1
|
Youkharibache P. Topological and Structural Plasticity of the Single Ig Fold and the Double Ig Fold Present in CD19. Biomolecules 2021; 11:biom11091290. [PMID: 34572502 PMCID: PMC8470474 DOI: 10.3390/biom11091290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
The Ig fold has had a remarkable success in vertebrate evolution, with a presence in over 2% of human genes. The Ig fold is not just the elementary structural domain of antibodies and TCRs, it is also at the heart of a staggering 30% of immunologic cell surface receptors, making it a major orchestrator of cell–cell interactions. While BCRs, TCRs, and numerous Ig-based cell surface receptors form homo- or heterodimers on the same cell surface (in cis), many of them interface as ligand-receptors (checkpoints) on interacting cells (in trans) through their Ig domains. New Ig-Ig interfaces are still being discovered between Ig-based cell surface receptors, even in well-known families such as B7. What is largely ignored, however, is that the Ig fold itself is pseudosymmetric, a property that makes the Ig domain a versatile self-associative 3D structure and may, in part, explain its success in evolution, especially through its ability to bind in cis or in trans in the context of cell surface receptor–ligand interactions. In this paper, we review the Ig domains’ tertiary and quaternary pseudosymmetries, with particular attention to the newly identified double Ig fold in the solved CD19 molecular structure to highlight the underlying fundamental folding elements of Ig domains, i.e., Ig protodomains. This pseudosymmetric property of Ig domains gives us a decoding frame of reference to understand the fold, relate all Ig domain forms, single or double, and suggest new protein engineering avenues.
Collapse
|
2
|
Ghosh DK, Ranjan A. The metastable states of proteins. Protein Sci 2020; 29:1559-1568. [PMID: 32223005 PMCID: PMC7314396 DOI: 10.1002/pro.3859] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/26/2022]
Abstract
The intriguing process of protein folding comprises discrete steps that stabilize the protein molecules in different conformations. The metastable state of protein is represented by specific conformational characteristics, which place the protein in a local free energy minimum state of the energy landscape. The native-to-metastable structural transitions are governed by transient or long-lived thermodynamic and kinetic fluctuations of the intrinsic interactions of the protein molecules. Depiction of the structural and functional properties of metastable proteins is not only required to understand the complexity of folding patterns but also to comprehend the mechanisms of anomalous aggregation of different proteins. In this article, we review the properties of metastable proteins in context of their stability and capability of undergoing atypical aggregation in physiological conditions.
Collapse
Affiliation(s)
- Debasish Kumar Ghosh
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and DiagnosticsUppal, HyderabadTelanganaIndia
| | - Akash Ranjan
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and DiagnosticsUppal, HyderabadTelanganaIndia
| |
Collapse
|
3
|
Whole-cell imaging of plasma membrane receptors by 3D lattice light-sheet dSTORM. Nat Commun 2020; 11:887. [PMID: 32060305 PMCID: PMC7021797 DOI: 10.1038/s41467-020-14731-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 01/30/2020] [Indexed: 11/08/2022] Open
Abstract
The molecular organization of receptors in the plasma membrane of cells is paramount for their functionality. We combined lattice light-sheet (LLS) microscopy with three-dimensional (3D) single-molecule localization microscopy (dSTORM) and single-particle tracking to quantify the expression and distribution, and mobility of CD56 receptors on whole fixed and living cells, finding that CD56 accumulated at cell-cell interfaces. For comparison, we investigated two other receptors, CD2 and CD45, which showed different expression levels and distributions in the plasma membrane. Overall, 3D-LLS-dSTORM enabled imaging and single-particle tracking of plasma membrane receptors with single-molecule sensitivity unperturbed by surface effects. Our results demonstrate that receptor distribution and mobility are largely unaffected by contact to the coverslip but the measured localization densities are in general lower at the basal plasma membrane due to partial limited accessibility for antibodies.
Collapse
|
4
|
Yang H, Yamanaka M, Nagao S, Yasuhara K, Shibata N, Higuchi Y, Hirota S. Protein surface charge effect on 3D domain swapping in cells for c-type cytochromes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:140265. [PMID: 31437585 DOI: 10.1016/j.bbapap.2019.140265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/19/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022]
Abstract
Many c-type cytochromes (cyts) can form domain-swapped oligomers. The positively charged Hydrogenobacter thermophilus (HT) cytochrome (cyt) c552 forms domain-swapped oligomers during expression in the Escherichia coli (E. coli) expression system, but the factors influencing the oligomerization remain unrevealed. Here, we found that the dimer of the negatively charged Shewanella violacea (SV) cyt c5 exhibits a domain-swapped structure, in which the N-terminal helix is exchanged between protomers, similar to the structures of the HT cyt c552 and Pseudomonas aeruginosa (PA) cyt c551 domain-swapped dimers. Positively charged horse cyt c and HT cyt c552 domain swapped during expression in E. coli, whereas negatively charged PA cyt c551 and SV cyt c5 did not. Oligomers were formed during expression in E. coli for HT cyt c552 attached to either a co- or post-translational signal peptide for transportation through the cytoplasm membrane, but not for PA cyt c551 attached to either signal peptide. HT cyt c552 formed oligomers in E. coli in the presence and absence of rare codons. More oligomers were obtained from the in vitro folding of horse cyt c and HT cyt c552 by the addition of negatively charged liposomes during folding, whereas the amount of oligomers for the in vitro folding of PA cyt c551 and SV cyt c5 did not change significantly by the addition. These results indicate that the protein surface charge affects the oligomerization of c-type cyts in cells; positively charged c-type cyts assemble on a negatively charged membrane, inducing formation of domain-swapped oligomers during folding.
Collapse
Affiliation(s)
- Hongxu Yang
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Masaru Yamanaka
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Satoshi Nagao
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Kazuma Yasuhara
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Naoki Shibata
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Yoshiki Higuchi
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
5
|
Bonjack-Shterengartz M, Avnir D. The enigma of the near-symmetry of proteins: Domain swapping. PLoS One 2017; 12:e0180030. [PMID: 28708874 PMCID: PMC5510828 DOI: 10.1371/journal.pone.0180030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 06/08/2017] [Indexed: 01/25/2023] Open
Abstract
The majority of proteins form oligomers which have rotational symmetry. Literature has suggested many functional advantages that the symmetric packing offers. Yet, despite these advantages, the vast majority of protein oligomers are only nearly symmetric. A key question in the field of proteins structure is therefore, if symmetry is so advantageous, why do oligomers settle for aggregates that do not maximize that structural property? The answer to that question is apparently multi-parametric, and involves distortions at the interaction zones of the monomer units of the oligomer in order to minimize the free energy, the dynamics of the protein, the effects of surroundings parameters, and the mechanism of oligomerization. The study of this problem is in its infancy: Only the first parameter has been explored so far. Here we focus on the last parameter-the mechanism of formation. To test this effect we have selected to focus on the domain swapping mechanism of oligomerization, by which oligomers form in a mechanism that swaps identical portions of monomeric units, resulting in an interwoven oligomer. We are using continuous symmetry measures to analyze in detail the oligomer formed by this mechanism, and found, that without exception, in all analyzed cases, perfect symmetry is given away, and we are able to identify that the main burden of distortion lies in the hinge regions that connect the swapped portions. We show that the continuous symmetry analysis method clearly identifies the hinge region of swapped domain proteins-considered to be a non-trivial task. We corroborate our conclusion about the central role of the hinge region in affecting the symmetry of the oligomers, by a special probability analysis developed particularly for that purpose.
Collapse
Affiliation(s)
- Maayan Bonjack-Shterengartz
- Institute of Chemistry and the Lise Meitner Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Avnir
- Institute of Chemistry and the Lise Meitner Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
6
|
Inoue N, Hagihara Y, Wright D, Suzuki T, Wada I. Oocyte-triggered dimerization of sperm IZUMO1 promotes sperm-egg fusion in mice. Nat Commun 2015; 6:8858. [PMID: 26568141 PMCID: PMC4660202 DOI: 10.1038/ncomms9858] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 10/10/2015] [Indexed: 01/17/2023] Open
Abstract
Sperm-egg fusion is indispensable for completing mammalian fertilization. Although the underlying molecular mechanisms are poorly understood, requirement of two spermatozoon factors, IZUMO1 and SPACA6, and two oocyte factors, CD9 and the IZUMO1 counter-receptor JUNO, has been proven by gene disruption, and the binding of cells to an oocyte can be reconstituted by ectopic expression of IZUMO1. Here we demonstrate that robust IZUMO1-dependent adhesion of sperm with an oocyte accompanies the dimerization of IZUMO1. Despite the intrinsic dimeric property of its N-terminal region, IZUMO1 is monomeric in spermatozoa. Interestingly, JUNO associates with monomeric IZUMO1, which is then quickly removed as tight adhesion of the two cells is subsequently established. We therefore propose that global structural rearrangement of IZUMO1 occurs on JUNO recognition and that this rearrangement may then initiate force generation to overcome repulsion between the juxtaposing membranes, through an unidentified receptor on the egg.
Collapse
Affiliation(s)
- Naokazu Inoue
- Department of Cell Science, Institutes for Biomedical Sciences, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima City, Fukushima 960-1295, Japan
| | - Yoshihisa Hagihara
- National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Danelle Wright
- Department of Cell Science, Institutes for Biomedical Sciences, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima City, Fukushima 960-1295, Japan
| | - Takahisa Suzuki
- Department of Cell Science, Institutes for Biomedical Sciences, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima City, Fukushima 960-1295, Japan
| | - Ikuo Wada
- Department of Cell Science, Institutes for Biomedical Sciences, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima City, Fukushima 960-1295, Japan
| |
Collapse
|
7
|
A Single Amino Acid in the Hinge Loop Region of the FOXP Forkhead Domain is Significant for Dimerisation. Protein J 2015; 34:111-21. [DOI: 10.1007/s10930-015-9603-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Abstract
Among thousands of homo-oligomeric protein structures, there is a small but growing subset of ‘domain-swapped’ proteins. The term ‘domain swapping,’ originally coined by D. Eisenberg, describes a scenario in which two or more polypeptide chains exchange identical units for oligomerization. This type of assembly could play a role in disease-related aggregation and amyloid formation or as a specific mechanism for regulating function. This chapter introduces terms and features concerning domain swapping, summarizes ideas about its putative mechanisms, reports on domain-swapped structures collected from the literature, and describes a few notable examples in detail.
Collapse
|
9
|
van Boxel GI, Holmes S, Fugger L, Jones EY. An alternative conformation of the T-cell receptor alpha constant region. J Mol Biol 2010; 400:828-37. [PMID: 20630474 PMCID: PMC2930249 DOI: 10.1016/j.jmb.2010.05.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 05/20/2010] [Accepted: 05/24/2010] [Indexed: 11/10/2022]
Abstract
αβ T-cell receptors (TcRs) play a central role in cellular immune response. They are members of the Ig superfamily, with extracellular regions of the α and β chains each comprising a V-type domain and a C-type domain. We have determined the ectodomain structure of an αβ TcR, which recognizes the autoantigen myelin basic protein. The 2.0-Å-resolution structure reveals canonical main-chain conformations for the Vα, Vβ, and Cβ domains, but the Cα domain exhibits a main-chain conformation remarkably different from those previously reported for TcR crystal structures. The global IgC-like fold is maintained, but a piston-like rearrangement between BC and DE β-turns results in β-strand slippage. This substantial conformational change may represent a signaling intermediate. Our structure is the first example for the Ig fold of the increasingly recognized concept of “metamorphic proteins.”
Collapse
Affiliation(s)
- Gijs I van Boxel
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, The University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | | | | | | |
Collapse
|
10
|
Sonnen AFP, Yu C, Evans EJ, Stuart DI, Davis SJ, Gilbert RJ. Domain metastability: a molecular basis for immunoglobulin deposition? J Mol Biol 2010; 399:207-13. [PMID: 20394753 PMCID: PMC2954335 DOI: 10.1016/j.jmb.2010.04.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 03/31/2010] [Accepted: 04/02/2010] [Indexed: 11/17/2022]
Abstract
We present the crystal structure of an immunoglobulin light-chain-like domain, CTLA-4, as a strand-swapped dimer displaying cis–trans proline isomerisation and native-like hydrogen bonding. We also show that CTLA-4 can form amyloid-like fibres and amorphous deposits explainable by the same strand swapping. Our results suggest a molecular basis for the pathological aggregation of immunoglobulin domains and why amyloid-like fibres are more often composed of homologous rather than heterologous subunits.
Collapse
Affiliation(s)
- Andreas F.-P. Sonnen
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
- Corresponding authors. A.F.-P. Sonnen and R.J.C. Gilbert is to be contacted at Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, The University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| | - Chao Yu
- Nuffield Department of Clinical Medicine and MRC Human Immunology Unit, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Edward J. Evans
- Nuffield Department of Clinical Medicine and MRC Human Immunology Unit, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - David I. Stuart
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Simon J. Davis
- Nuffield Department of Clinical Medicine and MRC Human Immunology Unit, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Robert J.C. Gilbert
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
- Corresponding authors. A.F.-P. Sonnen and R.J.C. Gilbert is to be contacted at Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, The University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| |
Collapse
|
11
|
Klaile E, Vorontsova O, Sigmundsson K, Müller MM, Singer BB, Öfverstedt LG, Svensson S, Skoglund U, Öbrink B. The CEACAM1 N-terminal Ig domain mediates cis- and trans-binding and is essential for allosteric rearrangements of CEACAM1 microclusters. J Cell Biol 2009; 187:553-67. [PMID: 19948502 PMCID: PMC2779236 DOI: 10.1083/jcb.200904149] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 10/19/2009] [Indexed: 11/22/2022] Open
Abstract
Cell adhesion molecules (CAMs) sense the extracellular microenvironment and transmit signals to the intracellular compartment. In this investigation, we addressed the mechanism of signal generation by ectodomains of single-pass transmembrane homophilic CAMs. We analyzed the structure and homophilic interactions of carcinoembryonic antigen (CEA)-related CAM 1 (CEACAM1), which regulates cell proliferation, apoptosis, motility, morphogenesis, and microbial responses. Soluble and membrane-attached CEACAM1 ectodomains were investigated by surface plasmon resonance-based biosensor analysis, molecular electron tomography, and chemical cross-linking. The CEACAM1 ectodomain, which is composed of four glycosylated immunoglobulin-like (Ig) domains, is highly flexible and participates in both antiparallel (trans) and parallel (cis) homophilic binding. Membrane-attached CEACAM1 ectodomains form microclusters in which all four Ig domains participate. Trans-binding between the N-terminal Ig domains increases formation of CEACAM1 cis-dimers and changes CEACAM1 interactions within the microclusters. These data suggest that CEACAM1 transmembrane signaling is initiated by adhesion-regulated changes of cis-interactions that are transmitted to the inner phase of the plasma membrane.
Collapse
Affiliation(s)
- Esther Klaile
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Olga Vorontsova
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Mario M. Müller
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Lars-Göran Öfverstedt
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Stina Svensson
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ulf Skoglund
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Björn Öbrink
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
12
|
Chen Y, Gao F, Chu F, Peng H, Zong L, Liu Y, Tien P, Gao GF. Crystal structure of myeloid cell activating receptor leukocyte Ig-like receptor A2 (LILRA2/ILT1/LIR-7) domain swapped dimer: molecular basis for its non-binding to MHC complexes. J Mol Biol 2009; 386:841-53. [PMID: 19230061 DOI: 10.1016/j.jmb.2009.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The leukocyte Ig-like receptor (LILR/ILT/LIR) family comprises 13 members that are either activating or inhibitory receptors, regulating a broad range of cells in the immune responses. LILRB1 (ILT2), LILRB2 (ILT4) and LILRA1 (LIR6) can recognize MHC (major histocompatibility complex) class I or class I-like molecules, and LILRB1/HLA-A2, LILRB1/UL18 and LILRB2/HLA-G complex (extracellular domains D1D2) structures have been solved recently. The details of binding to MHC have been described. Despite high levels of sequence similarity among LILRA1, LILRA2 (ILT1), LILRA3 (ILT6) and LILRB1/B2, all earlier experiments showed that LILRA2 does not bind to MHC, but the reason is unknown. Here, we report the LILRA2 extracellular D1D2 domain crystal structure at 2.6 A resolution, which reveals structural shifts of the corresponding MHC-binding amino acid residues in comparison with LILR B1/B2, explaining its non-binding to MHC molecules. We identify some key residues with great influence on the local structure, which exist only in the MHC-binding receptors. Moreover, we show that LILRA2 forms a domain-swapped dimer. Further work with these key swapping residues yields a monomeric form, confirming that the domain-swapping is primarily amino acid sequence-specific. The structure described here supports the dimer conformation in solution observed earlier, and implies a stress-induced regulation by dimerization, consistent with its function as a heat shock promoter.
Collapse
Affiliation(s)
- Yong Chen
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Posy S, Shapiro L, Honig B. Sequence and structural determinants of strand swapping in cadherin domains: do all cadherins bind through the same adhesive interface? J Mol Biol 2008; 378:954-68. [PMID: 18395225 DOI: 10.1016/j.jmb.2008.02.063] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 02/06/2008] [Accepted: 02/27/2008] [Indexed: 11/19/2022]
Abstract
Cadherins are cell surface adhesion proteins important for tissue development and integrity. Type I and type II, or classical, cadherins form adhesive dimers via an interface formed through the exchange, or "swapping", of the N-terminal beta-strands from their membrane-distal EC1 domains. Here, we ask which sequence and structural features in EC1 domains are responsible for beta-strand swapping and whether members of other cadherin families form similar strand-swapped binding interfaces. We created a comprehensive database of multiple alignments of each type of cadherin domain. We used the known three-dimensional structures of classical cadherins to identify conserved positions in multiple sequence alignments that appear to be crucial determinants of the cadherin domain structure. We identified features that are unique to EC1 domains. On the basis of our analysis, we conclude that all cadherin domains have very similar overall folds but, with the exception of classical and desmosomal cadherin EC1 domains, most of them do not appear to bind through a strand-swapping mechanism. Thus, non-classical cadherins that function in adhesion are likely to use different protein-protein interaction interfaces. Our results have implications for the evolution of molecular mechanisms of cadherin-mediated adhesion in vertebrates.
Collapse
Affiliation(s)
- Shoshana Posy
- Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
14
|
Folding of an antibody variable domain in two functional conformations in vitro: calorimetric and spectroscopic study of the anti-ferritin antibody VL domain. Protein Eng Des Sel 2007; 20:481-90. [DOI: 10.1093/protein/gzm034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
15
|
Wu J, Yang Y, Zhang J, Ji P, Du W, Jiang P, Xie D, Huang H, Wu M, Zhang G, Wu J, Shi Y. Domain-swapped dimerization of the second PDZ domain of ZO2 may provide a structural basis for the polymerization of claudins. J Biol Chem 2007; 282:35988-99. [PMID: 17897942 DOI: 10.1074/jbc.m703826200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Zonula occludens proteins (ZOs), including ZO1/2/3, are tight junction-associated proteins. Each of them contains three PDZ domains. It has been demonstrated that ZO1 can form either homodimers or heterodimers with ZO2 or ZO3 through the second PDZ domain. However, the underlying structural basis is not well understood. In this study, the solution structure of the second PDZ domain of ZO2 (ZO2-PDZ2) was determined using NMR spectroscopy. The results revealed a novel dimerization mode for PDZ domains via three-dimensional domain swapping, which can be generalized to homodimers of ZO1-PDZ2 or ZO3-PDZ2 and heterodimers of ZO1-PDZ2/ZO2-PDZ2 or ZO1-PDZ2/ZO3-PDZ2 due to high conservation between PDZ2 domains in ZO proteins. Furthermore, GST pulldown experiments and immunoprecipitation studies demonstrated that interactions between ZO1-PDZ2 and ZO2-PDZ2 and their self-associations indeed exist both in vitro and in vivo. Chemical cross-linking and dynamic laser light scattering experiments revealed that both ZO1-PDZ2 and ZO2-PDZ2 can form oligomers in solution. This PDZ domain-mediated oligomerization of ZOs may provide a structural basis for the polymerization of claudins, namely the formation of tight junctions.
Collapse
Affiliation(s)
- Jiawen Wu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
An important component of functional genomics involves the understanding of protein association. The interfaces resulting from protein-protein interactions - (i) specific, as represented by the homodimeric quaternary structures and the complexes formed by two independently occurring protein components, and (ii) non-specific, as observed in the crystal lattice of monomeric proteins - have been analysed on the basis of the length and the number of peptide segments. In 1000 A2 of the interface area, contributed by a polypeptide chain, there would be 3.4 segments in homodimers, 5.6 in complexes and 6.3 in crystal contacts. Concomitantly, the segments are the longest (with 8.7 interface residues) in homodimers. Core segments (likely to contribute more towards binding) are more in number in homodimers (1.7) than in crystal contacts (0.5), and this number can be used as one of the parameters to distinguish between the two types of interfaces. Dominant segments involved in specific interactions, along with their secondary structural features, are enumerated.
Collapse
Affiliation(s)
- Arumay Pal
- Department of Biochemistry, Bose Institute, P-1/12 CIT Scheme VIIM, Calcutta 700 054, India
| | | | | | | | | |
Collapse
|
17
|
On the origin of the histone fold. BMC STRUCTURAL BIOLOGY 2007; 7:17. [PMID: 17391511 PMCID: PMC1847821 DOI: 10.1186/1472-6807-7-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Accepted: 03/28/2007] [Indexed: 12/04/2022]
Abstract
Background Histones organize the genomic DNA of eukaryotes into chromatin. The four core histone subunits consist of two consecutive helix-strand-helix motifs and are interleaved into heterodimers with a unique fold. We have searched for the evolutionary origin of this fold using sequence and structure comparisons, based on the hypothesis that folded proteins evolved by combination of an ancestral set of peptides, the antecedent domain segments. Results Our results suggest that an antecedent domain segment, corresponding to one helix-strand-helix motif, gave rise divergently to the N-terminal substrate recognition domain of Clp/Hsp100 proteins and to the helical part of the extended ATPase domain found in AAA+ proteins. The histone fold arose subsequently from the latter through a 3D domain-swapping event. To our knowledge, this is the first example of a genetically fixed 3D domain swap that led to the emergence of a protein family with novel properties, establishing domain swapping as a mechanism for protein evolution. Conclusion The helix-strand-helix motif common to these three folds provides support for our theory of an 'ancient peptide world' by demonstrating how an ancestral fragment can give rise to 3 different folds.
Collapse
|
18
|
Sue SC, Lee WT, Tien SC, Lee SC, Yu JG, Wu WJ, Wu WG, Huang TH. PWWP module of human hepatoma-derived growth factor forms a domain-swapped dimer with much higher affinity for heparin. J Mol Biol 2007; 367:456-72. [PMID: 17270212 DOI: 10.1016/j.jmb.2007.01.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2006] [Revised: 01/01/2007] [Accepted: 01/03/2007] [Indexed: 01/14/2023]
Abstract
Hepatoma-derived growth factor (hHDGF)-related proteins (HRPs) comprise a new growth factor family sharing a highly conserved and ordered N-terminal PWWP module (residues 1-100, previously referred to as a HATH domain) and a variable disordered C-terminal domain. We have shown that the PWWP module is responsible for heparin binding and have solved its structure in solution. Here, we show that under physiological conditions, both the PWWP module and hHDGF can form dimers. Surface plasmon resonance (SPR) studies revealed that the PWWP dimer binds to heparin with affinity that is two orders of magnitude higher (K(d)=13 nM) than that of the monomeric PWWP module (K(d)=1.2 microM). The monomer-dimer equilibrium properties and NMR structural data together suggest that the PWWP dimer is formed through a domain-swapping mechanism. The domain-swapped PWWP dimer structures were calculated on the basis of the NMR data. The results show that the two PWWP protomers exchange their N-terminal hairpin to form a domain-swapped dimer. The two monomers in a dimer are linked by the long flexible L2 loops, a feature supported by NMR relaxation data for the monomer and dimer. The enhanced heparin-binding affinity of the dimer can be rationalized in the framework of the dimer structure.
Collapse
Affiliation(s)
- Shih-Che Sue
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, R.O.C
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Meier S, Özbek S. A biological cosmos of parallel universes: Does protein structural plasticity facilitate evolution? Bioessays 2007; 29:1095-104. [DOI: 10.1002/bies.20661] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Murphy JM, Young IG. IL-3, IL-5, and GM-CSF signaling: crystal structure of the human beta-common receptor. VITAMINS AND HORMONES 2006; 74:1-30. [PMID: 17027509 DOI: 10.1016/s0083-6729(06)74001-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cytokines, interleukin-3 (IL-3), interleukin-5 (IL-5), and granulocyte-macrophage colony stimulating factor (GM-CSF), are polypeptide growth factors that exhibit overlapping activities in the regulation of hematopoietic cells. They appear to be primarily involved in inducible hematopoiesis in response to infections and are involved in the pathogenesis of allergic and inflammatory diseases and possibly in leukemia. The X-ray structure of the beta common (betac) receptor ectodomain has given new insights into the structural biology of signaling by IL-3, IL-5, and GM-CSF. This receptor is shared between the three ligands and functions together with three ligand-specific alpha-subunits. The structure shows betac is an intertwined homodimer in which each chain contains four domains with approximate fibronectin type-III topology. The two betac-subunits that compose the homodimer are interlocked by virtue of the swapping of beta-strands between domain 1 of one subunit and domain 3 of the other subunit. Site-directed mutagenesis has shown that the interface between domains 1 and 4 in this unique structure forms the functional epitope. This epitope is similar to those of other members of the cytokine class I receptor family but is novel in that it is formed by two different receptor chains. The chapter also reviews knowledge on the closely related mouse beta(IL-3) receptor and on the alpha-subunit-ligand interactions. The knowledge on the two beta receptors is placed in context with advances in understanding of the structural biology of other members of the cytokine class I receptor family.
Collapse
Affiliation(s)
- James M Murphy
- Division of Molecular Bioscience, John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia 0200
| | | |
Collapse
|
21
|
Li H, Robertson AD, Jensen JH. Very fast empirical prediction and rationalization of protein pKa values. Proteins 2005; 61:704-21. [PMID: 16231289 DOI: 10.1002/prot.20660] [Citation(s) in RCA: 1656] [Impact Index Per Article: 87.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A very fast empirical method is presented for structure-based protein pKa prediction and rationalization. The desolvation effects and intra-protein interactions, which cause variations in pKa values of protein ionizable groups, are empirically related to the positions and chemical nature of the groups proximate to the pKa sites. A computer program is written to automatically predict pKa values based on these empirical relationships within a couple of seconds. Unusual pKa values at buried active sites, which are among the most interesting protein pKa values, are predicted very well with the empirical method. A test on 233 carboxyl, 12 cysteine, 45 histidine, and 24 lysine pKa values in various proteins shows a root-mean-square deviation (RMSD) of 0.89 from experimental values. Removal of the 29 pKa values that are upper or lower limits results in an RMSD = 0.79 for the remaining 285 pKa values.
Collapse
Affiliation(s)
- Hui Li
- Department of Chemistry, Center for Biocatalysis and Bioprocessing, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
22
|
Abstract
It has recently been shown that disulfide bond Cys130-Cys159 in domain 2 of monomeric CD4 is involved in the formation of CD4 disulfide-bonded dimers on cell surfaces and that it can influence the permissiveness of cells to HIV infection. Because this disulfide bond is buried in the monomer, a large conformational change must take place in order to allow for such disulfide exchange. Using standard optimization techniques, whose efficiency was first checked in the well-documented CD2 case, we have shown that 3D domain swapping is a likely candidate for the conformational change, the hinge loop, or linker, being loop E-F. Indeed, as a consequence of domain swapping, because Cys130 and Cys159 belong to beta-strands C and F, respectively, two disulfide bonds become established between Cys130 in one monomer and Cys159 in the other one. Such a disulfide exchange has already been observed when the nuclear magnetic resonance (NMR) structure of the prion protein was compared to the crystallographic, dimeric one. In both cases, domain swapping implies disulfide exchange because the linker is located in the sequence between two disulfide-bonded cysteines. As in the CD2 case, the proposed configuration of the CD4 dimer is found as a pair of neighboring monomers in the crystallographic unit cell. Moreover, because in this configuration the epitope of monoclonal antibody MT151, which does not compete with Gp120 for CD4 binding, is in the cleft between the pair of CD4 monomers, it is suggested that MT151 achieves its HIV-blocking activity by interfering with the formation of CD4 domain-swapped dimers on cell surface.
Collapse
Affiliation(s)
- Yves-Henri Sanejouand
- Laboratoire de Physique, Ecole Normale Supérieure, 46 allées d'Italie, 69364 Lyon Cédex 07, France.
| |
Collapse
|
23
|
Kundu S, Jernigan RL. Molecular mechanism of domain swapping in proteins: an analysis of slower motions. Biophys J 2005; 86:3846-54. [PMID: 15189881 PMCID: PMC1304286 DOI: 10.1529/biophysj.103.034736] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Domain swapping is a structural phenomenon that plays an important role in the mechanism of oligomerization of some proteins. The monomer units in the oligomeric structure become entangled with each other. Here we investigate the mechanism of domain swapping in diphtheria toxin and the structural criteria required for it to occur by analyzing the slower modes of motion with elastic network models, Gaussian network model and anisotropic network model. We take diphtheria toxin as a representative of this class of domain-swapped proteins and show that the domain, which is being swapped in the dimeric state, rotates and twists, in going from the "open" to the "closed" state, about a hinge axis that passes through the middle of the loop extending between two domains. A combination of the intra- and intermolecular contacts of the dimer is almost equivalent to that of the monomer, which shows that the relative orientations of the residues in both forms are almost identical. This is also reflected in the calculated B-factors when compared with the experimentally determined B-factors in x-ray crystal structures. The slowest modes of both the monomer and dimer show a common hinge centered on residue 387. The differences in distances between the monomer and the dimer also shows the hinge at nearly the same location (residue 381). Finally, the first three dominant modes of anisotropic network model together shows a twisting motion about the hinge centered on residue 387. We further identify the location of hinges for a set of another 12 domain swapped proteins and give the quantitative measures of the motions of the swapped domains toward their "closed" state, i.e., the overlap and correlation between vectors.
Collapse
Affiliation(s)
- Sibsankar Kundu
- Laurence H Baker Center for Bioinformatics and Biological Statistics, Iowa State University, Ames, Iowa 50011, USA
| | | |
Collapse
|
24
|
|
25
|
Liu Y, O'Connor MB, Mandell KJ, Zen K, Ullrich A, Bühring HJ, Parkos CA. Peptide-mediated inhibition of neutrophil transmigration by blocking CD47 interactions with signal regulatory protein alpha. THE JOURNAL OF IMMUNOLOGY 2004; 172:2578-85. [PMID: 14764731 DOI: 10.4049/jimmunol.172.4.2578] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
CD47, a cell surface transmembrane Ig superfamily member, is an extracellular ligand for signal regulatory protein (SIRPalpha). Interactions between CD47 and SIRPalpha regulate many important immune cell functions including neutrophil (PMN) transmigration. Here we report identification of a novel function-blocking peptide, CERVIGTGWVRC, that structurally mimics an epitope on CD47 and binds to SIRPalpha. The CERVIGTGWVRC sequence was identified by panning phage display libraries on the inhibitory CD47 mAb, C5D5. In vitro PMN migration assays demonstrated that peptide CERVIGTGWVRC specifically inhibited PMN migration across intestinal epithelial monolayers and matrix in a dose-dependent fashion. Further studies using recombinant proteins indicated that the peptide specifically blocks CD47 and SIRPalpha binding in a dose-dependent fashion. Protein binding assays using SIRPalpha domain-specific recombinant proteins demonstrated that this peptide directly bound to the distal-most Ig loop of SIRPalpha, the same loop where CD47 binds. In summary, these findings support the relevance of CD47-SIRPalpha interactions in regulation of PMN transmigration and provide structural data predicting the key residues involved on the surface of CD47. Such peptide reagents may be useful for studies on experimental models of inflammation and provide a template for the design of anti-inflammatory agents.
Collapse
MESH Headings
- Amino Acid Sequence
- Antibodies, Blocking/metabolism
- Antibodies, Monoclonal/metabolism
- Antigens, CD/chemistry
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation/metabolism
- Bacteriophage M13/immunology
- Bacteriophage M13/metabolism
- Binding Sites, Antibody
- CD47 Antigen
- Carrier Proteins/antagonists & inhibitors
- Carrier Proteins/chemistry
- Carrier Proteins/immunology
- Carrier Proteins/metabolism
- Cell Migration Inhibition
- Humans
- Intestinal Mucosa/cytology
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Membrane Glycoproteins/antagonists & inhibitors
- Membrane Glycoproteins/metabolism
- Molecular Sequence Data
- Neural Cell Adhesion Molecule L1/antagonists & inhibitors
- Neural Cell Adhesion Molecule L1/metabolism
- Neutrophil Infiltration/immunology
- Oligopeptides/chemistry
- Oligopeptides/metabolism
- Oligopeptides/pharmacology
- Peptide Library
- Peptide Mapping/methods
- Protein Binding/immunology
- Protein Structure, Tertiary
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/metabolism
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Yuan Liu
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Paaventhan P, Joseph JS, Seow SV, Vaday S, Robinson H, Chua KY, Kolatkar PR. A 1.7A structure of Fve, a member of the new fungal immunomodulatory protein family. J Mol Biol 2003; 332:461-70. [PMID: 12948495 DOI: 10.1016/s0022-2836(03)00923-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Fve, a major fruiting body protein from Flammulina velutipes, a mushroom possessing immunomodulatory activity, stimulates lymphocyte mitogenesis, suppresses systemic anaphylaxis reactions and edema, enhances transcription of IL-2, IFN-gamma and TNF-alpha, and hemagglutinates red blood cells. It appears to be a lectin with specificity for complex cell-surface carbohydrates. Fve is a non-covalently linked homodimer containing no Cys, His or Met residues. It shares sequence similarity only to the other fungal immunomodulatory proteins (FIPs) LZ-8, Gts, Vvo and Vvl, all of unknown structure. The 1.7A structure of Fve solved by single anomalous diffraction of NaBr-soaked crystals is novel: each monomer consists of an N-terminal alpha-helix followed by a fibronectin III (FNIII) fold. The FNIII fold is the first instance of "pseudo-h-type" topology, a transition between the seven beta-stranded s-type and the eight beta-stranded h-type topologies. The structure suggests that dimerization, critical for the activity of FIPs, occurs by 3-D domain swapping of the N-terminal helices and is stabilized predominantly by hydrophobic interactions. The structure of Fve is the first in this lectin family to be reported, and the first of an FNIII domain-containing protein of fungal origin.
Collapse
|
27
|
Papoian GA, Wolynes PG. The physics and bioinformatics of binding and folding-an energy landscape perspective. Biopolymers 2003; 68:333-49. [PMID: 12601793 DOI: 10.1002/bip.10286] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It has been recognized in the last few years that unstructured proteins play an important role in biological organisms, often participating in signal transduction, transcriptional regulation, and a variety of other regulatory activities. Various hypotheses have been put forward for the ubiquity of the unfolded state; rapid turnover, faster or more specific binding kinetics, multifunctionality may all possibly explain apparent ubiquitousness of unfolded proteins in eukaryotic cells. In this paper we extend the energy landscape theory of protein folding to construct an analytical model of how binding and folding are coupled thermodynamically when the energy landscape is partially rugged. To deduce the parameters that enter the theory, which is based on Generalized Random Energy Model, we have analyzed in a bioinformatic sense a large structural database of more than 500 protein complexes. We find that Miyazawa-Jernigan contact potential shows similar energy gaps for folding for both hydrophobic and hydrophilic proteins, but that for binding contacts hydrophobic interfaces turn out to be funneled while hydrophilic ones are antifunneled. This suggests evolution has found a mechanism for avoiding frustration between folding and binding by making use of indirect water-mediated interactions. By juxtaposing the monomeric protein folding free energy profile in the protein complex database with another database consisting of only well-folded monomers, we estimate that at least 15% of monomers in the former database are unfolded in the absence of partner protein interface interactions. When employing the parameters characteristic of these unfolded monomers to construct binding/folding phase diagrams, we find that these monomers would indeed fold if sufficiently stabilizing binding contacts, consistent with that fold, are formed.
Collapse
Affiliation(s)
- Garegin A Papoian
- Department of Chemistry & Biochemistry, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0371, USA
| | | |
Collapse
|
28
|
Vangelista L, Cesco-Gaspere M, Lamba D, Burrone O. Efficient Folding of the FcεRI α-chain Membrane-proximal Domain D2 Depends on the Presence of the N-terminal Domain D1. J Mol Biol 2002; 322:815-25. [PMID: 12270716 DOI: 10.1016/s0022-2836(02)00853-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Human high affinity receptor for IgE is a membrane glycoprotein multichain complex presenting two extracellular Ig modules in its alpha-chain (D1D2). The receptor IgE binding region is located within the membrane-proximal module D2, while the N-terminal module D1 appears to promote an optimal receptor conformation for IgE binding. To understand the structural relationship between the two modules, we dissected FcepsilonRI alpha-chain into its discrete Ig units and expressed them in mammalian cells. Unexpectedly, D2 was secreted as a disulphide-linked dimer, while D1 was monomeric. Active secretion and full glycosylation of dimeric D2 suggest a native-like conformation of the protein, justifying the escape from the endoplasmic reticulum/Golgi quality control systems. We then propose a domain-swapping model for D2, in which two interdigitated polypeptide chains assume the overall conformation of two Ig modules, as observed for rat CD2 N-terminal domain. Fusion of an unrelated Ig fold moiety at the N terminus of D2 did not interfere with its dimerisation. While D1D2 assumes a correct fold, co-expression of both isolated domains in the same cell did not restore monomeric folding of D2. Thus, D1 appears to assist the appropriate folding of FcepsilonRI alpha-chain, acting as an uncleavable intramolecular chaperone-like block towards D2.
Collapse
Affiliation(s)
- Luca Vangelista
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34012 Trieste, Italy
| | | | | | | |
Collapse
|
29
|
Abstract
Three-dimensional (3D) domain swapping creates a bond between two or more protein molecules as they exchange their identical domains. Since the term '3D domain swapping' was first used to describe the dimeric structure of diphtheria toxin, the database of domain-swapped proteins has greatly expanded. Analyses of the now about 40 structurally characterized cases of domain-swapped proteins reveal that most swapped domains are at either the N or C terminus and that the swapped domains are diverse in their primary and secondary structures. In addition to tabulating domain-swapped proteins, we describe in detail several examples of 3D domain swapping which show the swapping of more than one domain in a protein, the structural evidence for 3D domain swapping in amyloid proteins, and the flexibility of hinge loops. We also discuss the physiological relevance of 3D domain swapping and a possible mechanism for 3D domain swapping. The present state of knowledge leads us to suggest that 3D domain swapping can occur under appropriate conditions in any protein with an unconstrained terminus. As domains continue to swap, this review attempts not only a summary of the known domain-swapped proteins, but also a framework for understanding future findings of 3D domain swapping.
Collapse
Affiliation(s)
- Yanshun Liu
- Howard Hughes Medical Institute, UCLA-DOE Laboratory of Structural Biology and Molecular Medicine, Department of Chemistry and Biochemistry and Biological Chemistry, University of California, Los Angeles, California 90095, USA
| | | |
Collapse
|
30
|
Barrientos LG, Louis JM, Botos I, Mori T, Han Z, O'Keefe BR, Boyd MR, Wlodawer A, Gronenborn AM. The domain-swapped dimer of cyanovirin-N is in a metastable folded state: reconciliation of X-ray and NMR structures. Structure 2002; 10:673-86. [PMID: 12015150 DOI: 10.1016/s0969-2126(02)00758-x] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structure of the potent HIV-inactivating protein cyanovirin-N was previously found by NMR to be a monomer in solution and a domain-swapped dimer by X-ray crystallography. Here we demonstrate that, in solution, CV-N can exist both in monomeric and in domain-swapped dimeric form. The dimer is a metastable, kinetically trapped structure at neutral pH and room temperature. Based on orientational NMR constraints, we show that the domain-swapped solution dimer is similar to structures in two different crystal forms, exhibiting solely a small reorientation around the hinge region. Mutation of the single proline residue in the hinge to glycine significantly stabilizes the protein in both its monomeric and dimeric forms. By contrast, mutation of the neighboring serine to proline results in an exclusively dimeric protein, caused by a drastic destabilization of the monomer.
Collapse
Affiliation(s)
- Laura G Barrientos
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Many proteins function as multimeric assemblies into which the folded individual promoters organize as higher order structures. An oligomerization mechanism that appears to impose the coordination of events during folding and oligomer assembly is three-dimensional domain swapping. Recent studies have focused on revealing the structural basis of domain swapping and a possible role for domain swapping in the regulation of protein aggregation and activity.
Collapse
Affiliation(s)
- Marcia E Newcomer
- Departments of Biological Sciences and Chemistry, 202 Life Sciences Building, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
32
|
Kim M, Sun ZY, Byron O, Campbell G, Wagner G, Wang J, Reinherz EL. Molecular dissection of the CD2-CD58 counter-receptor interface identifies CD2 Tyr86 and CD58 Lys34 residues as the functional "hot spot". J Mol Biol 2001; 312:711-20. [PMID: 11575926 DOI: 10.1006/jmbi.2001.4980] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The heterophilic CD2-CD58 adhesion interface contains interdigitating residues that impart high specificity and rapid binding kinetics. To define the hot spot of this counter-receptor interaction, we characterized CD2 adhesion domain variants harboring a single mutation of the central Tyr86 or of each amino acid residue forming a salt link/hydrogen bond. Alanine mutations at D31, D32 and K34 on the C strand and K43 and R48 on the C' strand reduce affinity for CD58 by 47-127-fold as measured by isothermal titration calorimetry. The Y86A mutant reduces affinity by approximately 1000-fold, whereas Y86F is virtually without effect, underscoring the importance of the phenyl ring rather than the hydroxyl moiety. The CD2-CD58 crystal structure offers a detailed view of this key functional epitope: CD2 D31 and D32 orient the side-chain of CD58 K34 such that CD2 Y86 makes hydrophobic contact with the extended aliphatic component of CD58 K34 between CD2 Y86 and CD58 F46. The elucidation of this hot spot provides a new target for rational design of immunosuppressive compounds and suggests a general approach for other receptors.
Collapse
Affiliation(s)
- M Kim
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Head JG, Houmeida A, Knight PJ, Clarke AR, Trinick J, Brady RL. Stability and folding rates of domains spanning the large A-band super-repeat of titin. Biophys J 2001; 81:1570-9. [PMID: 11509370 PMCID: PMC1301635 DOI: 10.1016/s0006-3495(01)75811-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Titin is a very large (>3 MDa) protein found in striated muscle where it is believed to participate in myogenesis and passive tension. A prominent feature in the A-band portion of titin is the presence of an 11-domain super-repeat of immunoglobulin superfamily and fibronectin-type-III-like domains. Seven overlapping constructs from human cardiac titin, each consisting of two or three domains and together spanning the entire 11-domain super-repeat, have been expressed in Escherichia coli. Fluorescence unfolding experiments and circular dichroism spectroscopy have been used to measure folding stabilities for each of the constructs and to assign unfolding rates for each super-repeat domain. Immunoglobulin superfamily domains were found to fold correctly only in the presence of their C-terminal fibronectin type II domain, suggesting close and possibly rigid association between these units. The domain stabilities, which range from 8.6 to 42 kJ mol(-1) under physiological conditions, correlate with previously reported mechanical forces required to unfold titin domains. Individual domains vary greatly in their rates of unfolding, with a range of unfolding rate constants between 2.6 x 10(-6) and 1.2 s(-1). This variation in folding behavior is likely to be an important determinant in ensuring independent folding of domains in multi-domain proteins such as titin.
Collapse
Affiliation(s)
- J G Head
- Department of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| | | | | | | | | | | |
Collapse
|
34
|
Tskhovrebova L, Trinick J. Extensibility in the titin molecule and its relation to muscle elasticity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 481:163-73; discussion 174-8. [PMID: 10987072 DOI: 10.1007/978-1-4615-4267-4_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Studies of the origins of muscle passive tension have revealed a direct relationship between elasticity and the mechanical properties of the titin molecule. 'Molecular combing' has made it possible to visualize with high resolution changes in the configuration and structure of isolated titin caused by mechanical forces. The differential extensibility seen in individual molecules is consistent with the important role suggested for the PEVK-region in muscle elasticity. An additional factor emphasizing compliance of this part of the molecule in muscle may relate to the arrangement of the titin filament system in the sarcomere, in particular to titin interactions with thick and thin filaments. The branching of titin network near the PEVK-region suggests that, in addition to conferring extensibility, it may also be important in facilitating the transition of titin intermolecular interactions between the arrays of thick and thin filaments.
Collapse
|
35
|
Kellermayer MS, Smith SB, Bustamante C, Granzier HL. Mechanical fatigue in repetitively stretched single molecules of titin. Biophys J 2001; 80:852-63. [PMID: 11159452 PMCID: PMC1301283 DOI: 10.1016/s0006-3495(01)76064-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Relaxed striated muscle cells exhibit mechanical fatigue when exposed to repeated stretch and release cycles. To understand the molecular basis of such mechanical fatigue, single molecules of the giant filamentous protein titin, which is the main determinant of sarcomeric elasticity, were repetitively stretched and released while their force response was characterized with optical tweezers. During repeated stretch-release cycles titin becomes mechanically worn out in a process we call molecular fatigue. The process is characterized by a progressive shift of the stretch-force curve toward increasing end-to-end lengths, indicating that repeated mechanical cycles increase titin's effective contour length. Molecular fatigue occurs only in a restricted force range (0-25 pN) during the initial part of the stretch half-cycle, whereas the rest of the force response is repeated from one mechanical cycle to the other. Protein-folding models fail to explain molecular fatigue on the basis of an incomplete refolding of titin's globular domains. Rather, the process apparently derives from the formation of labile nonspecific bonds cross-linking various sites along a pre-unfolded titin segment. Because titin's molecular fatigue occurs in a physiologically relevant force range, the process may play an important role in dynamically adjusting muscle's response to the recent history of mechanical perturbations.
Collapse
Affiliation(s)
- M S Kellermayer
- Department of Biophysics, Pécs University Medical School, Pécs, H-7624 Hungary
| | | | | | | |
Collapse
|
36
|
Piccoli R, De Lorenzo C, Dal Piaz F, Pucci P, D'Alessio G. Trypsin sheds light on the singular case of seminal RNase, a dimer with two quaternary conformations. J Biol Chem 2000; 275:8000-6. [PMID: 10713119 DOI: 10.1074/jbc.275.11.8000] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dimeric seminal RNase presents the singular case of a dimer with access at equilibrium to two conformations: one in which the subunits exchange, or swap, their NH(2)-terminal arms; the other with no exchange. Thus a continuous unfolding/refolding of structural elements into two alternative conformations takes place in the native protein at equilibrium. The phenomenon was investigated by kinetic and mass spectrometric analyses of the effects of trypsin on the native protein, on its isolated quaternary forms, as well as on a monomeric derivative of the protein and on homologous dimeric RNase A. The kinetics of tryptic action on the protein forms and on the protein derivatives, as well as the location of the tryptic cleavage sites, and their chronological sequence, led to the identification of relevant interconversion intermediates, to the description of a model for the interconversion process, and to a hypothesis for the unique phenomenon of the dual quaternary conformation of seminal RNase.
Collapse
Affiliation(s)
- R Piccoli
- Dipartimento di Chimica Organica e Biologica, Università di Napoli Federico II, Via Mezzocannone 16, 80134 Naples, Italy
| | | | | | | | | |
Collapse
|
37
|
Hamill SJ, Cota E, Chothia C, Clarke J. Conservation of folding and stability within a protein family: the tyrosine corner as an evolutionary cul-de-sac. J Mol Biol 2000; 295:641-9. [PMID: 10623553 DOI: 10.1006/jmbi.1999.3360] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
What are the selective pressures on protein sequences during evolution? Amino acid residues may be highly conserved for functional or structural (stability) reasons. Theoretical studies have proposed that residues involved in the folding nucleus may also be highly conserved. To test this we are using an experimental "fold approach" to the study of protein folding. This compares the folding and stability of a number of proteins that share the same fold, but have no common amino acid sequence or biological activity. The fold selected for this study is the immunoglobulin-like beta-sandwich fold, which is a fold that has no specifically conserved function. Four model proteins are used from two distinct superfamilies that share the immunoglobulin-like fold, the fibronectin type III and immunoglobulin superfamilies. Here, the fold approach and protein engineering are used to question the role of a highly conserved tyrosine in the "tyrosine corner" motif that is found ubiquitously and exclusively in Greek key proteins. In the four model beta-sandwich proteins characterised here, the tyrosine is the only residue that is absolutely conserved at equivalent sites. By mutating this position to phenylalanine, we show that the tyrosine hydroxyl is not required to nucleate folding in the immunoglobulin superfamily, whereas it is involved to some extent in early structure formation in the fibronectin type III superfamily. The tyrosine corner is important for stability, mutation to phenylalanine costs between 1.5 and 3 kcal mol(-1). We propose that the high level of conservation of the tyrosine is related to the structural restraints of the loop connecting the beta-sheets, representing an evolutionary "cul-de-sac".
Collapse
Affiliation(s)
- S J Hamill
- Department of Chemistry, MRC Centre for Protein Engineering, Universityof Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | | | | | | |
Collapse
|
38
|
Clarke J, Cota E, Fowler SB, Hamill SJ. Folding studies of immunoglobulin-like beta-sandwich proteins suggest that they share a common folding pathway. Structure 1999; 7:1145-53. [PMID: 10508783 DOI: 10.1016/s0969-2126(99)80181-6] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Are folding pathways conserved in protein families? To test this explicitly and ask to what extent structure specifies folding pathways requires comparison of proteins with a common fold. Our strategy is to choose members of a highly diverse protein family with no conservation of function and little or no sequence identity, but with structures that are essentially the same. The immunoglobulin-like fold is one of the most common structural families, and is subdivided into superfamilies with no detectable evolutionary or functional relationship. RESULTS We compared the folding of a number of immunoglobulin-like proteins that have a common structural core and found a strong correlation between folding rate and stability. The results suggest that the folding pathways of these immunoglobulin-like proteins share common features. CONCLUSIONS This study is the first to compare the folding of structurally related proteins that are members of different superfamilies. The most likely explanation for the results is that interactions that are important in defining the structure of immunoglobulin-like proteins are also used to guide folding.
Collapse
Affiliation(s)
- J Clarke
- Department of Chemistry, Centre for Protein Engineering, University of Cambridge Lensfield Road, Cambridge, CB2 1EW, UK.
| | | | | | | |
Collapse
|
39
|
Prasanna V, Gopal B, Murthy M, Santi DV, Balaram P. Effect of amino acid substitutions at the subunit interface on the stability and aggregation properties of a dimeric protein: Role of Arg 178 and Arg 218 at the dimer interface of thymidylate synthase. Proteins 1999. [DOI: 10.1002/(sici)1097-0134(19990215)34:3<356::aid-prot8>3.0.co;2-o] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Vignali DAA, Vignali KM. Profound Enhancement of T Cell Activation Mediated by the Interaction Between the TCR and the D3 Domain of CD4. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.3.1431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
CD4 plays an important role in the activation and development of CD4+ T cells. This is mediated via its bivalent interaction with MHC class II molecules and the TCR:CD3 complex through p56lck. Recent studies have implicated a third site of interaction between the membrane-proximal extracellular domains of CD4 and the TCR. Due to these multiple interactions, direct evidence for the functional importance of this extracellular association has remained elusive. Furthermore, the residues that mediate this interaction are unknown. In this study, we analyzed the function of 61 CD4 mutants. Alanine substitution of just 2 residues, either Q114/F182 or F182/F201, which are partially buried and located close to the D2/D3 interface, completely abrogated CD4 function. Direct evidence for the functional importance of TCR:CD4.D3 interaction was obtained using an anti-CD3fos:anti-CD4jun-bispecific Ab. Surprisingly, it induced strong T cell activation in hybridomas transfected with cytoplasmic-tailless CD4, despite the lack of association with either p56lck or MHC class II molecules. However, this effect was completely abrogated with the CD4 mutants Q114A/F182A or F182A/F201A. These data demonstrate that TCR:CD4.D3 interaction can have a profound effect on T cell activation and obviates the need for receptor oligomerization.
Collapse
Affiliation(s)
- Dario A. A. Vignali
- *Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38101; and
- †Department of Pathology, University of Tennessee Medical Center, Memphis, TN 38163
| | - Kate M. Vignali
- *Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38101; and
| |
Collapse
|
41
|
Hayes MV, Sessions RB, Brady RL, Clarke AR. Engineered assembly of intertwined oligomers of an immunoglobulin chain. J Mol Biol 1999; 285:1857-67. [PMID: 9917417 DOI: 10.1006/jmbi.1998.2415] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Domain 1 of CD2 (CD2.D1) forms a conventional Ig fold stabilised by non-covalent antiparallel contacts between beta-strands. Removing two residues from the middle of the protein sequence, where the polypeptide chain normally folds back upon itself, stabilises an open conformation. In this modified molecule, the optimum evolved contacts between side-chains can only be satisfied through the antiparallel association of two chains to create a symmetrical pair of pseudo-domains. Here, we describe the dynamics of the switch between monomeric and dimeric states and demonstrate the extension of this novel underlying principle to trimer and tetramer formation. The ability of a protein molecule to form higher-order antiparallel structures is reminiscent of the behaviour of hairpins, duplexes, three-way and Holliday junctions in DNA.
Collapse
Affiliation(s)
- M V Hayes
- Department of Biochemistry School of Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK.
| | | | | | | |
Collapse
|
42
|
Murray AJ, Head JG, Barker JJ, Brady RL. Engineering an intertwined form of CD2 for stability and assembly. NATURE STRUCTURAL BIOLOGY 1998; 5:778-82. [PMID: 9731771 DOI: 10.1038/1816] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The amino-terminal domain of CD2 has the remarkable ability to fold in two ways: either as a monomer or as an intertwined, metastable dimer. Here we show that it is possible to differentially stabilize either fold by engineering the CD2 sequence, mimicking random mutagenesis events that could occur during molecular evolution. Crystal structures of a hinge-deletion mutant, which is stable as an intertwined dimer, reveal domain rotations that enable the protein to further assemble to a tetramer. These results demonstrate that a variety of folds can be adopted by a single polypeptide sequence, and provide guidance for the design of proteins capable of further assembly.
Collapse
Affiliation(s)
- A J Murray
- Department of Biochemistry and Centre for Molecular Recognition, University of Bristol, University Walk, UK
| | | | | | | |
Collapse
|
43
|
Affiliation(s)
- D J Goldstein
- Department of Biological Sciences, Faculty of Exact and Natural Sciences, University of Buenos Aires, Argentina.
| |
Collapse
|
44
|
Litvinovich SV, Brew SA, Aota S, Akiyama SK, Haudenschild C, Ingham KC. Formation of amyloid-like fibrils by self-association of a partially unfolded fibronectin type III module. J Mol Biol 1998; 280:245-58. [PMID: 9654449 DOI: 10.1006/jmbi.1998.1863] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ninth type III module of murine fibronectin was expressed in E. coli and folded into a compact homogeneous monomer whose unfolding and refolding were then investigated by fluorescence, circular dichroism, calorimetry and electron microscopy. The isolated module is unusually labile under physiological conditions. When heated at 1 deg. C/minute it exhibits an irreversible endothermic transition between 35 and 42 degrees C depending on the protein concentration. The transition is accompanied by changes in secondary and tertiary structure with partial exposure of the single tryptophan and increased binding of the hydrophobic probe, 1,8-anilinonaphthalene-sulfonate. The partially unfolded intermediate undergoes rapid self-association leading to the formation of large stable multimers that, like the original monomer, contain substantial amounts of beta sheet structure. The multimers melt and dissociate reversibly in a second endothermic transition between 60 and 90 degrees C also depending on the protein concentration. This second transition destroys the remaining secondary structure and further exposes the tryptophan. Visualization of negatively stained specimens in the electron microscope reveals that partially unfolded rmIII-9 slowly forms amyloid-like fibrils of approximately 10 nm width and indeterminate length. A subdomain swapping mechanism is proposed in which beta strands from one partially unfolded molecule interact with complementary regions of another to form oligomers and polymers. The possibility that similar interactions could play a role in the formation of fibrils by fibronectin in vivo is discussed.
Collapse
Affiliation(s)
- S V Litvinovich
- American Red Cross Holland Laboratory, Rockville, MD 20855, USA
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
The neurotransmitter serotonin has been implicated in numerous physiological functions and pathophysiological disorders. The hydroxylation of the aromatic amino acid tryptophan is rate-limiting in the synthesis of serotonin. Tryptophan hydroxylase (TPH), as the rate-limiting enzyme, determines the concentrations of serotonin in vivo. Relative serotonin concentrations are clearly important in neural transmission, but serotonin has also been reported to function as a local antioxidant. Identification of the mechanisms regulating TPH activity has been hindered by its low levels in tissues and the instability of the enzyme. Several TPH expression systems have been developed to circumvent these problems. In addition, eukaryotic expressions systems are currently being developed and represent a new avenue of research for identifying TPH regulatory mechanisms. Recombinant DNA technology has enabled the synthesis of TPH deletions, chimeras, and point mutations that have served as tools for identifying structural and functional domains within TPH. Notably, the experiments have proven long-held hypotheses that TPH is organized into N-terminal regulatory and C-terminal catalytic domains, that serine-58 is a site for PKA-mediated phosphorylation, and that a C-terminal leucine zipper is involved in formation of the tetrameric holoenzyme. Several new findings have also emerged regarding regulation of TPH activity by posttranslational phosphorylation, kinetic inhibition, and covalent modification. Inhibition of TPH by L-DOPA may have implications for depression in Parkinson's disease (PD) patients. In addition, TPH inactivation by nitric oxide may be involved in amphetamine-induced toxicity. These regulatory concepts, in conjunction with new systems for studying TPH activity, are the focus of this article.
Collapse
Affiliation(s)
- S M Mockus
- Program in Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1083, USA
| | | |
Collapse
|
46
|
Abstract
The detection of homologous protein sequences frequently provides useful predictions of function and structure. Methods for homology searching have continued to improve, such that very distant evolutionary relationships can now be detected. Little attention has been paid, however, to the problems of detecting homology when domains are inserted or permuted. Here we review recent occurrences of these phenomena and discuss methods that permit their detection.
Collapse
Affiliation(s)
- R B Russell
- SmithKline Beecham Pharmaceuticals, Bioinformatics, New Frontiers Science Park (North), Essex, UK.
| | | |
Collapse
|
47
|
Hunter I, Sigmundsson K, Beauchemin N, Obrink B. The cell adhesion molecule C-CAM is a substrate for tissue transglutaminase. FEBS Lett 1998; 425:141-4. [PMID: 9541024 DOI: 10.1016/s0014-5793(98)00223-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
C-CAM, a ubiquitously expressed cell adhesion molecule belonging to the carcinoembryonic antigen family, appears as two co-expressed isoforms, C-CAM-L and C-CAM-S, with different cytoplasmic domains, that can form homodimers in epithelial cells. In addition, C-CAM-L has been found in large molecular weight forms suggesting posttranslational, covalent modification. Here we have investigated the possibility that the cytoplasmic domain of C-CAM-L can act as a transglutaminase substrate. Glutathione S-transferase fusion proteins of the cytoplasmic domains of rat and mouse C-CAM-L as well as free cytoplasmic domains, released by thrombin cleavage from the fusion proteins, were converted into covalent dimers by tissue transglutaminase. These results demonstrate that the cytoplasmic domains of rat and mouse C-CAM-L are substrates for tissue transglutaminase, and lend support to the notion that higher molecular weight forms of C-CAM-L are formed by transglutaminase modification.
Collapse
Affiliation(s)
- I Hunter
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
48
|
Abstract
Molecules involved in cell adhesion processes are often both structurally and functionally modular, with subdomains that are members of large protein families. Recently, high-resolution structures have been determined for representative members of many of these families including fragments of integrins, cadherins, fibronectin-like domains, and immunoglobulin-like domains. These structures have enhanced our understanding of cell adhesion processes at several levels. In almost all cases, ligand-binding sites have been visualized and provide insight into how these molecules mediate biologically important interactions. Metal-binding sites have been identified and characterized, allowing assessment of the role of bound ions in cell adhesion processes. Many of these structures serve as templates for modeling homologous domains in other proteins or, when the structure of a fragment consisting of more than one domain is determined, the structure of multidomain arrays of homologous domains. Knowledge of atomic structure also allows rational design of drugs that either mimic or target specific binding sites. In many cases, high-resolution structures have revealed unexpected relationships that pose questions about the evolutionary origin of specific domains. This review briefly describes several recently determined structures of cell adhesion molecules, summarizes some of the main results of each structure, and highlights common features of different systems.
Collapse
Affiliation(s)
- D J Leahy
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| |
Collapse
|
49
|
Abstract
Immunoglobulins (Ig) are highly modular proteins, consisting of variable and constant domains, which have clear, conserved sequence patterns. These sequence patterns have allowed T-cell receptor (TCR) and major histocompatibility complex (MHC) molecule domains, as well as some cell adhesion, cell surface receptor and muscle protein domains, to be identified as forming a superfamily of related proteins together with the Ig-domains. The domains of these proteins have been grouped into four sets: variable (V-set), constant-1 (C1-set), constant-2 (C2-set) and intermediate (I-set). X-ray and NMR studies have shown that these domains form a Greek-key beta-sandwich structure with the sets differing in the number of strands in the beta-sheets as well as in their sequence patterns. The conserved sequence elements in the major sets of Ig and Ig-like molecules have previously been reported as general sequence profiles. This work examines the variability within these sets. Detailed sequence profiles and consensus sequences for these sets and groups have been constructed and a novel form of presentation has been developed to overcome some of the drawbacks of current methods of presenting consensus sequences. The profiles that were constructed allow a comparison of the similarities and differences among the sets of Ig and Ig-like sequences and provide a means by which sequences can be tested for compatibility with Ig-like sequence motifs. As well, the sequence separations of the main residues in the characteristic "pin" structure of Ig-like molecules were examined for variation among the groups. From the profiles constructed here, measures of the degree of conservation within the groups of molecules were determined. These measures were used to assist in a reconsideration of possible evolutionary pathways between the major structural groups of the Ig-superfamily.
Collapse
Affiliation(s)
- D K Smith
- Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | |
Collapse
|
50
|
Mockus SM, Kumer SC, Vrana KE. Carboxyl terminal deletion analysis of tryptophan hydroxylase. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1342:132-40. [PMID: 9392522 DOI: 10.1016/s0167-4838(97)00069-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tryptophan hydroxylase (TPH) catalyzes the rate-limiting step in the synthesis of serotonin and participates (in a non-rate-limiting fashion) in melatonin biosynthesis. In rabbit, TPH exists as a tetramer of four identical 51007 dalton (444 amino acids) protein subunits. An intersubunit binding domain responsible for tetramer formation of TPH was identified by assessing the role of a carboxyl terminal leucine heptad and 4-3 hydrophobic repeat. These repeats are conserved in all of the aromatic amino acid hydroxylases and have been shown to be required for the assembly of tyrosine hydroxylase tetramers. Polymerase chain reaction was utilized to create three TPH carboxyl terminal deletions (C delta8, C delta12 and C delta17) that sequentially remove members of the leucine heptad and 4-3 hydrophobic repeat. Each deletion and full-length recombinant TPH was expressed in bacteria to obtain soluble enzyme extracts for subsequent activity and structural analysis. It was found that removal of 8, 12 or 17 amino acids from the carboxyl terminus of TPH did not significantly alter enzymatic activity when compared to full-length recombinant TPH. However, the macromolecular structure of the deletions was dramatically affected as determined by dimeric and monomeric profiles on size exclusion chromatography. It can be concluded that amino acids 428-444 (the C-terminal 17 amino acids) comprise an intersubunit binding domain that is required for tetramer formation of TPH, but that tetramer assembly is not essential for full enzymatic activity.
Collapse
Affiliation(s)
- S M Mockus
- Program in Neuroscience, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, NC 27157-1083, USA
| | | | | |
Collapse
|