1
|
Hana TA, Mousa VG, Lin A, Haj-Hussein RN, Michael AH, Aziz MN, Kamaridinova SU, Basnet S, Ormerod KG. Developmental and physiological impacts of pathogenic human huntingtin protein in the nervous system. Neurobiol Dis 2024; 203:106732. [PMID: 39542221 DOI: 10.1016/j.nbd.2024.106732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/29/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024] Open
Abstract
Huntington's Disease (HD) is a neurodegenerative disorder, part of the nine identified inherited polyglutamine (polyQ) diseases. Most commonly, HD pathophysiology manifests in middle-aged adults with symptoms including progressive loss of motor control, cognitive decline, and psychiatric disturbances. Associated with the pathophysiology of HD is the formation of insoluble fragments of the huntingtin protein (htt) that tend to aggregate in the nucleus and cytoplasm of neurons. To track both the intracellular progression of the aggregation phenotype as well as the physiological deficits associated with mutant htt, two constructs of human HTT were expressed in the Drosophila melanogaster nervous system with varying polyQ lengths, non-pathogenic-htt (NP-htt) and pathogenic-htt (P-htt), with an N-terminal RFP tag for in vivo visualization. P-htt aggregates accumulate in the ventral nerve cord cell bodies as early as 24 h post hatching and significant aggregates form in the segmental nerve branches at 48 h post hatching. Organelle trafficking up- and downstream of aggregates formed in motor neurons showed severe deficits in trafficking dynamics. To explore putative downstream deficits of htt aggregation, ultrastructural changes of presynaptic motor neurons and muscles were assessed, but no significant effects were observed. However, the force and kinetics of muscle contractions were severely affected in P-htt animals, reminiscent of human chorea. Reduced muscle force production translated to altered locomotory behavior. A novel HD aggregation model was established to track htt aggregation throughout adulthood in the wing, showing similar aggregation patterns with larvae. Expressing P-htt in the adult nervous system resulted in significantly reduced lifespan, which could be partially rescued by feeding flies the mTOR inhibitor rapamycin. These findings advance our understanding of htt aggregate progression as well the downstream physiological impacts on the nervous system and peripheral tissues.
Collapse
Affiliation(s)
- Tadros A Hana
- Middle Tennessee State University, Biology Department, Murfreesboro, TN 37132, United States of America
| | - Veronika G Mousa
- Middle Tennessee State University, Biology Department, Murfreesboro, TN 37132, United States of America
| | - Alice Lin
- Brown University, Neuroscience Graduate Program, Warren Alpert Medical School, Providence, RI 02906, United States of America
| | - Rawan N Haj-Hussein
- Middle Tennessee State University, Biology Department, Murfreesboro, TN 37132, United States of America
| | - Andrew H Michael
- Middle Tennessee State University, Biology Department, Murfreesboro, TN 37132, United States of America
| | - Madona N Aziz
- Middle Tennessee State University, Biology Department, Murfreesboro, TN 37132, United States of America
| | - Sevinch U Kamaridinova
- Middle Tennessee State University, Biology Department, Murfreesboro, TN 37132, United States of America
| | - Sabita Basnet
- Middle Tennessee State University, Biology Department, Murfreesboro, TN 37132, United States of America
| | - Kiel G Ormerod
- Middle Tennessee State University, Biology Department, Murfreesboro, TN 37132, United States of America.
| |
Collapse
|
2
|
Hana TA, Mousa VG, Lin A, Haj-Hussein RN, Michael AH, Aziz MN, Kamaridinova SU, Basnet S, Ormerod KG. Developmental and physiological impacts of pathogenic human huntingtin protein in the nervous system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610525. [PMID: 39257834 PMCID: PMC11383668 DOI: 10.1101/2024.08.30.610525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Huntington's Disease (HD) is a neurodegenerative disorder, part of the nine identified inherited polyglutamine (polyQ) diseases. Most commonly, HD pathophysiology manifests in middle-aged adults with symptoms including progressive loss of motor control, cognitive decline, and psychiatric disturbances. Associated with the pathophysiology of HD is the formation of insoluble fragments of the huntingtin protein (htt) that tend to aggregate in the nucleus and cytoplasm of neurons. To track both the intracellular progression of the aggregation phenotype as well as the physiological deficits associated with mutant htt, two constructs of human HTT were expressed with varying polyQ lengths, non-pathogenic-htt (Q15, NP-htt) and pathogenic-htt (Q138, P-htt), with an N-terminal RFP tag for in vivo visualization. P-htt aggregates accumulate in the ventral nerve cord cell bodies as early as 24 hours post hatching and significant aggregates form in the segmental nerve branches at 48 hours post hatching. Organelle trafficking up-and downstream of aggregates formed in motor neurons showed severe deficits in trafficking dynamics. To explore putative downstream deficits of htt aggregation, ultrastructural changes of presynaptic motor neurons and muscles were assessed, but no significant effects were observed. However, the force and kinetics of muscle contractions were severely affected in P-htt animals, reminiscent of human chorea. Reduced muscle force production translated to altered locomotory behavior. A novel HD aggregation model was established to track htt aggregation throughout adulthood in the wing, showing similar aggregation patterns with larvae. Expressing P-htt in the adult nervous system resulted in significantly reduced lifespan, which could be partially rescued by feeding flies the mTOR inhibitor rapamycin. These findings advance our understanding of htt aggregate progression as well the downstream physiological impacts on the nervous system and peripheral tissues.
Collapse
|
3
|
Zhang Z, Gehin C, Abriata LA, Dal Peraro M, Lashuel H. Differential Effects of Post-translational Modifications on the Membrane Interaction of Huntingtin Protein. ACS Chem Neurosci 2024; 15:2408-2419. [PMID: 38752226 PMCID: PMC11191595 DOI: 10.1021/acschemneuro.4c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/05/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Huntington's disease is a neurodegenerative disorder caused by an expanded polyglutamine stretch near the N-terminus of the huntingtin (HTT) protein, rendering the protein more prone to aggregate. The first 17 residues in HTT (Nt17) interact with lipid membranes and harbor multiple post-translational modifications (PTMs) that can modulate HTT conformation and aggregation. In this study, we used a combination of biophysical studies and molecular simulations to investigate the effect of PTMs on the helicity of Nt17 in the presence of various lipid membranes. We demonstrate that anionic lipids such as PI4P, PI(4,5)P2, and GM1 significantly enhance the helical structure of unmodified Nt17. This effect is attenuated by single acetylation events at K6, K9, or K15, whereas tri-acetylation at these sites abolishes Nt17-membrane interaction. Similarly, single phosphorylation at S13 and S16 decreased but did not abolish the POPG and PIP2-induced helicity, while dual phosphorylation at these sites markedly diminished Nt17 helicity, regardless of lipid composition. The helicity of Nt17 with phosphorylation at T3 is insensitive to the membrane environment. Oxidation at M8 variably affects membrane-induced helicity, highlighting a lipid-dependent modulation of the Nt17 structure. Altogether, our findings reveal differential effects of PTMs and crosstalks between PTMs on membrane interaction and conformation of HTT. Intriguingly, the effects of phosphorylation at T3 or single acetylation at K6, K9, and K15 on Nt17 conformation in the presence of certain membranes do not mirror that observed in the absence of membranes. Our studies provide novel insights into the complex relationship between Nt17 structure, PTMs, and membrane binding.
Collapse
Affiliation(s)
- Zhidian Zhang
- Laboratory
of Molecular and Chemical Biology of Neurodegeneration, School of
Life Sciences, Institute of Bioengineering,
Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
- Laboratory
for Biomolecular Modeling, School of Life Sciences, Institute of Bioengineering, Ecole Polytechnique Fédérale
de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Charlotte Gehin
- Laboratory
of Molecular and Chemical Biology of Neurodegeneration, School of
Life Sciences, Institute of Bioengineering,
Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Luciano A Abriata
- Laboratory
for Biomolecular Modeling, School of Life Sciences, Institute of Bioengineering, Ecole Polytechnique Fédérale
de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Matteo Dal Peraro
- Laboratory
for Biomolecular Modeling, School of Life Sciences, Institute of Bioengineering, Ecole Polytechnique Fédérale
de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Hilal Lashuel
- Laboratory
of Molecular and Chemical Biology of Neurodegeneration, School of
Life Sciences, Institute of Bioengineering,
Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
4
|
Qin Y, Chen L, Zhu W, Song J, Lin J, Li Y, Zhang J, Song X, Xing T, Guo T, Duan X, Zhang Y, Ruan E, Wang Q, Li B, Yang W, Yin P, Yan XX, Li S, Li XJ, Yang S. TRIM37 is a primate-specific E3 ligase for Huntingtin and accounts for the striatal degeneration in Huntington's disease. SCIENCE ADVANCES 2024; 10:eadl2036. [PMID: 38758800 PMCID: PMC11100560 DOI: 10.1126/sciadv.adl2036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/12/2024] [Indexed: 05/19/2024]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease characterized by preferential neuronal loss in the striatum. The mechanism underlying striatal selective neurodegeneration remains unclear, making it difficult to develop effective treatments for HD. In the brains of nonhuman primates, we examined the expression of Huntingtin (HTT), the gene responsible for HD. We found that HTT protein is highly expressed in striatal neurons due to its slow degradation in the striatum. We also identified tripartite motif-containing 37 (TRIM37) as a primate-specific protein that interacts with HTT and is selectively reduced in the primate striatum. TRIM37 promotes the ubiquitination and degradation of mutant HTT (mHTT) in vitro and modulates mHTT aggregation in mouse and monkey brains. Our findings suggest that nonhuman primates are crucial for understanding the mechanisms of human diseases such as HD and support TRIM37 as a potential therapeutic target for treating HD.
Collapse
Affiliation(s)
- Yiyang Qin
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Laiqiang Chen
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Wenzhen Zhu
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Jiahong Song
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Jingpan Lin
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Yuwei Li
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Jiawei Zhang
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Xichen Song
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Tingting Xing
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Tingting Guo
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Xuezhi Duan
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Yiran Zhang
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Eshu Ruan
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Qi Wang
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Bang Li
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Weili Yang
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Peng Yin
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Shihua Li
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Su Yang
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| |
Collapse
|
5
|
Woelfle S, Deshpande D, Feldengut S, Braak H, Del Tredici K, Roselli F, Deisseroth K, Michaelis J, Boeckers TM, Schön M. CLARITY increases sensitivity and specificity of fluorescence immunostaining in long-term archived human brain tissue. BMC Biol 2023; 21:113. [PMID: 37221592 PMCID: PMC10207789 DOI: 10.1186/s12915-023-01582-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/29/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Post mortem human brain tissue is an essential resource to study cell types, connectivity as well as subcellular structures down to the molecular setup of the central nervous system especially with respect to the plethora of brain diseases. A key method is immunostaining with fluorescent dyes, which allows high-resolution imaging in three dimensions of multiple structures simultaneously. Although there are large collections of formalin-fixed brains, research is often limited because several conditions arise that complicate the use of human brain tissue for high-resolution fluorescence microscopy. RESULTS In this study, we developed a clearing approach for immunofluorescence-based analysis of perfusion- and immersion-fixed post mortem human brain tissue, termed human Clear Lipid-exchanged Acrylamide-hybridized Rigid Imaging / Immunostaining / In situ hybridization-compatible Tissue-hYdrogel (hCLARITY). hCLARITY is optimized for specificity by reducing off-target labeling and yields very sensitive stainings in human brain sections allowing for super-resolution microscopy with unprecedented imaging of pre- and postsynaptic compartments. Moreover, hallmarks of Alzheimer's disease were preserved with hCLARITY, and importantly classical 3,3'-diaminobenzidine (DAB) or Nissl stainings are compatible with this protocol. hCLARITY is very versatile as demonstrated by the use of more than 30 well performing antibodies and allows for de- and subsequent re-staining of the same tissue section, which is important for multi-labeling approaches, e.g., in super-resolution microscopy. CONCLUSIONS Taken together, hCLARITY enables research of the human brain with high sensitivity and down to sub-diffraction resolution. It therefore has enormous potential for the investigation of local morphological changes, e.g., in neurodegenerative diseases.
Collapse
Affiliation(s)
- Sarah Woelfle
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- International Graduate School in Molecular Medicine Ulm, IGradU, 89081, Ulm, Germany
| | - Dhruva Deshpande
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Chemical and Systems Biology Department, Stanford School of Medicine, 269 Campus Drive, Stanford, CA, 94305, USA
| | - Simone Feldengut
- Clinical Neuroanatomy Section/Department of Neurology, Center for Biomedical Research, Ulm University, Helmholtzstraße 8/1, 89081, Ulm, Germany
| | - Heiko Braak
- Clinical Neuroanatomy Section/Department of Neurology, Center for Biomedical Research, Ulm University, Helmholtzstraße 8/1, 89081, Ulm, Germany
| | - Kelly Del Tredici
- Clinical Neuroanatomy Section/Department of Neurology, Center for Biomedical Research, Ulm University, Helmholtzstraße 8/1, 89081, Ulm, Germany
| | - Francesco Roselli
- Department of Neurology, Ulm University, 89081, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE, Ulm Site, 89081, Ulm, Germany
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
- Howard Hughes Medical Institute, Stanford, CA, 94305, USA
| | - Jens Michaelis
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE, Ulm Site, 89081, Ulm, Germany
| | - Michael Schön
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
6
|
Burtscher J, Pepe G, Maharjan N, Riguet N, Di Pardo A, Maglione V, Millet GP. Sphingolipids and impaired hypoxic stress responses in Huntington disease. Prog Lipid Res 2023; 90:101224. [PMID: 36898481 DOI: 10.1016/j.plipres.2023.101224] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/20/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
Huntington disease (HD) is a debilitating, currently incurable disease. Protein aggregation and metabolic deficits are pathological hallmarks but their link to neurodegeneration and symptoms remains debated. Here, we summarize alterations in the levels of different sphingolipids in an attempt to characterize sphingolipid patterns specific to HD, an additional molecular hallmark of the disease. Based on the crucial role of sphingolipids in maintaining cellular homeostasis, the dynamic regulation of sphingolipids upon insults and their involvement in cellular stress responses, we hypothesize that maladaptations or blunted adaptations, especially following cellular stress due to reduced oxygen supply (hypoxia) contribute to the development of pathology in HD. We review how sphingolipids shape cellular energy metabolism and control proteostasis and suggest how these functions may fail in HD and in combination with additional insults. Finally, we evaluate the potential of improving cellular resilience in HD by conditioning approaches (improving the efficiency of cellular stress responses) and the role of sphingolipids therein. Sphingolipid metabolism is crucial for cellular homeostasis and for adaptations following cellular stress, including hypoxia. Inadequate cellular management of hypoxic stress likely contributes to HD progression, and sphingolipids are potential mediators. Targeting sphingolipids and the hypoxic stress response are novel treatment strategies for HD.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland.
| | - Giuseppe Pepe
- IRCCS Neuromed, Via Dell'Elettronica, 86077 Pozzilli, Italy
| | - Niran Maharjan
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, 3010 Bern, Switzerland; Department for Biomedical Research (DBMR), University of Bern, 3010 Bern, Switzerland
| | | | - Alba Di Pardo
- IRCCS Neuromed, Via Dell'Elettronica, 86077 Pozzilli, Italy
| | | | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland
| |
Collapse
|
7
|
Seefelder M, Klein FAC, Landwehrmeyer B, Fernández-Busnadiego R, Kochanek S. Huntingtin and Its Partner Huntingtin-Associated Protein 40: Structural and Functional Considerations in Health and Disease. J Huntingtons Dis 2022; 11:227-242. [PMID: 35871360 PMCID: PMC9484127 DOI: 10.3233/jhd-220543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since the discovery of the mutation causing Huntington’s disease (HD) in 1993, it has been debated whether an expanded polyglutamine (polyQ) stretch affects the properties of the huntingtin (HTT) protein and thus contributes to the pathological mechanisms responsible for HD. Here we review the current knowledge about the structure of HTT, alone (apo-HTT) or in a complex with Huntingtin-Associated Protein 40 (HAP40), the influence of polyQ-length variation on apo-HTT and the HTT-HAP40 complex, and the biology of HAP40. Phylogenetic analyses suggest that HAP40 performs essential functions. Highlighting the relevance of its interaction with HTT, HAP40 is one of the most abundant partners copurifying with HTT and is rapidly degraded, when HTT levels are reduced. As the levels of both proteins decrease during disease progression, HAP40 could also be a biomarker for HD. Whether declining HAP40 levels contribute to disease etiology is an open question. Structural studies have shown that the conformation of apo-HTT is less constrained but resembles that adopted in the HTT-HAP40 complex, which is exceptionally stable because of extensive interactions between HAP40 and the three domains of HTT. The complex— and to some extent apo-HTT— resists fragmentation after limited proteolysis. Unresolved regions of apo-HTT, constituting about 25% of the protein, are the main sites of post-translational modifications and likely have major regulatory functions. PolyQ elongation does not substantially alter the structure of HTT, alone or when associated with HAP40. Particularly, polyQ above the disease length threshold does not induce drastic conformational changes in full-length HTT. Therefore, models of HD pathogenesis stating that polyQ expansion drastically alters HTT properties should be reconsidered.
Collapse
Affiliation(s)
| | | | | | - Rubén Fernández-Busnadiego
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | | |
Collapse
|
8
|
Podvin S, Rosenthal SB, Poon W, Wei E, Fisch KM, Hook V. Mutant Huntingtin Protein Interaction Map Implicates Dysregulation of Multiple Cellular Pathways in Neurodegeneration of Huntington's Disease. J Huntingtons Dis 2022; 11:243-267. [PMID: 35871359 PMCID: PMC9484122 DOI: 10.3233/jhd-220538] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Huntington's disease (HD) is a genetic neurodegenerative disease caused by trinucleotide repeat (CAG) expansions in the human HTT gene encoding the huntingtin protein (Htt) with an expanded polyglutamine tract. OBJECTIVE HD models from yeast to transgenic mice have investigated proteins interacting with mutant Htt that may initiate molecular pathways of cell death. There is a paucity of datasets of published Htt protein interactions that include the criteria of 1) defining fragments or full-length Htt forms, 2) indicating the number of poly-glutamines of the mutant and wild-type Htt forms, and 3) evaluating native Htt interaction complexes. This research evaluated such interactor data to gain understanding of Htt dysregulation of cellular pathways. METHODS Htt interacting proteins were compiled from the literature that meet our criteria and were subjected to network analysis via clustering, gene ontology, and KEGG pathways using rigorous statistical methods. RESULTS The compiled data of Htt interactors found that both mutant and wild-type Htt interact with more than 2,971 proteins. Application of a community detection algorithm to all known Htt interactors identified significant signal transduction, membrane trafficking, chromatin, and mitochondrial clusters, among others. Binomial analyses of a subset of reported protein interactor information determined that chromatin organization, signal transduction and endocytosis were diminished, while mitochondria, translation and membrane trafficking had enriched overall edge effects. CONCLUSION The data support the hypothesis that mutant Htt disrupts multiple cellular processes causing toxicity. This dataset is an open resource to aid researchers in formulating hypotheses of HD mechanisms of pathogenesis.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Sara Brin Rosenthal
- Center for Computational Biology & Bioinformatics, University of California, San Diego, La Jolla, CA, USA
| | - William Poon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Enlin Wei
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Kathleen M Fisch
- Center for Computational Biology & Bioinformatics, University of California, San Diego, La Jolla, CA, USA.,Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA.,Department of Neuroscience and Dept of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
9
|
Xu S, Li G, Ye X, Chen D, Chen Z, Xu Z, Daniele M, Tambone S, Ceccacci A, Tomei L, Ye L, Yu Y, Solbach A, Farmer SM, Stimming EF, McAllister G, Marchionini DM, Zhang S. HAP40 is a conserved central regulator of Huntingtin and a potential modulator of Huntington's disease pathogenesis. PLoS Genet 2022; 18:e1010302. [PMID: 35853002 PMCID: PMC9295956 DOI: 10.1371/journal.pgen.1010302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/18/2022] [Indexed: 11/19/2022] Open
Abstract
Perturbation of huntingtin (HTT)'s physiological function is one postulated pathogenic factor in Huntington's disease (HD). However, little is known how HTT is regulated in vivo. In a proteomic study, we isolated a novel ~40kDa protein as a strong binding partner of Drosophila HTT and demonstrated it was the functional ortholog of HAP40, an HTT associated protein shown recently to modulate HTT's conformation but with unclear physiological and pathologic roles. We showed that in both flies and human cells, HAP40 maintained conserved physical and functional interactions with HTT. Additionally, loss of HAP40 resulted in similar phenotypes as HTT knockout. More strikingly, HAP40 strongly affected HTT's stability, as depletion of HAP40 significantly reduced the levels of endogenous HTT protein while HAP40 overexpression markedly extended its half-life. Conversely, in the absence of HTT, the majority of HAP40 protein were degraded, likely through the proteasome. Further, the affinity between HTT and HAP40 was not significantly affected by polyglutamine expansion in HTT, and contrary to an early report, there were no abnormal accumulations of endogenous HAP40 protein in HD cells from mouse HD models or human patients. Lastly, when tested in Drosophila models of HD, HAP40 partially modulated the neurodegeneration induced by full-length mutant HTT while showed no apparent effect on the toxicity of mutant HTT exon 1 fragment. Together, our study uncovers a conserved mechanism governing the stability and in vivo functions of HTT and demonstrates that HAP40 is a central and positive regulator of endogenous HTT. Further, our results support that mutant HTT is toxic regardless of the presence of its partner HAP40, and implicate HAP40 as a potential modulator of HD pathogenesis through its multiplex effect on HTT's function, stability and the potency of mutant HTT's toxicity.
Collapse
Affiliation(s)
- Shiyu Xu
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Gang Li
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Xin Ye
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Dongsheng Chen
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Zhihua Chen
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Zhen Xu
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Moretti Daniele
- Department of Translational and Discovery Research, IRBM SpA, Pomezia (RM), Italy
| | - Sara Tambone
- Department of Translational and Discovery Research, IRBM SpA, Pomezia (RM), Italy
| | - Alessandra Ceccacci
- Department of Translational and Discovery Research, IRBM SpA, Pomezia (RM), Italy
| | - Licia Tomei
- Department of Translational and Discovery Research, IRBM SpA, Pomezia (RM), Italy
| | - Lili Ye
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Yue Yu
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- Programs in Genetics and Epigenetics and Neuroscience, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
| | - Amanda Solbach
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- Programs in Genetics and Epigenetics and Neuroscience, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
| | - Stephen M. Farmer
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- Program in Biochemistry and Cell Biology, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
| | - Erin Furr Stimming
- Department of Neurology, HDSA Center of Excellence, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - George McAllister
- CHDI Management/CHDI Foundation, 350 Seventh Ave, New York, New York, United States of America
| | - Deanna M. Marchionini
- CHDI Management/CHDI Foundation, 350 Seventh Ave, New York, New York, United States of America
| | - Sheng Zhang
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- Programs in Genetics and Epigenetics and Neuroscience, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
- Department of Neurobiology and Anatomy, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| |
Collapse
|
10
|
Hickman RA, Faust PL, Marder K, Yamamoto A, Vonsattel JP. The distribution and density of Huntingtin inclusions across the Huntington disease neocortex: regional correlations with Huntingtin repeat expansion independent of pathologic grade. Acta Neuropathol Commun 2022; 10:55. [PMID: 35440014 PMCID: PMC9020040 DOI: 10.1186/s40478-022-01364-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022] Open
Abstract
Huntington disease is characterized by progressive neurodegeneration, especially of the striatum, and the presence of polyglutamine huntingtin (HTT) inclusions. Although HTT inclusions are most abundant in the neocortex, their neocortical distribution and density in relation to the extent of CAG repeat expansion in the HTT gene and striatal pathologic grade have yet to be formally established. We immunohistochemically studied 65 brains with a pathologic diagnosis of Huntington disease to investigate the cortical distributions and densities of HTT inclusions within the calcarine (BA17), precuneus (BA7), motor (BA4) and prefrontal (BA9) cortices; in 39 of these brains, a p62 immunostain was used for comparison. HTT inclusions predominate in the infragranular cortical layers (layers V-VI) and layer III, however, the densities of HTT inclusions across the human cerebral cortex are not uniform but are instead regionally contingent. The density of HTT and p62 inclusions (intranuclear and extranuclear) in layers V-VI increases caudally to rostrally (BA17 < BA7 < BA4 < BA9) with the median burden of HTT inclusions being 38-fold greater in the prefrontal cortex (BA9) than in the calcarine cortex (BA17). Conversely, intranuclear HTT inclusions prevail in the calcarine cortex irrespective of HTT CAG length. Neocortical HTT inclusion density correlates with CAG repeat expansion, but not with the neuropathologic grade of striatal degeneration (Vonsattel grade) or with the duration of clinical disease since motor onset. Extrapolation of these findings suggest that HTT inclusions are at a regionally-contingent, CAG-dependent, density during the advanced stages of HD. The distribution and density of HTT inclusions in HD therefore does not provide a measure of pathologic disease stage but rather infers the degree of pathogenic HTT expansion.
Collapse
Affiliation(s)
- Richard A. Hickman
- grid.51462.340000 0001 2171 9952Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA
| | - Phyllis L. Faust
- grid.413734.60000 0000 8499 1112Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York Presbyterian Hospital, 630 W 168th Street, New York, NY 10032 USA
| | - Karen Marder
- grid.21729.3f0000000419368729Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Ai Yamamoto
- grid.413734.60000 0000 8499 1112Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York Presbyterian Hospital, 630 W 168th Street, New York, NY 10032 USA ,grid.21729.3f0000000419368729Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Jean-Paul Vonsattel
- grid.413734.60000 0000 8499 1112Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York Presbyterian Hospital, 630 W 168th Street, New York, NY 10032 USA ,grid.239585.00000 0001 2285 2675Taub Institute for Research On Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, 710 West 168th Street, New York, NY 10032 USA
| |
Collapse
|
11
|
Huang B, Seefelder M, Buck E, Engler T, Lindenberg KS, Klein F, Landwehrmeyer GB, Kochanek S. HAP40 protein levels are huntingtin-dependent and decrease in Huntington disease. Neurobiol Dis 2021; 158:105476. [PMID: 34390835 DOI: 10.1016/j.nbd.2021.105476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/08/2021] [Accepted: 08/09/2021] [Indexed: 12/01/2022] Open
Abstract
The huntingtin-associated protein 40 (HAP40) is an abundant interactor of huntingtin (HTT). In complexes of these proteins, HAP40 tightly binds to HTT in a cleft formed by two larger domains rich in HEAT repeats, and a smaller bridge domain connecting the two. We show that HAP40 steady-state protein levels are directly dependent on HTT (both normal and mutant HTT) and that HAP40 is strongly stabilized by the interaction with HTT resulting in an at least 5-fold increase in HAP40's half-life when bound to HTT. Cellular HAP40 protein levels were reduced in primary fibroblasts and lymphoblasts of Huntington Disease (HD) patients and in brain tissue of a full-length HTT mouse model of HD, concomitant with decreased soluble HTT levels in these cell types. This data and our previous demonstration of coevolution between HTT and HAP40 and evolutionary conservation of their interaction suggest that HAP40 is an obligate interaction partner of HTT. Our observation of reduced HAP40 levels in HD invites further studies, whether HAP40 loss-of-function contributes to the pathophysiology of HD.
Collapse
Affiliation(s)
- Bin Huang
- Department of Gene Therapy, Ulm University, 89081 Ulm, Germany
| | | | - Eva Buck
- Department of Neurology, Ulm University, 89081 Ulm, Germany
| | - Tatjana Engler
- Department of Gene Therapy, Ulm University, 89081 Ulm, Germany
| | | | - Fabrice Klein
- Department of Neurology, Ulm University, 89081 Ulm, Germany
| | | | - Stefan Kochanek
- Department of Gene Therapy, Ulm University, 89081 Ulm, Germany.
| |
Collapse
|
12
|
González-Guevara E, Cárdenas G, Pérez-Severiano F, Martínez-Lazcano JC. Dysregulated Brain Cholesterol Metabolism Is Linked to Neuroinflammation in Huntington's Disease. Mov Disord 2020; 35:1113-1127. [PMID: 32410324 DOI: 10.1002/mds.28089] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Huntington's disease is an autosomal-dominant, neurodegenerative disorder caused by a CAG repeat expansion in exon-1 of the huntingtin gene. Alterations in cholesterol metabolism and distribution have been reported in Huntington's disease, including abnormal interactions between mutant huntingtin and sterol regulatory element-binding proteins, decreased levels of apolipoprotein E/cholesterol/low-density lipoprotein receptor complexes, and alterations in the synthesis of ATP-binding cassette transporter A1. Plasma levels of 24S-hydroxycholestrol, a key intermediary in cholesterol metabolism and a possible marker in neurodegenerative diseases, decreased proportionally to the degree of caudate nucleus atrophy. The interaction of mutant huntingtin with sterol regulatory element-binding proteins is of particular interest given that sterol regulatory element-binding proteins play a dual role: They take part in lipid and cholesterol metabolism, but also in the inflammatory response that induces immune cell migration as well as toxic effects, particularly in astrocytes. This work summarizes current evidence on the metabolic and immune implications of sterol regulatory element-binding protein dysregulation in Huntington's disease, highlighting the potential use of drugs that modulate these alterations. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Edith González-Guevara
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía "MVS", Mexico City, Mexico
| | - Graciela Cárdenas
- Departamento de Neurología y Enfermedades Neuro-Infecciosas, Instituto Nacional de Neurología y Neurocirugía "MVS", Mexico City, Mexico
| | - Francisca Pérez-Severiano
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía "MVS", Mexico City, Mexico
| | - Juan Carlos Martínez-Lazcano
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía "MVS", Mexico City, Mexico
| |
Collapse
|
13
|
Moldovean SN, Chiş V. Molecular Dynamics Simulations Applied to Structural and Dynamical Transitions of the Huntingtin Protein: A Review. ACS Chem Neurosci 2020; 11:105-120. [PMID: 31841621 DOI: 10.1021/acschemneuro.9b00561] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Over the recent years, Huntington's disease (HD) has become widely discussed in the scientific literature especially because at the mutant level there are several contradictions regarding the aggregation mechanism. The specific role of the physiological huntingtin protein remains unknown, due to the lack of characterization of its entire crystallographic structure, making the experimental and theoretical research even harder when taking into consideration its involvement in multiple biological functions and its high affinity for different interacting partners. Different types of models, containing fewer (not more than 35 Qs) polyglutamine residues for the WT structure and above 35 Qs for the mutants, were subjected to classical or advanced MD simulations to establish the proteins' structural stability by evaluating their conformational changes. Outside the polyQ tract, there are two other regions of interest (the N17 domain and the polyP rich domain) considered to be essential for the aggregation kinetics at the mutant level. The polymerization process is considered to be dependent on the polyQ length. As the polyQ tract's dimension increases, the structures present more β-sheet conformations. Contrarily, it is also considered that the aggregation stability is not necessarily dependent on the number of Qs, while the initial stage of the aggregation seed might play the decisive role. A general assumption regarding the polyP domain is that it might preserve the polyQ structures soluble by acting as an antagonist for β-sheet formation.
Collapse
Affiliation(s)
| | - Vasile Chiş
- Babeş-Bolyai University, Faculty of Physics, Kogălniceanu 1, RO-400084 Cluj-Napoca, Romania
| |
Collapse
|
14
|
Assessing average somatic CAG repeat instability at the protein level. Sci Rep 2019; 9:19152. [PMID: 31844074 PMCID: PMC6915696 DOI: 10.1038/s41598-019-55202-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/18/2019] [Indexed: 12/25/2022] Open
Abstract
Sandwich ELISA-based methods use Abs that target the expanded polyglutamine (polyQ) tract to quantify mutant huntingtin (mHTT). Using Meso Scale Discovery (MSD) assay, the mHTT signal detected with MW1 Ab correlated with polyQ length and doubled with a difference of only 7 glutamine residues between equivalent amounts of purified mHTTexon1 proteins. Similar polyQ length-dependent effects on MSD signals were confirmed using endogenous full length mHTT from brains of Huntington’s disease (HD) knock-in (KI) mice. We used this avidity bias to devise a method to assess average CAG repeat instability at the protein level in a mixed population of HTT proteins present in tissues. Signal detected for average polyQ length quantification at the protein level by our method exhibited a strong correlation with average CAG repeat length at the genomic DNA level determined by PCR method in striatal tissue homogenates from HdhQ140 KI mice and in human HD postmortem cortex. This work establishes that CAG repeat instability in mutant HTT is reflected at the protein level.
Collapse
|
15
|
Abstract
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder caused by a CAG trinucleotide expansion in the HTT gene, which encodes for an abnormal polyglutamine tract in the huntingtin protein (HTT). This review examines the known mechanisms of HTT gene regulation. We discuss HTT expression patterns, features of the HTT promoter, regulatory regions of the HTT promoter with functional significance, and HTT regulators located outside of the proximal promoter region. The factors that influence HTT expression in the brain and the mechanisms of HTT transcriptional regulation are currently poorly understood, despite continuing research. Expanding knowledge of HTT regulation will inform future studies investigating HTT function. Improving understanding of HTT expression and control may also uncover novel therapeutic approaches for HD through the development of methods to modulate mHTT levels.
Collapse
Affiliation(s)
- Sarah B Thomson
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, and BC Children's Hospital, Vancouver, BC, Canada
| | - Blair R Leavitt
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, and BC Children's Hospital, Vancouver, BC, Canada.,Department of Medicine, Centre for Brain Health, and Division of Neurology, University of British Columbia Hospital, Vancouver, BC, Canada
| |
Collapse
|
16
|
Vilette D, Courte J, Peyrin JM, Coudert L, Schaeffer L, Andréoletti O, Leblanc P. Cellular mechanisms responsible for cell-to-cell spreading of prions. Cell Mol Life Sci 2018; 75:2557-2574. [PMID: 29761205 PMCID: PMC11105574 DOI: 10.1007/s00018-018-2823-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/04/2018] [Accepted: 04/23/2018] [Indexed: 01/01/2023]
Abstract
Prions are infectious agents that cause fatal neurodegenerative diseases. Current evidence indicates that they are essentially composed of an abnormally folded protein (PrPSc). These abnormal aggregated PrPSc species multiply in infected cells by recruiting and converting the host PrPC protein into new PrPSc. How prions move from cell to cell and progressively spread across the infected tissue is of crucial importance and may provide experimental opportunity to delay the progression of the disease. In infected cells, different mechanisms have been identified, including release of infectious extracellular vesicles and intercellular transfer of PrPSc-containing organelles through tunneling nanotubes. These findings should allow manipulation of the intracellular trafficking events targeting PrPSc in these particular subcellular compartments to experimentally address the relative contribution of these mechanisms to in vivo prion pathogenesis. In addition, such information may prompt further experimental strategies to decipher the causal roles of protein misfolding and aggregation in other human neurodegenerative diseases.
Collapse
Affiliation(s)
- Didier Vilette
- UMR1225, INRA, ENVT, Ecole Nationale Vétérinaire, 23 Chemin des Capelles, Toulouse, France.
| | - Josquin Courte
- Neurosciences Paris Seine, UMR8246, Inserm U1130, IBPS, UPMC, Sorbonne Universités, 4 Place Jussieu, 75005, Paris, France
- Laboratoire Physico Chimie Curie, UMR168, UPMC, IPGG, Sorbonne Universités, 6 Rue Jean Calvin, 75005, Paris, France
| | - Jean Michel Peyrin
- Neurosciences Paris Seine, UMR8246, Inserm U1130, IBPS, UPMC, Sorbonne Universités, 4 Place Jussieu, 75005, Paris, France.
| | - Laurent Coudert
- Insitut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, 8 Avenue Rockefeller, 69373, Lyon Cedex 08, France
| | - Laurent Schaeffer
- Insitut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, 8 Avenue Rockefeller, 69373, Lyon Cedex 08, France
| | - Olivier Andréoletti
- UMR1225, INRA, ENVT, Ecole Nationale Vétérinaire, 23 Chemin des Capelles, Toulouse, France
| | - Pascal Leblanc
- Insitut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, 8 Avenue Rockefeller, 69373, Lyon Cedex 08, France.
| |
Collapse
|
17
|
Chaibva M, Gao X, Jain P, Campbell WA, Frey SL, Legleiter J. Sphingomyelin and GM1 Influence Huntingtin Binding to, Disruption of, and Aggregation on Lipid Membranes. ACS OMEGA 2018; 3:273-285. [PMID: 29399649 PMCID: PMC5793032 DOI: 10.1021/acsomega.7b01472] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/25/2017] [Indexed: 05/09/2023]
Abstract
Huntington disease (HD) is an inherited neurodegenerative disease caused by the expansion beyond a critical threshold of a polyglutamine (polyQ) tract near the N-terminus of the huntingtin (htt) protein. Expanded polyQ promotes the formation of a variety of oligomeric and fibrillar aggregates of htt that accumulate into the hallmark proteinaceous inclusion bodies associated with HD. htt is also highly associated with numerous cellular and subcellular membranes that contain a variety of lipids. As lipid homeostasis and metabolism abnormalities are observed in HD patients, we investigated how varying both the sphingomyelin (SM) and ganglioside (GM1) contents modifies the interactions between htt and lipid membranes. SM composition is altered in HD, and GM1 has been shown to have protective effects in animal models of HD. A combination of Langmuir trough monolayer techniques, vesicle permeability and binding assays, and in situ atomic force microscopy (AFM) were used to directly monitor the interaction of a model, synthetic htt peptide and a full-length htt-exon1 recombinant protein with model membranes comprised of total brain lipid extract (TBLE) and varying amounts of exogenously added SM or GM1. The addition of either SM or GM1 decreased htt insertion into the lipid monolayers. However, TBLE vesicles with an increased SM content were more susceptible to htt-induced permeabilization, whereas GM1 had no effect on permeablization. Pure TBLE bilayers and TBLE bilayers enriched with GM1 developed regions of roughened, granular morphologies upon exposure to htt-exon1, but plateau-like domains with a smoother appearance formed in bilayers enriched with SM. Oligomeric aggregates were observed on all bilayer systems regardless of induced morphology. Collectively, these observations suggest that the lipid composition and its subsequent effects on membrane material properties strongly influence htt binding and aggregation on lipid membranes.
Collapse
Affiliation(s)
- Maxmore Chaibva
- The
C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, P.O. Box 6045, Morgantown, West Virginia 26505, United States
| | - Xiang Gao
- The
C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, P.O. Box 6045, Morgantown, West Virginia 26505, United States
| | - Pranav Jain
- The
C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, P.O. Box 6045, Morgantown, West Virginia 26505, United States
| | - Warren A. Campbell
- Department
of Chemistry, Gettysburg College, 300 N. Washington Avenue, Campus Box 0393, Gettysburg, Pennsylvania 17325, United States
| | - Shelli L. Frey
- Department
of Chemistry, Gettysburg College, 300 N. Washington Avenue, Campus Box 0393, Gettysburg, Pennsylvania 17325, United States
- E-mail: . Phone: 717-337-6259 (S.L.F.)
| | - Justin Legleiter
- The
C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, P.O. Box 6045, Morgantown, West Virginia 26505, United States
- Blanchette
Rockefeller Neurosciences Institutes, West
Virginia University, 1 Medical Center Dr., P.O. Box 9303, Morgantown, West Virginia 26505, United States
- E-mail: . Phone: 304-293-0175 (J.L.)
| |
Collapse
|
18
|
Rindt H, Tom CM, Lorson CL, Mattis VB. Optimization of trans-Splicing for Huntington's Disease RNA Therapy. Front Neurosci 2017; 11:544. [PMID: 29066943 PMCID: PMC5641306 DOI: 10.3389/fnins.2017.00544] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/19/2017] [Indexed: 11/16/2022] Open
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disorder caused by a polyglutamine (polyQ) expansion in exon 1 of the Huntingtin (HTT) gene. We have previously demonstrated that spliceosome-mediated trans-splicing is a viable molecular strategy to specifically reduce and repair mutant HTT (mtHTT). Here, the targeted tethering efficacy of the pre-mRNA trans-splicing modules (PTM) in HTT was optimized. Various PTMs that targeted the 3′ end of HTT intron 1 or the intron 1 branch point were shown trans-splice into an HTT mini-gene, as well as the endogenous HTT pre-mRNA. PTMs that specifically target the endogenous intron 1 branch point increased the trans-splicing efficacy from 1–5 to 10–15%. Furthermore, lentiviral expression of PTMs in a human HD patient iPSC-derived neural culture significantly reversed two previously established polyQ-length dependent phenotypes. These results suggest that pre-mRNA repair of mtHTT could hold therapeutic benefit and it demonstrates an alternative platform to correct the mRNA product produced by the mtHTT allele in the context of HD.
Collapse
Affiliation(s)
- Hansjörg Rindt
- Department of Veterinary Pathobiology, Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Colton M Tom
- Cedars-Sinai Medical Center, Board of Governors Regenerative Medicine Institute, Los Angeles, CA, United States
| | - Christian L Lorson
- Department of Veterinary Pathobiology, Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Virginia B Mattis
- Cedars-Sinai Medical Center, Board of Governors Regenerative Medicine Institute, Los Angeles, CA, United States
| |
Collapse
|
19
|
Chaibva M, Jawahery S, Pilkington AW, Arndt JR, Sarver O, Valentine S, Matysiak S, Legleiter J. Acetylation within the First 17 Residues of Huntingtin Exon 1 Alters Aggregation and Lipid Binding. Biophys J 2017; 111:349-362. [PMID: 27463137 DOI: 10.1016/j.bpj.2016.06.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 06/06/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
Huntington's disease (HD) is a genetic neurodegenerative disorder caused by an expanded polyglutamine (polyQ) domain near the N-terminus of the huntingtin (htt) protein. Expanded polyQ leads to htt aggregation. The first 17 amino acids (Nt(17)) in htt comprise a lipid-binding domain that undergoes a number of posttranslational modifications that can modulate htt toxicity and subcellular localization. As there are three lysines within Nt(17), we evaluated the impact of lysine acetylation on htt aggregation in solution and on model lipid bilayers. Acetylation of htt-exon1(51Q) and synthetic truncated htt-exon 1 mimicking peptides (Nt(17)-Q35-P10-KK) was achieved using a selective covalent label, sulfo-N-hydroxysuccinimide (NHSA). With this treatment, all three lysine residues (K6, K9, and K15) in Nt(17) were significantly acetylated. N-terminal htt acetylation retarded fibril formation in solution and promoted the formation of larger globular aggregates. Acetylated htt also bound lipid membranes and disrupted the lipid bilayer morphology less aggressively compared with the wild-type. Computational studies provided mechanistic insights into how acetylation alters the interaction of Nt(17) with lipid membranes. Our results highlight that N-terminal acetylation influences the aggregation of htt and its interaction with lipid bilayers.
Collapse
Affiliation(s)
- Maxmore Chaibva
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia
| | - Sudi Jawahery
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Albert W Pilkington
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia
| | - James R Arndt
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia
| | - Olivia Sarver
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia
| | - Stephen Valentine
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia
| | - Silvina Matysiak
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland; Biophysics Program, Institute for Physical Chemistry and Technology, University of Maryland, College Park, Maryland.
| | - Justin Legleiter
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia; NanoSAFE, West Virginia University, Morgantown, West Virginia; Center for Neurosciences, West Virginia University, Morgantown, West Virginia.
| |
Collapse
|
20
|
Shin A, Shin B, Shin JW, Kim KH, Atwal RS, Hope JM, Gillis T, Leszyk JD, Shaffer SA, Lee R, Kwak S, MacDonald ME, Gusella JF, Seong IS, Lee JM. Novel allele-specific quantification methods reveal no effects of adult onset CAG repeats on HTT mRNA and protein levels. Hum Mol Genet 2017; 26:1258-1267. [PMID: 28165127 PMCID: PMC6075029 DOI: 10.1093/hmg/ddx033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/08/2016] [Accepted: 01/19/2017] [Indexed: 01/26/2023] Open
Abstract
Huntington's disease (HD) reflects dominant consequences of a CAG repeat expansion mutation in HTT. Expanded CAG repeat size is the primary determinant of age at onset and age at death in HD. Although HD pathogenesis is driven by the expanded CAG repeat, whether the mutation influences the expression levels of mRNA and protein from the disease allele is not clear due to the lack of sensitive allele-specific quantification methods and the presence of confounding factors. To determine the impact of CAG expansion at the molecular level, we have developed novel allele-specific HTT mRNA and protein quantification methods based on principles of multiplex ligation-dependent probe amplification and targeted MS/MS parallel reaction monitoring, respectively. These assays, exhibiting high levels of specificity and sensitivity, were designed to distinguish allelic products based upon expressed polymorphic variants in HTT, including rs149 109 767. To control for other cis-haplotype variations, we applied allele-specific quantification assays to a panel of HD lymphoblastoid cell lines, each carrying the major European disease haplotype (i.e. hap.01) on the mutant chromosome. We found that steady state levels of HTT mRNA and protein were not associated with expanded CAG repeat length. Rather, the products of mutant and normal alleles, both mRNA and protein, were balanced, thereby arguing that a cis-regulatory effect of the expanded CAG repeat is not a critical component of the underlying mechanism of HD. These robust allele-specific assays could prove valuable for monitoring the impact of allele-specific gene silencing strategies currently being explored as therapeutic interventions in HD.
Collapse
Affiliation(s)
- Aram Shin
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Baehyun Shin
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Jun Wan Shin
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Kyung-Hee Kim
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Ranjit S. Atwal
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Jennifer M. Hope
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Tammy Gillis
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - John D. Leszyk
- Proteomics and Mass Spectrometry Facility, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Scott A. Shaffer
- Proteomics and Mass Spectrometry Facility, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Ramee Lee
- CHDI Foundation, Princeton, NJ 08540, USA
| | - Seung Kwak
- CHDI Foundation, Princeton, NJ 08540, USA
| | - Marcy E. MacDonald
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
- Medical and Population Genetics Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA 02142, USA
| | - James F. Gusella
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
- Medical and Population Genetics Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Ihn Sik Seong
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Jong-Min Lee
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
- Medical and Population Genetics Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
21
|
Gutekunst CA, Tung JK, McDougal ME, Gross RE. C3 transferase gene therapy for continuous conditional RhoA inhibition. Neuroscience 2016; 339:308-318. [PMID: 27746349 DOI: 10.1016/j.neuroscience.2016.10.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/03/2016] [Accepted: 10/05/2016] [Indexed: 01/21/2023]
Abstract
Regrowth inhibitory molecules prevent axon regeneration in the adult mammalian central nervous system (CNS). RhoA, a small GTPase in the Rho family, is a key intracellular switch that mediates the effects of these extracellular regrowth inhibitors. The bacterial enzyme C3-ADP ribosyltransferase (C3) selectively and irreversibly inhibits the activation of RhoA and stimulates axon outgrowth and regeneration. However, effective intracellular delivery of the C3 protein in vivo is limited by poor cell permeability and a short duration of action. To address this, we have developed a gene therapy approach using viral vectors to introduce the C3 gene into neurons or neuronal progenitors. Our vectors deliver C3 in a cell-autonomous (endogenous) or a cell-nonautonomous (secretable/permeable) fashion and promote in vitro process outgrowth on inhibitory chondroitin sulfate proteoglycan substrate. Further conditional control of our vectors was achieved via the addition of a Tet-On system, which allows for transcriptional control with doxycycline administration. These vectors will be crucial tools for promoting continued axonal regeneration after CNS injuries or neurodegenerative diseases.
Collapse
Affiliation(s)
- Claire-Anne Gutekunst
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States.
| | - Jack K Tung
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States; Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology College of Engineering, Atlanta, GA, United States.
| | - Margaret E McDougal
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States.
| | - Robert E Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States; Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States; Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology College of Engineering, Atlanta, GA, United States.
| |
Collapse
|
22
|
Zurawel AA, Kabeche R, DiGregorio SE, Deng L, Menon KM, Opalko H, Duennwald ML, Moseley JB, Supattapone S. CAG Expansions Are Genetically Stable and Form Nontoxic Aggregates in Cells Lacking Endogenous Polyglutamine Proteins. mBio 2016; 7:e01367-16. [PMID: 27677791 PMCID: PMC5040113 DOI: 10.1128/mbio.01367-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 11/20/2022] Open
Abstract
Proteins containing polyglutamine (polyQ) regions are found in almost all eukaryotes, albeit with various frequencies. In humans, proteins such as huntingtin (Htt) with abnormally expanded polyQ regions cause neurodegenerative diseases such as Huntington's disease (HD). To study how the presence of endogenous polyQ aggregation modulates polyQ aggregation and toxicity, we expressed polyQ expanded Htt fragments (polyQ Htt) in Schizosaccharomyces pombe In stark contrast to other unicellular fungi, such as Saccharomyces cerevisiae, S. pombe is uniquely devoid of proteins with more than 10 Q repeats. We found that polyQ Htt forms aggregates within S. pombe cells only with exceedingly long polyQ expansions. Surprisingly, despite the presence of polyQ Htt aggregates in both the cytoplasm and nucleus, no significant growth defect was observed in S. pombe cells. Further, PCR analysis showed that the repetitive polyQ-encoding DNA region remained constant following transformation and after multiple divisions in S. pombe, in contrast to the genetic instability of polyQ DNA sequences in other organisms. These results demonstrate that cells with a low content of polyQ or other aggregation-prone proteins can show a striking resilience with respect to polyQ toxicity and that genetic instability of repetitive DNA sequences may have played an important role in the evolutionary emergence and exclusion of polyQ expansion proteins in different organisms. IMPORTANCE Polyglutamine (polyQ) proteins encoded by repetitive CAG DNA sequences serve a variety of normal biological functions. Yet some proteins with abnormally expanded polyQ regions cause neurodegeneration through unknown mechanisms. To study how distinct cellular environments modulate polyQ aggregation and toxicity, we expressed CAG-expanded huntingtin fragments in Schizosaccharomyces pombe In stark contrast to many other eukaryotes, S. pombe is uniquely devoid of proteins containing long polyQ tracts. Our results show that S. pombe cells, despite their low content of endogenous polyQ proteins, exhibit striking and unexpected resilience with respect to polyQ toxicity and that genetic instability of repetitive DNA sequences may have played an important role in the emergence and expansion of polyQ domains in eukaryotic evolution.
Collapse
Affiliation(s)
- Ashley A Zurawel
- Department of Biochemistry, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, USA
| | - Ruth Kabeche
- Department of Biochemistry, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, USA
| | - Sonja E DiGregorio
- Department of Pathology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Lin Deng
- Department of Biochemistry, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, USA
| | - Kartikeya M Menon
- Department of Biochemistry, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, USA
| | - Hannah Opalko
- Department of Biochemistry, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, USA
| | - Martin L Duennwald
- Department of Pathology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - James B Moseley
- Department of Biochemistry, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, USA
| | - Surachai Supattapone
- Department of Biochemistry, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, USA Department of Medicine, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
23
|
Breen MS, White CH, Shekhtman T, Lin K, Looney D, Woelk CH, Kelsoe JR. Lithium-responsive genes and gene networks in bipolar disorder patient-derived lymphoblastoid cell lines. THE PHARMACOGENOMICS JOURNAL 2016; 16:446-53. [PMID: 27401222 DOI: 10.1038/tpj.2016.50] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 04/21/2016] [Accepted: 05/18/2016] [Indexed: 12/25/2022]
Abstract
Lithium (Li) is the mainstay mood stabilizer for the treatment of bipolar disorder (BD), although its mode of action is not yet fully understood nor is it effective in every patient. We sought to elucidate the mechanism of action of Li and to identify surrogate outcome markers that can be used to better understand its therapeutic effects in BD patients classified as good (responders) and poor responders (nonresponders) to Li treatment. To accomplish these goals, RNA-sequencing gene expression profiles of lymphoblastoid cell lines (LCLs) were compared between BD Li responders and nonresponders with healthy controls before and after treatment. Several Li-responsive gene coexpression networks were discovered indicating widespread effects of Li on diverse cellular signaling systems including apoptosis and defense response pathways, protein processing and response to endoplasmic reticulum stress. Individual gene markers were also identified, differing in response to Li between BD responders and nonresponders, involved in processes of cell cycle and nucleotide excision repair that may explain part of the heterogeneity in clinical response to treatment. Results further indicated a Li gene expression signature similar to that observed with clonidine treatment, an α2-adrenoceptor agonist. These findings provide a detailed mechanism of Li in LCLs and highlight putative surrogate outcome markers that may permit for advanced treatment decisions to be made and for facilitating recovery in BD patients.
Collapse
Affiliation(s)
- M S Breen
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - C H White
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - T Shekhtman
- Veterans Administration, San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - K Lin
- Department of Affective Disorder, Guangzhou Brain Hospital, Guangzhou Medical University, Guangzhou, China.,Laboratory of Cognition and Emotion, Guangzhou Brain Hospital, Guangzhou Medical University, Guangzhou, China
| | - D Looney
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA.,Veterans Administration, San Diego Healthcare System, San Diego, CA, USA
| | - C H Woelk
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - J R Kelsoe
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA.,Veterans Administration, San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
24
|
|
25
|
Singh A, Gutekunst CA, Uthayathas S, Finberg JPM, Mewes K, Gross RE, Papa SM, Feld Y. Effects of fibroblast transplantation into the internal pallidum on levodopa-induced dyskinesias in parkinsonian non-human primates. Neurosci Bull 2015; 31:705-13. [PMID: 26373985 DOI: 10.1007/s12264-015-1559-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 06/25/2015] [Indexed: 10/23/2022] Open
Abstract
Recent studies have shown that fibroblast transplantation can modify the activity of basal ganglia networks in models of Parkinson's disease. To determine its effects on parkinsonian motor symptoms, we performed autologous dermal fibroblast transplantation into the internal pallidum (GPi) in two parkinsonian rhesus monkeys with stable levodopa-induced dyskinesias (LIDs). Levodopa responses were assessed every week after transplantation for three months. A reduction of between 58% and 64% in total LIDs on the contralateral side was observed in both animals. No clear LID changes were observed on the ipsilateral side. These effects lasted the entire 3-month period in one monkey, but declined after 6-8 weeks in the other. The antiparkinsonian effects of levodopa did not diminish. The results of this pilot study indicate that fibroblast transplantation into the GPi may have beneficial effects on LIDs and warrant further investigation for potential therapeutic use.
Collapse
Affiliation(s)
- Arun Singh
- Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Claire A Gutekunst
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Subramaniam Uthayathas
- Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - John P M Finberg
- Molecular Pharmacology Department, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Klaus Mewes
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Stella M Papa
- Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
26
|
Computational investigation of molecular mechanism and neuropathological implications in Huntington disease. Mol Cell Biochem 2015; 409:1-11. [DOI: 10.1007/s11010-015-2462-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/23/2015] [Indexed: 12/31/2022]
|
27
|
Kanchan K, Fuxreiter M, Fésüs L. Physiological, pathological, and structural implications of non-enzymatic protein-protein interactions of the multifunctional human transglutaminase 2. Cell Mol Life Sci 2015; 72:3009-35. [PMID: 25943306 PMCID: PMC11113818 DOI: 10.1007/s00018-015-1909-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 04/10/2015] [Accepted: 04/13/2015] [Indexed: 12/26/2022]
Abstract
Transglutaminase 2 (TG2) is a ubiquitously expressed member of an enzyme family catalyzing Ca(2+)-dependent transamidation of proteins. It is a multifunctional protein having several well-defined enzymatic (GTP binding and hydrolysis, protein disulfide isomerase, and protein kinase activities) and non-enzymatic (multiple interactions in protein scaffolds) functions. Unlike its enzymatic interactions, the significance of TG2's non-enzymatic regulation of its activities has recently gained importance. In this review, we summarize all the partners that directly interact with TG2 in a non-enzymatic manner and analyze how these interactions could modulate the crosslinking activity and cellular functions of TG2 in different cell compartments. We have found that TG2 mostly acts as a scaffold to bridge various proteins, leading to different functional outcomes. We have also studied how specific structural features, such as intrinsically disordered regions and embedded short linear motifs contribute to multifunctionality of TG2. Conformational diversity of intrinsically disordered regions enables them to interact with multiple partners, which can result in different biological outcomes. Indeed, ID regions in TG2 were identified in functionally relevant locations, indicating that they could facilitate conformational transitions towards the catalytically competent form. We reason that these structural features contribute to modulating the physiological and pathological functions of TG2 and could provide a new direction for detecting unique regulatory partners. Additionally, we have assembled all known anti-TG2 antibodies and have discussed their significance as a toolbox for identifying and confirming novel TG2 regulatory functions.
Collapse
Affiliation(s)
- Kajal Kanchan
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4010 Hungary
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Mónika Fuxreiter
- MTA-DE Momentum Laboratory of Protein Dynamics, University of Debrecen, Debrecen, Hungary
| | - László Fésüs
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4010 Hungary
- MTA-DE Apoptosis, Genomics and Stem Cell Research Group of the Hungarian Academy of Sciences, Debrecen, Hungary
| |
Collapse
|
28
|
Dallérac GM, Levasseur G, Vatsavayai SC, Milnerwood AJ, Cummings DM, Kraev I, Huetz C, Evans KA, Walters SW, Rezaie P, Cho Y, Hirst MC, Murphy KP. Dysfunctional Dopaminergic Neurones in Mouse Models of Huntington's Disease: A Role for SK3 Channels. NEURODEGENER DIS 2015; 15:93-108. [DOI: 10.1159/000375126] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/12/2015] [Indexed: 11/19/2022] Open
|
29
|
Guyenet SJ, Mookerjee SS, Lin A, Custer SK, Chen SF, Sopher BL, La Spada AR, Ellerby LM. Proteolytic cleavage of ataxin-7 promotes SCA7 retinal degeneration and neurological dysfunction. Hum Mol Genet 2015; 24:3908-17. [PMID: 25859008 DOI: 10.1093/hmg/ddv121] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 04/07/2015] [Indexed: 11/12/2022] Open
Abstract
The neurodegenerative disorder spinocerebellar ataxia type 7 (SCA7) is caused by a polyglutamine (polyQ) expansion in the ataxin-7 protein, categorizing SCA7 as one member of a large class of heritable neurodegenerative proteinopathies. Cleavage of ataxin-7 by the protease caspase-7 has been demonstrated in vitro, and the accumulation of proteolytic cleavage products in SCA7 patients and mouse models has been identified as an early pathological change. However, it remains unknown whether a causal relationship exists between ataxin-7 proteolysis and in vivo SCA7 disease progression. To determine whether caspase cleavage is a critical event in SCA7 disease pathogenesis, we generated transgenic mice expressing polyQ-expanded ataxin-7 with a second-site mutation (D266N) to prevent caspase-7 proteolysis. When we compared SCA7-D266N mice with SCA7 mice lacking the D266N mutation, we found that SCA7-D266N mice exhibited improved motor performance, reduced neurodegeneration and substantial lifespan extension. Our findings indicate that proteolysis at the D266 caspase-7 cleavage site is an important mediator of ataxin-7 neurotoxicity, suggesting that inhibition of caspase-7 cleavage of polyQ-ataxin-7 may be a promising therapeutic strategy for this untreatable disorder.
Collapse
Affiliation(s)
| | | | - Amy Lin
- The Buck Institute for Research on Aging, Novato, CA 94945, USA
| | | | - Sylvia F Chen
- The Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Bryce L Sopher
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Albert R La Spada
- Department of Medicine (Medical Genetics) and Department of Cellular and Molecular Medicine, Division of Biological Sciences, Institute for Genomic Medicine, and the Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA, Department of Neurosciences, Division of Biological Sciences, Institute for Genomic Medicine, and the Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA, Department of Pediatrics, Division of Biological Sciences, Institute for Genomic Medicine, and the Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA and Rady Children's Hospital, San Diego, CA 92123, USA
| | - Lisa M Ellerby
- The Buck Institute for Research on Aging, Novato, CA 94945, USA,
| |
Collapse
|
30
|
Wang SE, Lin CL, Hsu CH, Sheu SJ, Chien CT, Wu CH. Treatment with a herbal formula B401 enhances neuroprotection and angiogenesis in the R6/2 mouse model of Huntington's disease. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:887-900. [PMID: 25733809 PMCID: PMC4338258 DOI: 10.2147/dddt.s78015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Huntington’s disease (HD) is a neurodegenerative disease characterized by motor dysfunction and early death. Despite years of research, the mechanisms responsible for chronic neurodegeneration of HD remain elusive. Chinese traditional medicines might provide new insights or new therapy for HD. The Chinese herbal formula B401 is a well-known Taiwan–US patent formula and a health supplement for promoting blood circulation and enhancing brain function. This study aimed to elucidate the neuroprotective effects of the Chinese herbal formula B401 on the syndrome of HD. Then, we compared the life span and body weight of R6/2 HD mice with and without oral B401 treatment. The ameliorative effects of B401 on the symptom of HD mice were investigated through behavior tests. Expressions of proteins for neuroprotection, angiogenesis, and inflammation in the brain tissue of R6/2 HD mice were compared by using immunostaining and Western blotting techniques. Our study in vitro showed that viabilities of glutamate-treated SH-SY5Y cells were significantly increased under B401 treatment. Our results in vivo showed that duration of survival was increased, body weight loss was reduced, and motor ability was improved in R6/2 HD mice under oral B401 treatment. Subcutaneous microcirculation was enhanced in 3-month R6/2 HD mice under intraperitoneal B401 injections as observed by using moorFLPI laser Doppler imager. Atrophy of cerebrum, midbrain, and cerebellum in 3-month R6/2 HD mice under oral B401 treatment was alleviated as observed by utilizing magnetic resonance imaging. Evidence from immunostaining and Western blotting analysis showed that expressions of mutant huntingtin and tumor necrosis factor-alpha were reduced, while expressions of brain-derived neurotrophic factor and vascular endothelial growth factor were enhanced in the brain tissue of 2-month R6/2 HD mice under oral B401 treatment. We suggest that the herbal formula B401 can be developed as a medical supplement for ameliorating neurodegenerative diseases of HD via reducing mutant huntingtin aggregation and excitotoxicity, enhancing neuroprotection and angiogenesis, and alleviating inflammation in the brain.
Collapse
Affiliation(s)
- Sheue-Er Wang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ching-Lung Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chih-Hsiang Hsu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | | | - Chiang-Ting Chien
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chung-Hsin Wu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
31
|
Dietrich P, Dragatsis I. Use of Genetically Engineered Mice to Study the Biology of Huntingtin. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00032-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
32
|
Gutekunst CA, Gross RE. Plexin a4 expression in adult rat cranial nerves. J Chem Neuroanat 2014; 61-62:13-9. [PMID: 24970554 PMCID: PMC4267999 DOI: 10.1016/j.jchemneu.2014.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/21/2014] [Accepted: 06/16/2014] [Indexed: 12/16/2022]
Abstract
PlexinsA1-A4 participate in class 3 semaphorin signaling as co-receptors to neuropilin 1 and 2. PlexinA4 is the latest member of the PlexinA subfamily to be identified. In previous studies, we described the expression of PlexinA4 in the brain and spinal cord of the adult rat. Here, antibodies to PlexinA4 were used to reveal immunolabeling in most of the cranial nerve surveyed. Labeling was found in the olfactory, optic, oculomotor, trochlear, trigeminal, abducens, facial, vestibulocochlear, glossopharyngeal, vagus, and hypoglossal nerves. This is the first detailed description of the cellular and subcellular distribution of PlexinA4 in the adult cranial nerves. The findings will set the basis for future studies on the potential role of PlexinA4 in regeneration and repair of the adult central and peripheral nervous system.
Collapse
Affiliation(s)
| | - Robert E Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA; Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
33
|
Chen JF. Adenosine receptor control of cognition in normal and disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 119:257-307. [PMID: 25175970 DOI: 10.1016/b978-0-12-801022-8.00012-x] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adenosine and adenosine receptors (ARs) are increasingly recognized as important therapeutic targets for controlling cognition under normal and disease conditions for its dual roles of neuromodulation as well as of homeostatic function in the brain. This chapter first presents the unique ability of adenosine, by acting on the inhibitory A1 and facilitating A2A receptor, to integrate dopamine, glutamate, and BNDF signaling and to modulate synaptic plasticity (e.g., long-term potentiation and long-term depression) in brain regions relevant to learning and memory, providing the molecular and cellular bases for adenosine receptor (AR) control of cognition. This led to the demonstration of AR modulation of social recognition memory, working memory, reference memory, reversal learning, goal-directed behavior/habit formation, Pavlovian fear conditioning, and effort-related behavior. Furthermore, human and animal studies support that AR activity can also, through cognitive enhancement and neuroprotection, reverse cognitive impairments in animal models of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease, and schizophrenia. Lastly, epidemiological evidence indicates that regular human consumption of caffeine, the most widely used psychoactive drug and nonselective AR antagonists, is associated with the reduced cognitive decline in aging and AD patients, and with the reduced risk in developing PD. Thus, there is a convergence of the molecular studies revealing AR as molecular targets for integrating neurotransmitter signaling and controlling synaptic plasticity, with animal studies demonstrating the strong procognitive impact upon AR antagonism in normal and disease brains and with epidemiological and clinical evidences in support of caffeine and AR drugs for therapeutic modulation of cognition. Since some of adenosine A2A receptor antagonists are already in phase III clinical trials for motor benefits in PD patients with remarkable safety profiles, additional animal and human studies to better understand the mechanism underlying the AR-mediated control of cognition under normal and disease conditions will provide the required rationale to stimulate the necessary clinical investigation to rapidly translate adenosine and AR drug as a novel strategy to control memory impairment in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jiang-Fan Chen
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA; The Molecular Medicine Institute, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| |
Collapse
|
34
|
Moscovitch-Lopatin M, Goodman RE, Eberly S, Ritch JJ, Rosas HD, Matson S, Matson W, Oakes D, Young AB, Shoulson I, Hersch SM. HTRF analysis of soluble huntingtin in PHAROS PBMCs. Neurology 2013; 81:1134-40. [PMID: 23966247 DOI: 10.1212/wnl.0b013e3182a55ede] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVE We measured the levels of mutant huntingtin (mtHtt) and total huntingtin (tHtt) in blood leukocytes from Prospective Huntington At-Risk Observational Study (PHAROS) subjects at 50% risk of carrying the Huntington disease mutation using a homogeneous time-resolved fluorescence (HTRF) assay to assess its potential as a biomarker. METHODS Peripheral blood mononuclear cells from consenting PHAROS subjects were analyzed by HTRF using antibodies that simultaneously measured mtHtt and tHtt. mtHtt levels were normalized to tHtt, double-stranded DNA, or protein and analyzed according to cytosine-adenine-guanine repeat length (CAGn), demographics, predicted time to clinical onset or known time since clinical onset, and available clinical measures. RESULTS From 363 assayed samples, 342 met quality control standards. Levels of mtHtt and mt/tHtt were higher in 114 subjects with expanded CAG repeats (CAG ≥ 37) compared with 228 subjects with nonexpanded CAG repeats (CAG <37) (p < 0.0001). Analysis of relationships to predicted time to onset or to phenoconversion suggested that the HTRF signal could mark changes during the Huntington disease prodrome or after clinical onset. CONCLUSIONS The HTRF assay can effectively measure mtHtt in multicenter sample sets and may be useful in trials of therapies targeting huntingtin.
Collapse
Affiliation(s)
- Miriam Moscovitch-Lopatin
- From the Massachusetts General Hospital (M.M.-L., R.E.G., J.J.R., H.D.R., S.M., A.B.Y., S.M.H.), MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Charlestown, MA; University of Rochester Medical Center (S.E., D.O.), Department of Biostatistics and Computational Biology, Rochester, NY; Veterans Administration Hospital (W.M.), Bedford, MA; and Program for Regulatory Science & Medicine (I.S.), Georgetown University, Washington, DC
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Li JY, Conforti L. Axonopathy in Huntington's disease. Exp Neurol 2013; 246:62-71. [DOI: 10.1016/j.expneurol.2012.08.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 06/27/2012] [Accepted: 08/11/2012] [Indexed: 02/02/2023]
|
36
|
Arribat Y, Bonneaud N, Talmat-Amar Y, Layalle S, Parmentier ML, Maschat F. A huntingtin peptide inhibits polyQ-huntingtin associated defects. PLoS One 2013; 8:e68775. [PMID: 23861941 PMCID: PMC3701666 DOI: 10.1371/journal.pone.0068775] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 06/06/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Huntington's disease (HD) is caused by the abnormal expansion of the polyglutamine tract in the human Huntingtin protein (polyQ-hHtt). Although this mutation behaves dominantly, huntingtin loss of function also contributes to HD pathogenesis. Indeed, wild-type Huntingtin plays a protective role with respect to polyQ-hHtt induced defects. METHODOLOGY/PRINCIPAL FINDINGS The question that we addressed here is what part of the wild-type Huntingtin is responsible for these protective properties. We first screened peptides from the Huntingtin protein in HeLa cells and identified a 23 aa peptide (P42) that inhibits polyQ-hHtt aggregation. P42 is part of the endogenous Huntingtin protein and lies within a region rich in proteolytic sites that plays a critical role in the pathogenesis process. Using a Drosophila model of HD, we tested the protective properties of this peptide on aggregation, as well as on different polyQ-hHtt induced neuronal phenotypes: eye degeneration (an indicator of cell death), impairment of vesicular axonal trafficking, and physiological behaviors such as larval locomotion and adult survival. Together, our results demonstrate high protective properties for P42 in vivo, in whole animals. These data also demonstrate a specific role of P42 on Huntington's disease model, since it has no effect on other models of polyQ-induced diseases, such as spinocerebellar ataxias. CONCLUSIONS/SIGNIFICANCE Altogether our data show that P42, a 23 aa-long hHtt peptide, plays a protective role with respect to polyQ-hHtt aggregation as well as cellular and behavioral dysfunctions induced by polyQ-hHtt in vivo. Our study also confirms the correlation between polyQ-hHtt aggregation and neuronal defects. Finally, these results strongly suggest a therapeutic potential for P42, specific of Huntington's disease.
Collapse
Affiliation(s)
- Yoan Arribat
- Institut de Génomique Fonctionnelle (IGF), CNRS-UMR5203, INSERM-U661, University of Montpellier, Montpellier, France
| | - Nathalie Bonneaud
- Institut de Génomique Fonctionnelle (IGF), CNRS-UMR5203, INSERM-U661, University of Montpellier, Montpellier, France
| | - Yasmina Talmat-Amar
- Institut de Génomique Fonctionnelle (IGF), CNRS-UMR5203, INSERM-U661, University of Montpellier, Montpellier, France
| | - Sophie Layalle
- Institut de Génomique Fonctionnelle (IGF), CNRS-UMR5203, INSERM-U661, University of Montpellier, Montpellier, France
| | - Marie-Laure Parmentier
- Institut de Génomique Fonctionnelle (IGF), CNRS-UMR5203, INSERM-U661, University of Montpellier, Montpellier, France
- * E-mail: (FM); (MLP)
| | - Florence Maschat
- Institut de Génomique Fonctionnelle (IGF), CNRS-UMR5203, INSERM-U661, University of Montpellier, Montpellier, France
- * E-mail: (FM); (MLP)
| |
Collapse
|
37
|
Potential for therapeutic manipulation of the UPR in disease. Semin Immunopathol 2013; 35:351-73. [PMID: 23572207 PMCID: PMC3641308 DOI: 10.1007/s00281-013-0370-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 03/13/2013] [Indexed: 12/16/2022]
Abstract
Increased endoplasmic reticulum (ER) stress and the activated unfolded protein response (UPR) signaling associated with it play key roles in physiological processes as well as under pathological conditions. The UPR normally protects cells and re-establishes cellular homeostasis, but prolonged UPR activation can lead to the development of various pathologies. These features make the UPR signaling pathway an attractive target for the treatment of diseases whose pathogenesis is characterized by chronic activation of this pathway. Here, we focus on the molecular signaling pathways of the UPR and suggest possible ways to target this response for therapeutic purposes.
Collapse
|
38
|
Burke KA, Yates EA, Legleiter J. Biophysical insights into how surfaces, including lipid membranes, modulate protein aggregation related to neurodegeneration. Front Neurol 2013; 4:17. [PMID: 23459674 PMCID: PMC3585431 DOI: 10.3389/fneur.2013.00017] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/09/2013] [Indexed: 11/13/2022] Open
Abstract
There are a vast number of neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD), associated with the rearrangement of specific proteins to non-native conformations that promotes aggregation and deposition within tissues and/or cellular compartments. These diseases are commonly classified as protein-misfolding or amyloid diseases. The interaction of these proteins with liquid/surface interfaces is a fundamental phenomenon with potential implications for protein-misfolding diseases. Kinetic and thermodynamic studies indicate that significant conformational changes can be induced in proteins encountering surfaces, which can play a critical role in nucleating aggregate formation or stabilizing specific aggregation states. Surfaces of particular interest in neurodegenerative diseases are cellular and subcellular membranes that are predominately comprised of lipid components. The two-dimensional liquid environments provided by lipid bilayers can profoundly alter protein structure and dynamics by both specific and non-specific interactions. Importantly for misfolding diseases, these bilayer properties can not only modulate protein conformation, but also exert influence on aggregation state. A detailed understanding of the influence of (sub)cellular surfaces in driving protein aggregation and/or stabilizing specific aggregate forms could provide new insights into toxic mechanisms associated with these diseases. Here, we review the influence of surfaces in driving and stabilizing protein aggregation with a specific emphasis on lipid membranes.
Collapse
Affiliation(s)
- Kathleen A Burke
- C. Eugene Bennett Department of Chemistry, West Virginia University Morgantown, WV, USA
| | | | | |
Collapse
|
39
|
Melone MA, Calarco A, Petillo O, Margarucci S, Colucci-D'Amato L, Galderisi U, Koverech G, Peluso G. Mutant huntingtin regulates EGF receptor fate in non-neuronal cells lacking wild-type protein. Biochim Biophys Acta Mol Basis Dis 2013; 1832:105-13. [PMID: 22974559 DOI: 10.1016/j.bbadis.2012.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 08/10/2012] [Accepted: 09/04/2012] [Indexed: 12/30/2022]
|
40
|
Costa V, Scorrano L. Shaping the role of mitochondria in the pathogenesis of Huntington's disease. EMBO J 2012; 31:1853-64. [PMID: 22446390 DOI: 10.1038/emboj.2012.65] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 02/20/2012] [Indexed: 12/28/2022] Open
Abstract
Intense research on the pathogenesis of Huntington's disease (HD), a genetic neurodegenerative disease caused by a polyglutamine expansion in the Huntingtin (Htt) protein, revealed multiple potential mechanisms, among which mitochondrial alterations had emerged as key determinants of the natural history of the disease. Pharmacological and genetic animal models of mitochondrial dysfunction in the striatum, which is mostly affected in HD corroborated a key role for these organelles in the pathogenesis of the disease. Here, we will give an account of the recent evidence indicating that the mitochondria-shaping machinery is altered in HD models and patients. Since its correction can counteract HD mitochondrial dysfunction and cellular damage, drugs impacting on mitochondrial shape are emerging as a new possibility of treatment for this devastating condition.
Collapse
Affiliation(s)
- Veronica Costa
- Department of Cell Physiology and Medicine, University of Geneva, Genève, Switzerland
| | | |
Collapse
|
41
|
Gutekunst CA, Stewart EN, Franz CK, English AW, Gross RE. PlexinA4 distribution in the adult rat spinal cord and dorsal root ganglia. J Chem Neuroanat 2012; 44:1-13. [PMID: 22465808 DOI: 10.1016/j.jchemneu.2012.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 02/29/2012] [Accepted: 03/15/2012] [Indexed: 11/24/2022]
Abstract
PlexinsA1-A4 participate in class 3 semaphorin signaling as co-receptors to neuropilin 1 and 2, PlexinA4 being the latest member of the PlexinA subfamily to be identified. Little is known about the cellular distribution of PlexinA4 in the spinal cord and dorsal root ganglion (DRG). Here, immunohistochemical studies using antibodies to PlexinA4 revealed immunolabeling in neurons in both dorsal and, to a greater extent, ventral horns of the spinal cord. Ventral horn PlexinA4 positive neurons exhibited morphology, size, and location consistent with both motor neurons and interneurons. Labeling was found in motor axons exiting through the ventral roots, and more widespread labeling was observed in ascending and descending white matter tracts. Within the DRG, immunostaining was observed in neuronal cell bodies as well as the central and peripheral processes of these cells. PlexinA4 is expressed in the peripheral nervous system where its expression is regulated upon nerve injury. This is the first detailed description of the cellular and subcellular distribution of PlexinA4 in the adult spinal cord and DRG, and it will set the basis for future studies on the potential role of PlexinA4 in regeneration and repair of the adult central and peripheral nervous system.
Collapse
Affiliation(s)
- Claire-Anne Gutekunst
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
42
|
|
43
|
Okita S, Morigaki R, Koizumi H, Kaji R, Nagahiro S, Goto S. Cell type-specific localization of optineurin in the striatal neurons of mice: implications for neuronal vulnerability in Huntington's disease. Neuroscience 2011; 202:363-70. [PMID: 22155493 DOI: 10.1016/j.neuroscience.2011.11.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 11/21/2011] [Accepted: 11/24/2011] [Indexed: 11/26/2022]
Abstract
Striatal neuropathology of Huntington's disease (HD) involves primary and progressive degeneration of the medium-sized projection neurons, with relative sparing of the local circuit interneurons. The mechanism for such a patterned cell loss in the HD striatum continues to remain unclear. Optineurin (OPTN) is one of the proteins interacting with huntingtin and plays a protective role in several neurodegenerative disorders. To determine the cellular localization pattern of OPTN in the mouse striatum, we employed a highly sensitive immunohistochemistry with the tyramide signal amplification system. In this study, we show that OPTN appeared as a cytoplasmic protein within the subsets of the striatal neurons. Of particular interest was that OPTN was abundantly expressed in the interneurons, whereas low levels of OPTN were observed in the medium projection neurons. This cell type-specific distribution of OPTN in the striatum is strikingly complementary to the pattern of neuronal loss typically observed in the striatum of patients with HD. We suggest that OPTN abundance is an important cellular factor in considering the cell type-specific vulnerability of striatal neurons in HD.
Collapse
Affiliation(s)
- S Okita
- Parkinson's Disease and Dystonia Research Center, Tokushima University Hospital, University of Tokushima, Tokushima 770-8503, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Naia L, Ribeiro MJ, Rego AC. Mitochondrial and metabolic-based protective strategies in Huntington's disease: the case of creatine and coenzyme Q. Rev Neurosci 2011; 23:13-28. [PMID: 22150069 DOI: 10.1515/rns.2011.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 10/26/2011] [Indexed: 01/15/2023]
Abstract
Huntington's disease (HD) is a neurodegenerative genetic disorder caused by an expansion of CAG repeats in the HD gene encoding for huntingtin (Htt), resulting in progressive death of striatal neurons, with clinical symptoms of chorea, dementia and dramatic weight loss. Metabolic and mitochondrial dysfunction caused by the expanded polyglutamine sequence have been described along with other mechanisms of neurodegeneration previously described in human tissues and animal models of HD. In this review, we focus on mitochondrial and metabolic disturbances affecting both the central nervous system and peripheral cells, including mitochondrial DNA damage, mitochondrial complexes defects, loss of calcium homeostasis and transcriptional deregulation. Glucose abnormalities have also been described in peripheral tissues of HD patients and in HD animal and cellular models. Moreover, there are no effective neuroprotective treatments available in HD. Thus, we briefly discuss the role of creatine and coenzyme Q10 that target mitochondrial dysfunction and impaired bioenergetics and have been previously used in HD clinical trials.
Collapse
Affiliation(s)
- Luana Naia
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | | |
Collapse
|
45
|
Gil-Mohapel J, Simpson JM, Ghilan M, Christie BR. Neurogenesis in Huntington's disease: Can studying adult neurogenesis lead to the development of new therapeutic strategies? Brain Res 2011; 1406:84-105. [DOI: 10.1016/j.brainres.2011.06.040] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/14/2011] [Accepted: 06/15/2011] [Indexed: 01/01/2023]
|
46
|
Huang K, Sanders SS, Kang R, Carroll JB, Sutton L, Wan J, Singaraja R, Young FB, Liu L, El-Husseini A, Davis NG, Hayden MR. Wild-type HTT modulates the enzymatic activity of the neuronal palmitoyl transferase HIP14. Hum Mol Genet 2011; 20:3356-65. [PMID: 21636527 DOI: 10.1093/hmg/ddr242] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Huntington disease (HD) is caused by polyglutamine expansion in the huntingtin (HTT) protein. Huntingtin-interacting protein 14 (HIP14), one of 23 DHHC domain-containing palmitoyl acyl transferases (PATs), binds to HTT and robustly palmitoylates HTT at cysteine 214. Mutant HTT exhibits reduced palmitoylation and interaction with HIP14, contributing to the neuronal dysfunction associated with HD. In this study, we confirmed that, among 23 DHHC PATs, HIP14 and its homolog DHHC-13 (HIP14L) are the two major PATs that palmitoylate HTT. Wild-type HTT, in addition to serving as a palmitoylation substrate, also modulates the palmitoylation of HIP14 itself. In vivo, HIP14 palmitoylation is decreased in the brains of mice lacking one HTT allele (hdh+/-) and is further reduced in mouse cortical neurons treated with HTT antisense oligos (HTT-ASO) that knockdown HTT expression by ∼95%. Previously, it has been shown that palmitoylation of DHHC proteins may affect their enzymatic activity. Indeed, palmitoylation of SNAP25 by HIP14 is potentiated in vitro in the presence of wild-type HTT. This influence of HTT on HIP14 activity is lost in the presence of CAG expansion. Furthermore, in both brains of hdh+/- mice and neurons treated with HTT-ASO, we observe a significant reduction in palmitoylation of endogenous SNAP25 and GluR1, synaptic proteins that are substrates of HIP14, suggesting wild-type HTT also influences HIP14 enzymatic activity in vivo. This study describes an important biochemical function for wild-type HTT modulation of HIP14 palmitoylation and its enzymatic activity.
Collapse
Affiliation(s)
- Kun Huang
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Sari Y. Huntington's Disease: From Mutant Huntingtin Protein to Neurotrophic Factor Therapy. INTERNATIONAL JOURNAL OF BIOMEDICAL SCIENCE : IJBS 2011; 7:89-100. [PMID: 21841917 PMCID: PMC3154262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Huntington's disease (HD) is an inherited disorder characterized by neuronal dysfunction and degeneration in striatum and cerebral cortex. Although the signaling pathways involved in HD are not yet clearly elucidated, mutant huntingtin protein is a key factor in the induction of neurodegeneration. The mutant huntingtin protein alters intracellular Ca(2+) homeostasis, disrupts intracellular trafficking and impairs gene transcription. In this review, I emphasize the effects of mutant huntingtin protein in Ca(2+) handling and transcriptional factors. Transcriptional alterations are key factors in the deficits of several proteins involved in the cellular machinery. These proteins include neurotrophic factors such as brain-derived neurotrophic factor, fibroblast growth factor, glial-cell-line-derived neurotrophic factor, ciliary neurotrophic factor and neurturin that have been suggested to restore neuronal dysfunction, improve behavioral deficits and prolong the survival in animal models of HD. An understanding of the molecular pathways involved in neurodegeneration will shed light on the choice of neurotrophic factors targeting a specific neuronal population in HD and will consequently overcome behavioral deficits.
Collapse
|
48
|
Kraft AD, Kaltenbach LS, Lo DC, Harry GJ. Activated microglia proliferate at neurites of mutant huntingtin-expressing neurons. Neurobiol Aging 2011; 33:621.e17-33. [PMID: 21482444 DOI: 10.1016/j.neurobiolaging.2011.02.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 02/01/2011] [Accepted: 02/16/2011] [Indexed: 01/13/2023]
Abstract
In Huntington's disease (HD), mutated huntingtin (mhtt) causes striatal neurodegeneration which is paralleled by elevated microglia cell numbers. In vitro corticostriatal slice and primary neuronal culture models, in which neuronal expression of mhtt fragments drives HD-like neurotoxicity, were employed to examine wild type microglia during both the initiation and progression of neuronal pathology. As neuronal pathology progressed, microglia initially localized in the vicinity of neurons expressing mhtt fragments increased in number, demonstrated morphological evidence of activation, and expressed the proliferation marker, Ki67. These microglia were positioned along irregular neurites, but did not localize with mhtt inclusions nor exacerbate mhtt fragment-induced neurotoxicity. Prior to neuronal pathology, microglia upregulated ionized calcium binding adaptor molecule 1 (Iba1), signaling a functional shift. With neurodegeneration, interleukin-6 and complement component 1q were increased. The results suggest a stimulatory, proliferative signal for microglia present at the onset of mhtt fragment-induced neurodegeneration. Thus, microglia effect a localized inflammatory response to neuronal mhtt expression that may serve to direct microglial removal of dysfunctional neurites or aberrant synapses, as is required for reparative actions in vivo.
Collapse
Affiliation(s)
- Andrew D Kraft
- Neurotoxicology Group, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
49
|
Costa V, Giacomello M, Hudec R, Lopreiato R, Ermak G, Lim D, Malorni W, Davies KJA, Carafoli E, Scorrano L. Mitochondrial fission and cristae disruption increase the response of cell models of Huntington's disease to apoptotic stimuli. EMBO Mol Med 2011; 2:490-503. [PMID: 21069748 PMCID: PMC3044888 DOI: 10.1002/emmm.201000102] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Huntington's disease (HD), a genetic neurodegenerative disease caused by a polyglutamine expansion in the Huntingtin (Htt) protein, is accompanied by multiple mitochondrial alterations. Here, we show that mitochondrial fragmentation and cristae alterations characterize cellular models of HD and participate in their increased susceptibility to apoptosis. In HD cells, the increased basal activity of the phosphatase calcineurin dephosphorylates the pro-fission dynamin related protein 1 (Drp1), increasing its mitochondrial translocation and activation, and ultimately leading to fragmentation of the organelle. The fragmented HD mitochondria are characterized by cristae alterations that are aggravated by apoptotic stimulation. A genetic analysis indicates that correction of mitochondrial elongation is not sufficient to rescue the increased cytochrome c release and cell death observed in HD cells. Conversely, the increased apoptosis can be corrected by manoeuvres that prevent fission and cristae remodelling. In conclusion, the cristae remodelling of the fragmented HD mitochondria contributes to their hypersensitivity to apoptosis.
Collapse
Affiliation(s)
- Veronica Costa
- Department of Cell Physiology and Medicine, University of Geneva, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hughes A, Jones L. Huntingtin localisation studies - a technical review. PLOS CURRENTS 2011; 3:RRN1211. [PMID: 21339845 PMCID: PMC3037564 DOI: 10.1371/currents.rrn1211] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/01/2011] [Indexed: 01/16/2023]
Abstract
It is well recognised that there are pitfalls when defining the subcellular localisation of a protein with immunocytochemistry. Accurate protein localisation to particular cellular micro-architecture is crucial in defining its role within the cell. Huntingtin (HTT), the protein mutated in the neurodegenerative disorder Huntington’s disease (HD) is a large protein of ill-defined function. Bearing little resemblance to other proteins, its function has been difficult to assign, therefore localising this protein with precision within the cell may provide further clues as to its normal and pathological function. Lack of consistency between methods employed in different studies has resulted in varying conclusions as to its subcellular localisation. This technical review investigates the effects that different immunocytological methods can have upon the apparent subcellular localisation of the huntingtin protein, and discusses the implications this may have.
Collapse
|