1
|
Sifre-Ruiz A, Sagasta A, Santos E, Perez de Nanclares G, Heath KE. New pathogenic variant in DLX5: New clues for a clinical spectrum from split-hand-foot malformation to fibular aplasia, tibial campomelia and oligosyndactyly. Front Genet 2023; 14:1165780. [PMID: 37124614 PMCID: PMC10133553 DOI: 10.3389/fgene.2023.1165780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/05/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction: FATCO (Fibular Aplasia, Tibial Campomelia and Oligosyndactyly) is a very infrequent skeletal dysplasia classified within the limb hypoplasia-reduction defects group whose genetic cause has not yet been identified. The advent of next-generation sequencing is enabling the diagnosis of diseases with no previously known genetic cause. Methods: We performed a thorough autopsy on a fetus whose pregnancy was legally terminated due to severe malformations detected by ultrasound. A trio exome was run to identify the genetic cause and risk of recurrence. Previous literature of similar cases was systematically searched. Results: Anatomopathological analyses revealed complete fibular aplasia, shortened and campomelic tibia, absent ankle joint, club right foot and a split foot malformation, leading to the diagnosis of FATCO. Exome sequencing showed that the female fetus carried a de novo nonsense variant in DLX5. The literature search permitted the collection of information on 43 patients with FATCO, the majority of whom were males diagnosed postnatally. In most cases, lower limbs were affected exclusively, but in 39.5% of cases the upper limbs were also affected. Conclusion: The pathologies associated with DLX5 variants encompass a wide spectrum of manifestations ranging from abnormalities exclusively in the hands and feet to long bones such as the tibia and fibula.
Collapse
Affiliation(s)
- Anna Sifre-Ruiz
- Pathology Service, Bioaraba Research Health Institute, Araba University Hospital, Vitoria-Gasteiz, Spain
| | - Amaia Sagasta
- Pathology Service, Bioaraba Research Health Institute, Araba University Hospital, Vitoria-Gasteiz, Spain
| | - Erika Santos
- Radiodiagnostic Service, Araba University Hospital, Vitoria-Gasteiz, Spain
| | - Guiomar Perez de Nanclares
- Rare Diseases Research Group, Molecular (Epi)Genetics Laboratory, Bioaraba Research Health Institute, Araba University Hospital-Txagorritxu, Vitoria-Gasteiz, Araba, Spain
| | - Karen E. Heath
- Institute of Medical and Molecular Genetics (INGEMM), IdiPAZ, Hospital Universitario La Paz, Universidad Autónoma de Madrid, Madrid, Spain
- Skeletal Dysplasia Multidisciplinary Unit (UMDE), ERN-BOND, Hospital Universitario La Paz, Madrid, Spain
- CIBERER, ISCIII, Madrid, Spain
| |
Collapse
|
2
|
Cooper RBV, Kim KB, Oliver DR, Armbrecht E, Behrents RG, Montaño AM. DLX6 and MSX1 from saliva samples as potential predictors of mandibular size: A cross-sectional study. Am J Orthod Dentofacial Orthop 2023; 163:368-377. [PMID: 36494218 DOI: 10.1016/j.ajodo.2021.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Morphologic features of the mandible are influenced by the genes of each individual. Mandible size is important to orthodontists because the mandible is the mechanism by which the lower face influences facial esthetics and dental function. To date, no biological marker has been identified that indicates eventual mandible size. This study aimed to correlate the expression of DLX5, DLX6, EDN1, HAND2, PRRX1, and MSX1 to mandible size. METHODS Fifty-nine orthodontic patients aged >6 years who had available cephalometric radiographs were studied. Patients were classified on the basis of condylion-to-gnathion measurements. Messenger RNA was isolated from saliva and subjected to real-time quantitative polymerase chain reaction. RESULTS Threshold cycle values for subjects with small mandibles (>1 standard deviation [SD] from the mean) had the least expression of DLX6 and MSX1. Threshold cycle values for subjects with large mandibles (>1 SD) had less expression of DLX6 and MSX1 than subjects within 1 SD but more than those with small mandibles. CONCLUSIONS DLX6 and MSX1 are related to mandible development and size. This finding could be used to improve treatment planning for medical and dental professionals seeking to understand the impact of genetics on bone growth.
Collapse
Affiliation(s)
- Rachel Bryn V Cooper
- Formerly, Department of Orthodontics, School of Medicine, Saint Louis University, St Louis, Mo currently, Private practice, Houston, Tex.
| | - Ki Beom Kim
- Department of Orthodontics, School of Medicine, Saint Louis University, St Louis, Mo
| | - Donald R Oliver
- Department of Orthodontics, School of Medicine, Saint Louis University, St Louis, Mo
| | - Eric Armbrecht
- Center for Health Outcomes Research, Saint Louis University, St Louis, Mo
| | - Rolf G Behrents
- Department of Orthodontics, School of Medicine, Saint Louis University, St Louis, Mo
| | - Adriana M Montaño
- Departments of Pediatrics and Biochemistry and Molecular Biology, School of Medicine, Saint Louis University, St Louis, Mo.
| |
Collapse
|
3
|
Yu W, Ma L, Li X. DANCR promotes glioma cell autophagy and proliferation via the miR‑33b/DLX6/ATG7 axis. Oncol Rep 2023; 49:39. [PMID: 36601767 PMCID: PMC9846190 DOI: 10.3892/or.2023.8476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
Long non‑coding RNAs (lncRNAs) are common in the human body. Misregulated lncRNA expression can cause a variety of diseases in the human body. The present study aimed to investigate the effect of lncRNA differentiation antagonizing non‑protein‑coding RNA (DANCR) on glioma proliferation and autophagy through the microRNA (miR)‑33b/distal‑less homeobox 6 (DLX6)/autophagy‑related 7 (ATG7) axis. Reverse transcription‑quantitative PCR was used to detect DANCR and miR‑33b expression. Cell Counting Kit‑8 assay and flow cytometry were used to detect cell proliferation and apoptosis, respectively. Transmission electron microscopy was used to determine the autophagy level by observing intracellular autophagosomes. A western blot assay was used to detect protein expression levels and determine the level of autophagy in different cells. The binding sites of miR‑33b and DANCR or DLX6 were detected using a dual‑luciferase reporter assay. A chromatin immunoprecipitation assay confirmed DLX6 as a transcript of ATG7. In vivo tumorigenesis of glioma cells was validated in nude mice. DANCR and DLX6 were highly expressed in glioma cells, while miR‑33b showed low expression in glioma cells. DANCR reduced the targeted binding of miR‑33b to DLX6 by sponging miR‑33b. The result verified that DANCR could promote ATG7 protein expression through miR‑33b/DLX6, promote intracellular autophagy and proliferation and reduce apoptosis. The present study identified the role of the DANCR/miR‑33b/DLX6/ATG7 axis in regulating autophagy, proliferation, and apoptosis in glioma cells, providing new ideas for glioma treatment.
Collapse
Affiliation(s)
- Wei Yu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China,Liaoning Clinical Medical Research in Nervous Disease, Shenyang, Liaoning 110004, P.R. China,Key Laboratory of Neuro-Oncology in Liaoning, Shenyang, Liaoning 110004, P.R. China
| | - Li Ma
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China,Liaoning Clinical Medical Research in Nervous Disease, Shenyang, Liaoning 110004, P.R. China,Key Laboratory of Neuro-Oncology in Liaoning, Shenyang, Liaoning 110004, P.R. China
| | - Xinxing Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China,Liaoning Clinical Medical Research in Nervous Disease, Shenyang, Liaoning 110004, P.R. China,Key Laboratory of Neuro-Oncology in Liaoning, Shenyang, Liaoning 110004, P.R. China,Correspondence to: Professor Xinxing Li, Department of Neurosurgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping, Shenyang, Liaoning 110004, P.R. China, E-mail:
| |
Collapse
|
4
|
The molecular genetics of human appendicular skeleton. Mol Genet Genomics 2022; 297:1195-1214. [PMID: 35907958 DOI: 10.1007/s00438-022-01930-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/09/2022] [Indexed: 10/16/2022]
Abstract
Disorders that result from de-arrangement of growth, development and/or differentiation of the appendages (limbs and digit) are collectively called as inherited abnormalities of human appendicular skeleton. The bones of appendicular skeleton have central role in locomotion and movement. The different types of appendicular skeletal abnormalities are well described in the report of "Nosology and Classification of Genetic skeletal disorders: 2019 Revision". In the current article, we intend to present the embryology, developmental pathways, disorders and the molecular genetics of the appendicular skeletal malformations. We mainly focused on the polydactyly, syndactyly, brachydactyly, split-hand-foot malformation and clubfoot disorders. To our knowledge, only nine genes of polydactyly, five genes of split-hand-foot malformation, nine genes for syndactyly, eight genes for brachydactyly and only single gene for clubfoot have been identified to be involved in disease pathophysiology. The current molecular genetic data will help life sciences researchers working on the rare skeletal disorders. Moreover, the aim of present systematic review is to gather the published knowledge on molecular genetics of appendicular skeleton, which would help in genetic counseling and molecular diagnosis.
Collapse
|
5
|
Hou F, Jin H, Cao L, Jiao X, Wang B, Liu H, Cui B. The Imbalance Expression of DLX3 May Perform Critical Function in the Occurrence and Progression of Preeclampsia. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1457398. [PMID: 35096127 PMCID: PMC8799331 DOI: 10.1155/2022/1457398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND The present research focuses on preeclampsia (PE), a clinically relevant pregnancy disease. To date, the majority of research on PE was centered on placental insufficiency. However, the genes that regulate these processes, and the exact molecular mechanisms modulating these processes, are still unclear. METHODS We obtained placentae from a clinically well-specified group of patients with preeclampsia and gestationally matched control pregnancies in order to evaluate the expression of homeobox gene DLX3 by immunohistochemical staining, real-time PCR, and Western immunoblotting and determine the function of DLX3 utilizing lentivirus transfection in HTR-8/SVneo cells. RESULTS In the present study, we detected DLX3 expression in a clinically well defined cohort of preeclampsia-affected and gestation-matched control pregnancies. As opposed to the controls, DLX3 was overexpressed in preeclampsia-affected placentae. Moreover, we found that the in vitro cell growth and invasive ability of HTR8/SVneo cells was enhanced by the exogenous overexpression of DLX3 (P < 0.05). It can be seen that DLX3 influences the cell cycle of HTR-8/SVneo cells in vitro. CONCLUSIONS DLX3 has been shown to be strongly related to normal placental growth as well as the pathophysiology of preeclampsia. The imbalanced expression of DLX3 may perform an integral function in the occurrence and progression of preeclampsia.
Collapse
Affiliation(s)
- Fei Hou
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, China
- Prenatal Diagnosis Center, Jinan Maternal and Child Health Hospital, China
| | - Hua Jin
- Prenatal Diagnosis Center, Jinan Maternal and Child Health Hospital, China
| | - Luquan Cao
- Prenatal Diagnosis Center, Jinan Maternal and Child Health Hospital, China
| | - Xinlin Jiao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, China
| | - Bingyu Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, China
| | - Haiying Liu
- Department of Obstetrics and Gynecology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, China
| | - Baoxia Cui
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, China
| |
Collapse
|
6
|
Fazel Darbandi S, Esau C, Lesage-Pelletier C, Monis S, Poitras L, Yu M, Perin S, Hatch G, Ekker M. Increased Sociability in Mice Lacking Intergenic Dlx Enhancers. Front Neurosci 2021; 15:718948. [PMID: 34671237 PMCID: PMC8520905 DOI: 10.3389/fnins.2021.718948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
The Dlx homeodomain transcription factors play important roles in the differentiation and migration of GABAergic interneuron precursors. The mouse and human genomes each have six Dlx genes organized into three convergently transcribed bigene clusters (Dlx1/2, Dlx3/4, and Dlx5/6) with cis-regulatory elements (CREs) located in the intergenic region of each cluster. Amongst these, the I56i and I12b enhancers from the Dlx1/2 and Dlx5/6 locus, respectively, are active in the developing forebrain. I56i is also a binding site for GTF2I, a transcription factor whose function is associated with increased sociability and Williams-Beuren syndrome. In determining the regulatory roles of these CREs on forebrain development, we have generated mutant mouse-lines where Dlx forebrain intergenic enhancers have been deleted (I56i(-/-), I12b(-/-)). Loss of Dlx intergenic enhancers impairs expression of Dlx genes as well as some of their downstream targets or associated genes including Gad2 and Evf2. The loss of the I56i enhancer resulted in a transient decrease in GABA+ cells in the developing forebrain. The intergenic enhancer mutants also demonstrate increased sociability and learning deficits in a fear conditioning test. Characterizing mice with mutated Dlx intergenic enhancers will help us to further enhance our understanding of the role of these Dlx genes in forebrain development.
Collapse
Affiliation(s)
| | - Crystal Esau
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | | | - Simon Monis
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Luc Poitras
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Man Yu
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Sofia Perin
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Gary Hatch
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Marc Ekker
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
7
|
Shin JH, Han MJ, Kim SJ. Split-Hand/Foot Malformation and Subependymal Heterotopia Caused by a DLX5 Gene Mutation: A Case Report. ANNALS OF CHILD NEUROLOGY 2021. [DOI: 10.26815/acn.2021.00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
8
|
Pahle J, Muhia M, Wagener RJ, Tippmann A, Bock HH, Graw J, Herz J, Staiger JF, Drakew A, Kneussel M, Rune GM, Frotscher M, Brunne B. Selective Inactivation of Reelin in Inhibitory Interneurons Leads to Subtle Changes in the Dentate Gyrus But Leaves Cortical Layering and Behavior Unaffected. Cereb Cortex 2021; 30:1688-1707. [PMID: 31667489 PMCID: PMC7132935 DOI: 10.1093/cercor/bhz196] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Reelin is an extracellular matrix protein, known for its dual role in neuronal migration during brain development and in synaptic plasticity at adult stages. During the perinatal phase, Reelin expression switches from Cajal-Retzius (CR) cells, its main source before birth, to inhibitory interneurons (IN), the main source of Reelin in the adult forebrain. IN-derived Reelin has been associated with schizophrenia and temporal lobe epilepsy; however, the functional role of Reelin from INs is presently unclear. In this study, we used conditional knockout mice, which lack Reelin expression specifically in inhibitory INs, leading to a substantial reduction in total Reelin expression in the neocortex and dentate gyrus. Our results show that IN-specific Reelin knockout mice exhibit normal neuronal layering and normal behavior, including spatial reference memory. Although INs are the major source of Reelin within the adult stem cell niche, Reelin from INs does not contribute substantially to normal adult neurogenesis. While a closer look at the dentate gyrus revealed some unexpected alterations at the cellular level, including an increase in the number of Reelin expressing CR cells, overall our data suggest that Reelin derived from INs is less critical for cortex development and function than Reelin expressed by CR cells.
Collapse
Affiliation(s)
- Jasmine Pahle
- Institute for Structural Neurobiology, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Mary Muhia
- Institute of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Robin J Wagener
- Neurology Clinic, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Anja Tippmann
- Institute for Structural Neurobiology, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.,Department of Systems Neuroscience, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, University of Göttingen, 37075 Göttingen, Germany
| | - Hans H Bock
- Clinic of Gastroenterology and Hepatology, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Janice Graw
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jochen F Staiger
- Institute for Neuroanatomy, University Medical Center Göttingen, Georg-August-University Göttingen, 37075 Göttingen, Germany
| | - Alexander Drakew
- Institute for Structural Neurobiology, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.,Institute of Clinical Neuroanatomy, Faculty of Medicine, 60590 Frankfurt, Germany
| | - Matthias Kneussel
- Institute of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Gabriele M Rune
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Michael Frotscher
- Institute for Structural Neurobiology, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Bianka Brunne
- Institute for Structural Neurobiology, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.,Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| |
Collapse
|
9
|
Lim YJ, Kim KM, Jang WG. Chrysophanol increases osteoblast differentiation via AMPK/Smad1/5/9 phosphorylation in vitro and in vivo. Clin Exp Pharmacol Physiol 2021; 48:515-523. [PMID: 33300218 DOI: 10.1111/1440-1681.13443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/05/2020] [Indexed: 01/20/2023]
Abstract
Chrysophanol (Chrysophanic acid; CA) is a natural anthraquinone found in Senna tora and rhubarb that has various characteristic features, including the ability to suppress adipogenesis. However, its effects on osteoblast differentiation have not been investigated. Herein, this study aimed to demonstrate the mechanism by which CA induces the osteoblast differentiation. CA increased the expression of osteogenic genes. The staining levels Alkaline phosphatase (ALP) and Alizarin Red S (ARS) were increased by chrysophanol. CA induced osteoblast differentiation through AMP-activated protein kinase (AMPK)/Small mothers against decapentaplegic (Smad1/5/9) activation in MC3T3-E1 cells. In addition, compound C, AMPK inhibitor (Comp. C)-induced cells suppressed osteogenic genes expression and AMPK/Smad1/5/9 activation. Interestingly, AMPK in the CA-induced AMPK/Smad1/5/9 signalling pathway was an upstream regulator of Smad1/5/9. In order to further dissect in bone development, we used a zebrafish model to investigate the effect of CA on bone development. These results suggest that CA stimulated bone development via AMPK/Smad1/5/9. Overall, our results demonstrate that CA promotes osteoblast differentiation via AMPK/Smad1/5/9 expression in vitro and in vivo.
Collapse
Affiliation(s)
- Young-Ju Lim
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongbuk, Korea
- Research Institute of Anti-Aging, Daegu University, Gyeongbuk, Korea
| | - Kyeong-Min Kim
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongbuk, Korea
- Research Institute of Anti-Aging, Daegu University, Gyeongbuk, Korea
| | - Won-Gu Jang
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongbuk, Korea
- Research Institute of Anti-Aging, Daegu University, Gyeongbuk, Korea
| |
Collapse
|
10
|
S J R, Ahmed N, Kumari S, Sreenivas Prasad VG, Naik LN, Kumar V. Expression of DLX6 Gene in Mandibular Deficiency (Retrognathic Mandible): A Randomized Clinical and Genetic Study. Cureus 2021; 13:e13572. [PMID: 33815981 PMCID: PMC8008976 DOI: 10.7759/cureus.13572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Introduction There are various genes that affect craniofacial development and among the important genes that affect jaw development is distal-less homeobox (DLX) 6 genes. The present study was carried out to determine the role of DLX6 gene variations in mandibular deficiency. Methods Thirty subjects having retrognathic mandible were evaluated by clinical examination and assessed using lateral cephalometric radiographs based on cephalometrics for orthognathic surgery (COGS) analysis of hard tissue with N-Pog parameters being less than -13 mm. For the same subjects, saliva samples were taken and sent to biotechnology labs for genetic evaluation. DNA was isolated from salivary samples using a DNA extraction kit and was subjected to polymerase chain reaction (PCR) amplification and sequencing. Single nucleotide polymorphisms (SNP) analysis was done to assess the role of DLX6 gene in these study subjects. Results All 30 subjects showed N-POG parameters of COGS analysis for hard tissue to be less than -13mm, confirming retrognathic mandible. SNP analysis of subjects showed no SNPs in any EXON of the DLX6 gene for all 30 study samples. Conclusion No variations in DLX6 gene were found in the present study. Further studies are required to investigate other genes that could be involved in the cause of retrognathic mandible with a larger sample size and to include subjects in the sample having features other than mandibular retrognathia like hearing loss, abnormal pinnae, ectrodactyly, cleft palate, developmental delay and abnormal teeth to determine the contribution of DLX6 gene variations in mandibular deficiency.
Collapse
Affiliation(s)
- Rajalakshmi S J
- Orthodontics and Dentofaical Orthopedics, Government Dental College and Research Institute, Bangalore, IND
| | - Nausheer Ahmed
- Orthodontics and Dentofacial Orthopedics, Government Dental College and Research Institute, Bangalore, IND
| | - Shashikala Kumari
- Orthodontics and Dentofacial Orthopedics, Government Dental College and Research Institute, Bangalore, IND
| | | | - Lohit N Naik
- Orthodontics and Dentofacial Orthopedics, Government Dental College and Research Institute, Bangalore, IND
| | - Vinod Kumar
- Pedodontics, Navodaya Dental College and Hospital, Raichur, IND
| |
Collapse
|
11
|
Jager P, Moore G, Calpin P, Durmishi X, Salgarella I, Menage L, Kita Y, Wang Y, Kim DW, Blackshaw S, Schultz SR, Brickley S, Shimogori T, Delogu A. Dual midbrain and forebrain origins of thalamic inhibitory interneurons. eLife 2021; 10:e59272. [PMID: 33522480 PMCID: PMC7906600 DOI: 10.7554/elife.59272] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 01/31/2021] [Indexed: 12/12/2022] Open
Abstract
The ubiquitous presence of inhibitory interneurons in the thalamus of primates contrasts with the sparsity of interneurons reported in mice. Here, we identify a larger than expected complexity and distribution of interneurons across the mouse thalamus, where all thalamic interneurons can be traced back to two developmental programmes: one specified in the midbrain and the other in the forebrain. Interneurons migrate to functionally distinct thalamocortical nuclei depending on their origin: the abundant, midbrain-derived class populates the first and higher order sensory thalamus while the rarer, forebrain-generated class is restricted to some higher order associative regions. We also observe that markers for the midbrain-born class are abundantly expressed throughout the thalamus of the New World monkey marmoset. These data therefore reveal that, despite the broad variability in interneuron density across mammalian species, the blueprint of the ontogenetic organisation of thalamic interneurons of larger-brained mammals exists and can be studied in mice.
Collapse
Affiliation(s)
- Polona Jager
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondonUnited Kingdom
| | - Gerald Moore
- Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
- Department of Life Sciences and Centre for Neurotechnology, Imperial College LondonLondonUnited Kingdom
| | - Padraic Calpin
- Department of Physics and Astronomy, University College LondonLondonUnited Kingdom
| | - Xhuljana Durmishi
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondonUnited Kingdom
| | - Irene Salgarella
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondonUnited Kingdom
| | - Lucy Menage
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondonUnited Kingdom
| | | | - Yan Wang
- RIKEN, Center for Brain Science (CBS)SaitamaJapan
| | - Dong Won Kim
- The Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Seth Blackshaw
- The Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Simon R Schultz
- Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
| | - Stephen Brickley
- Department of Life Sciences and Centre for Neurotechnology, Imperial College LondonLondonUnited Kingdom
| | | | - Alessio Delogu
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondonUnited Kingdom
| |
Collapse
|
12
|
Puelles L, Diaz C, Stühmer T, Ferran JL, Martínez‐de la Torre M, Rubenstein JLR. LacZ-reporter mapping of Dlx5/6 expression and genoarchitectural analysis of the postnatal mouse prethalamus. J Comp Neurol 2021; 529:367-420. [PMID: 32420617 PMCID: PMC7671952 DOI: 10.1002/cne.24952] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022]
Abstract
We present here a thorough and complete analysis of mouse P0-P140 prethalamic histogenetic subdivisions and corresponding nuclear derivatives, in the context of local tract landmarks. The study used as fundamental material brains from a transgenic mouse line that expresses LacZ under the control of an intragenic enhancer of Dlx5 and Dlx6 (Dlx5/6-LacZ). Subtle shadings of LacZ signal, jointly with pan-DLX immunoreaction, and several other ancillary protein or RNA markers, including Calb2 and Nkx2.2 ISH (for the prethalamic eminence, and derivatives of the rostral zona limitans shell domain, respectively) were mapped across the prethalamus. The resulting model of the prethalamic region postulates tetrapartite rostrocaudal and dorsoventral subdivisions, as well as a tripartite radial stratification, each cell population showing a characteristic molecular profile. Some novel nuclei are proposed, and some instances of potential tangential cell migration were noted.
Collapse
Affiliation(s)
- Luis Puelles
- Department of Human Anatomy and Psychobiology and IMIB‐Arrixaca InstituteUniversity of MurciaMurciaSpain
| | - Carmen Diaz
- Department of Medical Sciences, School of Medicine and Institute for Research in Neurological DisabilitiesUniversity of Castilla‐La ManchaAlbaceteSpain
| | - Thorsten Stühmer
- Nina Ireland Laboratory of Developmental Neurobiology, Department of PsychiatryUCSF Medical SchoolSan FranciscoCaliforniaUSA
| | - José L. Ferran
- Department of Human Anatomy and Psychobiology and IMIB‐Arrixaca InstituteUniversity of MurciaMurciaSpain
| | | | - John L. R. Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of PsychiatryUCSF Medical SchoolSan FranciscoCaliforniaUSA
| |
Collapse
|
13
|
Dlx5-augmentation in neural crest cells reveals early development and differentiation potential of mouse apical head mesenchyme. Sci Rep 2021; 11:2092. [PMID: 33483579 PMCID: PMC7822927 DOI: 10.1038/s41598-021-81434-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 01/05/2021] [Indexed: 11/08/2022] Open
Abstract
Neural crest cells (NCCs) give rise to various tissues including neurons, pigment cells, bone and cartilage in the head. Distal-less homeobox 5 (Dlx5) is involved in both jaw patterning and differentiation of NCC-derivatives. In this study, we investigated the differentiation potential of head mesenchyme by forcing Dlx5 to be expressed in mouse NCC (NCCDlx5). In NCCDlx5 mice, differentiation of dermis and pigment cells were enhanced with ectopic cartilage (ec) and heterotopic bone (hb) in different layers at the cranial vertex. The ec and hb were derived from the early migrating mesenchyme (EMM), the non-skeletogenic cell population located above skeletogenic supraorbital mesenchyme (SOM). The ec developed within Foxc1+-dura mater with increased PDGFRα signalling, and the hb formed with upregulation of BMP and WNT/β-catenin signallings in Dermo1+-dermal layer from E11.5. Since dermal cells express Runx2 and Msx2 in the control, osteogenic potential in dermal cells seemed to be inhibited by an anti-osteogenic function of Msx2 in normal context. We propose that, after the non-skeletogenic commitment, the EMM is divided into dermis and meninges by E11.5 in normal development. Two distinct responses of the EMM, chondrogenesis and osteogenesis, to Dlx5-augmentation in the NCCDlx5 strongly support this idea.
Collapse
|
14
|
Kuerbitz J, Madhavan M, Ehrman LA, Kohli V, Waclaw RR, Campbell K. Temporally Distinct Roles for the Zinc Finger Transcription Factor Sp8 in the Generation and Migration of Dorsal Lateral Ganglionic Eminence (dLGE)-Derived Neuronal Subtypes in the Mouse. Cereb Cortex 2020; 31:1744-1762. [PMID: 33230547 DOI: 10.1093/cercor/bhaa323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 12/29/2022] Open
Abstract
Progenitors in the dorsal lateral ganglionic eminence (dLGE) are known to give rise to olfactory bulb (OB) interneurons and intercalated cells (ITCs) of the amygdala. The dLGE enriched transcription factor Sp8 is required for the normal generation of ITCs as well as OB interneurons, particularly the calretinin (CR)-expressing subtype. In this study, we used a genetic gain-of-function approach in mice to examine the roles Sp8 plays in controlling the development of dLGE-derived neuronal subtypes. Misexpression of Sp8 throughout the ventral telencephalic subventricular zone (SVZ) from early embryonic stages, led to an increased generation of ITCs which was dependent on Tshz1 gene dosage. Additionally, Sp8 misexpression impaired rostral migration of OB interneurons with clusters of CR interneurons seen in the SVZ along with decreased differentiation of calbindin OB interneurons. Sp8 misexpression throughout the ventral telencephalon also reduced ventral LGE neuronal subtypes including striatal projection neurons. Delaying Sp8 misexpression until E14-15 rescued the striatal and amygdala phenotypes but only partially rescued OB interneuron reductions, consistent with an early window of striatal and amygdala neurogenesis and ongoing OB interneuron generation at this late stage. Our results demonstrate critical roles for the timing and neuronal cell-type specificity of Sp8 expression in mouse LGE neurogenesis.
Collapse
Affiliation(s)
- J Kuerbitz
- Divisions of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Medical-Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - M Madhavan
- Divisions of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - L A Ehrman
- Divisions of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Divisions of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - V Kohli
- Divisions of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - R R Waclaw
- Divisions of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Divisions of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - K Campbell
- Divisions of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Divisions of Neurosurgery, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
15
|
Liang J, Liu J, Deng Z, Liu Z, Liang L. DLX6 promotes cell proliferation and survival in oral squamous cell carcinoma. Oral Dis 2020; 28:87-96. [PMID: 33215805 DOI: 10.1111/odi.13728] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/28/2020] [Accepted: 11/06/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Distal-less homeobox 6 (DLX6) has been reported to play important roles in the development of craniofacial structures, inner ear, limb, and brain. We found in our previous investigation that DLX6 was significantly highly expressed in oral cancer tissues in The Cancer Genome Atlas database. This study aimed to explore its roles and regulation mechanism in oral squamous cell carcinoma. MATERIALS AND METHODS We analyzed the expression of DLX6 and its association with overall survival in OSCC by real-time quantitative PCR. Besides, clone formation, proliferation, and apoptosis were detected after knocking down DLX6 and microarray analysis was performed to explore the possible regulatory mechanism. RESULTS DLX6 was overexpressed in oral cancer tissues and was associated with advance tumor stage and poor prognosis. In vitro studies have shown that DLX6 promotes proliferation and inhibits cell apoptosis in oral cancer cells. Microarray analysis along with Western blotting results indicated that DLX6 significantly associated with malignant tumors and may regulate OSCC cells proliferation through EGFR-CCND1 axis. CONCLUSION DLX6 promotes cell proliferation and suppresses cell apoptosis in oral cancer cells. EGFR-CCND1 pathway might be the potential mechanism participating in the regulating axis.
Collapse
Affiliation(s)
- Jun Liang
- Department of Oral and Maxillofacial Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jingang Liu
- Department of Stomatology, Zhuhai People's Hospital, Zhuhai, China
| | - Zhaoming Deng
- Department of Oral and Maxillofacial Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Zhigang Liu
- Department of Head and Neck Oncology, Phase 1 Clinical Trial Ward, The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Lizhong Liang
- Department of Oral and Maxillofacial Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
16
|
Sumiyama K, Tanave A. The regulatory landscape of the
Dlx
gene system in branchial arches: Shared characteristics among
Dlx
bigene clusters and evolution. Dev Growth Differ 2020; 62:355-362. [DOI: 10.1111/dgd.12671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/18/2020] [Accepted: 04/28/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Kenta Sumiyama
- Laboratory for Mouse Genetic EngineeringRIKEN Center for Biosystems Dynamics Research Suita Osaka Japan
| | - Akira Tanave
- Laboratory for Mouse Genetic EngineeringRIKEN Center for Biosystems Dynamics Research Suita Osaka Japan
| |
Collapse
|
17
|
Jacques C, Tesfaye R, Lavaud M, Georges S, Baud’huin M, Lamoureux F, Ory B. Implication of the p53-Related miR-34c, -125b, and -203 in the Osteoblastic Differentiation and the Malignant Transformation of Bone Sarcomas. Cells 2020; 9:cells9040810. [PMID: 32230926 PMCID: PMC7226610 DOI: 10.3390/cells9040810] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
The formation of the skeleton occurs throughout the lives of vertebrates and is achieved through the balanced activities of two kinds of specialized bone cells: the bone-forming osteoblasts and the bone-resorbing osteoclasts. Impairment in the remodeling processes dramatically hampers the proper healing of fractures and can also result in malignant bone diseases such as osteosarcoma. MicroRNAs (miRNAs) are a class of small non-coding single-strand RNAs implicated in the control of various cellular activities such as proliferation, differentiation, and apoptosis. Their post-transcriptional regulatory role confers on them inhibitory functions toward specific target mRNAs. As miRNAs are involved in the differentiation program of precursor cells, it is now well established that this class of molecules also influences bone formation by affecting osteoblastic differentiation and the fate of osteoblasts. In response to various cell signals, the tumor-suppressor protein p53 activates a huge range of genes, whose miRNAs promote genomic-integrity maintenance, cell-cycle arrest, cell senescence, and apoptosis. Here, we review the role of three p53-related miRNAs, miR-34c, -125b, and -203, in the bone-remodeling context and, in particular, in osteoblastic differentiation. The second aim of this study is to deal with the potential implication of these miRNAs in osteosarcoma development and progression.
Collapse
|
18
|
de Lombares C, Heude E, Alfama G, Fontaine A, Hassouna R, Vernochet C, de Chaumont F, Olivo-Marin C, Ey E, Parnaudeau S, Tronche F, Bourgeron T, Luquet S, Levi G, Narboux-Nême N. Dlx5 and Dlx6 expression in GABAergic neurons controls behavior, metabolism, healthy aging and lifespan. Aging (Albany NY) 2019; 11:6638-6656. [PMID: 31514171 PMCID: PMC6756896 DOI: 10.18632/aging.102141] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022]
Abstract
Dlx5 and Dlx6 encode two homeobox transcription factors expressed by developing and mature GABAergic interneurons. During development, Dlx5/6 play a role in the differentiation of certain GABAergic subclasses. Here we address the question of the functional role of Dlx5/6 in the mature central nervous system. First, we demonstrate that Dlx5 and Dlx6 are expressed by all subclasses of adult cortical GABAergic neurons. Then we analyze VgatΔDlx5-6 mice in which Dlx5 and Dlx6 are simultaneously inactivated in all GABAergic interneurons. VgatΔDlx5-6 mice present a behavioral pattern suggesting reduction of anxiety-like behavior and obsessive-compulsive activities, and a lower interest in nest building. Twenty-month-old VgatΔDlx5-6 animals have the same size as their normal littermates, but present a 25% body weight reduction associated with a marked decline in white and brown adipose tissue. Remarkably, both VgatΔDlx5-6/+ and VgatΔDlx5-6 mice present a 33% longer median survival. Hallmarks of biological aging such as motility, adiposity and coat conditions are improved in mutant animals. Our data imply that GABAergic interneurons can regulate healthspan and lifespan through Dlx5/6-dependent mechanisms. Understanding these regulations can be an entry point to unravel the processes through which the brain affects body homeostasis and, ultimately, longevity and healthy aging.
Collapse
Affiliation(s)
- Camille de Lombares
- Physiologie Moléculaire et Adaptation, CNRS UMR7221, Muséum National d’Histoire Naturelle, Département AVIV, Paris, France
| | - Eglantine Heude
- Physiologie Moléculaire et Adaptation, CNRS UMR7221, Muséum National d’Histoire Naturelle, Département AVIV, Paris, France
| | - Gladys Alfama
- Physiologie Moléculaire et Adaptation, CNRS UMR7221, Muséum National d’Histoire Naturelle, Département AVIV, Paris, France
| | - Anastasia Fontaine
- Physiologie Moléculaire et Adaptation, CNRS UMR7221, Muséum National d’Histoire Naturelle, Département AVIV, Paris, France
| | - Rim Hassouna
- Unité de Biologie Fonctionnelle et Adaptative (BFA), Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR 8251, Paris, France
| | - Cécile Vernochet
- Team "Gene Regulation and Adaptive Behaviors", Neurosciences Paris Seine, INSERM U 1130, CNRS UMR 8246, Paris, France
| | | | | | - Elodie Ey
- Human Genetics and Cognitive Functions, Institute Pasteur, CNRS UMR 3571, Paris, France
| | - Sébastien Parnaudeau
- Team "Gene Regulation and Adaptive Behaviors", Neurosciences Paris Seine, INSERM U 1130, CNRS UMR 8246, Paris, France
| | - François Tronche
- Team "Gene Regulation and Adaptive Behaviors", Neurosciences Paris Seine, INSERM U 1130, CNRS UMR 8246, Paris, France
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institute Pasteur, CNRS UMR 3571, Paris, France
| | - Serge Luquet
- Unité de Biologie Fonctionnelle et Adaptative (BFA), Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR 8251, Paris, France
| | - Giovanni Levi
- Physiologie Moléculaire et Adaptation, CNRS UMR7221, Muséum National d’Histoire Naturelle, Département AVIV, Paris, France
| | - Nicolas Narboux-Nême
- Physiologie Moléculaire et Adaptation, CNRS UMR7221, Muséum National d’Histoire Naturelle, Département AVIV, Paris, France
| |
Collapse
|
19
|
Genome-wide identification of transcription factors that are critical to non-small cell lung cancer. Cancer Lett 2018; 434:132-143. [DOI: 10.1016/j.canlet.2018.07.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/04/2018] [Accepted: 07/13/2018] [Indexed: 12/25/2022]
|
20
|
De Backer JF, Monlezun S, Detraux B, Gazan A, Vanopdenbosch L, Cheron J, Cannazza G, Valverde S, Cantacorps L, Nassar M, Venance L, Valverde O, Faure P, Zoli M, De Backer O, Gall D, Schiffmann SN, de Kerchove d'Exaerde A. Deletion of Maged1 in mice abolishes locomotor and reinforcing effects of cocaine. EMBO Rep 2018; 19:embr.201745089. [PMID: 30002119 DOI: 10.15252/embr.201745089] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 12/21/2022] Open
Abstract
Melanoma antigen genes (Mage) were first described as tumour markers. However, some of Mage are also expressed in healthy cells where their functions remain poorly understood. Here, we describe an unexpected role for one of these genes, Maged1, in the control of behaviours related to drug addiction. Mice lacking Maged1 are insensitive to the behavioural effects of cocaine as assessed by locomotor sensitization, conditioned place preference (CPP) and drug self-administration. Electrophysiological experiments in brain slices and conditional knockout mice demonstrate that Maged1 is critical for cortico-accumbal neurotransmission. Further, expression of Maged1 in the prefrontal cortex (PFC) and the amygdala, but not in dopaminergic or striatal and other GABAergic neurons, is necessary for cocaine-mediated behavioural sensitization, and its expression in the PFC is also required for cocaine-induced extracellular dopamine (DA) release in the nucleus accumbens (NAc). This work identifies Maged1 as a critical molecule involved in cellular processes and behaviours related to addiction.
Collapse
Affiliation(s)
- Jean-François De Backer
- Laboratoire de Neurophysiologie, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Stéphanie Monlezun
- Laboratoire de Neurophysiologie, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Bérangère Detraux
- Laboratoire de Neurophysiologie, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Adeline Gazan
- Laboratoire de Neurophysiologie, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Laura Vanopdenbosch
- Laboratoire de Neurophysiologie, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Julian Cheron
- Laboratoire de Neurophysiologie, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Giuseppe Cannazza
- Dipartimento di Scienze della Vita, Centro di Neuroscienze e Neurotecnologie, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - Sébastien Valverde
- INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), UPMC Univ Paris 06 Sorbonne Universités, Paris, France
| | - Lídia Cantacorps
- Departament de Ciències Experimentals i de la Salut, Grup de Recerca en Neurobiologia del Comportament (GReNeC), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Pompeu Fabra, Barcelone, Spain
| | - Mérie Nassar
- Center for Interdisciplinary Research in Biology, Collège de France, INSERM U1050, CNRS UMR7241, Labex Memolife, Paris, France
| | - Laurent Venance
- Center for Interdisciplinary Research in Biology, Collège de France, INSERM U1050, CNRS UMR7241, Labex Memolife, Paris, France
| | - Olga Valverde
- Departament de Ciències Experimentals i de la Salut, Grup de Recerca en Neurobiologia del Comportament (GReNeC), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Pompeu Fabra, Barcelone, Spain
| | - Philippe Faure
- INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), UPMC Univ Paris 06 Sorbonne Universités, Paris, France
| | - Michele Zoli
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Centro di Neuroscienze e Neurotecnologie, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - Olivier De Backer
- URPHYM (Unité de Recherche en Physiologie Moléculaire), NARILIS (Namur Research Institute for Life Sciences), Université de Namur, Namur, Belgium
| | - David Gall
- Laboratoire de Neurophysiologie, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Serge N Schiffmann
- Laboratoire de Neurophysiologie, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Alban de Kerchove d'Exaerde
- Laboratoire de Neurophysiologie, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium .,WELBIO, Brussels, Belgium
| |
Collapse
|
21
|
Lucchese G, Stahl B. Peptide Sharing Between Viruses and DLX Proteins: A Potential Cross-Reactivity Pathway to Neuropsychiatric Disorders. Front Neurosci 2018; 12:150. [PMID: 29618965 PMCID: PMC5871705 DOI: 10.3389/fnins.2018.00150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 02/26/2018] [Indexed: 12/24/2022] Open
Abstract
The present study seeks to determine potential associations between viral infections and neuropsychiatric diseases. To address this issue, we investigated the peptide commonalities between viruses that have been related to psychiatric and neurological disorders—such as rubella, human immunodeficiency virus, and herpesviruses—and human distal-less homeobox (DLX) proteins expressed in developing brain—namely, DLX1, DLX2, DLX5, and DLX6. Peptide matching analyses revealed a high degree of pentapeptide sharing. From an immunological perspective, this overlap is relevant because pentapeptides are endowed with immunogenicity and antigenicity—that is, they are immune determinants. Moreover, infection-induced immune cross-reactions might have functional, spatial, and temporal implications related to the functions and expression patterns of DLX1 and DLX5 in the fetal and adult human brain. In sum, our data support the hypothesis that viral infections may be linked to neuropsychiatric diseases through autoimmune cross-reactions caused by molecular mimicry between viral proteins and brain-specific DLX self-antigens.
Collapse
Affiliation(s)
- Guglielmo Lucchese
- Brain Language Laboratory, Freie Universität Berlin, Berlin, Germany.,Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Benjamin Stahl
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany.,Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Psychologische Hochschule Berlin, Berlin, Germany
| |
Collapse
|
22
|
Chen Y, Peng Y, Fan S, Li Y, Xiao ZX, Li C. A double dealing tale of p63: an oncogene or a tumor suppressor. Cell Mol Life Sci 2018; 75:965-973. [PMID: 28975366 PMCID: PMC11105324 DOI: 10.1007/s00018-017-2666-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/20/2017] [Accepted: 09/25/2017] [Indexed: 12/15/2022]
Abstract
As a member of tumor suppressor p53 family, p63, a gene encoding versatile protein variant, has been documented to correlate with cancer formation and progression, though it is rarely mutated in cancer patients. However, it has long been controversial on whether p63 is an oncogene or a tumor suppressor. Here, we comprehensively reviewed reports on roles of p63 in development, tumorigenesis and tumor progression. According to data from molecular cell biology, genetic models and clinic research, we conclude that p63 may act as either an oncogene or a tumor suppressor gene in different scenarios: TA isoforms of p63 gene are generally tumor-suppressive through repressing cell proliferation, survival and metastasis; ΔN isoforms, however, may initiate tumorigenesis via promoting cell proliferation and survival, but inhibit tumor metastasis and progression; effects of p63 on tumor formation and progression depend on the context of the whole p53 family, and either amplification or loss of p63 gene locus can break the balance to cause tumorigenesis.
Collapse
Affiliation(s)
- Yonglong Chen
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yougong Peng
- Department of General Surgery, The Second People's Hospital of Jingmen, Jingmen, 448000, China
| | - Shijie Fan
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yimin Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Zhi-Xiong Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Chenghua Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
23
|
Heo JS, Lee SG, Kim HO. Distal-less homeobox 5 is a master regulator of the osteogenesis of human mesenchymal stem cells. Int J Mol Med 2017; 40:1486-1494. [PMID: 28949384 PMCID: PMC5627883 DOI: 10.3892/ijmm.2017.3142] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/11/2017] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs) differentiate into multiple lineages and are a promising source of cells for clinical use. Previously, we found that the gene distal-less homeobox 5 (DLX5) is specifically expressed in MSCs with osteogenic potential. Understanding the mechanism of osteogenesis is necessary for successful bone regeneration using MSCs. The aim of this study was to examine the function of the DLX5 gene in MSCs during osteogenesis (bone development). We analyzed the possible association between DLX5 expression and osteogenesis-, chondrogenesis- and adipogenesis-related gene expression in different cells isolated from bone marrow and cord blood. Differentiation capacity was assessed by observing morphological changes, monitoring gene expression patterns, and staining with Von Kossa, safranin O, and Oil Red O. Suppression of DLX5 expression by means of a small interfering RNA (siRNA) downregulated osteogenic markers and reduced the signs of calcium mineralization. Tanshinone IIA is a known small molecule activator of bone morphogenetic protein (BMP) signaling. Here, we report that induction of DLX5 by tanshinone IIA in MSCs enhanced osteogenic differentiation. In addition, we showed that tanshinone IIA (as a mediator of BMP2 signaling) activates runt-related transcription factor 2 (RUNX2) in MSCs and initiates calcium mineralization during osteogenesis. Taken together, these findings indicate that, in MSCs, DLX5 is a master regulator of osteogenesis. Furthermore, tanshinone IIA may be valuable for stem cell-based therapies of certain bone diseases.
Collapse
Affiliation(s)
- June Seok Heo
- Department of Integrated Biomedical and Life Sciences, College of Health Science, Korea University, Seoul 02841; 2Cell Therapy Center, Severance Hospital, Seoul 03722, Republic of Korea
| | - Seung Gwan Lee
- Department of Health and Environmental Science, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| | - Hyun Ok Kim
- Cell Therapy Center, Severance Hospital, Seoul 03722, Republic of Korea
| |
Collapse
|
24
|
Alghanim H, Antunes J, Silva DSBS, Alho CS, Balamurugan K, McCord B. Detection and evaluation of DNA methylation markers found at SCGN and KLF14 loci to estimate human age. Forensic Sci Int Genet 2017; 31:81-88. [PMID: 28854399 DOI: 10.1016/j.fsigen.2017.07.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 07/20/2017] [Accepted: 07/25/2017] [Indexed: 11/20/2022]
Abstract
Recent developments in the analysis of epigenetic DNA methylation patterns have demonstrated that certain genetic loci show a linear correlation with chronological age. It is the goal of this study to identify a new set of epigenetic methylation markers for the forensic estimation of human age. A total number of 27 CpG sites at three genetic loci, SCGN, DLX5 and KLF14, were examined to evaluate the correlation of their methylation status with age. These sites were evaluated using 72 blood samples and 91 saliva samples collected from volunteers with ages ranging from 5 to 73 years. DNA was bisulfite modified followed by PCR amplification and pyrosequencing to determine the level of DNA methylation at each CpG site. In this study, certain CpG sites in SCGN and KLF14 loci showed methylation levels that were correlated with chronological age, however, the tested CpG sites in DLX5 did not show a correlation with age. Using a 52-saliva sample training set, two age-predictor models were developed by means of a multivariate linear regression analysis for age prediction. The two models performed similarly with a single-locus model explaining 85% of the age variance at a mean absolute deviation of 5.8 years and a dual-locus model explaining 84% of the age variance with a mean absolute deviation of 6.2 years. In the validation set, the mean absolute deviation was measured to be 8.0 years and 7.1 years for the single- and dual-locus model, respectively. Another age predictor model was also developed using a 40-blood sample training set that accounted for 71% of the age variance. This model gave a mean absolute deviation of 6.6 years for the training set and 10.3years for the validation set. The results indicate that specific CpGs in SCGN and KLF14 can be used as potential epigenetic markers to estimate age using saliva and blood specimens. These epigenetic markers could provide important information in cases where the determination of a suspect's age is critical in developing investigative leads.
Collapse
Affiliation(s)
- Hussain Alghanim
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA; General Department of Forensic Science and Criminology, Dubai Police, Dubai, United Arab Emirates
| | - Joana Antunes
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - Deborah Soares Bispo Santos Silva
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA; Faculty of Biosciences, Laboratory of Human and Molecular Genetics, PUCRS, Porto Alegre, Brazil
| | - Clarice Sampaio Alho
- Faculty of Biosciences, Laboratory of Human and Molecular Genetics, PUCRS, Porto Alegre, Brazil
| | | | - Bruce McCord
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA.
| |
Collapse
|
25
|
Solek CM, Feng S, Perin S, Weinschutz Mendes H, Ekker M. Lineage tracing of dlx1a/2a and dlx5a/6a expressing cells in the developing zebrafish brain. Dev Biol 2017; 427:131-147. [PMID: 28479339 DOI: 10.1016/j.ydbio.2017.04.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 02/06/2023]
Abstract
Lineage tracing of specific populations of progenitor cells provides crucial information about developmental programs. Four members of the Dlx homeobox gene family, Dlx1,2, 5 and 6, are involved in the specification of γ-aminobutyric acid (GABA)ergic neurons in the vertebrate forebrain. Orthologous genes in mammals and teleost show similarities in expression patterns and transcriptional regulation mechanisms. We have used lineage tracing to permanently label dlx-expressing cells in the zebrafish and have characterized the progeny of these cells in the larva and in the juvenile and adult brain. We have found that dlx1a/2a and dlx5a/6a expressing progenitors give rise, for the most part, to small populations of cells which constitute only a small proportion of GABAergic cells in the adult brain tissue. Moreover, some of the cells do not acquire a neuronal phenotype suggesting that, regardless of the time a cell expresses dlx genes in the brain, it can potentially give rise to cells other than neurons. In some instances, labeling larval dlx5a/6a-expressing cells, but not dlx1a/2a-expressing cells, results in massively expanding, widespread clonal expansion throughout the adult brain. Our data provide a detailed lineage analysis of the dlx1a/2a and dlx5a/6a expressing progenitors in the zebrafish brain and lays the foundation for further characterization of the role of these transcription factors beyond the specification of GABAergic neurons.
Collapse
Affiliation(s)
- Cynthia M Solek
- CAREG, Department of Biology, University of Ottawa, 20 Marie-Curie Private, Ottawa, ON, Canada K1N 6N5; Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC, Canada H3A 2B4
| | - Shengrui Feng
- CAREG, Department of Biology, University of Ottawa, 20 Marie-Curie Private, Ottawa, ON, Canada K1N 6N5; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON, Canada M5G 2M9
| | - Sofia Perin
- CAREG, Department of Biology, University of Ottawa, 20 Marie-Curie Private, Ottawa, ON, Canada K1N 6N5
| | - Hellen Weinschutz Mendes
- CAREG, Department of Biology, University of Ottawa, 20 Marie-Curie Private, Ottawa, ON, Canada K1N 6N5
| | - Marc Ekker
- CAREG, Department of Biology, University of Ottawa, 20 Marie-Curie Private, Ottawa, ON, Canada K1N 6N5.
| |
Collapse
|
26
|
Lund C, Pulli K, Yellapragada V, Giacobini P, Lundin K, Vuoristo S, Tuuri T, Noisa P, Raivio T. Development of Gonadotropin-Releasing Hormone-Secreting Neurons from Human Pluripotent Stem Cells. Stem Cell Reports 2016; 7:149-57. [PMID: 27426041 PMCID: PMC4982984 DOI: 10.1016/j.stemcr.2016.06.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 06/13/2016] [Accepted: 06/15/2016] [Indexed: 12/18/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) neurons regulate human puberty and reproduction. Modeling their development and function in vitro would be of interest for both basic research and clinical translation. Here, we report a three-step protocol to differentiate human pluripotent stem cells (hPSCs) into GnRH-secreting neurons. Firstly, hPSCs were differentiated to FOXG1, EMX2, and PAX6 expressing anterior neural progenitor cells (NPCs) by dual SMAD inhibition. Secondly, NPCs were treated for 10 days with FGF8, which is a key ligand implicated in GnRH neuron ontogeny, and finally, the cells were matured with Notch inhibitor to bipolar TUJ1-positive neurons that robustly expressed GNRH1 and secreted GnRH decapeptide into the culture medium. The protocol was reproducible both in human embryonic stem cells and induced pluripotent stem cells, and thus provides a translational tool for investigating the mechanisms of human puberty and its disorders. GnRH neurons regulate puberty and reproduction We generated GnRH-expressing and secreting neurons from hPSCs These neurons can be used to study diseases affecting the reproductive system
Collapse
Affiliation(s)
- Carina Lund
- Faculty of Medicine, Department of Physiology, University of Helsinki, Helsinki 00014, Finland
| | - Kristiina Pulli
- Faculty of Medicine, Department of Physiology, University of Helsinki, Helsinki 00014, Finland
| | - Venkatram Yellapragada
- Faculty of Medicine, Department of Physiology, University of Helsinki, Helsinki 00014, Finland
| | - Paolo Giacobini
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Unité 1172, 59045 Lille Cedex, France; School of Medicine, University of Lille, Lille 59000, France
| | - Karolina Lundin
- Department of Obstetrics and Gynecology, HUCH, Helsinki 00029, Finland
| | - Sanna Vuoristo
- Faculty of Medicine, Department of Physiology, University of Helsinki, Helsinki 00014, Finland
| | - Timo Tuuri
- Department of Obstetrics and Gynecology, HUCH, Helsinki 00029, Finland
| | - Parinya Noisa
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; Faculty of Medicine/Physiology, University of Helsinki, Biomedicum Helsinki, PO Box 63 (Haartmaninkatu 8), Helsinki 00014, Finland
| | - Taneli Raivio
- Faculty of Medicine, Department of Physiology, University of Helsinki, Helsinki 00014, Finland; Children's Hospital, Pediatric Research Center, Helsinki University Central Hospital (HUCH), Helsinki 00029, Finland; Faculty of Medicine/Physiology, University of Helsinki, Biomedicum Helsinki, PO Box 63 (Haartmaninkatu 8), Helsinki 00014, Finland.
| |
Collapse
|
27
|
Proudfoot A, Axelrod HL, Geralt M, Fletterick RJ, Yumoto F, Deacon AM, Elsliger MA, Wilson IA, Wüthrich K, Serrano P. Dlx5 Homeodomain:DNA Complex: Structure, Binding and Effect of Mutations Related to Split Hand and Foot Malformation Syndrome. J Mol Biol 2016; 428:1130-1141. [PMID: 26829219 DOI: 10.1016/j.jmb.2016.01.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/20/2016] [Accepted: 01/24/2016] [Indexed: 12/18/2022]
Abstract
The Dlx5 homeodomain is a transcription factor related to the Drosophila distal-less gene that is associated with breast and lung cancer, lymphoma, Rett syndrome and osteoporosis in humans. Mutations in the DLX5 gene have been linked to deficiencies in craniofacial and limb development in higher eukaryotes, including split hand and foot malformation 1 in humans. Our characterization of a Dlx5 homeodomain:(CGACTAATTAGTCG)2 complex by NMR spectroscopy paved the way for determination of its crystal structure at 1.85Å resolution that enabled rationalization of the effects of disease-related mutations on the protein function. A Q186H mutation linked to split hand and foot malformation 1 likely affects affinity of DNA binding by disrupting water-mediated interactions with the DNA major groove. A more subtle effect is implicated for the Q178P mutation, which is not in direct contact with the DNA. Our data indicate that these mutations diminish the ability of the Dlx5 homeodomain to recognize and bind target DNAs, and they likely destabilize the formation of functional complexes.
Collapse
Affiliation(s)
- Andrew Proudfoot
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Herbert L Axelrod
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Michael Geralt
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Robert J Fletterick
- Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th Street, San Francisco, CA 94158, USA
| | - Fumiaki Yumoto
- Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th Street, San Francisco, CA 94158, USA
| | - Ashley M Deacon
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Marc-André Elsliger
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Kurt Wüthrich
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Institute of Molecular Biology and Biophysics, ETH Zürich, CH 8093, Zürich, Switzerland
| | - Pedro Serrano
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
28
|
Conte D, Garaffo G, Lo Iacono N, Mantero S, Piccolo S, Cordenonsi M, Perez-Morga D, Orecchia V, Poli V, Merlo GR. The apical ectodermal ridge of the mouse model of ectrodactyly Dlx5;Dlx6-/- shows altered stratification and cell polarity, which are restored by exogenous Wnt5a ligand. Hum Mol Genet 2015; 25:740-54. [PMID: 26685160 PMCID: PMC4743692 DOI: 10.1093/hmg/ddv514] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/10/2015] [Indexed: 02/06/2023] Open
Abstract
The congenital malformation split hand/foot (SHFM) is characterized by missing central fingers and dysmorphology or fusion of the remaining ones. Type-1 SHFM is linked to deletions/rearrangements of the DLX5–DLX6 locus and point mutations in the DLX5 gene. The ectrodactyly phenotype is reproduced in mice by the double knockout (DKO) of Dlx5 and Dlx6. During limb development, the apical ectodermal ridge (AER) is a key-signaling center responsible for early proximal–distal growth and patterning. In Dlx5;6 DKO hindlimbs, the central wedge of the AER loses multilayered organization and shows down-regulation of FGF8 and Dlx2. In search for the mechanism, we examined the non-canonical Wnt signaling, considering that Dwnt-5 is a target of distalless in Drosophila and the knockout of Wnt5, Ryk, Ror2 and Vangl2 in the mouse causes severe limb malformations. We found that in Dlx5;6 DKO limbs, the AER expresses lower levels of Wnt5a, shows scattered β-catenin responsive cells and altered basolateral and planar cell polarity (PCP). The addition of Wnt5a to cultured embryonic limbs restored the expression of AER markers and its stratification. Conversely, the inhibition of the PCP molecule c-jun N-terminal kinase caused a loss of AER marker expression. In vitro, the addition of Wnt5a on mixed primary cultures of embryonic ectoderm and mesenchyme was able to confer re-polarization. We conclude that the Dlx-related ectrodactyly defect is associated with the loss of basoapical and PCP, due to reduced Wnt5a expression and that the restoration of the Wnt5a level is sufficient to partially reverts AER misorganization and dysmorphology.
Collapse
Affiliation(s)
- Daniele Conte
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Giulia Garaffo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Nadia Lo Iacono
- Human Genome Department, Istituto Tecnologie Biomediche, CNR Milano, Italy
| | - Stefano Mantero
- Human Genome Department, Istituto Tecnologie Biomediche, CNR Milano, Italy
| | - Stefano Piccolo
- Department of Molecular Medicine, University of Padova, Padova, Italy and
| | | | - David Perez-Morga
- Laboratoire de Parasitologie Moléculaire, IBMM-DBM, Université Libre de Bruxelles, B-6041 Gosselies, Belgium
| | - Valeria Orecchia
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Valeria Poli
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Giorgio R Merlo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy,
| |
Collapse
|
29
|
Heude É, Shaikho S, Ekker M. The dlx5a/dlx6a genes play essential roles in the early development of zebrafish median fin and pectoral structures. PLoS One 2014; 9:e98505. [PMID: 24858471 PMCID: PMC4032342 DOI: 10.1371/journal.pone.0098505] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/02/2014] [Indexed: 11/18/2022] Open
Abstract
The Dlx5 and Dlx6 genes encode homeodomain transcription factors essential for the proper development of limbs in mammalian species. However, the role of their teleost counterparts in fin development has received little attention. Here, we show that dlx5a is an early marker of apical ectodermal cells of the pectoral fin buds and of the median fin fold, but also of cleithrum precursor cells during pectoral girdle development. We propose that early median fin fold establishment results from the medial convergence of dlx5a-expressing cells at the lateral edges of the neural keel. Expression analysis also shows involvement of dlx5a during appendage skeletogenesis. Using morpholino-mediated knock down, we demonstrate that disrupted dlx5a/6a function results in pectoral fin agenesis associated with misexpression of bmp4, fgf8a, and1 and msx genes. In contrast, the median fin fold presents defects in mesenchymal cell migration and actinotrichia formation, whereas the initial specification seems to occur normally. Our results demonstrate that the dlx5a/6a genes are essential for the induction of pectoral fin outgrowth, but are not required during median fin fold specification. The dlx5a/6a knock down also causes a failure of cleithrum formation associated with a drastic loss of runx2b and col10a1 expression. The data indicate distinct requirements for dlx5a/6a during median and pectoral fin development suggesting that initiation of unpaired and paired fin formation are not directed through the same molecular mechanisms. Our results refocus arguments on the mechanistic basis of paired appendage genesis during vertebrate evolution.
Collapse
Affiliation(s)
- Églantine Heude
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Sarah Shaikho
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Marc Ekker
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
30
|
Wolf ZT, Leslie EJ, Arzi B, Jayashankar K, Karmi N, Jia Z, Rowland DJ, Young A, Safra N, Sliskovic S, Murray JC, Wade CM, Bannasch DL. A LINE-1 insertion in DLX6 is responsible for cleft palate and mandibular abnormalities in a canine model of Pierre Robin sequence. PLoS Genet 2014; 10:e1004257. [PMID: 24699068 PMCID: PMC3974639 DOI: 10.1371/journal.pgen.1004257] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 02/04/2014] [Indexed: 02/05/2023] Open
Abstract
Cleft palate (CP) is one of the most commonly occurring craniofacial birth defects in humans. In order to study cleft palate in a naturally occurring model system, we utilized the Nova Scotia Duck Tolling Retriever (NSDTR) dog breed. Micro-computed tomography analysis of CP NSDTR craniofacial structures revealed that these dogs exhibit defects similar to those observed in a recognizable subgroup of humans with CP: Pierre Robin Sequence (PRS). We refer to this phenotype in NSDTRs as CP1. Individuals with PRS have a triad of birth defects: shortened mandible, posteriorly placed tongue, and cleft palate. A genome-wide association study in 14 CP NSDTRs and 72 unaffected NSDTRs identified a significantly associated region on canine chromosome 14 (24.2 Mb–29.3 Mb; praw = 4.64×10−15). Sequencing of two regional candidate homeobox genes in NSDTRs, distal-less homeobox 5 (DLX5) and distal-less homeobox 6 (DLX6), identified a 2.1 kb LINE-1 insertion within DLX6 in CP1 NSDTRs. The LINE-1 insertion is predicted to insert a premature stop codon within the homeodomain of DLX6. This prompted the sequencing of DLX5 and DLX6 in a human cohort with CP, where a missense mutation within the highly conserved DLX5 homeobox of a patient with PRS was identified. This suggests the involvement of DLX5 in the development of PRS. These results demonstrate the power of the canine animal model as a genetically tractable approach to understanding naturally occurring craniofacial birth defects in humans. Cleft palate is one of the most commonly occurring birth defects in children, and yet its cause is not completely understood. In order to better understand cleft palate we have turned to man's best friend, the domestic dog. Common breeding practices have made the dog a unique animal model to help understand the genetic basis of naturally occurring birth defects. A genome-wide association study of Nova Scotia Duck Tolling Retrievers with naturally occurring cleft palate led to the investigation of two homeobox genes, DLX5 and DLX6. Dogs with this mutation also have a shortened lower jaw, which resembles those who have Pierre Robin Sequence (PRS). Investigation into people with PRS identifies a mutation within a highly conserved and functional region of DLX5 that may contribute to the development of PRS. This exemplifies how the dog will help us better understand common birth defects.
Collapse
Affiliation(s)
- Zena T Wolf
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Elizabeth J Leslie
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States of America
| | - Boaz Arzi
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Kartika Jayashankar
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Nili Karmi
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Zhonglin Jia
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States of America; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Douglas J Rowland
- Center for Molecular and Genomic Imaging, University of California, Davis, Davis, California, United States of America
| | - Amy Young
- Department of Animal Science, University of California, Davis, Davis, California, United States of America
| | - Noa Safra
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Saundra Sliskovic
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Jeffrey C Murray
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States of America
| | - Claire M Wade
- Faculty of Veterinary Science, University of Sydney, Sydney, New South Wales, Australia
| | - Danika L Bannasch
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| |
Collapse
|
31
|
Split-hand/foot malformation - molecular cause and implications in genetic counseling. J Appl Genet 2013; 55:105-15. [PMID: 24163146 PMCID: PMC3909621 DOI: 10.1007/s13353-013-0178-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/21/2013] [Accepted: 09/23/2013] [Indexed: 10/26/2022]
Abstract
Split-hand/foot malformation (SHFM) is a congenital limb defect affecting predominantly the central rays of the autopod and occurs either as an isolated trait or part of a multiple congenital anomaly syndrome. SHFM is usually sporadic, familial forms are uncommon. The condition is clinically and genetically heterogeneous and shows mostly autosomal dominant inheritance with variable expressivity and reduced penetrance. To date, seven chromosomal loci associated with isolated SHFM have been described, i.e., SHFM1 to 6 and SHFM/SHFLD. The autosomal dominant mode of inheritance is typical for SHFM1, SHFM3, SHFM4, SHFM5. Autosomal recessive and X-linked inheritance is very uncommon and have been noted only in a few families. Most of the known SHFM loci are associated with chromosomal rearrangements that involve small deletions or duplications of the human genome. In addition, three genes, i.e., TP63, WNT10B, and DLX5 are known to carry point mutations in patients affected by SHFM. In this review, we focus on the known molecular basis of isolated SHFM. We provide clinical and molecular information about each type of abnormality as well as discuss the underlying pathways and mechanism that contribute to their development. Recent progress in the understanding of SHFM pathogenesis currently allows for the identification of causative genetic changes in about 50 % of the patients affected by this condition. Therefore, we propose a diagnostic flow-chart helpful in the planning of molecular genetic tests aimed at identifying disease causing mutation. Finally, we address the issue of genetic counseling, which can be extremely difficult and challenging especially in sporadic SHFM cases.
Collapse
|
32
|
Gurrieri F, Everman DB. Clinical, genetic, and molecular aspects of split-hand/foot malformation: an update. Am J Med Genet A 2013; 161A:2860-72. [PMID: 24115638 DOI: 10.1002/ajmg.a.36239] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 08/26/2013] [Indexed: 12/26/2022]
Abstract
We here provide an update on the clinical, genetic, and molecular aspects of split-hand/foot malformation (SHFM). This rare condition, affecting 1 in 8,500-25,000 newborns, is extremely complex because of its variability in clinical presentation, irregularities in its inheritance pattern, and the heterogeneity of molecular genetic alterations that can be found in affected individuals. Both syndromal and nonsyndromal forms are reviewed and the major molecular genetic alterations thus far reported in association with SHFM are discussed. This updated overview should be helpful for clinicians in their efforts to make an appropriate clinical and genetic diagnosis, provide an accurate recurrence risk assessment, and formulate a management plan.
Collapse
Affiliation(s)
- Fiorella Gurrieri
- Istituto di Genetica Medica, Università Cattolica del Sacro Cuore, Rome, Italy
| | | |
Collapse
|
33
|
Díaz-Guerra E, Pignatelli J, Nieto-Estévez V, Vicario-Abejón C. Transcriptional Regulation of Olfactory Bulb Neurogenesis. Anat Rec (Hoboken) 2013; 296:1364-82. [DOI: 10.1002/ar.22733] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 11/13/2012] [Accepted: 12/08/2012] [Indexed: 12/21/2022]
Affiliation(s)
- Eva Díaz-Guerra
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC); Madrid Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII); Madrid Spain
| | - Jaime Pignatelli
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC); Madrid Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII); Madrid Spain
| | - Vanesa Nieto-Estévez
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC); Madrid Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII); Madrid Spain
| | - Carlos Vicario-Abejón
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC); Madrid Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII); Madrid Spain
| |
Collapse
|
34
|
Debiais-Thibaud M, Metcalfe CJ, Pollack J, Germon I, Ekker M, Depew M, Laurenti P, Borday-Birraux V, Casane D. Heterogeneous conservation of Dlx paralog co-expression in jawed vertebrates. PLoS One 2013; 8:e68182. [PMID: 23840829 PMCID: PMC3695995 DOI: 10.1371/journal.pone.0068182] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/27/2013] [Indexed: 01/10/2023] Open
Abstract
Background The Dlx gene family encodes transcription factors involved in the development of a wide variety of morphological innovations that first evolved at the origins of vertebrates or of the jawed vertebrates. This gene family expanded with the two rounds of genome duplications that occurred before jawed vertebrates diversified. It includes at least three bigene pairs sharing conserved regulatory sequences in tetrapods and teleost fish, but has been only partially characterized in chondrichthyans, the third major group of jawed vertebrates. Here we take advantage of developmental and molecular tools applied to the shark Scyliorhinus canicula to fill in the gap and provide an overview of the evolution of the Dlx family in the jawed vertebrates. These results are analyzed in the theoretical framework of the DDC (Duplication-Degeneration-Complementation) model. Results The genomic organisation of the catshark Dlx genes is similar to that previously described for tetrapods. Conserved non-coding elements identified in bony fish were also identified in catshark Dlx clusters and showed regulatory activity in transgenic zebrafish. Gene expression patterns in the catshark showed that there are some expression sites with high conservation of the expressed paralog(s) and other expression sites with events of paralog sub-functionalization during jawed vertebrate diversification, resulting in a wide variety of evolutionary scenarios within this gene family. Conclusion Dlx gene expression patterns in the catshark show that there has been little neo-functionalization in Dlx genes over gnathostome evolution. In most cases, one tandem duplication and two rounds of vertebrate genome duplication have led to at least six Dlx coding sequences with redundant expression patterns followed by some instances of paralog sub-functionalization. Regulatory constraints such as shared enhancers, and functional constraints including gene pleiotropy, may have contributed to the evolutionary inertia leading to high redundancy between gene expression patterns.
Collapse
Affiliation(s)
- Mélanie Debiais-Thibaud
- Institut des Sciences de l’Evolution, Université de Montpellier II, UMR5554, Montpellier, France
- * E-mail:
| | - Cushla J. Metcalfe
- Laboratoire Evolution Génome et Spéciation UPR9034 CNRS, Gif-sur-Yvette, France
| | - Jacob Pollack
- Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Canada
| | - Isabelle Germon
- Laboratoire Evolution Génome et Spéciation UPR9034 CNRS, Gif-sur-Yvette, France
| | - Marc Ekker
- Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Canada
| | - Michael Depew
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Patrick Laurenti
- Laboratoire Evolution Génome et Spéciation UPR9034 CNRS, Gif-sur-Yvette, France
- Université Paris Diderot, Paris, France
| | - Véronique Borday-Birraux
- Laboratoire Evolution Génome et Spéciation UPR9034 CNRS, Gif-sur-Yvette, France
- Université Paris Diderot, Paris, France
| | - Didier Casane
- Laboratoire Evolution Génome et Spéciation UPR9034 CNRS, Gif-sur-Yvette, France
- Université Paris Diderot, Paris, France
| |
Collapse
|
35
|
Takechi M, Adachi N, Hirai T, Kuratani S, Kuraku S. The Dlx genes as clues to vertebrate genomics and craniofacial evolution. Semin Cell Dev Biol 2013; 24:110-8. [PMID: 23291259 DOI: 10.1016/j.semcdb.2012.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 12/25/2012] [Indexed: 11/25/2022]
Abstract
The group of Dlx genes belongs to the homeobox-containing superfamily, and its members are involved in various morphogenetic processes. In vertebrate genomes, Dlx genes exist as multiple paralogues generated by tandem duplication followed by whole genome duplications. In this review, we provide an overview of the Dlx gene phylogeny with an emphasis on the chordate lineage. Referring to the Dlx gene repertoire, we discuss the establishment and conservation of the nested expression patterns of the Dlx genes in craniofacial development. Despite the accumulating genomic sequence resources in diverse vertebrates, embryological analyses of Dlx gene expression and function remain limited in terms of species diversity. By supplementing our original analysis of shark embryos with previous data from other osteichthyans, such as mice and zebrafish, we support the previous speculation that the nested Dlx expression in the pharyngeal arch is likely a shared feature among all the extant jawed vertebrates. Here, we highlight several hitherto unaddressed issues regarding the evolution and function of Dlx genes, with special reference to the craniofacial development of vertebrates.
Collapse
Affiliation(s)
- Masaki Takechi
- Laboratory for Evolutionary Morphology, Center for Developmental Biology, RIKEN, 2-2-3 Minatojimaminami-machi, Chuo-ku, Kobe 650-0047, Japan
| | | | | | | | | |
Collapse
|
36
|
Abstract
Despite its complexity in the adult, during development the inner ear arises from a simple epithelium, the otic placode. Placode specification is a multistep process that involves the integration of various signalling pathways and downstream transcription factors in time and space. Here we review the molecular events that successively commit multipotent ectodermal precursors to the otic lineage. The first step in this hierarchy is the specification of sensory progenitor cells, which can contribute to all sensory placodes, followed by the induction of a common otic-epibranchial field and finally the establishment the otic territory. In recent years, some of the molecular components that control this process have been identified, and begin to reveal complex interactions. Future studies will need to unravel how this information is integrated and encoded in the genome. This will form the blueprint for stem cell differentiation towards otic fates and generate a predictive gene regulatory network that models the earliest steps of otic specification.
Collapse
Affiliation(s)
- Jingchen Chen
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Guy's Tower Wing, Floor 27, London SE1 9RT, UK
| | | |
Collapse
|
37
|
Jeong J, Cesario J, Zhao Y, Burns L, Westphal H, Rubenstein JLR. Cleft palate defect of Dlx1/2-/- mutant mice is caused by lack of vertical outgrowth in the posterior palate. Dev Dyn 2012; 241:1757-69. [PMID: 22972697 DOI: 10.1002/dvdy.23867] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2012] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mice lacking the activities of Dlx1 and Dlx2 (Dlx1/2-/-) exhibit cleft palate, one of the most common human congenital defects, but the etiology behind this phenotype has been unknown. Therefore, we analyzed the morphological, cellular, and molecular changes caused by inactivation of Dlx1 and Dlx2 as related to palate development. RESULTS Dlx1/2-/- mutants exhibited lack of vertical growth in the posterior palate during the earliest stage of palatogenesis. We attributed this growth deficiency to reduced cell proliferation. Expression of a cell cycle regulator Ccnd1 was specifically down-regulated in the same region. Previous studies established that the epithelial-mesenchymal signaling loop involving Shh, Bmp4, and Fgf10 is important for cell proliferation and tissue growth during palate development. This signaling loop was disrupted in Dlx1/2-/- palate. Interestingly, however, the decreases in Ccnd1 expression and mitosis in Dlx1/2-/- mutants were independent of this signaling loop. Finally, Dlx1/2 activity was required for normal expression of several transcription factor genes whose mutation results in palate defects. CONCLUSIONS The functions of Dlx1 and Dlx2 are crucial for the initial formation of the posterior palatal shelves, and that the Dlx genes lie upstream of multiple signaling molecules and transcription factors important for later stages of palatogenesis.
Collapse
Affiliation(s)
- Juhee Jeong
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Identification of early response genes to roughness and fluoride modification of titanium implants in human osteoblasts. IMPLANT DENT 2012; 21:141-9. [PMID: 22382752 DOI: 10.1097/id.0b013e31824a06b4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE Tissue response after implantation determines the success of the healing process. This response is not only dependent on the chemical properties of the implant surface but also by the surface topography or its roughness. Although in vitro and in vivo studies show improved results with rough- and fluoride-modified implants, the mechanisms behind these findings are still unknown. METHODS AND MATERIALS Here, we have used a two-step procedure to identify novel genes related to the early response of primary human osteoblasts to roughness and fluoride-modified titanium implants. RESULTS Two hundred seventeen genes responding to roughness were identified by microarray analysis and 198 genes responding to fluoride, 33 genes were common. Those identified genes related to bone and mineralization were further investigated by real-time reverse-transcriptase polymerase chain reaction. After 1 day of culture, toll-like receptor 3, ankylosis-progressive homolog, decorin, osteocalcin, and runt-related transcription factor-2 were classified as responsive genes to roughness; Distal-less homeobox-2 and Tuftelin-1 as responsive genes to fluoride treatment. Responsive genes to both treatments were collagen type I, parathyroid hormone-like hormone, hairy and enhancer of split-1, follistatin, ectonucleotide pyrophosphatase/phosphodiesterase-1, and thyroid hormone receptor-alpha. CONCLUSION Our strategy was useful for identifying novel genes that might be involved in the early response of osteoblasts to rough and fluoride-modified titanium implants.
Collapse
|
39
|
Sumiyama K, Miyake T, Grimwood J, Stuart A, Dickson M, Schmutz J, Ruddle FH, Myers RM, Amemiya CT. Theria-specific homeodomain and cis-regulatory element evolution of the Dlx3-4 bigene cluster in 12 different mammalian species. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2012; 318:639-50. [PMID: 22951979 DOI: 10.1002/jez.b.22469] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/06/2012] [Accepted: 07/10/2012] [Indexed: 11/11/2022]
Abstract
The mammalian Dlx3 and Dlx4 genes are configured as a bigene cluster, and their respective expression patterns are controlled temporally and spatially by cis-elements that largely reside within the intergenic region of the cluster. Previous work revealed that there are conspicuously conserved elements within the intergenic region of the Dlx3-4 bigene clusters of mouse and human. In this paper we have extended these analyses to include 12 additional mammalian taxa (including a marsupial and a monotreme) in order to better define the nature and molecular evolutionary trends of the coding and non-coding functional elements among morphologically divergent mammals. Dlx3-4 regions were fully sequenced from 12 divergent taxa of interest. We identified three theria-specific amino acid replacements in homeodomain of Dlx4 gene that functions in placenta. Sequence analyses of constrained nucleotide sites in the intergenic non-coding region showed that many of the intergenic conserved elements are highly conserved and have evolved slowly within the mammals. In contrast, a branchial arch/craniofacial enhancer I37-2 exhibited accelerated evolution at the branch between the monotreme and therian common ancestor despite being highly conserved among therian species. Functional analysis of I37-2 in transgenic mice has shown that the equivalent region of the platypus fails to drive transcriptional activity in branchial arches. These observations, taken together with our molecular evolutionary data, suggest that theria-specific episodic changes in the I37-2 element may have contributed to craniofacial innovation at the base of the mammalian lineage.
Collapse
Affiliation(s)
- Kenta Sumiyama
- Division of Population Genetics, National Institute of Genetics, Mishima, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Klein MO, Bijelic A, Ziebart T, Koch F, Kämmerer PW, Wieland M, Konerding MA, Al-Nawas B. Submicron scale-structured hydrophilic titanium surfaces promote early osteogenic gene response for cell adhesion and cell differentiation. Clin Implant Dent Relat Res 2011; 15:166-75. [PMID: 21682843 DOI: 10.1111/j.1708-8208.2011.00339.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND PURPOSE Titanium (Ti) surface roughness and surface hydrophilicity are key factors to regulate osteogenic cell responses during dental implant healing. In detail, specific integrin-mediated interactions with the extracellular environment trigger relevant osteogenic cell responses like differentiation and matrix synthesis via transcriptions factors. Aim of this study was to monitor surface-dependent osteogenic cell adhesion dynamics, proliferation, and specific osteogenic cell differentiation over a period of 7 days. MATERIALS AND METHODS Ti disks were manufactured to present smooth pretreatment (PT) surfaces and rough sandblasted/acid-etched (SLA) surfaces. Further processing to isolate the uncontaminated TiO(2) surface from contact with atmosphere provided a highly hydrophilic surface without alteration of the surface topography (modSLA). Tissue culture polystyrene (TCPS) served as control. Human osteogenic cells were cultivated on the respective substrates. After 24 hours, 48 hours, 72 hours, and 7 days, cell morphology on the Ti substrates was visualized by scanning transmission electron microscopy. As a marker of cellular proliferation, cell count was assessed. For the analysis of cell adhesion and differentiation, specific gene expression levels of the integrin subunits β1 and αv, runx-2, collagen type Iα (COL), alkaline phosphatase (AP), and osteocalcin (OC) were obtained by real-time RT-PCR for the respective time points. Data were normalized to internal controls. RESULTS TCPS and PT surfaces preserved a rather immature, dividing osteogenic phenotype (high proliferation rates, low integrin levels, and low specific osteogenic cell differentiation). SLA and especially modSLA surfaces promoted both cell adhesion as well as the maturation of osteogenic precursors into post-mitotic osteoblasts. In detail, during the first 48 hours, modSLA resulted in lowest cell proliferation rates but exhibited highest levels of the investigated integrins, runx-2, COL, AP, and OC. CONCLUSION Our results revealed a strong synergistic effect between submicron-scale roughness and surface hydrophilicity on early osteogenic cell adhesion and maturation.
Collapse
|
41
|
Vanbokhoven H, Melino G, Candi E, Declercq W. p63, a story of mice and men. J Invest Dermatol 2011; 131:1196-207. [PMID: 21471985 DOI: 10.1038/jid.2011.84] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The transcription factor p63 is essential for the formation of the epidermis and other stratifying epithelia. This is clearly demonstrated by the severe abnormality of p63-deficient mice and by the development of certain types of ectodermal dysplasias in humans as a result of p63 mutations. Investigation of the in vivo functions of p63 is complicated by the occurrence of 10 different splicing isoforms and by its interaction with the other family members, p53 and p73. In vitro and in vivo models have been used to unravel the functions of p63 and its different isoforms, but the results or their interpretation are often contradictory. This review focuses on what mammalian in vivo models and patient studies have taught us in the last 10 years.
Collapse
Affiliation(s)
- Hans Vanbokhoven
- Department of Human Genetics, Molecular Neurogenetics Unit, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
42
|
Gitton Y, Benouaiche L, Vincent C, Heude E, Soulika M, Bouhali K, Couly G, Levi G. Dlx5 and Dlx6 expression in the anterior neural fold is essential for patterning the dorsal nasal capsule. Development 2011; 138:897-903. [PMID: 21270050 DOI: 10.1242/dev.057505] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Morphogenesis of the vertebrate facial skeleton depends upon inductive interactions between cephalic neural crest cells (CNCCs) and cephalic epithelia. The nasal capsule is a CNCC-derived cartilaginous structure comprising a ventral midline bar (mesethmoid) overlaid by a dorsal capsule (ectethmoid). Although Shh signalling from the anterior-most region of the endoderm (EZ-I) patterns the mesethmoid, the cues involved in ectethmoid induction are still undefined. Here, we show that ectethmoid formation depends upon Dlx5 and Dlx6 expression in a restricted ectodermal territory of the anterior neural folds, which we name NF-ZA. In both chick and mouse neurulas, Dlx5 and Dlx6 expression is mostly restricted to NF-ZA. Simultaneous Dlx5 and Dlx6 inactivation in the mouse precludes ectethmoid formation, while the mesethmoid is still present. Consistently, siRNA-mediated downregulation of Dlx5 and Dlx6 in the cephalic region of the early avian neurula specifically prevents ectethmoid formation, whereas other CNCC-derived structures, including the mesethmoid, are not affected. Similarly, NF-ZA surgical removal in chick neurulas averts ectethmoid development, whereas grafting a supernumerary NF-ZA results in an ectopic ectethmoid. Simultaneous ablation or grafting of both NF-ZA and EZ-I result, respectively, in the absence or duplication of both dorsal and ventral nasal capsule components. The present work shows that early ectodermal and endodermal signals instruct different contingents of CNCCs to form the ectethmoid and the mesethmoid, which then assemble to form a complete nasal capsule.
Collapse
Affiliation(s)
- Yorick Gitton
- Evolution des Régulations Endocriniennes, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Sajan SA, Rubenstein JLR, Warchol ME, Lovett M. Identification of direct downstream targets of Dlx5 during early inner ear development. Hum Mol Genet 2011; 20:1262-73. [PMID: 21227998 DOI: 10.1093/hmg/ddq567] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Dlx5, a homeobox transcription factor, plays a key role in the development of many organ systems. It is a candidate gene for human split-hand/split-foot type 1 malformation associated with sensorineural hearing loss. A deletion of one of its enhancers has been implicated in human craniofacial defects/hearing loss and it has also been associated with autism. However, little is known of how Dlx5 exerts its regulatory effects. We identified direct targets of Dlx5 in the mouse inner ear by gene expression profiling wild-type and Dlx5 null otic vesicles from embryonic stages E10 and E10.5. Four hundred genes were differentially expressed. We examined the genomic DNA sequences in the promoter regions of these genes for (i) previously described Dlx5 binding sites, (ii) novel 12 bp long motifs with a canonical homeodomain element shared by two or more genes and (iii) 100% conservation of these motifs in promoters of human orthologs. Forty genes passed these filters, 12 of which are expressed in the otic vesicle in domains that overlap with Dlx5. Chromatin immunoprecipitation using a Dlx5 antibody confirmed direct binding of Dlx5 to promoters of seven of these (Atbf1, Bmper, Large, Lrrtm1, Msx1, Ebf1 and Lhx1) in a cell line over-expressing Dlx5. Bmper and Lrrtm1 were up-regulated in this cell line, further supporting their identification as targets of Dlx5 in the inner ear and potentially in other organs. These direct targets support a model in which Bmp signaling is downstream of Dlx5 in the early inner ear and provide new insights into how the Dlx5 regulatory cascade is initiated.
Collapse
Affiliation(s)
- Samin A Sajan
- Department of Genetics, Central Institute for the Deaf, Washington University School of Medicine, 4566 Scott Ave, St Louis, MO 63110, USA
| | | | | | | |
Collapse
|
44
|
Jang WG, Kim EJ, Lee KN, Son HJ, Koh JT. AMP-activated protein kinase (AMPK) positively regulates osteoblast differentiation via induction of Dlx5-dependent Runx2 expression in MC3T3E1 cells. Biochem Biophys Res Commun 2010; 404:1004-9. [PMID: 21187071 DOI: 10.1016/j.bbrc.2010.12.099] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 12/20/2010] [Indexed: 02/06/2023]
Abstract
This study examined the role of AMPK activation in osteoblast differentiation and the underlining mechanism. An AMPK activator (AICAR or metformin) stimulated osteoblast differentiation with increases in ALP and OC protein production as well as the induction of AMPK phosphorylation in MC3T3E1 cells. In addition, metformin induced the phosphorylation of Smad1/5/8 and expression of Dlx5 and Runx2, whereas compound C or dominant negative AMPK inhibited these effects. Transient transfection studies also showed that metformin increased the BRE-Luc and Runx2-Luc activities, which were inhibited by DN-AMPK or compound C. Down-regulation of Dlx5 expression by siRNA suppressed metformin-induced Runx2 expression. These results suggest that the activation of AMPK stimulates osteoblast differentiation via the regulation of Smad1/5/8-Dlx5-Runx2 signaling pathway.
Collapse
Affiliation(s)
- Won Gu Jang
- Department of Pharmacology and Dental Therapeutics and BK21, School of Dentistry, Chonnam National University, Gwangju 500-757, Republic of Korea.
| | | | | | | | | |
Collapse
|
45
|
Li Z, Sasaki Y, Mezawa M, Wang S, Li X, Yang L, Wang Z, Zhou L, Araki S, Matsumura H, Takai H, Ogata Y. cAMP and fibroblast growth factor 2 regulate bone sialoprotein gene expression in human prostate cancer cells. Gene 2010; 471:1-12. [PMID: 20965237 DOI: 10.1016/j.gene.2010.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 09/08/2010] [Accepted: 09/24/2010] [Indexed: 10/18/2022]
Abstract
Bone sialoprotein (BSP) is a noncollagenous protein of the extracellular matrix in mineralized connective tissues that has been implicated in the nucleation of hydroxyapatite. Forskolin (FSK), an activator of adenylate cyclase, increased the intracellular cAMP level, which stimulates the proliferation and differentiation of osteoblasts. Fibroblast growth factor 2 (FGF2) is a potent mitogen in many cell types, including osteoblasts. In human prostate cancer DU145 cells, FSK (1 μM) and FGF2 (10 ng/ml) increased BSP and Runx2 mRNA and protein levels at 3 and 12h, respectively. Transient transfection analyses were performed using chimeric constructs of the human BSP gene promoter linked to a luciferase reporter gene. Treatment of DU145 cells with FSK (1 μM) and FGF2 (10 ng/ml) increased the luciferase activities of constructs between -60LUC to -927LUC and -108LUC to -927LUC, including the human BSP gene promoter. Effects of FSK and FGF2 abrogated in constructs included 2bp mutations in the two cAMP response elements (CRE1 and CRE2). Luciferase activities induced by FSK and FGF2 were blocked by protein kinase A and tyrosine kinase inhibitors. Gel mobility shift analyses showed that FSK and FGF2 increased the binding of CRE1 and CRE2. CRE1-protein complexes were supershifted by phospho-CREB1 and c-Fos antibodies, and disrupted by CREB1, c-Jun, JunD, Fra2, p300, Runx2, Dlx5 and Smad1 antibodies. CRE2-protein complexes were disrupted by CREB1, phospho-CREB1, c-Fos, c-Jun, JunD, Fra2, p300, Runx2, Dlx5 and Smad1 antibodies. These studies demonstrate that FSK and FGF2 stimulate BSP transcription in DU145 human prostate cancer cells by targeting the CRE1 and CRE2 elements in the human BSP gene promoter.
Collapse
Affiliation(s)
- Zhengyang Li
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan; Tianjin Stomatology Hospital, Tianjin, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
The germinal zones of the basal ganglia but not the septum generate GABAergic interneurons for the cortex. J Neurosci 2010; 30:12050-62. [PMID: 20826668 DOI: 10.1523/jneurosci.6178-09.2010] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cortical interneurons originate from subpallial precursors and migrate into the cortex during development. Using genetic lineage tracing in transgenic mice we examine the contribution of two germinal zones, the septum and the lateral ganglionic eminence/caudal ganglionic eminence (LGE/CGE) to interneurons of the cortex. We find that the septal neuroepithelium does not generate interneurons for the neocortex. There is, however, clear migration of cells from the LGE/CGE to the cortex. Comparison of the dynamics of cortical colonization by the two major cohorts of interneurons originating in the medial ganglionic eminence (MGE) and the LGE/CGE has shown differences in the timing of migration and initial route of entry into the cortex. LGE/CGE-derived interneurons enter the cortex later than the MGE-derived ones. They invade the cortex through the subventricular/intermediate zone route and only later disperse within the cortical plate and the marginal zone. During the first postnatal week MGE interneurons move extensively to acquire their laminar position within the cortical plate whereas LGE/CGE-derived cells remain largely within the upper layers of the cortex. The two populations intermingle in the adult cortex but have distinct neurochemical properties and different overall distributions. LGE/CGE-derived interneurons account for one third of the total GABAergic interneuron population in the adult cortex.
Collapse
|
47
|
Kouwenhoven EN, van Heeringen SJ, Tena JJ, Oti M, Dutilh BE, Alonso ME, de la Calle-Mustienes E, Smeenk L, Rinne T, Parsaulian L, Bolat E, Jurgelenaite R, Huynen MA, Hoischen A, Veltman JA, Brunner HG, Roscioli T, Oates E, Wilson M, Manzanares M, Gómez-Skarmeta JL, Stunnenberg HG, Lohrum M, van Bokhoven H, Zhou H. Genome-wide profiling of p63 DNA-binding sites identifies an element that regulates gene expression during limb development in the 7q21 SHFM1 locus. PLoS Genet 2010; 6:e1001065. [PMID: 20808887 PMCID: PMC2924305 DOI: 10.1371/journal.pgen.1001065] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 07/12/2010] [Indexed: 12/04/2022] Open
Abstract
Heterozygous mutations in p63 are associated with split hand/foot malformations (SHFM), orofacial clefting, and ectodermal abnormalities. Elucidation of the p63 gene network that includes target genes and regulatory elements may reveal new genes for other malformation disorders. We performed genome-wide DNA–binding profiling by chromatin immunoprecipitation (ChIP), followed by deep sequencing (ChIP–seq) in primary human keratinocytes, and identified potential target genes and regulatory elements controlled by p63. We show that p63 binds to an enhancer element in the SHFM1 locus on chromosome 7q and that this element controls expression of DLX6 and possibly DLX5, both of which are important for limb development. A unique micro-deletion including this enhancer element, but not the DLX5/DLX6 genes, was identified in a patient with SHFM. Our study strongly indicates disruption of a non-coding cis-regulatory element located more than 250 kb from the DLX5/DLX6 genes as a novel disease mechanism in SHFM1. These data provide a proof-of-concept that the catalogue of p63 binding sites identified in this study may be of relevance to the studies of SHFM and other congenital malformations that resemble the p63-associated phenotypes. Mammalian embryonic development requires precise control of gene expression in the right place at the right time. One level of control of gene expression is through cis-regulatory elements controlled by transcription factors. Deregulation of gene expression by mutations in such cis-regulatory elements has been described in developmental disorders. Heterozygous mutations in the transcription factor p63 are found in patients with limb malformations, cleft lip/palate, and defects in skin and other epidermal appendages, through disruption of normal ectodermal development during embryogenesis. We reasoned that the identification of target genes and cis-regulatory elements controlled by p63 would provide candidate genes for defects arising from abnormally regulated ectodermal development. To test our hypothesis, we carried out a genome-wide binding site analysis and identified a large number of target genes and regulatory elements regulated by p63. We further showed that one of these regulatory elements controls expression of DLX6 and possibly DLX5 in the apical ectodermal ridge in the developing limbs. Loss of this element through a micro-deletion was associated with split hand foot malformation (SHFM1). The list of p63 binding sites provides a resource for the identification of mutations that cause ectodermal dysplasias and malformations in humans.
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites
- Cells, Cultured
- Child, Preschool
- Chromatin Immunoprecipitation
- Chromosomes, Human, Pair 7/genetics
- Chromosomes, Human, Pair 7/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Enhancer Elements, Genetic
- Female
- Gene Expression Regulation, Developmental
- Genome-Wide Association Study
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Keratinocytes/metabolism
- Limb Deformities, Congenital/genetics
- Limb Deformities, Congenital/metabolism
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Molecular Sequence Data
- Proteasome Endopeptidase Complex/genetics
- Proteasome Endopeptidase Complex/metabolism
- Protein Binding
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Zebrafish
Collapse
Affiliation(s)
- Evelyn N. Kouwenhoven
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Simon J. van Heeringen
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Juan J. Tena
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Martin Oti
- Centre for Molecular and Biomolecular Informatics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Bas E. Dutilh
- Centre for Molecular and Biomolecular Informatics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - M. Eva Alonso
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Elisa de la Calle-Mustienes
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Leonie Smeenk
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Tuula Rinne
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Lilian Parsaulian
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Emine Bolat
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Rasa Jurgelenaite
- Centre for Molecular and Biomolecular Informatics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Martijn A. Huynen
- Centre for Molecular and Biomolecular Informatics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Joris A. Veltman
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Han G. Brunner
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Tony Roscioli
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Emily Oates
- Department of Clinical Genetics, Children's Hospital at Westmead, Westmead, Australia
| | - Meredith Wilson
- Department of Clinical Genetics, Children's Hospital at Westmead, Westmead, Australia
| | - Miguel Manzanares
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - José Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Hendrik G. Stunnenberg
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Marion Lohrum
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Hans van Bokhoven
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- * E-mail: (HZ); (HvB)
| | - Huiqing Zhou
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- * E-mail: (HZ); (HvB)
| |
Collapse
|
48
|
Poitras L, Yu M, Lesage-Pelletier C, Macdonald RB, Gagné JP, Hatch G, Kelly I, Hamilton SP, Rubenstein JLR, Poirier GG, Ekker M. An SNP in an ultraconserved regulatory element affects Dlx5/Dlx6 regulation in the forebrain. Development 2010; 137:3089-97. [PMID: 20702565 DOI: 10.1242/dev.051052] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dlx homeobox genes play a crucial role in the migration and differentiation of the subpallial precursor cells that give rise to various subtypes of gamma-aminobutyric acid (GABA)-expressing neurons of the forebrain, including local-circuit cortical interneurons. Aberrant development of GABAergic interneurons has been linked to several neurodevelopmental disorders, including epilepsy, schizophrenia, Rett syndrome and autism. Here, we report in mice that a single-nucleotide polymorphism (SNP) found in an autistic proband falls within a functional protein binding site in an ultraconserved cis-regulatory element. This element, I56i, is involved in regulating Dlx5/Dlx6 homeobox gene expression in the developing forebrain. We show that the SNP results in reduced I56i activity, predominantly in the medial and caudal ganglionic eminences and in streams of neurons tangentially migrating to the cortex. Reduced activity is also observed in GABAergic interneurons of the adult somatosensory cortex. The SNP affects the affinity of Dlx proteins for their binding site in vitro and reduces the transcriptional activation of the enhancer by Dlx proteins. Affinity purification using I56i sequences led to the identification of a novel regulator of Dlx gene expression, general transcription factor 2 I (Gtf2i), which is among the genes most often deleted in Williams-Beuren syndrome, a neurodevelopmental disorder. This study illustrates the clear functional consequences of a single nucleotide variation in an ultraconserved non-coding sequence in the context of developmental abnormalities associated with disease.
Collapse
Affiliation(s)
- Luc Poitras
- Center for Advanced Research in Environmental Genomics (CAREG), Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kim HG, Won SS, Lee SK, Nam M, Bang HJ, Park HJ, Yoon JY, Choi KS, Hong MS, Chung JH, Kwack KB. No Association Between Single Nucleotide Polymorphisms in Distal-Less Homeobox-6 (DLX6) and Autism Spectrum Disorders (ASD) from the Korean Male Population. Soa Chongsonyon Chongsin Uihak 2010. [DOI: 10.5765/jkacap.2010.21.1.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
50
|
Brown KK, Reiss JA, Crow K, Ferguson HL, Kelly C, Fritzsch B, Morton CC. Deletion of an enhancer near DLX5 and DLX6 in a family with hearing loss, craniofacial defects, and an inv(7)(q21.3q35). Hum Genet 2010; 127:19-31. [PMID: 19707792 DOI: 10.1007/s00439-009-0736-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2009] [Accepted: 08/16/2009] [Indexed: 11/29/2022]
Abstract
Precisely regulated temporal and spatial patterns of gene expression are essential for proper human development. Cis-acting regulatory elements, some located at large distances from their corresponding genes, play a critical role in transcriptional control of key developmental genes and disruption of these regulatory elements can lead to disease. We report a three generation family with five affected members, all of whom have hearing loss, craniofacial defects, and a paracentric inversion of the long arm of chromosome 7, inv(7)(q21.3q35). High resolution mapping of the inversion showed that the 7q21.3 breakpoint is located 65 and 80 kb centromeric of DLX6 and DLX5, respectively. Further analysis revealed a 5,115 bp deletion at the 7q21.3 breakpoint. While the breakpoint does not disrupt either DLX5 or DLX6, the syndrome present in the family is similar to that observed in Dlx5 knockout mice and includes a subset of the features observed in individuals with DLX5 and DLX6 deletions, implicating dysregulation of DLX5 and DLX6 in the family's phenotype. Bioinformatic analysis indicates that the 5,115 bp deletion at the 7q21.3 breakpoint could contain regulatory elements necessary for DLX5 and DLX6 expression. Using a transgenic mouse reporter assay, we show that the deleted sequence can drive expression in the inner ear and developing bones of E12.5 embryos. Consequently, the observed familial syndrome is likely caused by dysregulation of DLX5 and/or DLX6 in specific tissues due to deletion of an enhancer and possibly separation from other regulatory elements by the chromosomal inversion.
Collapse
Affiliation(s)
- Kerry K Brown
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | |
Collapse
|