAR2 requires formation of a ternary complex on the GluR-B R/G site. J Biol Chem 2002; 277:37624-9. [PMID: 12163487 DOI: 10.1074/jbc.m204126200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA editing by members of the ADAR (adenosine deaminase that acts on RNA) enzyme family involves hydrolytic deamination of adenosine to inosine within the context of a double-stranded pre-mRNA substrate. Editing of the human GluR-B transcript is catalyzed by the enzyme ADAR2 at the Q/R and R/G sites. We have established a minimal RNA substrate for editing based on the R/G site and have characterized the interaction of ADAR2 with this RNA by gel shift, kinetic, and cross-linking analyses. Gel shift analysis revealed that two complexes are formed on the RNA as protein concentration is increased; the ADAR monomers can be cross-linked to one another in an RNA-dependent fashion. We performed a detailed kinetic study of the editing reaction; the data from this study are consistent with a reaction scheme in which formation of an ADAR2.RNA ternary complex is required for efficient RNA editing and in which formation of this complex is rate determining. These observations suggest that RNA adenosine deaminases function as homodimers on their RNA substrates and may partially explain regulation of RNA editing in these systems.
Collapse
Affiliation(s)
- Dominic C J Jaikaran
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | | | | |
Collapse
|
26
|
Tanoue A, Koshimizu TA, Tsuchiya M, Ishii K, Osawa M, Saeki M, Tsujimoto G. Two novel transcripts for human endothelin B receptor produced by RNA editing/alternative splicing from a single gene. J Biol Chem 2002; 277:33205-12. [PMID: 12080062 DOI: 10.1074/jbc.m203972200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hirschsprung disease is a heterogeneous genetic disorder, causative genes of which include the endothelin B receptor (ETB). To investigate the mutations of ETB in Hirschsprung disease, expression of the ETB gene in lymphoblastoid cells from patients and normal healthy adults was examined, and novel mutant transcripts were found. The mutant ETB gene transcripts lacked a 134-bp nucleotide sequence corresponding to exon 5, and some also contained a substitution from A to G at position 950 in exon 4, resulting in an amino acid substitution from glutamine (Q) to arginine (R). This substitution was suspected to be the result of RNA editing because it was not present in the genomic sequence. Transfection experiments using ETB minigenes containing the editing site with or without the gene for double-strand RNA deaminases (ADAR1 and ADAR2) revealed that the deaminases were involved in RNA editing. Furthermore, a c-Myc-tagged mutant ETB protein was not detected by Western blot analysis. The present results show that the mutant ETB transcripts were novel splice variants, which might not be translated, or that the products translated from splice variants might be quickly degraded, presumably because of their instability. The preferential production of this null function ETB by RNA editing/splicing could be involved in the etiology of some cases of Hirschsprung disease.
Collapse
Affiliation(s)
- Akito Tanoue
- Department of Molecular, Cell Pharmacology, National Center for Child Health and Development Research Institute 3-35-31, Taishi-do, Setagaya-Ku, Tokyo 154-8567, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Schmauss C, Howe JR. RNA editing of neurotransmitter receptors in the mammalian brain. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2002; 2002:pe26. [PMID: 12023441 DOI: 10.1126/stke.2002.133.pe26] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
RNA editing refers to various posttranscriptional mechanisms that alter the nucleotide sequence of RNA. In the mammalian brain, RNA editing results in significant changes in the functional properties of receptors for the important neurotransmitters glutamate and serotonin. These changes result from site-specific deamination of single adenosines in the pre-messenger RNA encoding these receptors. Here, we review what is known about the mechanisms underlying this editing, the consequences of RNA editing for glutamate and serotonin receptor function, and recent studies on transgenic mice and human post-mortem tissue that have begun to elucidate the role of RNA editing in the intact mammalian brain.
Collapse
Affiliation(s)
- Claudia Schmauss
- Department of Psychiatry, Columbia University College of Physicians and Surgeons and New York State Psychiatric Institute, New York, NY 10032, USA
| | | |
Collapse
|
28
|
Poulsen H, Nilsson J, Damgaard CK, Egebjerg J, Kjems J. CRM1 mediates the export of ADAR1 through a nuclear export signal within the Z-DNA binding domain. Mol Cell Biol 2001; 21:7862-71. [PMID: 11604520 PMCID: PMC99958 DOI: 10.1128/mcb.21.22.7862-7871.2001] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2001] [Accepted: 08/21/2001] [Indexed: 11/20/2022] Open
Abstract
RNA editing of specific residues by adenosine deamination is a nuclear process catalyzed by adenosine deaminases acting on RNA (ADAR). Different promoters in the ADAR1 gene give rise to two forms of the protein: a constitutive promoter expresses a transcript encoding (c)ADAR1, and an interferon-induced promoter expresses a transcript encoding an N-terminally extended form, (i)ADAR1. Here we show that (c)ADAR1 is primarily nuclear whereas (i)ADAR1 encompasses a functional nuclear export signal in the N-terminal part and is a nucleocytoplasmic shuttle protein. Mutation of the nuclear export signal or treatment with the CRM1-specific drug leptomycin B induces nuclear accumulation of (i)ADAR1 fused to the green fluorescent protein and increases the nuclear editing activity. In concurrence, CRM1 and RanGTP interact specifically with the (i)ADAR1 nuclear export signal to form a tripartite export complex in vitro. Furthermore, our data imply that nuclear import of (i)ADAR1 is mediated by at least two nuclear localization sequences. These results suggest that the nuclear editing activity of (i)ADAR1 is modulated by nuclear export.
Collapse
Affiliation(s)
- H Poulsen
- Department of Molecular and Structural Biology, University of Aarhus, Denmark
| | | | | | | | | |
Collapse
|
29
|
Sowden MP, Smith HC. Commitment of apolipoprotein B RNA to the splicing pathway regulates cytidine-to-uridine editing-site utilization. Biochem J 2001; 359:697-705. [PMID: 11672445 PMCID: PMC1222192 DOI: 10.1042/0264-6021:3590697] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A tripartite motif located in the centre of the 7.5 kb exon 26 of apolipoprotein B (apoB) mRNA directs editosome assembly and site-specific cytidine-to-uridine editing at nucleotide 6666. apoB mRNA editing is a post-transcriptional event, occurring primarily at the time exon 26 is spliced or at a time after splicing, but before nuclear export. We show, through reporter RNA constructs, that RNA splice sites suppress editing of precursor RNAs when placed proximal or distal to the editing site. Processed RNAs were edited more efficiently than precursor RNAs. Mutation of both the splice donor and acceptor sites was necessary for RNAs to be edited efficiently. The results suggested that commitment of pre-mRNA to the splicing and/or nuclear-export pathways may play a role in regulating editing-site utilization. The HIV-1 Rev-Rev response element ('RRE') interaction was utilized to uncouple the commitment of precursor RNAs to the spliceosome assembly pathway and associated nuclear-export pathway. Under these conditions, unspliced reporter RNAs were edited efficiently. We propose that pre-mRNA passage through the temporal or spatial restriction point where they become committed to spliceosome assembly contributes regulatory information for subsequent editosome activity.
Collapse
Affiliation(s)
- M P Sowden
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | |
Collapse
|
30
|
Zhang Z, Carmichael GG. The fate of dsRNA in the nucleus: a p54(nrb)-containing complex mediates the nuclear retention of promiscuously A-to-I edited RNAs. Cell 2001; 106:465-75. [PMID: 11525732 DOI: 10.1016/s0092-8674(01)00466-4] [Citation(s) in RCA: 388] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
How do cells discriminate between selectively edited mRNAs that encode new protein isoforms, and dsRNA-induced, promiscuously edited RNAs that encode nonfunctional, mutant proteins? We have developed a Xenopus oocyte model system which shows that a variety of hyperedited, inosine-containing RNAs are specifically retained in the nucleus. To uncover the mechanism of inosine-induced retention, HeLa cell nuclear extracts were used to isolate a multiprotein complex that binds specifically and cooperatively to inosine-containing RNAs. This complex contains the inosine-specific RNA binding protein p54(nrb), the splicing factor PSF, and the inner nuclear matrix structural protein matrin 3. We provide evidence that one function of the complex identified here is to anchor hyperedited RNAs to the nuclear matrix, while allowing selectively edited mRNAs to be exported.
Collapse
Affiliation(s)
- Z Zhang
- Department of Microbiology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | |
Collapse
|
31
|
Sodhi MS, Burnet PW, Makoff AJ, Kerwin RW, Harrison PJ. RNA editing of the 5-HT(2C) receptor is reduced in schizophrenia. Mol Psychiatry 2001; 6:373-9. [PMID: 11443520 DOI: 10.1038/sj.mp.4000920] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2001] [Revised: 03/09/2001] [Accepted: 03/09/2001] [Indexed: 11/08/2022]
Abstract
5-HT(2C) receptor (5HT(2C)R, serotonin-2C) RNA undergoes editing to produce several receptor variants, some with pharmacological differences. This investigation comprised two parts: the characterisation of 5-HT(2C)R RNA editing in a larger human control sample than previously examined, and a comparative study in subjects with schizophrenia. Secondary structure analysis of the putative edited region of the human 5-HT(2C)R gene predicted the existence of a double stranded (ds) RNA loop, essential for RNA editing in this receptor. RNA was then extracted from frontal cortex of five controls and five subjects with schizophrenia. RT-PCR products of the edited region were cloned and sequenced (n = 100). Reduced RNA editing, increased expression of the unedited 5-HT(2C-INI) isoform in schizophrenia (P = 0.001) and decreased expression of the 5-HT(2C-VSV) and 5-HT(2C-VNV) isoforms were detected in the schizophrenia group. In addition, two novel mRNA edited variants were identified: 5-HT(2C-MNI) and 5-HT(2C-VDI). Screening of the 5-HT(2C)R gene did not reveal any mutations likely to disrupt the dsRNA loop, suggesting that the reduced RNA editing in schizophrenia may instead be caused by altered activity of the editing enzyme(s). Since the unedited 5-HT(2C-INI) is more efficiently coupled to G proteins than the other isoforms, its increased expression in schizophrenia may lead to enhanced 5-HT(2C)R-mediated effects. The results also illustrate that potentially important receptor alterations may occur in schizophrenia which are not detectable merely in terms of receptor abundance.
Collapse
Affiliation(s)
- M S Sodhi
- University Department of Psychiatry, Warneford Hospital, Oxford OX3 7JX, UK.
| | | | | | | | | |
Collapse
|
32
|
Rabinovici R, Kabir K, Chen M, Su Y, Zhang D, Luo X, Yang JH. ADAR1 Is Involved in the Development of Microvascular Lung Injury. Circ Res 2001; 88:1066-71. [PMID: 11375277 DOI: 10.1161/hh1001.090877] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
—Deamination of adenosine on pre-mRNA to inosine is a recently discovered process of posttranscription modification of pre-mRNA, termed A-to-I RNA editing, which results in the production of proteins not inherent in the genome. The present study aimed to identify a role for A-to-I RNA editing in the development of microvascular lung injury. To that end, the pulmonary expression and activity of the RNA editase ADAR1 were evaluated in a mouse model of endotoxin (15 mg/kg IP)–induced microvascular lung injury (n=5) as well as in cultured alveolar macrophages stimulated with endotoxin, live bacteria, or interferon. ADAR1 expression and activity were identified in sham lungs that were upregulated in lungs from endotoxin-treated mice (at 2 hours). Expression was localized to polymorphonuclear and monocytic cells. These events preceded the development of pulmonary edema and leukocyte accumulation in lung tissue and followed the local production of interferon-γ, a known inducer of ADAR1 in other cell systems. ADAR1 was found to be upregulated in alveolar macrophages (MH-S cells) stimulated with endotoxin (1 to 100 μg/mL), live Escherichia coli (5×10
7
colony-forming units), or interferon-γ (1000 U/mL). Taken together, these data suggest that ADAR1 may play a role in the pathogenesis of microvascular lung injury possibly through induction by interferon.
Collapse
Affiliation(s)
- R Rabinovici
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
RNA editing can be broadly defined as any site-specific alteration in an RNA sequence that could have been copied from the template, excluding changes due to processes such as RNA splicing and polyadenylation. Changes in gene expression attributed to editing have been described in organisms from unicellular protozoa to man, and can affect the mRNAs, tRNAs, and rRNAs present in all cellular compartments. These sequence revisions, which include both the insertion and deletion of nucleotides, and the conversion of one base to another, involve a wide range of largely unrelated mechanisms. Recent advances in the development of in vitro editing and transgenic systems for these varied modifications have provided a better understanding of similarities and differences between the biochemical strategies, regulatory sequences, and cellular factors responsible for such RNA processing events.
Collapse
Affiliation(s)
- J M Gott
- Center for RNA Molecular Biology, Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | |
Collapse
|
34
|
Christensen KV, Dai WM, Lambert JD, Egebjerg J. Larger intercellular variation in (Q/R) editing of GluR6 than GluR5 revealed by single cell RT-PCR. Neuroreport 2000; 11:3577-82. [PMID: 11095522 DOI: 10.1097/00001756-200011090-00035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
RNA editing of the pre-mRNA encoding the kainate receptor subtypes determines the Ca2+ permeability and the rectifying properties of the receptors in which these are assembled. GluR6 pre-mRNA contains three characterized editing sites: Q/R, IN and the Y/C, whereas GluR5 pre-mRNA contains only the (Q/R) site. Single cell RT-PCR was used on cultured cortical neurons to determine the relative expression and editing levels of the kainate receptor subunits encoding mRNA. The analysis showed a large intercellular variation in editing efficiency. The overall lower level of GluR5 editing, in the culture, compared to GluR6 editing is a result of an approximately 60% lower editing efficiency of GluR5 pre-mRNA, within single cells, compared with GluR6.
Collapse
Affiliation(s)
- K V Christensen
- Department of Molecular and Structural Biology C.F. Mollers Allé, University of Aarhus, Denmark
| | | | | | | |
Collapse
|
35
|
Hanrahan CJ, Palladino MJ, Ganetzky B, Reenan RA. RNA editing of the Drosophila para Na(+) channel transcript. Evolutionary conservation and developmental regulation. Genetics 2000; 155:1149-60. [PMID: 10880477 PMCID: PMC1461140 DOI: 10.1093/genetics/155.3.1149] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Post-transcriptional editing of pre-mRNAs through the action of dsRNA adenosine deaminases results in the modification of particular adenosine (A) residues to inosine (I), which can alter the coding potential of the modified transcripts. We describe here three sites in the para transcript, which encodes the major voltage-activated Na(+) channel polypeptide in Drosophila, where RNA editing occurs. The occurrence of RNA editing at the three sites was found to be developmentally regulated. Editing at two of these sites was also conserved across species between the D. melanogaster and D. virilis. In each case, a highly conserved region was found in the intron downstream of the editing site and this region was shown to be complementary to the region of the exonic editing site. Thus, editing at these sites would appear to involve a mechanism whereby the edited exon forms a base-paired secondary structure with the distant conserved noncoding sequences located in adjacent downstream introns, similar to the mechanism shown for A-to-I RNA editing of mammalian glutamate receptor subunits (GluRs). For the third site, neither RNA editing nor the predicted RNA secondary structures were evolutionarily conserved. Transcripts from transgenic Drosophila expressing a minimal editing site construct for this site were shown to faithfully undergo RNA editing. These results demonstrate that Na(+) channel diversity in Drosophila is increased by RNA editing via a mechanism analogous to that described for transcripts encoding mammalian GluRs.
Collapse
Affiliation(s)
- C J Hanrahan
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | |
Collapse
|
36
|
Palladino MJ, Keegan LP, O'Connell MA, Reenan RA. dADAR, a Drosophila double-stranded RNA-specific adenosine deaminase is highly developmentally regulated and is itself a target for RNA editing. RNA (NEW YORK, N.Y.) 2000; 6:1004-1018. [PMID: 10917596 PMCID: PMC1369976 DOI: 10.1017/s1355838200000248] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We have identified a homolog of the ADAR (adenosine deaminases that act on RNA) class of RNA editases from Drosophila, dADAR. The dADAR locus has been localized to the 2B6-7 region of the X chromosome and the complete genomic sequence organization is reported here. dADAR is most homologous to the mammalian RNA editing enzyme ADAR2, the enzyme that specifically edits the Q/R site in the pre-mRNA encoding the glutamate receptor subunit GluR-B. Partially purified dADAR expressed in Pichia pastoris has robust nonspecific A-to-I deaminase activity on synthetic dsRNA substrates. Transcripts of the dADAR locus originate from two regulated promoters. In addition, alternative splicing generates at least four major dADAR isoforms that differ at their amino-termini as well as altering the spacing between their dsRNA binding motifs. dADAR is expressed in the developing nervous system, making it a candidate for the editase that acts on para voltage-gated Na+ channel transcripts in the central nervous system. Surprisingly, dADAR itself undergoes developmentally regulated RNA editing that changes a conserved residue in the catalytic domain. Taken together, these findings show that both transcription and processing of dADAR transcripts are under strict developmental control and suggest that the process of RNA editing in Drosophila is dynamically regulated.
Collapse
Affiliation(s)
- M J Palladino
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington 06030, USA
| | | | | | | |
Collapse
|
37
|
Lopes CM, Gallagher PG, Buck ME, Butler MH, Goldstein SA. Proton block and voltage gating are potassium-dependent in the cardiac leak channel Kcnk3. J Biol Chem 2000; 275:16969-78. [PMID: 10748056 DOI: 10.1074/jbc.m001948200] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Potassium leak conductances were recently revealed to exist as independent molecular entities. Here, the genomic structure, cardiac localization, and biophysical properties of a murine example are considered. Kcnk3 subunits have two pore-forming P domains and unique functional attributes. At steady state, Kcnk3 channels behave like open, potassium-selective, transmembrane holes that are inhibited by physiological levels of proton. With voltage steps, Kcnk3 channels open and close in two phases, one appears to be immediate and one is time-dependent (tau = approximately 5 ms). Both proton block and gating are potassium-sensitive; this produces an anomalous increase in outward flux as external potassium levels rise because of decreased proton block. Single Kcnk3 channels open across the physiological voltage range; hence they are "leak" conductances; however, they open only briefly and rarely even after exposure to agents that activate other potassium channels.
Collapse
Affiliation(s)
- C M Lopes
- Section of Developmental Biology and Biophysics, Departments of Pediatrics and Cellular and Molecular Physiology, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | | | | | | | | |
Collapse
|
38
|
Takuma H, Kwak S, Yoshizawa T, Kanazawa I. Reduction of GluR2 RNA editing, a molecular change that increases calcium influx through AMPA receptors, selective in the spinal ventral gray of patients with amyotrophic lateral sclerosis. Ann Neurol 1999; 46:806-15. [PMID: 10589532 DOI: 10.1002/1531-8249(199912)46:6<806::aid-ana2>3.0.co;2-s] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Enhancement of calcium influx through the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainate receptor is a plausible mechanism underlying selective neuronal death in amyotrophic lateral sclerosis (ALS). The calcium conductance of the AMPA receptor is regulated by the GluR2 subunit that is edited at the glutamine/arginine residue site in the subunit assembly. We investigated the molecular changes of GluR2 mRNA in the spinal cord of ALS cases, those of cases with other neurological diseases, and those of normal cases using reverse transcription-polymerase chain reaction combined with restriction enzyme cleavage. We found that the editing efficiency was significantly lower only in the ventral gray of ALS cases (virtually 0% in 2 cases) than in any spinal region of the disease controls and normal controls. In addition, expression of GluR2 mRNA is lower in the ventral gray of the ALS cases and disease controls than in that of the normal controls. The above molecular changes of GluR2 mRNA in the ventral gray of ALS cases may enhance calcium influx through AMPA receptors, thereby promoting neuronal vulnerability. The decrement of GluR2 mRNA editing efficiency is unique to the ventral gray of ALS cases and may be closely linked to the etiology of ALS.
Collapse
Affiliation(s)
- H Takuma
- Department of Neurology, Graduate School of Medicine, University of Tokyo, Japan
| | | | | | | |
Collapse
|
39
|
Abstract
Direct read-out of information from DNA into RNA allows the genome to be faithfully reproduced in RNA. This outcome occurs in what may be called "hard-wired" organisms. On the other hand, in what we refer to as "soft-wired" organisms, RNA is processed extensively, allowing a number of different messages to be produced from the same gene. As a consequence, the nucleotide sequences present in RNA (referred to here as the ribotype) differ from those present in DNA (the genotype). In soft-wired organisms, RNA processing can be thought of as a series of steps, one or more of which have two mutually exclusive outcomes: a "default" outcome and an "alternative" outcome. In the presence of appropriate regulatory signals, the RNA is processed using the alternative pathway, while the default pathway is used in their absence. The setup is functionally equivalent to that found in binary "logic gates." In both cases, "logical operations" are implemented by using regulatory signals to establish a conditional relationship between input and output and can be described using the Boolean operators AND, OR, and NOT. In the case of RNA processing events, the outcomes can be used either to directly regulate cellular responses or to control other RNA processing events. In the latter case, "networks" are established that make processing of one RNA contingent on another. Such networks allow cells to respond to their surroundings by changing the connectivity between different RNA processing events, using RNA as a substrate to compute an appropriate response. As such logical operations impact phenotype, they are subject to natural selection. Through reverse transcription, successful outcomes can be incorporated into the genome.
Collapse
Affiliation(s)
- A Herbert
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA.
| | | |
Collapse
|
40
|
Abstract
Extensive analysis of cDNAs from the para locus in D. melanogaster reveals posttranscriptional modifications indicative of adenosine-to-inosine RNA editing. Most of these edits occur in highly conserved regions of the Na+ channel, and they occur in distant relatives of D. melanogaster as well. Sequence comparison between species has identified putative cis-acting elements important for each RNA editing site. Double-stranded RNA secondary structures with striking similarity to known RNA editing sites were generated based on these data. In addition, the RNA editing sites appear to be developmentally regulated. We have cloned a potential RNA editase, DRED, with a high degree of homology to the mammalian RED1,2 genes. The DRED locus itself is highly regulated by transcription from alternative promoters and alternative splicings.
Collapse
Affiliation(s)
- C J Hanrahan
- Department of Pharmacology, University of Connecticut Health Center, Farmington 06030-6125, USA
| | | | | | | |
Collapse
|
41
|
Abstract
In eukaryotes, RNA processing events, including alternative splicing and RNA editing, can generate many different messages from a single gene. As a consequence, the RNA pool, which we refer to here as the 'ribotype', has a different information content from the genotype and can vary as circumstances change. The outcome of a single RNA processing event often regulates the outcome of another, giving rise to networks that affect the composition and expression of a particular ribotype. Successful ribotypes are determined by natural selection, and can be incorporated into the genome over time by reverse transcription. Eukaryotic evolution is therefore influenced by the alternate ways in which RNAs are processed and the continual interplay between RNA and DNA.
Collapse
Affiliation(s)
- A Herbert
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA.
| | | |
Collapse
|
42
|
Niswender CM, Sanders-Bush E, Emeson RB. Identification and characterization of RNA editing events within the 5-HT2C receptor. Ann N Y Acad Sci 1998; 861:38-48. [PMID: 9928237 DOI: 10.1111/j.1749-6632.1998.tb10171.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
RNA editing is a post-transcriptional modification that generates an RNA transcript with a nucleotide sequence different from its gene. We have recently discovered RNA editing events, involving the conversion of adenosine bases to inosine residues, within the RNA encoding the serotonin 2C (5-HT2C) receptor. Editing events at four major positions, termed A, B, C and D, as well as one minor site termed C', are predicted to alter amino acids within the second intracellular loop of the G-protein coupled 5-HT2C receptor. Editing is mediated by at least two members of a family of adenosine deaminases and is contingent upon the presence of an extensive RNA duplex structure formed by exonic and intronic sequences of 5-HT2C receptor precursor messenger RNA (pre-mRNA). This critical secondary structure has been observed within brain pre-mRNA derived from four species; the isolation of edited 5-HT2C receptor transcripts from these samples further confirms the evolutionary conservation of this RNA processing event. Among members of the 5-HT2 receptor family, editing within second intracellular loop RNA is unique to the 5-HT2C receptor. Editing within the 5-HT2C receptor generates receptor isoforms that differ in their ability to interact with the phospholipase C signaling cascade in a transfected cell line, suggesting that this RNA processing event may contribute to the modulation of serotonergic neurotransmission in the central nervous system.
Collapse
Affiliation(s)
- C M Niswender
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6600, USA.
| | | | | |
Collapse
|
43
|
Kumar M, Carmichael GG. Antisense RNA: function and fate of duplex RNA in cells of higher eukaryotes. Microbiol Mol Biol Rev 1998; 62:1415-34. [PMID: 9841677 PMCID: PMC98951 DOI: 10.1128/mmbr.62.4.1415-1434.1998] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
There is ample evidence that cells of higher eukaryotes express double-stranded RNA molecules (dsRNAs) either naturally or as the result of viral infection or aberrant, bidirectional transcriptional readthrough. These duplex molecules can exist in either the cytoplasmic or nuclear compartments. Cells have evolved distinct ways of responding to dsRNAs, depending on the nature and location of the duplexes. Since dsRNA molecules are not thought to exist naturally within the cytoplasm, dsRNA in this compartment is most often associated with viral infections. Cells have evolved defensive strategies against such molecules, primarily involving the interferon response pathway. Nuclear dsRNA, however, does not induce interferons and may play an important posttranscriptional regulatory role. Nuclear dsRNA appears to be the substrate for enzymes which deaminate adenosine residues to inosine residues within the polynucleotide structure, resulting in partial or full unwinding. Extensively modified RNAs are either rapidly degraded or retained within the nucleus, whereas transcripts with few modifications may be transported to the cytoplasm, where they serve to produce altered proteins. This review summarizes our current knowledge about the function and fate of dsRNA in cells of higher eukaryotes and its potential manipulation as a research and therapeutic tool.
Collapse
Affiliation(s)
- M Kumar
- Department of Microbiology, University of Connecticut Health Center, Farmington, Connecticut 06030-3205, USA.
| | | |
Collapse
|
44
|
Herbert A, Schade M, Lowenhaupt K, Alfken J, Schwartz T, Shlyakhtenko LS, Lyubchenko YL, Rich A. The Zalpha domain from human ADAR1 binds to the Z-DNA conformer of many different sequences. Nucleic Acids Res 1998; 26:3486-93. [PMID: 9671809 PMCID: PMC147729 DOI: 10.1093/nar/26.15.3486] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Z-DNA, the left-handed conformer of DNA, is stabilized by the negative supercoiling generated during the movement of an RNA polymerase through a gene. Recently, we have shown that the editing enzyme ADAR1 (double-stranded RNA adenosine deaminase, type 1) has two Z-DNA binding motifs, Zalpha and Zbeta, the function of which is currently unknown. Here we show that a peptide containing the Zalpha motif binds with high affinity to Z-DNA as a dimer, that the binding site is no larger than 6 bp and that the Zalpha domain can flip a range of sequences, including d(TA)3, into the Z-DNAconformation. Evidence is also presented to show that Zalpha and Zbeta interact to form a functional DNA binding site. Studies with atomic force microscopy reveal that binding of Zalpha to supercoiled plasmids is associated with relaxation of the plasmid. Pronounced kinking of DNA is observed, and appears to be induced by binding of Zalpha. The results reported here support a model where the Z-DNA binding motifs target ADAR1 to regions of negative supercoiling in actively transcribing genes. In this situation, binding by Zalpha would be dependent upon the local level of negative superhelicity rather than the presence of any particular sequence.
Collapse
Affiliation(s)
- A Herbert
- Department of Biology Room 68-233, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Green T, Heinemann SF, Gusella JF. Molecular neurobiology and genetics: investigation of neural function and dysfunction. Neuron 1998; 20:427-44. [PMID: 9539120 DOI: 10.1016/s0896-6273(00)80986-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- T Green
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | |
Collapse
|
46
|
Sublethal oxygen-glucose deprivation alters hippocampal neuronal AMPA receptor expression and vulnerability to kainate-induced death. J Neurosci 1998. [PMID: 9391008 DOI: 10.1523/jneurosci.17-24-09536.1997] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent studies have suggested that rats subjected to transient global brain ischemia develop depressed expression of GluR-B in CA1 hippocampal neurons. The present study was performed to determine whether a similar change in AMPA receptor expression could be triggered in vitro by sublethal oxygen-glucose deprivation in rat hippocampal neuronal cultures. mRNA was extracted from individual hippocampal neurons via patch electrodes and amplified by RT-PCR 24-48 hr after sublethal oxygen-glucose deprivation. Compared with controls, insulted neurons expressed increased levels of GluR-D flop. As an indication that this change in receptor expression was functionally significant, insulted cultures exhibited increased AMPA- or kainate-induced 45Ca2+ accumulation sensitive to Joro spider toxin and increased vulnerability to kainate-induced death. These data support the hypothesis that exposure to ischemia may enhance subsequent hippocampal neuronal vulnerability to AMPA receptor-mediated excitotoxicity by modifying the relative expression of AMPA receptor subunits in a manner that promotes Ca2+ permeability.
Collapse
|
47
|
Ying HS, Weishaupt JH, Grabb M, Canzoniero LM, Sensi SL, Sheline CT, Monyer H, Choi DW. Sublethal oxygen-glucose deprivation alters hippocampal neuronal AMPA receptor expression and vulnerability to kainate-induced death. J Neurosci 1997; 17:9536-44. [PMID: 9391008 PMCID: PMC6573419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/1997] [Revised: 09/03/1997] [Accepted: 10/07/1997] [Indexed: 02/05/2023] Open
Abstract
Recent studies have suggested that rats subjected to transient global brain ischemia develop depressed expression of GluR-B in CA1 hippocampal neurons. The present study was performed to determine whether a similar change in AMPA receptor expression could be triggered in vitro by sublethal oxygen-glucose deprivation in rat hippocampal neuronal cultures. mRNA was extracted from individual hippocampal neurons via patch electrodes and amplified by RT-PCR 24-48 hr after sublethal oxygen-glucose deprivation. Compared with controls, insulted neurons expressed increased levels of GluR-D flop. As an indication that this change in receptor expression was functionally significant, insulted cultures exhibited increased AMPA- or kainate-induced 45Ca2+ accumulation sensitive to Joro spider toxin and increased vulnerability to kainate-induced death. These data support the hypothesis that exposure to ischemia may enhance subsequent hippocampal neuronal vulnerability to AMPA receptor-mediated excitotoxicity by modifying the relative expression of AMPA receptor subunits in a manner that promotes Ca2+ permeability.
Collapse
Affiliation(s)
- H S Ying
- Center for the Study of Nervous System Injury and Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Belcher SM, Howe JR. Characterization of RNA editing of the glutamate-receptor subunits GluR5 and GluR6 in granule cells during cerebellar development. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 52:130-8. [PMID: 9450685 DOI: 10.1016/s0169-328x(97)00252-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The non-NMDA class of ionotropic glutamate receptors are subject to RNA editing resulting in single amino acid changes within individual subunits that make up these oligomeric receptors. These amino acid changes result in significant alterations of important channel properties. Both edited and unedited versions of the kainate-receptor subunits GluR5 and GluR6 are present in brain, but whether this reflects the expression of both versions in individual types of neurons or differences in editing between different cell types is unclear. To characterize editing in a single identified type of central neuron, we have determined the extent to which GluR5 and GluR6 mRNAs are edited in acutely isolated cerebellar granule cells. RT-PCR analysis revealed that editing at each site in GluR5 and GluR6 increased during early postnatal development. The Q/R site was predominantly unedited in GluR5, whereas GluR6 was mostly edited. The Q/R and Y/C sites of GluR6 were edited to similar extents, whereas a smaller percentage of transcripts were edited at the I/V site. The expression of two double-stranded RNA adenosine deaminases implicated in GluR editing (DRADA and RED1) increased in granule cells between postnatal days 1 and 15. Finally, cerebellar granule cells express a previously unreported variant of RED1 which appears to arise from developmentally regulated alternative splicing.
Collapse
Affiliation(s)
- S M Belcher
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | | |
Collapse
|
49
|
Herbert A, Alfken J, Kim YG, Mian IS, Nishikura K, Rich A. A Z-DNA binding domain present in the human editing enzyme, double-stranded RNA adenosine deaminase. Proc Natl Acad Sci U S A 1997; 94:8421-6. [PMID: 9237992 PMCID: PMC22942 DOI: 10.1073/pnas.94.16.8421] [Citation(s) in RCA: 279] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/1997] [Indexed: 02/04/2023] Open
Abstract
Editing of RNA changes the read-out of information from DNA by altering the nucleotide sequence of a transcript. One type of RNA editing found in all metazoans uses double-stranded RNA (dsRNA) as a substrate and results in the deamination of adenosine to give inosine, which is translated as guanosine. Editing thus allows variant proteins to be produced from a single pre-mRNA. A mechanism by which dsRNA substrates form is through pairing of intronic and exonic sequences before the removal of noncoding sequences by splicing. Here we report that the RNA editing enzyme, human dsRNA adenosine deaminase (DRADA1, or ADAR1) contains a domain (Zalpha) that binds specifically to the left-handed Z-DNA conformation with high affinity (KD = 4 nM). As formation of Z-DNA in vivo occurs 5' to, or behind, a moving RNA polymerase during transcription, recognition of Z-DNA by DRADA1 provides a plausible mechanism by which DRADA1 can be targeted to a nascent RNA so that editing occurs before splicing. Analysis of sequences related to Zalpha has allowed identification of motifs common to this class of nucleic acid binding domain.
Collapse
Affiliation(s)
- A Herbert
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
50
|
Jiang HQ, Motorin Y, Jin YX, Grosjean H. Pleiotropic effects of intron removal on base modification pattern of yeast tRNAPhe: an in vitro study. Nucleic Acids Res 1997; 25:2694-701. [PMID: 9207014 PMCID: PMC146816 DOI: 10.1093/nar/25.14.2694] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cell-free yeast extract has been successfully used to catalyze the enzymatic formation of 11 out of the 14 naturally occurring modified nucleotides in yeast tRNAPhe(anticodon GAA). They are m2G10, D17, m22G26, Cm32, Gm34,psi39, m5C40, m7G46, m5C49, T54 andpsi55. Only D16, Y37 and m1A58 were not formed under in vitro conditions. However, m1G37was quantitatively produced instead of Y37. The naturally occurring intron was absolutely required for m5C40formation while it hindered completely the enzymatic formation of Cm32, Gm34and m1G37. Enzymatic formation of m22G26,psi39, m7G46, m5C49, T54 andpsi55were not or only slightly affected by the presence of the intron. These results allow us to classify the different tRNA modification enzymes into three groups: intron insensitive, intron dependent, and those requiring the absence of the intron. The fact that truncated tRNAPheconsisting of the anticodon stem and loop prolonged with the 19 nucleotide long intron is a substrate for tRNA: cytosine-40 methylase demonstrates that the enzyme is not only strictly intron dependent, but also does not require fully structured tRNA.
Collapse
Affiliation(s)
- H Q Jiang
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre National de la Recherche Scientifique, Avenue de la Terrasse, Batiment 34, F-91198 Gif-sur-Yvette, France
| | | | | | | |
Collapse
|