1
|
Akbarian M, Chen IN, Lu PH, Do QT, Tzeng SF, Chou HH, Chen SH. Chaperone/Polymer Complexation of Protein-Based Fluorescent Nanoclusters against Silica Encapsulation-Induced Physicochemical Stresses. Biomacromolecules 2024; 25:6515-6525. [PMID: 39289809 PMCID: PMC11480988 DOI: 10.1021/acs.biomac.4c00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Silica encapsulation under ambient conditions is commonly used to shield protein-based nanosystems from chemical stress. However, encapsulation-induced photo- and structural instabilities at elevated temperatures have been overlooked. Using bovine serum albumin-capped fluorescent gold nanoclusters (BSA-AuNCs) as a model, we demonstrated that chaperone/polymer layer-by-layer complexation can stabilize the template to resist encapsulation-induced fragmentation/reorganization and emission increases at 37 °C or higher temperatures. We first wrapped BSA-AuNCs with α-crystallin chaperones (α-Crys) to gain the highest thermal stability at a 1:50 molar ratio and then enfolded BSA-AuNC/α-Crys with thermoresponsive poly-N-isopropylacrylamide (PNIPAM) at 60 °C to shield silica interaction and increase the chaperone-client protein accessibility. The resulting BSA-AuNC/α-Crys/PNIPAM (BαP) was encapsulated by a sol-gel process to yield BαP-Si (∼80 ± 4.5 nm), which exhibited excellent structural integrity and photostability against chemical and thermal stresses. Moreover, targeted BαP-Si demonstrated prolonged fluorescence stability for cancer cell imaging. This template stabilization strategy for silica encapsulation is biocompatible and applicable to other protein-based nanosystems.
Collapse
Affiliation(s)
- Mohsen Akbarian
- Department
of Chemistry, National Cheng Kung University, Tainan 70101, Taiwan
- Marquette
University School of Dentistry, Milwaukee, Wisconsin 53233, United States
| | - I.-Ni Chen
- Department
of Chemistry, National Cheng Kung University, Tainan 70101, Taiwan
| | - Pei-Hsuan Lu
- Department
of Chemistry, National Cheng Kung University, Tainan 70101, Taiwan
| | - Quynh-Trang Do
- Department
of Chemistry, National Cheng Kung University, Tainan 70101, Taiwan
| | - Shun-Fen Tzeng
- Department
of Life Science, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ho-Hsuan Chou
- Department
of Chemistry, National Cheng Kung University, Tainan 70101, Taiwan
| | - Shu-Hui Chen
- Department
of Chemistry, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
2
|
Arutyunyan A, Seuma M, Faure AJ, Bolognesi B, Lehner B. Energetic portrait of the amyloid beta nucleation transition state. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604935. [PMID: 39091732 PMCID: PMC11291115 DOI: 10.1101/2024.07.24.604935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Amyloid protein aggregates are pathological hallmarks of more than fifty human diseases including the most common neurodegenerative disorders. The atomic structures of amyloid fibrils have now been determined, but the process by which soluble proteins nucleate to form amyloids remains poorly characterised and difficult to study, even though this is the key step to understand to prevent the formation and spread of aggregates. Here we use massively parallel combinatorial mutagenesis, a kinetic selection assay, and machine learning to reveal the transition state of the nucleation reaction of amyloid beta, the protein that aggregates in Alzheimer's disease. By quantifying the nucleation of >140,000 proteins we infer the changes in activation energy for all 798 amino acid substitutions in amyloid beta and the energetic couplings between >600 pairs of mutations. This unprecedented dataset provides the first comprehensive view of the energy landscape and the first large-scale measurement of energetic couplings for a protein transition state. The energy landscape reveals that the amyloid beta nucleation transition state contains a short structured C-terminal hydrophobic core with a subset of interactions similar to mature fibrils. This study demonstrates the feasibility of using mutation-selection-sequencing experiments to study transition states and identifies the key molecular species that initiates amyloid beta aggregation and, potentially, Alzheimer's disease.
Collapse
Affiliation(s)
| | - Mireia Seuma
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10-12, 08028, Barcelona, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Current address: Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Andre J. Faure
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Current address: ALLOX, C/Dr. Aiguader, 88, PRBB Building, 08003 Barcelona, Spain
| | - Benedetta Bolognesi
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Ben Lehner
- Wellcome Sanger Institute, Cambridge, UK
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
3
|
Pietrangeli P, Marcocci L, Pennacchietti V, Diop A, Di Felice M, Pagano L, Malagrinò F, Toto A, Brunori M, Gianni S. The Mechanism of Folding of Human Frataxin in Comparison to the Yeast Homologue - Broad Energy Barriers and the General Properties of the Transition State. J Mol Biol 2024; 436:168555. [PMID: 38552947 DOI: 10.1016/j.jmb.2024.168555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
The funneled energy landscape theory suggests that the folding pathway of homologous proteins should converge at the late stages of folding. In this respect, proteins displaying a broad energy landscape for folding are particularly instructive, allowing inferring both the early, intermediate and late stages of folding. In this paper we explore the folding mechanisms of human frataxin, an essential mitochondrial protein linked to the neurodegenerative disorder Friedreich's ataxia. Building upon previous studies on the yeast homologue, the folding pathway of human frataxin is thoroughly examined, revealing a mechanism implying the presence of a broad energy barrier, reminiscent of the yeast counterpart. Through an extensive site-directed mutagenesis, we employed a Φ -value analysis to map native-like contacts in the folding transition state. The presence of a broad energy barrier facilitated the exploration of such contacts in both early and late folding events. We compared results from yeast and human frataxin providing insights into the impact of native topology on the folding mechanism and elucidating the properties of the underlying free energy landscape. The findings are discussed in the context of the funneled energy landscape theory of protein folding.
Collapse
Affiliation(s)
- Paola Pietrangeli
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Rome, Italy
| | - Lucia Marcocci
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Rome, Italy
| | - Valeria Pennacchietti
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Rome, Italy
| | - Awa Diop
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Rome, Italy
| | - Mariana Di Felice
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Rome, Italy
| | - Livia Pagano
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Rome, Italy
| | - Francesca Malagrinò
- Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze Della Vita e Dell'ambiente, Università dell'Aquila, Piazzale Salvatore Tommasi 1, 67010 L'Aquila - Coppito, Italy
| | - Angelo Toto
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Rome, Italy
| | - Maurizio Brunori
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Rome, Italy
| | - Stefano Gianni
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Rome, Italy.
| |
Collapse
|
4
|
Walker EJ, Hamill CJ, Crean R, Connolly MS, Warrender AK, Kraakman KL, Prentice EJ, Steyn-Ross A, Steyn-Ross M, Pudney CR, van der Kamp MW, Schipper LA, Mulholland AJ, Arcus VL. Cooperative Conformational Transitions Underpin the Activation Heat Capacity in the Temperature Dependence of Enzyme Catalysis. ACS Catal 2024; 14:4379-4394. [PMID: 38633402 PMCID: PMC11020164 DOI: 10.1021/acscatal.3c05584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/16/2024] [Accepted: 02/16/2024] [Indexed: 04/19/2024]
Abstract
Many enzymes display non-Arrhenius behavior with curved Arrhenius plots in the absence of denaturation. There has been significant debate about the origin of this behavior and recently the role of the activation heat capacity (ΔCP⧧) has been widely discussed. If enzyme-catalyzed reactions occur with appreciable negative values of ΔCP⧧ (arising from narrowing of the conformational space along the reaction coordinate), then curved Arrhenius plots are a consequence. To investigate these phenomena in detail, we have collected high precision temperature-rate data over a wide temperature interval for a model glycosidase enzyme MalL, and a series of mutants that change the temperature-dependence of the enzyme-catalyzed rate. We use these data to test a range of models including macromolecular rate theory (MMRT) and an equilibrium model. In addition, we have performed extensive molecular dynamics (MD) simulations to characterize the conformational landscape traversed by MalL in the enzyme-substrate complex and an enzyme-transition state complex. We have crystallized the enzyme in a transition state-like conformation in the absence of a ligand and determined an X-ray crystal structure at very high resolution (1.10 Å). We show (using simulation) that this enzyme-transition state conformation has a more restricted conformational landscape than the wildtype enzyme. We coin the term "transition state-like conformation (TLC)" to apply to this state of the enzyme. Together, these results imply a cooperative conformational transition between an enzyme-substrate conformation (ES) and a transition-state-like conformation (TLC) that precedes the chemical step. We present a two-state model as an extension of MMRT (MMRT-2S) that describes the data along with a convenient approximation with linear temperature dependence of the activation heat capacity (MMRT-1L) that can be used where fewer data points are available. Our model rationalizes disparate behavior seen for MalL and previous results for a thermophilic alcohol dehydrogenase and is consistent with a raft of data for other enzymes. Our model can be used to characterize the conformational changes required for enzyme catalysis and provides insights into the role of cooperative conformational changes in transition state stabilization that are accompanied by changes in heat capacity for the system along the reaction coordinate. TLCs are likely to be of wide importance in understanding the temperature dependence of enzyme activity and other aspects of enzyme catalysis.
Collapse
Affiliation(s)
- Emma J. Walker
- Te
Aka Ma̅tuatua School of Science, University
of Waikato, Hamilton 3214, New Zealand
| | - Carlin J. Hamill
- Te
Aka Ma̅tuatua School of Science, University
of Waikato, Hamilton 3214, New Zealand
| | - Rory Crean
- Centre
for Computational Chemistry, School of Chemistry,
University of Bristol, Bristol BS8 1TS, U.K.
| | - Michael S. Connolly
- Centre
for Computational Chemistry, School of Chemistry,
University of Bristol, Bristol BS8 1TS, U.K.
| | - Annmaree K. Warrender
- Te
Aka Ma̅tuatua School of Science, University
of Waikato, Hamilton 3214, New Zealand
| | - Kirsty L. Kraakman
- Te
Aka Ma̅tuatua School of Science, University
of Waikato, Hamilton 3214, New Zealand
| | - Erica J. Prentice
- Te
Aka Ma̅tuatua School of Science, University
of Waikato, Hamilton 3214, New Zealand
| | | | - Moira Steyn-Ross
- School
of Engineering, University of Waikato, Hamilton 3214, New Zealand
| | - Christopher R. Pudney
- Department
of Biology and Biochemistry, Centre for Biosensors, Bioelectronics
and Biodevices, University of Bath, Bath ST16 2TB, U.K.
| | - Marc W. van der Kamp
- School
of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K.
| | - Louis A. Schipper
- Te
Aka Ma̅tuatua School of Science, University
of Waikato, Hamilton 3214, New Zealand
| | - Adrian J. Mulholland
- Centre
for Computational Chemistry, School of Chemistry,
University of Bristol, Bristol BS8 1TS, U.K.
| | - Vickery L. Arcus
- Te
Aka Ma̅tuatua School of Science, University
of Waikato, Hamilton 3214, New Zealand
| |
Collapse
|
5
|
Fersht AR. From covalent transition states in chemistry to noncovalent in biology: from β- to Φ-value analysis of protein folding. Q Rev Biophys 2024; 57:e4. [PMID: 38597675 DOI: 10.1017/s0033583523000045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Solving the mechanism of a chemical reaction requires determining the structures of all the ground states on the pathway and the elusive transition states linking them. 2024 is the centenary of Brønsted's landmark paper that introduced the β-value and structure-activity studies as the only experimental means to infer the structures of transition states. It involves making systematic small changes in the covalent structure of the reactants and analysing changes in activation and equilibrium-free energies. Protein engineering was introduced for an analogous procedure, Φ-value analysis, to analyse the noncovalent interactions in proteins central to biological chemistry. The methodology was developed first by analysing noncovalent interactions in transition states in enzyme catalysis. The mature procedure was then applied to study transition states in the pathway of protein folding - 'part (b) of the protein folding problem'. This review describes the development of Φ-value analysis of transition states and compares and contrasts the interpretation of β- and Φ-values and their limitations. Φ-analysis afforded the first description of transition states in protein folding at the level of individual residues. It revealed the nucleation-condensation folding mechanism of protein domains with the transition state as an expanded, distorted native structure, containing little fully formed secondary structure but many weak tertiary interactions. A spectrum of transition states with various degrees of structural polarisation was then uncovered that spanned from nucleation-condensation to the framework mechanism of fully formed secondary structure. Φ-analysis revealed how movement of the expanded transition state on an energy landscape accommodates the transition from framework to nucleation-condensation mechanisms with a malleability of structure as a unifying feature of folding mechanisms. Such movement follows the rubric of analysis of classical covalent chemical mechanisms that began with Brønsted. Φ-values are used to benchmark computer simulation, and Φ and simulation combine to describe folding pathways at atomic resolution.
Collapse
Affiliation(s)
- Alan R Fersht
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Gonville and Caius College, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Bychkova VE, Dolgikh DA, Balobanov VA. Function of the Conserved Non-Functional Residues in Apomyoglobin - to Determine and to Preserve Correct Topology of the Protein. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1905-1909. [PMID: 38105207 DOI: 10.1134/s0006297923110184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/18/2023] [Accepted: 08/31/2023] [Indexed: 12/19/2023]
Abstract
In this paper the answer to O. B. Ptitsyn's question "What is the role of conserved non-functional residues in apomyoglobin" is presented, which is based on the research results of three laboratories. The role of conserved non-functional apomyoglobin residues in formation of native topology in the molten globule state of this protein is revealed. This fact allows suggesting that the conserved non-functional residues in this protein are indispensable for fixation and maintaining main elements of the correct topology of its secondary structure in the intermediate state. The correct topology is a native element in the intermediate state of the protein.
Collapse
Affiliation(s)
- Valentina E Bychkova
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Dmitry A Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117871, Russia
| | - Vitalii A Balobanov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
7
|
Simien JM, Orellana GE, Phan HTN, Hu Y, Kurth EA, Ruf C, Kricek F, Wang Q, Smrcka AV, Haglund E. A Small Contribution to a Large System: The Leptin Receptor Complex. J Phys Chem B 2023; 127:2457-2465. [PMID: 36912891 DOI: 10.1021/acs.jpcb.3c01090] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Obesity is a classified epidemic, increasing the risk of secondary diseases such as diabetes, inflammation, cardiovascular disease, and cancer. The pleiotropic hormone leptin is the proposed link for the gut-brain axis controlling nutritional status and energy expenditure. Research into leptin signaling provides great promise toward discovering therapeutics for obesity and its related diseases targeting leptin and its cognate leptin receptor (LEP-R). The molecular basis underlying the human leptin receptor complex assembly remains obscure, due to the lack of structural information regarding the biologically active complex. In this work, we investigate the proposed receptor binding sites in human leptin utilizing designed antagonist proteins combined with AlphaFold predictions. Our results show that binding site I has a more intricate role in the active signaling complex than previously described. We hypothesize that the hydrophobic patch in this region engages a third receptor forming a higher-order complex, or a new LEP-R binding site inducing allosteric rearrangement.
Collapse
Affiliation(s)
- Jennifer M Simien
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Grace E Orellana
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Hoa T N Phan
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Yao Hu
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Emily A Kurth
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Christine Ruf
- NBS-C BioScience & Consulting GmbH, Vienna, 1230, Austria
| | - Franz Kricek
- NBS-C BioScience & Consulting GmbH, Vienna, 1230, Austria
| | - Qian Wang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Alan V Smrcka
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Ellinor Haglund
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
8
|
Santorelli D, Marcocci L, Pennacchietti V, Nardella C, Diop A, Pietrangeli P, Pagano L, Toto A, Malagrinò F, Gianni S. Understanding the molecular basis of folding cooperativity through a comparative analysis of a multidomain protein and its isolated domains. J Biol Chem 2023; 299:102983. [PMID: 36739950 PMCID: PMC10017356 DOI: 10.1016/j.jbc.2023.102983] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023] Open
Abstract
Although cooperativity is a well-established and general property of folding, our current understanding of this feature in multidomain folding is still relatively limited. In fact, there are contrasting results indicating that the constituent domains of a multidomain protein may either fold independently on each other or exhibit interdependent supradomain phenomena. To address this issue, here we present the comparative analysis of the folding of a tandem repeat protein, comprising two contiguous PDZ domains, in comparison to that of its isolated constituent domains. By analyzing in detail the equilibrium and kinetics of folding at different experimental conditions, we demonstrate that despite each of the PDZ domains in isolation being capable of independent folding, at variance with previously characterized PDZ tandem repeats, the full-length construct folds and unfolds as a single cooperative unit. By exploiting quantitatively, the comparison of the folding of the tandem repeat to those observed for its constituent domains, as well as by characterizing a truncated variant lacking a short autoinhibitory segment, we successfully rationalize the molecular basis of the observed cooperativity and attempt to infer some general conclusions for multidomain systems.
Collapse
Affiliation(s)
- Daniele Santorelli
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy
| | - Lucia Marcocci
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy
| | - Valeria Pennacchietti
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy
| | - Caterina Nardella
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy
| | - Awa Diop
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy
| | - Paola Pietrangeli
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy
| | - Livia Pagano
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy
| | - Angelo Toto
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy
| | - Francesca Malagrinò
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Naples, Italy.
| | - Stefano Gianni
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy.
| |
Collapse
|
9
|
Dang NL, Baranger AM, Beveridge DL. High Energy Channeling and Malleable Transition States: Molecular Dynamics Simulations and Free Energy Landscapes for the Thermal Unfolding of Protein U1A and 13 Mutants. Biomolecules 2022; 12:940. [PMID: 35883496 PMCID: PMC9312810 DOI: 10.3390/biom12070940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
The spliceosome protein U1A is a prototype case of the RNA recognition motif (RRM) ubiquitous in biological systems. The in vitro kinetics of the chemical denaturation of U1A indicate that the unfolding of U1A is a two-state process but takes place via high energy channeling and a malleable transition state, an interesting variation of typical two-state behavior. Molecular dynamics (MD) simulations have been applied extensively to the study of two-state unfolding and folding of proteins and provide an opportunity to obtain a theoretical account of the experimental results and a molecular model for the transition state ensemble. We describe herein all-atom MD studies including explicit solvent of up to 100 ns on the thermal unfolding (UF) of U1A and 13 mutants. Multiple MD UF trajectories are carried out to ensure accuracy and reproducibility. A vector representation of the MD unfolding process in RMSD space is obtained and used to calculate a free energy landscape for U1A unfolding. A corresponding MD simulation and free energy landscape for the protein CI2, well known to follow a simple two state folding/unfolding model, is provided as a control. The results indicate that the unfolding pathway on the MD calculated free energy landscape of U1A shows a markedly extended transition state compared with that of CI2. The MD results support the interpretation of the observed chevron plots for U1A in terms of a high energy, channel-like transition state. Analysis of the MDUF structures shows that the transition state ensemble involves microstates with most of the RRM secondary structure intact but expanded by ~14% with respect to the radius of gyration. Comparison with results on a prototype system indicates that the transition state involves an ensemble of molten globule structures and extends over the region of ~1-35 ns in the trajectories. Additional MDUF simulations were carried out for 13 U1A mutants, and the calculated φ-values show close accord with observed results and serve to validate our methodology.
Collapse
Affiliation(s)
| | | | - David L. Beveridge
- Department of Chemistry and Molecular Biophysics Program, Wesleyan University, Middletown, CT 06459, USA; (N.L.D.); (A.M.B.)
| |
Collapse
|
10
|
Kulkarni P, Leite VBP, Roy S, Bhattacharyya S, Mohanty A, Achuthan S, Singh D, Appadurai R, Rangarajan G, Weninger K, Orban J, Srivastava A, Jolly MK, Onuchic JN, Uversky VN, Salgia R. Intrinsically disordered proteins: Ensembles at the limits of Anfinsen's dogma. BIOPHYSICS REVIEWS 2022; 3:011306. [PMID: 38505224 PMCID: PMC10903413 DOI: 10.1063/5.0080512] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/17/2022] [Indexed: 03/21/2024]
Abstract
Intrinsically disordered proteins (IDPs) are proteins that lack rigid 3D structure. Hence, they are often misconceived to present a challenge to Anfinsen's dogma. However, IDPs exist as ensembles that sample a quasi-continuum of rapidly interconverting conformations and, as such, may represent proteins at the extreme limit of the Anfinsen postulate. IDPs play important biological roles and are key components of the cellular protein interaction network (PIN). Many IDPs can interconvert between disordered and ordered states as they bind to appropriate partners. Conformational dynamics of IDPs contribute to conformational noise in the cell. Thus, the dysregulation of IDPs contributes to increased noise and "promiscuous" interactions. This leads to PIN rewiring to output an appropriate response underscoring the critical role of IDPs in cellular decision making. Nonetheless, IDPs are not easily tractable experimentally. Furthermore, in the absence of a reference conformation, discerning the energy landscape representation of the weakly funneled IDPs in terms of reaction coordinates is challenging. To understand conformational dynamics in real time and decipher how IDPs recognize multiple binding partners with high specificity, several sophisticated knowledge-based and physics-based in silico sampling techniques have been developed. Here, using specific examples, we highlight recent advances in energy landscape visualization and molecular dynamics simulations to discern conformational dynamics and discuss how the conformational preferences of IDPs modulate their function, especially in phenotypic switching. Finally, we discuss recent progress in identifying small molecules targeting IDPs underscoring the potential therapeutic value of IDPs. Understanding structure and function of IDPs can not only provide new insight on cellular decision making but may also help to refine and extend Anfinsen's structure/function paradigm.
Collapse
Affiliation(s)
- Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Vitor B. P. Leite
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Supriyo Bhattacharyya
- Translational Bioinformatics, Center for Informatics, Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Srisairam Achuthan
- Center for Informatics, Division of Research Informatics, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Divyoj Singh
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Rajeswari Appadurai
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Govindan Rangarajan
- Department of Mathematics, Indian Institute of Science, Bangalore 560012, India
| | - Keith Weninger
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Jose N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005-1892, USA
| | | | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, USA
| |
Collapse
|
11
|
The native state conformational heterogeneity in the energy landscape of protein folding. Biophys Chem 2022; 283:106761. [DOI: 10.1016/j.bpc.2022.106761] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 11/18/2022]
|
12
|
Brunori M. From Kuru to Alzheimer: A personal outlook. Protein Sci 2021; 30:1776-1792. [PMID: 34118168 DOI: 10.1002/pro.4145] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 01/02/2023]
Abstract
Seventy years ago, we learned from Chris Anfinsen that the stereochemical code necessary to fold a protein is embedded into its amino acid sequence. In water, protein morphogenesis is a spontaneous reversible process leading from an ensemble of disordered structures to the ordered functionally competent protein; conforming to Aristotle's definition of substance, the synolon of matter and form. The overall process of folding is generally consistent with a two state transition between the native and the denatured protein: not only the denatured state is an ensemble of several structures, but also the native protein populates distinct functionally relevant conformational (sub)states. This two-state view should be revised, given that any globular protein can populate a peculiar third state called amyloid, characterized by an overall architecture that at variance with the native state, is by-and-large independent of the primary structure. In a nut shell, we should accept that beside the folded and unfolded states, any protein can populate a third state called amyloid which gained center stage being the hallmark of incurable neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases as well as others. These fatal diseases are characterized by clear-cut clinical differences, yet display some commonalities such as the presence in the brain of amyloid deposits constituted by one misfolded protein specific for each disease. Some aspects of this complex problem are summarized here as an excursus from the prion's fibrils observed in the brain of aborigines who died of Kuru to the amyloid detectable in the cortex of Alzheimer's patients.
Collapse
Affiliation(s)
- Maurizio Brunori
- Accademia Nazionale dei Lincei and Dipartimento di Scienze Biochimiche "A. Rossi Fanelli,", Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
13
|
The concept of protein folding/unfolding and its impacts on human health. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021. [PMID: 34090616 DOI: 10.1016/bs.apcsb.2021.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Proteins have evolved in specific 3D structures and play different functions in cells and determine various reactions and pathways. The newly synthesized amino acid chains once depart ribosome must crumple into three-dimensional structures so can be biologically active. This process of protein that makes a functional molecule is called protein folding. The protein folding is both a biological and a physicochemical process that depends on the sequence of it. In fact, this process occurs more complicated and in some cases and in exposure to some molecules like glucose (glycation), mistaken folding leads to amyloid structures and fatal disorders called conformational diseases. Such conditions are detected by the quality control system of the cell and these abnormal proteins undergo renovation or degradation. This scenario takes place by the chaperones, chaperonins, and Ubiquitin-proteasome complex. Understanding of protein folding mechanisms from different views including experimental and computational approaches has revealed some intermediate ensembles such as molten globule and has been subjected to biophysical and molecular biology attempts to know more about prevalent conformational diseases.
Collapse
|
14
|
Zhang H, Zhang H, Chen C. Investigating the folding mechanism of the N-terminal domain of ribosomal protein L9. Proteins 2021; 89:832-844. [PMID: 33576138 DOI: 10.1002/prot.26062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/04/2021] [Accepted: 01/31/2021] [Indexed: 11/10/2022]
Abstract
Protein folding is a popular topic in the life science. However, due to the limited sampling ability of experiments and simulations, the general folding mechanism is not yet clear to us. In this work, we study the folding of the N-terminal domain of ribosomal protein L9 (NTL9) in detail by a mixing replica exchange molecular dynamics method. The simulation results are close to previous experimental observations. According to the Markov state model, the folding of the protein follows a nucleation-condensation path. Moreover, after the comparison to its 39-residue β-α-β motif, we find that the helix at the C-terminal has a great influence on the folding process of the intact protein, including the nucleation of the key residues in the transition state ensemble and the packing of the hydrophobic residues in the native state.
Collapse
Affiliation(s)
- Haozhe Zhang
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Haomiao Zhang
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Changjun Chen
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Exposing the distinctive modular behavior of β-strands and α-helices in folded proteins. Proc Natl Acad Sci U S A 2020; 117:28775-28783. [PMID: 33148805 PMCID: PMC7682573 DOI: 10.1073/pnas.1920455117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although folded proteins are commonly depicted as simplistic combinations of β-strands and α-helices, the actual properties and functions of these secondary-structure elements in their native contexts are just partly understood. The principal reason is that the behavior of individual β- and α-elements is obscured by the global folding cooperativity. In this study, we have circumvented this problem by designing frustrated variants of the mixed α/β-protein S6, which allow the structural behavior of individual β-strands and α-helices to be targeted selectively by stopped-flow kinetics, X-ray crystallography, and solution-state NMR. Essentially, our approach is based on provoking intramolecular "domain swap." The results show that the α- and β-elements have quite different characteristics: The swaps of β-strands proceed via global unfolding, whereas the α-helices are free to swap locally in the native basin. Moreover, the α-helices tend to hybridize and to promote protein association by gliding over to neighboring molecules. This difference in structural behavior follows directly from hydrogen-bonding restrictions and suggests that the protein secondary structure defines not only tertiary geometry, but also maintains control in function and structural evolution. Finally, our alternative approach to protein folding and native-state dynamics presents a generally applicable strategy for in silico design of protein models that are computationally testable in the microsecond-millisecond regime.
Collapse
|
16
|
Pal S, Banerjee S, Prabhakaran EN. Helix-Coil Transition at a Glycine Following a Nascent α-Helix: A Synergetic Guidance Mechanism for Helix Growth. J Phys Chem A 2020; 124:7478-7490. [PMID: 32877193 DOI: 10.1021/acs.jpca.0c05489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A detailed understanding of forces guiding the rapid folding of a polypeptide from an apparently random coil state to an ordered α-helical structure following the rate-limiting preorganization of the initial three residue backbones into helical conformation is imperative to comprehending and regulating protein folding and for the rational design of biological mimetics. However, several details of this process are still unknown. First, although the helix-coil transition was proposed to originate at the residue level (J. Chem. Phys. 1959, 31, 526-535; J. Chem. Phys. 1961, 34, 1963-1974), all helix-folding studies have only established it between time-averaged bulk states of a long-lived helix and several transiently populated random coils, along the whole helix model sequence. Second, the predominant thermodynamic forces driving either this two-state transition or the faster helix growth following helix nucleation are still unclear. Third, the conformational space of the random coil state is not well-defined unlike its corresponding α-helix. Here we investigate the restrictions placed on the conformational space of a Gly residue backbone, as a result of it immediately succeeding a nascent α-helical turn. Analyses of the temperature-dependent 1D-, 2D-NMR, FT-IR, and CD spectra and GROMACS MD simulation trajectory of a Gly residue backbone following a model α-helical turn, which is artificially rigidified by a covalent hydrogen bond surrogate, reveal that: (i) the α-helical turn guides the ϕ torsion of the Gly exclusively into either a predominantly populated entropically favored α-helical (α-ϕ) state or a scarcely populated random coil (RC-ϕ) state; (ii) the α-ϕ state of Gly in turn favors the stability of the preceding α-helical turn, while the RC-ϕ state disrupts it, revealing an entropy-driven synergetic guidance for helix growth in the residue following helix nucleation. The applicability of a current synergetic guidance mechanism to explain rapid helix growth in folded and unfolded states of proteins and helical peptides is discussed.
Collapse
Affiliation(s)
- Sunit Pal
- Department of Chemistry, Indian Institute of Science, Bangalore, Karnataka-560012, India
| | - Shreya Banerjee
- Department of Chemistry, Indian Institute of Science, Bangalore, Karnataka-560012, India
| | - Erode N Prabhakaran
- Department of Chemistry, Indian Institute of Science, Bangalore, Karnataka-560012, India
| |
Collapse
|
17
|
The Conformational Plasticity Vista of PDZ Domains. Life (Basel) 2020; 10:life10080123. [PMID: 32726937 PMCID: PMC7460260 DOI: 10.3390/life10080123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/19/2020] [Accepted: 07/25/2020] [Indexed: 02/01/2023] Open
Abstract
The PDZ domain (PSD95-Discs large-ZO1) is a widespread modular domain present in the living organisms. A prevalent function in the PDZ family is to serve as scaffolding and adaptor proteins connecting multiple partners in signaling pathways. An explanation of the flexible functionality in this domain family, based just on a static perspective of the structure-activity relationship, might fall short. More dynamic and conformational aspects in the protein fold can be the reasons for such functionality. Folding studies indeed showed an ample and malleable folding landscape for PDZ domains where multiple intermediate states were experimentally detected. Allosteric phenomena that resemble energetic coupling between residues have also been found in PDZ domains. Additionally, several PDZ domains are modulated by post-translational modifications, which introduce conformational switches that affect binding. Altogether, the ability to connect diverse partners might arise from the intrinsic plasticity of the PDZ fold.
Collapse
|
18
|
Affiliation(s)
- Lavi S. Bigman
- Department of Structural BiologyWeizmann Institute of Science Rehovot 76100 Israel
| | - Yaakov Levy
- Department of Structural BiologyWeizmann Institute of Science Rehovot 76100 Israel
| |
Collapse
|
19
|
Toto A, Malagrinò F, Visconti L, Troilo F, Pagano L, Brunori M, Jemth P, Gianni S. Templated folding of intrinsically disordered proteins. J Biol Chem 2020; 295:6586-6593. [PMID: 32253236 DOI: 10.1074/jbc.rev120.012413] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Much of our current knowledge of biological chemistry is founded in the structure-function relationship, whereby sequence determines structure that determines function. Thus, the discovery that a large fraction of the proteome is intrinsically disordered, while being functional, has revolutionized our understanding of proteins and raised new and interesting questions. Many intrinsically disordered proteins (IDPs) have been determined to undergo a disorder-to-order transition when recognizing their physiological partners, suggesting that their mechanisms of folding are intrinsically different from those observed in globular proteins. However, IDPs also follow some of the classic paradigms established for globular proteins, pointing to important similarities in their behavior. In this review, we compare and contrast the folding mechanisms of globular proteins with the emerging features of binding-induced folding of intrinsically disordered proteins. Specifically, whereas disorder-to-order transitions of intrinsically disordered proteins appear to follow rules of globular protein folding, such as the cooperative nature of the reaction, their folding pathways are remarkably more malleable, due to the heterogeneous nature of their folding nuclei, as probed by analysis of linear free-energy relationship plots. These insights have led to a new model for the disorder-to-order transition in IDPs termed "templated folding," whereby the binding partner dictates distinct structural transitions en route to product, while ensuring a cooperative folding.
Collapse
Affiliation(s)
- Angelo Toto
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Francesca Malagrinò
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Lorenzo Visconti
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Francesca Troilo
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Livia Pagano
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Maurizio Brunori
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - Stefano Gianni
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| |
Collapse
|
20
|
Kwamen ACN, Schlottmann M, Van Craen D, Isaak E, Baums J, Shen L, Massomi A, Räuber C, Joseph BP, Raabe G, Göb C, Oppel IM, Puttreddy R, Ward JS, Rissanen K, Fröhlich R, Albrecht M. Shedding Light on the Interactions of Hydrocarbon Ester Substituents upon Formation of Dimeric Titanium(IV) Triscatecholates in DMSO Solution. Chemistry 2020; 26:1396-1405. [PMID: 31737953 PMCID: PMC7027801 DOI: 10.1002/chem.201904639] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Indexed: 01/27/2023]
Abstract
The dissociation of hierarchically formed dimeric triple lithium bridged triscatecholate titanium(IV) helicates with hydrocarbyl esters as side groups is systematically investigated in DMSO. Primary alkyl, alkenyl, alkynyl as well as benzyl esters are studied in order to minimize steric effects close to the helicate core. The 1 H NMR dimerization constants for the monomer-dimer equilibrium show some solvent dependent influence of the side chains on the dimer stability. In the dimer, the ability of the hydrocarbyl ester groups to aggregate minimizes their contacts with the solvent molecules. Due to this, most solvophobic alkyl groups show the highest dimerization tendency followed by alkenyls, alkynyls and finally benzyls. Furthermore, trends within the different groups of compounds can be observed. For example, the dimer is destabilized by internal double or triple bonds due to π-π repulsion. A strong indication for solvent supported London dispersion interaction between the ester side groups is found by observation of an even/odd alternation of dimerization constants within the series of n-alkyls, n-Ω-alkenyls or n-Ω-alkynyls. This corresponds to the interaction of the parent hydrocarbons, as documented by an even/odd melting point alternation.
Collapse
Affiliation(s)
- A. Carel N. Kwamen
- Institut für Organische ChemieRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Marcel Schlottmann
- Institut für Organische ChemieRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - David Van Craen
- Institut für Organische ChemieRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Elisabeth Isaak
- Institut für Organische ChemieRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Julia Baums
- Institut für Organische ChemieRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Li Shen
- Institut für Organische ChemieRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Ali Massomi
- Institut für Organische ChemieRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Christoph Räuber
- Institut für Organische ChemieRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Benjamin P. Joseph
- Institut für Organische ChemieRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Gerhard Raabe
- Institut für Organische ChemieRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Christian Göb
- Institut für Anorganische ChemieRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Iris M. Oppel
- Institut für Anorganische ChemieRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Rakesh Puttreddy
- University of JyväskyläDepartment of ChemistryP.O. Box 35Jyväskylä40014Finland
| | - Jas S. Ward
- University of JyväskyläDepartment of ChemistryP.O. Box 35Jyväskylä40014Finland
| | - Kari Rissanen
- University of JyväskyläDepartment of ChemistryP.O. Box 35Jyväskylä40014Finland
| | - Roland Fröhlich
- Organisch-Chemisches InstitutUniversität MünsterCorrensstrasse 4048149MünsterGermany
| | - Markus Albrecht
- Institut für Organische ChemieRWTH Aachen UniversityLandoltweg 152074AachenGermany
| |
Collapse
|
21
|
Nandi T, Yadav A, Ainavarapu SRK. Experimental comparison of energy landscape features of ubiquitin family proteins. Proteins 2019; 88:449-461. [DOI: 10.1002/prot.25822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/05/2019] [Accepted: 09/18/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Tathagata Nandi
- Department of Chemical SciencesTata Institute of Fundamental Research Mumbai India
| | - Anju Yadav
- Department of Chemical SciencesTata Institute of Fundamental Research Mumbai India
| | | |
Collapse
|
22
|
Toto A, Troilo F, Visconti L, Malagrinò F, Bignon C, Longhi S, Gianni S. Binding induced folding: Lessons from the kinetics of interaction between N TAIL and XD. Arch Biochem Biophys 2019; 671:255-261. [PMID: 31326517 DOI: 10.1016/j.abb.2019.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/28/2019] [Accepted: 07/14/2019] [Indexed: 10/26/2022]
Abstract
Intrinsically Disordered Proteins (IDPs) are a class of protein that exert their function despite lacking a well-defined three-dimensional structure, which is sometimes achieved only upon binding to their natural ligands. This feature implies the folding of IDPs to be generally coupled with a binding event, representing an interesting challenge for kinetic studies. In this review, we recapitulate some of the most important findings of IDPs binding-induced folding mechanisms obtained by analyzing their binding kinetics. Furthermore, by focusing on the interaction between the Measles virus NTAIL protein, a prototypical IDP, and its physiological partner, the X domain, we recapitulate the major theoretical and experimental approaches that were used to describe binding induced folding.
Collapse
Affiliation(s)
- Angelo Toto
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Francesca Troilo
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Lorenzo Visconti
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Francesca Malagrinò
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Christophe Bignon
- Aix-Marseille University, CNRS, Architecture et Fonction des Macromolećules Biologiques (AFMB), UMR7257, Marseille, France
| | - Sonia Longhi
- Aix-Marseille University, CNRS, Architecture et Fonction des Macromolećules Biologiques (AFMB), UMR7257, Marseille, France.
| | - Stefano Gianni
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy.
| |
Collapse
|
23
|
Visconti L, Malagrinò F, Gianni S, Toto A. Structural characterization of an on-pathway intermediate and transition state in the folding of the N-terminal SH2 domain from SHP2. FEBS J 2019; 286:4769-4777. [PMID: 31287606 DOI: 10.1111/febs.14990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/29/2019] [Accepted: 07/06/2019] [Indexed: 12/23/2022]
Abstract
Src Homology 2 (SH2) domains are a class of protein domains that present a conserved three-dimensional structure and possess a crucial role in mediating protein-protein interactions. Despite their importance and abundance in the proteome, knowledge about the folding properties of SH2 domain is limited. Here we present an extensive mutational analysis (Φ value analysis) of the folding pathway of the N-SH2 domain of the Src homology region 2 domain-containing phosphatase-2 (SHP2) protein, a 104 residues domain that presents the classical SH2 domain fold (two α-helices flanking a central β-sheet composed of 3-5 antiparallel β-strands), with a fundamental role in mediating the interaction of SHP2 with its substrates and triggering key metabolic pathways in the cell. By analysing folding kinetic data we demonstrated that the folding pathway of N-SH2 presents an obligatory on-pathway intermediate that accumulates during the folding reaction. The production of 24 conservative site-directed variants allowed us to perform a Φ value analysis, by which we could fully characterize the intermediate and the transition state native-like interactions, providing a detailed quantitative analysis of the folding pathway of N-SH2. Results highlight the presence of a hydrophobic nucleus that stabilizes the intermediate, leading to a higher degree of native-like interactions in the transition state. Data are discussed and compared with previous works on SH2 domains.
Collapse
Affiliation(s)
- Lorenzo Visconti
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Italy
| | - Francesca Malagrinò
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Italy
| | - Stefano Gianni
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Italy
| | - Angelo Toto
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Italy
| |
Collapse
|
24
|
How Robust Is the Mechanism of Folding-Upon-Binding for an Intrinsically Disordered Protein? Biophys J 2019; 114:1889-1894. [PMID: 29694866 DOI: 10.1016/j.bpj.2018.03.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/15/2018] [Accepted: 03/20/2018] [Indexed: 12/18/2022] Open
Abstract
The mechanism of interaction of an intrinsically disordered protein (IDP) with its physiological partner is characterized by a disorder-to-order transition in which a recognition and a binding step take place. Even if the mechanism is quite complex, IDPs tend to bind their partner in a cooperative manner such that it is generally possible to detect experimentally only the disordered unbound state and the structured complex. The interaction between the disordered C-terminal domain of the measles virus nucleoprotein (NTAIL) and the X domain (XD) of the viral phosphoprotein allows us to detect and quantify the two distinct steps of the overall reaction. Here, we analyze the robustness of the folding of NTAIL upon binding to XD by measuring the effect on both the folding and binding steps of NTAIL when the structure of XD is modified. Because it has been shown that wild-type XD is structurally heterogeneous, populating an on-pathway intermediate under native conditions, we investigated the binding to 11 different site-directed variants of NTAIL of one particular variant of XD (I504A XD) that populates only the native state. Data reveal that the recognition and the folding steps are both affected by the structure of XD, indicating a highly malleable pathway. The experimental results are briefly discussed in the light of previous experiments on other IDPs.
Collapse
|
25
|
Abstract
The folding simulations of three ββα-motifs and β-barrel structured proteins (NTL9, NuG2b, and CspA) were performed to determine the important roles of native and nonnative contacts in protein folding.
Collapse
Affiliation(s)
- Qiang Shao
- Drug Discovery and Design Center
- CAS Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
| | - Weiliang Zhu
- Drug Discovery and Design Center
- CAS Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
| |
Collapse
|
26
|
|
27
|
Karlsson E, Andersson E, Dogan J, Gianni S, Jemth P, Camilloni C. A structurally heterogeneous transition state underlies coupled binding and folding of disordered proteins. J Biol Chem 2018; 294:1230-1239. [PMID: 30514761 PMCID: PMC6349112 DOI: 10.1074/jbc.ra118.005854] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/30/2018] [Indexed: 11/12/2022] Open
Abstract
Many intrinsically disordered proteins (IDPs) attain a well-defined structure in a coupled folding and binding reaction with another protein. Such reactions may involve early to late formation of different native structural regions along the reaction pathway. To obtain insights into the transition state for a coupled binding and folding reaction, we performed restrained molecular dynamics simulations using previously determined experimental binding Φb values of the interaction between two IDP domains: the activation domain from the p160 transcriptional co-activator for thyroid hormone and retinoid receptors (ACTR) and the nuclear co-activator binding domain (NCBD) of CREB-binding protein, each forming three well-defined α-helices upon binding. These simulations revealed that both proteins are largely disordered in the transition state for complex formation, except for two helices, one from each domain, that display a native-like structure. The overall transition state structure was extended and largely dynamic with many weakly populated contacts. To test the transition state model, we combined site-directed mutagenesis with kinetic experiments, yielding results consistent with overall diffuse interactions and formation of native intramolecular interactions in the third NCBD helix during the binding reaction. Our findings support the view that the transition state and, by inference, any encounter complex in coupled binding and folding reactions are structurally heterogeneous and largely independent of specific interactions. Furthermore, experimental Φb values and Brønsted plots suggested that the transition state is globally robust with respect to most mutations but can display more native-like features for some highly destabilizing mutations, possibly because of Hammond behavior or ground-state effects.
Collapse
Affiliation(s)
- Elin Karlsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123 Uppsala, Sweden
| | - Eva Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123 Uppsala, Sweden
| | - Jakob Dogan
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Stefano Gianni
- Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli," Sapienza Università di Roma, 00185 Rome, Italy
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123 Uppsala, Sweden.
| | - Carlo Camilloni
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy.
| |
Collapse
|
28
|
Troilo F, Bonetti D, Camilloni C, Toto A, Longhi S, Brunori M, Gianni S. Folding Mechanism of the SH3 Domain from Grb2. J Phys Chem B 2018; 122:11166-11173. [DOI: 10.1021/acs.jpcb.8b06320] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Francesca Troilo
- Istituto Pasteur—Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli” and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Daniela Bonetti
- Istituto Pasteur—Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli” and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Carlo Camilloni
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milan, Italy
| | - Angelo Toto
- Istituto Pasteur—Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli” and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Sonia Longhi
- Aix-Marseille Univ, CNRS, Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR, 7257 Marseille, France
| | - Maurizio Brunori
- Istituto Pasteur—Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli” and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Stefano Gianni
- Istituto Pasteur—Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli” and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| |
Collapse
|
29
|
Shao Q, Zhu W. The effects of implicit modeling of nonpolar solvation on protein folding simulations. Phys Chem Chem Phys 2018; 20:18410-18419. [PMID: 29946610 DOI: 10.1039/c8cp03156h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Implicit solvent models, in which the polar and nonpolar solvation free-energies of solute molecules are treated separately, have been widely adopted for molecular dynamics simulation of protein folding. While the development of the implicit models is mainly focused on the methodological improvement and key parameter optimization for polar solvation, nonpolar solvation has been either ignored or described by a simplistic surface area (SA) model. In this work, we performed the folding simulations of multiple β-hairpin and α-helical proteins with varied surface tension coefficients embedded in the SA model to clearly demonstrate the effects of nonpolar solvation treated by a popular SA model on protein folding. The results indicate that the change in the surface tension coefficient does not alter the ability of implicit solvent simulations to reproduce a protein native structure but indeed controls the components of the equilibrium conformational ensemble and modifies the energetic characterization of the folding transition pathway. The suitably set surface tension coefficient can yield explicit solvent simulations and/or experimentally suggested folding mechanism of protein. In addition, the implicit treatment of both polar and nonpolar components of solvation free-energy contributes to the overestimation of the secondary structure in implicit solvent simulations.
Collapse
Affiliation(s)
- Qiang Shao
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
| | | |
Collapse
|
30
|
Cote Y, Delarue P, Scheraga HA, Senet P, Maisuradze GG. From a Highly Disordered to a Metastable State: Uncovering Insights of α-Synuclein. ACS Chem Neurosci 2018; 9:1051-1065. [PMID: 29451381 DOI: 10.1021/acschemneuro.7b00446] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
α-Synuclein (αS) is a major constituent of Lewy bodies, the insoluble aggregates that are the hallmark of one of the most prevalent neurodegenerative disorders, Parkinson's disease (PD). The vast majority of experiments in vitro and in vivo provide extensive evidence that a disordered monomeric form is the predominant state of αS in water solution, and it undergoes a large-scale disorder-to-helix transition upon binding to vesicles of different types. Recently, another form, tetrameric, of αS with a stable helical structure was identified experimentally. It has been shown that a dynamic intracellular population of metastable αS tetramers and monomers coexists normally; and the tetramer plays an essential role in maintaining αS homeostasis. Therefore, it is of interest to know whether the tetramer can serve as a means of preventing or delaying the start of PD. Before answering this very important question, it is, first, necessary to find out, on an atomistic level, a correlation between tetramers and monomers; what mediates tetramer formation and what makes a tetramer stable. We address these questions here by investigating both monomeric and tetrameric forms of αS. In particular, by examining correlations between the motions of the side chains and the main chain, steric parameters along the amino-acid sequence, and one- and two-dimensional free-energy landscapes along the coarse-grained dihedral angles γ and δ and principal components, respectively, in monomeric and tetrameric αS, we were able to shed light on a fundamental relationship between monomers and tetramers, and the key residues involved in mediating formation of a tetramer. Also, the reasons for the stability of tetrameric αS and inability of monomeric αS to fold are elucidated here.
Collapse
Affiliation(s)
- Yoann Cote
- Department of
Integrative Structural Biology, Institut de Génétique
et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104 - INSERM
U 964, Université de Strasbourg, 1 rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
- Laboratoire Interdisciplinaire
Carnot de Bourgogne, UMR 6303 CNRS - Univ. Bourgogne Franche-Comté, 9 Av. Alain Savary, BP 47 870, F-21078 Dijon Cedex, France
| | - Patrice Delarue
- Laboratoire Interdisciplinaire
Carnot de Bourgogne, UMR 6303 CNRS - Univ. Bourgogne Franche-Comté, 9 Av. Alain Savary, BP 47 870, F-21078 Dijon Cedex, France
| | - Harold A. Scheraga
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, United States
| | - Patrick Senet
- Laboratoire Interdisciplinaire
Carnot de Bourgogne, UMR 6303 CNRS - Univ. Bourgogne Franche-Comté, 9 Av. Alain Savary, BP 47 870, F-21078 Dijon Cedex, France
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, United States
| | - Gia G. Maisuradze
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
31
|
Nusrat S, Khan RH. Exploration of ligand-induced protein conformational alteration, aggregate formation, and its inhibition: A biophysical insight. Prep Biochem Biotechnol 2018; 48:43-56. [PMID: 29106330 DOI: 10.1080/10826068.2017.1387561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The association of protein aggregates with plentiful human diseases has fascinated studies regarding the biophysical characterization of protein misfolding and ultimately their aggregate formation mechanism. Protein-ligand interaction, their mechanism, conformational changes by ligands, and protein aggregate formation have been studied upon exploiting experimental techniques and computational methodologies. Such studies for the exploration of ligand-induced conformational changes in protein, misfolding and aggregation, has confirmed drastic progresses in the study of aggregate formation pathways. This review comprises of an inclusive description of contemporary experimental techniques as well as theoretical improvements in the interpretation of the conformational properties of protein. We have also discussed various factors responsible for the microenvironment change around protein that sequentially causes amyloidoses. Biophysical techniques and cell-based assays to gain comprehensive understandings of protein-ligand interaction, protein folding, and aggregation pathways have also been described. The promising therapeutic methods used to inhibit the protein fibrillogenesis have also been discussed.
Collapse
Affiliation(s)
- Saima Nusrat
- a Interdisciplinary Biotechnology Unit , Aligarh Muslim University , Aligarh , Uttar Pradesh , India
| | - Rizwan Hasan Khan
- a Interdisciplinary Biotechnology Unit , Aligarh Muslim University , Aligarh , Uttar Pradesh , India
| |
Collapse
|
32
|
A mechanistic insight into protein-ligand interaction, folding, misfolding, aggregation and inhibition of protein aggregates: An overview. Int J Biol Macromol 2018; 106:1115-1129. [DOI: 10.1016/j.ijbiomac.2017.07.185] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 07/28/2017] [Accepted: 07/30/2017] [Indexed: 11/22/2022]
|
33
|
de Oliveira GA, Silva JL. The push-and-pull hypothesis in protein unfolding, misfolding and aggregation. Biophys Chem 2017; 231:20-26. [DOI: 10.1016/j.bpc.2017.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 01/17/2023]
|
34
|
Shao Q, Zhu W. How Well Can Implicit Solvent Simulations Explore Folding Pathways? A Quantitative Analysis of α-Helix Bundle Proteins. J Chem Theory Comput 2017; 13:6177-6190. [DOI: 10.1021/acs.jctc.7b00726] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Qiang Shao
- Drug
Discovery and Design Center, CAS Key Laboratory of Receptor Research,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of
Chinese Academy of Sciences, Beijing 100049, China
| | - Weiliang Zhu
- Drug
Discovery and Design Center, CAS Key Laboratory of Receptor Research,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of
Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
35
|
Bonetti D, Troilo F, Toto A, Brunori M, Longhi S, Gianni S. Analyzing the Folding and Binding Steps of an Intrinsically Disordered Protein by Protein Engineering. Biochemistry 2017; 56:3780-3786. [DOI: 10.1021/acs.biochem.7b00350] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniela Bonetti
- Istituto
Pasteur Italia-Fondazione Cenci Bolognetti, Istituto di Biologia e
Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche
“A. Rossi Fanelli”, Sapienza Università di Roma, 00185 Rome, Italy
| | - Francesca Troilo
- Istituto
Pasteur Italia-Fondazione Cenci Bolognetti, Istituto di Biologia e
Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche
“A. Rossi Fanelli”, Sapienza Università di Roma, 00185 Rome, Italy
- Aix-Marseille Univ, CNRS, Architecture et Fonction des
Macromolécules Biologiques (AFMB), UMR 7257, 13288 Marseille, France
| | - Angelo Toto
- Aix-Marseille Univ, CNRS, Architecture et Fonction des
Macromolécules Biologiques (AFMB), UMR 7257, 13288 Marseille, France
| | - Maurizio Brunori
- Istituto
Pasteur Italia-Fondazione Cenci Bolognetti, Istituto di Biologia e
Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche
“A. Rossi Fanelli”, Sapienza Università di Roma, 00185 Rome, Italy
| | - Sonia Longhi
- Aix-Marseille Univ, CNRS, Architecture et Fonction des
Macromolécules Biologiques (AFMB), UMR 7257, 13288 Marseille, France
| | - Stefano Gianni
- Istituto
Pasteur Italia-Fondazione Cenci Bolognetti, Istituto di Biologia e
Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche
“A. Rossi Fanelli”, Sapienza Università di Roma, 00185 Rome, Italy
| |
Collapse
|
36
|
Salt-bridge networks within globular and disordered proteins: characterizing trends for designable interactions. J Mol Model 2017. [PMID: 28626846 DOI: 10.1007/s00894-017-3376-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
There has been considerable debate about the contribution of salt bridges to the stabilization of protein folds, in spite of their participation in crucial protein functions. Salt bridges appear to contribute to the activity-stability trade-off within proteins by bringing high-entropy charged amino acids into close contacts during the course of their functions. The current study analyzes the modes of association of salt bridges (in terms of networks) within globular proteins and at protein-protein interfaces. While the most common and trivial type of salt bridge is the isolated salt bridge, bifurcated salt bridge appears to be a distinct salt-bridge motif having a special topology and geometry. Bifurcated salt bridges are found ubiquitously in proteins and interprotein complexes. Interesting and attractive examples presenting different modes of interaction are highlighted. Bifurcated salt bridges appear to function as molecular clips that are used to stitch together large surface contours at interacting protein interfaces. The present work also emphasizes the key role of salt-bridge-mediated interactions in the partial folding of proteins containing long stretches of disordered regions. Salt-bridge-mediated interactions seem to be pivotal to the promotion of "disorder-to-order" transitions in small disordered protein fragments and their stabilization upon binding. The results obtained in this work should help to guide efforts to elucidate the modus operandi of these partially disordered proteins, and to conceptualize how these proteins manage to maintain the required amount of disorder even in their bound forms. This work could also potentially facilitate explorations of geometrically specific designable salt bridges through the characterization of composite salt-bridge networks. Graphical abstract ᅟ.
Collapse
|
37
|
Troilo F, Bonetti D, Toto A, Visconti L, Brunori M, Longhi S, Gianni S. The Folding Pathway of the KIX Domain. ACS Chem Biol 2017; 12:1683-1690. [PMID: 28459531 DOI: 10.1021/acschembio.7b00289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The KIX domain is an 89-residues globular domain with an important role in mediating protein-protein interactions. The presence of two distinct binding sites in such a small domain makes KIX a suitable candidate to investigate the effect of the potentially divergent demands between folding and function. Here, we report an extensive mutational analysis of the folding pathway of the KIX domain, based on 30 site-directed mutants, which allow us to assess the structures of both the transition and denatured states. Data reveal that, while the transition state presents mostly native-like interactions, the denatured state is somewhat misfolded. We mapped some of the non-native contacts in the denatured state using a second round of mutagenesis, based on double mutant cycles on 15 double mutants. Interestingly, such a misfolding arises from non-native interactions involving the residues critical for the function of the protein. The results described in this work appear to highlight the diverging demands between folding and function that may lead to misfolding, which may be observed in the early stages of folding.
Collapse
Affiliation(s)
- Francesca Troilo
- Istituto
Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche
“A. Rossi Fanelli” and Istituto di Biologia e Patologia
Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
- Aix-Marseille Univ, CNRS, Architecture et Fonction des
Macromolécules Biologiques (AFMB), UMR 7257, 13288, Marseille, France
| | - Daniela Bonetti
- Istituto
Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche
“A. Rossi Fanelli” and Istituto di Biologia e Patologia
Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Angelo Toto
- Istituto
Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche
“A. Rossi Fanelli” and Istituto di Biologia e Patologia
Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Lorenzo Visconti
- Istituto
Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche
“A. Rossi Fanelli” and Istituto di Biologia e Patologia
Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Maurizio Brunori
- Istituto
Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche
“A. Rossi Fanelli” and Istituto di Biologia e Patologia
Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Sonia Longhi
- Aix-Marseille Univ, CNRS, Architecture et Fonction des
Macromolécules Biologiques (AFMB), UMR 7257, 13288, Marseille, France
| | - Stefano Gianni
- Istituto
Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche
“A. Rossi Fanelli” and Istituto di Biologia e Patologia
Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| |
Collapse
|
38
|
Physicochemical code for quinary protein interactions in Escherichia coli. Proc Natl Acad Sci U S A 2017; 114:E4556-E4563. [PMID: 28536196 DOI: 10.1073/pnas.1621227114] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How proteins sense and navigate the cellular interior to find their functional partners remains poorly understood. An intriguing aspect of this search is that it relies on diffusive encounters with the crowded cellular background, made up of protein surfaces that are largely nonconserved. The question is then if/how this protein search is amenable to selection and biological control. To shed light on this issue, we examined the motions of three evolutionary divergent proteins in the Escherichia coli cytoplasm by in-cell NMR. The results show that the diffusive in-cell motions, after all, follow simplistic physical-chemical rules: The proteins reveal a common dependence on (i) net charge density, (ii) surface hydrophobicity, and (iii) the electric dipole moment. The bacterial protein is here biased to move relatively freely in the bacterial interior, whereas the human counterparts more easily stick. Even so, the in-cell motions respond predictably to surface mutation, allowing us to tune and intermix the protein's behavior at will. The findings show how evolution can swiftly optimize the diffuse background of protein encounter complexes by just single-point mutations, and provide a rational framework for adjusting the cytoplasmic motions of individual proteins, e.g., for rescuing poor in-cell NMR signals and for optimizing protein therapeutics.
Collapse
|
39
|
Kukic P, Pustovalova Y, Camilloni C, Gianni S, Korzhnev DM, Vendruscolo M. Structural Characterization of the Early Events in the Nucleation–Condensation Mechanism in a Protein Folding Process. J Am Chem Soc 2017; 139:6899-6910. [DOI: 10.1021/jacs.7b01540] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Predrag Kukic
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Yulia Pustovalova
- Department
of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - Carlo Camilloni
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
- Technische Universität Mun̈chen Institute for Advanced Study & Department of Chemistry, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Stefano Gianni
- Istituto
Pasteur - Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia
Molecolari del CNR, Dipartimento di Scienze Biochimiche “A.
Rossi Fanelli”, Sapienza Università di Roma, Rome 00185, Italy
| | - Dmitry M. Korzhnev
- Department
of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | | |
Collapse
|
40
|
Harada R, Takano Y, Shigeta Y. Common folding processes of mini-proteins: Partial formations of secondary structures initiate the immediate protein folding. J Comput Chem 2017; 38:790-797. [DOI: 10.1002/jcc.24748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/20/2016] [Accepted: 01/12/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Ryuhei Harada
- Center for Computational Sciences, University of Tsukuba; 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| | - Yu Takano
- Department of Biomedical Information Sciences; Graduate School of Information Sciences, Hiroshima City University; 3-4-1 Ozuka-Higashi, Asa-Minami-Ku Hiroshima 731-3194 Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba; 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| |
Collapse
|
41
|
NISHIMURA C. Folding of apomyoglobin: Analysis of transient intermediate structure during refolding using quick hydrogen deuterium exchange and NMR. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:10-27. [PMID: 28077807 PMCID: PMC5406622 DOI: 10.2183/pjab.93.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/31/2016] [Indexed: 05/27/2023]
Abstract
The structures of apomyoglobin folding intermediates have been widely analyzed using physical chemistry methods including fluorescence, circular dichroism, small angle X-ray scattering, NMR, mass spectrometry, and rapid mixing. So far, at least two intermediates (on sub-millisecond- and millisecond-scales) have been demonstrated for apomyoglobin folding. The combination of pH-pulse labeling and NMR is a useful tool for analyzing the kinetic intermediates at the atomic level. Its use has revealed that the latter-phase kinetic intermediate of apomyoglobin (6 ms) was composed of helices A, B, G and H, whereas the equilibrium intermediate, called the pH 4 molten-globule intermediate, was composed mainly of helices A, G and H. The improved strategy for the analysis of the kinetic intermediate was developed to include (1) the dimethyl sulfoxide method, (2) data processing with the various labeling times, and (3) a new in-house mixer. Particularly, the rapid mixing revealed that helices A and G were significantly more protected at the earlier stage (400 µs) of the intermediate (former-phase intermediate) than the other helices. Mutation studies, where each hydrophobic residue was replaced with an alanine in helices A, B, E, F, G and H, indicated that both non-native and native-like structures exist in the latter-phase folding intermediate. The N-terminal part of helix B is a weak point in the intermediate, and the docking of helix E residues to the core of the A, B, G and H helices was interrupted by a premature helix B, resulting in the accumulation of the intermediate composed of helices A, B, G and H. The prediction-based protein engineering produced important mutants: Helix F in a P88K/A90L/S92K/A94L mutant folded in the latter-phase intermediate, although helix F in the wild type does not fold even at the native state. Furthermore, in the L11G/W14G/A70L/G73W mutant, helix A did not fold but helix E did, which is similar to what was observed in the kinetic intermediate of apoleghemoglobin. Thus, this protein engineering resulted in a changed structure for the apomyoglobin folding intermediate.
Collapse
Affiliation(s)
- Chiaki NISHIMURA
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano-ku, Tokyo, Japan
| |
Collapse
|
42
|
Narita M, Narita M, Itsuno Y, Itsuno S. Protein Folding Structures: Formation of Folding Structures Based on Probability Theory. ACS OMEGA 2016; 1:1355-1366. [PMID: 31457201 PMCID: PMC6640795 DOI: 10.1021/acsomega.6b00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/05/2016] [Indexed: 06/10/2023]
Abstract
To the best of our knowledge, this is the first study that shows that the X-ray structures of proteins can be dissected into their continuous folding structure units. Each folding structure unit was designed such that both the terminal di- or tri-peptide sequences shared common sequences with the two adjacent folding structure units. To encode the folding structure information of proteins into their amino acid sequences, we proposed 44 kinds of folding elements, which covered all of the amino acids in the protein chains, and defined all folding structure units. The folding element was defined to mean a minimum structural piece, which covered the frame of the main chain of each amino acid in a protein chain. A folding structure unit of a local sequence could be fully characterized by the sequential combination of individual folding elements assigned to each amino acid. The folding structure information showed amino acid preferences in various positions in folding structure units. Folding structure formation proceeded on the basis of probability theory. Strikingly, relative formation ability analysis clearly indicated that we can decode the types and the chain length of folding structure units from the amino acid sequence of a protein.
Collapse
Affiliation(s)
- Mitsuaki Narita
- Department
of Biotechnology & Life Science, Tokyo
University of Agriculture and Technology, Naka-machi 2-24-16, Koganei, Tokyo 183-8588, Japan
| | - Masakuni Narita
- Research
Laboratory, Nihon Pharmaceutical Co., Ltd., Shinizumi 34, Narita 286-0825, Japan
| | - Yasuko Itsuno
- Department
of Environmental and Life Sciences, Toyohashi
University of Technology, 1-1 Hibarigaoka, Toyohashi 441-8580, Japan
| | - Shinichi Itsuno
- Department
of Environmental and Life Sciences, Toyohashi
University of Technology, 1-1 Hibarigaoka, Toyohashi 441-8580, Japan
| |
Collapse
|
43
|
Malhotra P, Udgaonkar JB. How cooperative are protein folding and unfolding transitions? Protein Sci 2016; 25:1924-1941. [PMID: 27522064 PMCID: PMC5079258 DOI: 10.1002/pro.3015] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/09/2016] [Accepted: 08/09/2016] [Indexed: 11/12/2022]
Abstract
A thermodynamically and kinetically simple picture of protein folding envisages only two states, native (N) and unfolded (U), separated by a single activation free energy barrier, and interconverting by cooperative two-state transitions. The folding/unfolding transitions of many proteins occur, however, in multiple discrete steps associated with the formation of intermediates, which is indicative of reduced cooperativity. Furthermore, much advancement in experimental and computational approaches has demonstrated entirely non-cooperative (gradual) transitions via a continuum of states and a multitude of small energetic barriers between the N and U states of some proteins. These findings have been instrumental towards providing a structural rationale for cooperative versus noncooperative transitions, based on the coupling between interaction networks in proteins. The cooperativity inherent in a folding/unfolding reaction appears to be context dependent, and can be tuned via experimental conditions which change the stabilities of N and U. The evolution of cooperativity in protein folding transitions is linked closely to the evolution of function as well as the aggregation propensity of the protein. A large activation energy barrier in a fully cooperative transition can provide the kinetic control required to prevent the accumulation of partially unfolded forms, which may promote aggregation. Nevertheless, increasing evidence for barrier-less "downhill" folding, as well as for continuous "uphill" unfolding transitions, indicate that gradual non-cooperative processes may be ubiquitous features on the free energy landscape of protein folding.
Collapse
Affiliation(s)
- Pooja Malhotra
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, 560065, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, 560065, India.
| |
Collapse
|
44
|
Evolutionary trend toward kinetic stability in the folding trajectory of RNases H. Proc Natl Acad Sci U S A 2016; 113:13045-13050. [PMID: 27799545 DOI: 10.1073/pnas.1611781113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proper folding of proteins is critical to producing the biological machinery essential for cellular function. The rates and energetics of a protein's folding process, which is described by its energy landscape, are encoded in the amino acid sequence. Over the course of evolution, this landscape must be maintained such that the protein folds and remains folded over a biologically relevant time scale. How exactly a protein's energy landscape is maintained or altered throughout evolution is unclear. To study how a protein's energy landscape changed over time, we characterized the folding trajectories of ancestral proteins of the ribonuclease H (RNase H) family using ancestral sequence reconstruction to access the evolutionary history between RNases H from mesophilic and thermophilic bacteria. We found that despite large sequence divergence, the overall folding pathway is conserved over billions of years of evolution. There are robust trends in the rates of protein folding and unfolding; both modern RNases H evolved to be more kinetically stable than their most recent common ancestor. Finally, our study demonstrates how a partially folded intermediate provides a readily adaptable folding landscape by allowing the independent tuning of kinetics and thermodynamics.
Collapse
|
45
|
Bemporad F, Ramazzotti M. From the Evolution of Protein Sequences Able to Resist Self-Assembly to the Prediction of Aggregation Propensity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 329:1-47. [PMID: 28109326 DOI: 10.1016/bs.ircmb.2016.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Folding of polypeptide chains into biologically active entities is an astonishingly complex process, determined by the nature and the sequence of residues emerging from ribosomes. While it has been long believed that evolution has pressed genomes so that specific sequences could adopt unique, functional three-dimensional folds, it is now clear that complex protein machineries act as quality control system and supervise folding. Notwithstanding that, events such as erroneous folding, partial folding, or misfolding are frequent during the life of a cell or a whole organism, and they can escape controls. One of the possible outcomes of this misbehavior is cross-β aggregation, a super secondary structure which represents the hallmark of self-assembled, well organized, and extremely ordered structures termed amyloid fibrils. What if evolution would have not taken into account such possibilities? Twenty years of research point toward the idea that, in fact, evolution has constantly supervised the risk of errors and minimized their impact. In this review we tried to survey the major findings in the amyloid field, trying to describe what the real pitfalls of protein folding are-from an evolutionary perspective-and how sequence and structural features have evolved to balance the need for perfect, dynamic, functionally efficient structures, and the detrimental effects implicit in the dangerous process of folding. We will discuss how the knowledge obtained from these studies has been employed to produce computational methods able to assess, predict, and discriminate the aggregation properties of protein sequences.
Collapse
Affiliation(s)
- F Bemporad
- Università degli Studi di Firenze, Firenze, Italy.
| | - M Ramazzotti
- Università degli Studi di Firenze, Firenze, Italy.
| |
Collapse
|
46
|
Anderson JM, Jurban B, Huggins KNL, Shcherbakov AA, Shu I, Kier B, Andersen NH. Nascent Hairpins in Proteins: Identifying Turn Loci and Quantitating Turn Contributions to Hairpin Stability. Biochemistry 2016; 55:5537-5553. [DOI: 10.1021/acs.biochem.6b00732] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jordan M. Anderson
- Department of Chemistry, University of Washington, Seattle, Washington 98105, United States
| | - Brice Jurban
- Department of Chemistry, University of Washington, Seattle, Washington 98105, United States
| | - Kelly N. L. Huggins
- Department of Chemistry, University of Washington, Seattle, Washington 98105, United States
| | | | - Irene Shu
- Department of Chemistry, University of Washington, Seattle, Washington 98105, United States
| | - Brandon Kier
- Department of Chemistry, University of Washington, Seattle, Washington 98105, United States
| | - Niels H. Andersen
- Department of Chemistry, University of Washington, Seattle, Washington 98105, United States
| |
Collapse
|
47
|
Camilloni C, Bonetti D, Morrone A, Giri R, Dobson CM, Brunori M, Gianni S, Vendruscolo M. Towards a structural biology of the hydrophobic effect in protein folding. Sci Rep 2016; 6:28285. [PMID: 27461719 PMCID: PMC4962056 DOI: 10.1038/srep28285] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/03/2016] [Indexed: 11/09/2022] Open
Abstract
The hydrophobic effect is a major driving force in protein folding. A complete understanding of this effect requires the description of the conformational states of water and protein molecules at different temperatures. Towards this goal, we characterise the cold and hot denatured states of a protein by modelling NMR chemical shifts using restrained molecular dynamics simulations. A detailed analysis of the resulting structures reveals that water molecules in the bulk and at the protein interface form on average the same number of hydrogen bonds. Thus, even if proteins are 'large' particles (in terms of the hydrophobic effect, i.e. larger than 1 nm), because of the presence of complex surface patterns of polar and non-polar residues their behaviour can be compared to that of 'small' particles (i.e. smaller than 1 nm). We thus find that the hot denatured state is more compact and richer in secondary structure than the cold denatured state, since water at lower temperatures can form more hydrogen bonds than at high temperatures. Then, using Φ-value analysis we show that the structural differences between the hot and cold denatured states result in two alternative folding mechanisms. These findings thus illustrate how the analysis of water-protein hydrogen bonds can reveal the molecular origins of protein behaviours associated with the hydrophobic effect.
Collapse
Affiliation(s)
- Carlo Camilloni
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Daniela Bonetti
- Istituto Pasteur - Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" Università di Roma "La Sapienza", 00185 Rome, Italy
| | - Angela Morrone
- Istituto Pasteur - Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" Università di Roma "La Sapienza", 00185 Rome, Italy
| | - Rajanish Giri
- Istituto Pasteur - Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" Università di Roma "La Sapienza", 00185 Rome, Italy
| | | | - Maurizio Brunori
- Istituto Pasteur - Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" Università di Roma "La Sapienza", 00185 Rome, Italy
| | - Stefano Gianni
- Istituto Pasteur - Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" Università di Roma "La Sapienza", 00185 Rome, Italy
| | | |
Collapse
|
48
|
Toto A, Gianni S. Mutational Analysis of the Binding-Induced Folding Reaction of the Mixed-Lineage Leukemia Protein to the KIX Domain. Biochemistry 2016; 55:3957-62. [PMID: 27341615 DOI: 10.1021/acs.biochem.6b00505] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intrinsically disordered proteins represent a large class of proteins that lack a well-defined three-dimensional structure in isolation but can undergo a disorder to order transition upon binding to their physiological ligands. Understanding the mechanism by which these proteins fold upon binding represents a challenge. Here we present a detailed mutational study of the kinetics of the binding reaction between the transactivation domain of the mixed-lineage leukemia protein, an intrinsically disordered protein, and the KIX domain, performed under different experimental conditions. The experimental data allow us to infer the mechanism of folding upon binding and to pinpoint the key interactions present in the transition state. Furthermore, we identify a peculiar malleability of the observed mechanism upon changes in reaction conditions. This finding, which is in opposition to the robustness typically observed in the folding of globular proteins, is discussed in the context of previous work on intrinsically disordered proteins.
Collapse
Affiliation(s)
- Angelo Toto
- Istituto Pasteur Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma , P. le A. Moro 5, 00185 Rome, Italy
| | - Stefano Gianni
- Istituto Pasteur Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma , P. le A. Moro 5, 00185 Rome, Italy.,Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
49
|
Gianni S, Jemth P. Protein folding: Vexing debates on a fundamental problem. Biophys Chem 2016; 212:17-21. [DOI: 10.1016/j.bpc.2016.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 02/25/2016] [Accepted: 03/07/2016] [Indexed: 11/24/2022]
|
50
|
Arcus VL, Prentice EJ, Hobbs JK, Mulholland AJ, Van der Kamp MW, Pudney CR, Parker EJ, Schipper LA. On the Temperature Dependence of Enzyme-Catalyzed Rates. Biochemistry 2016; 55:1681-8. [DOI: 10.1021/acs.biochem.5b01094] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Vickery L. Arcus
- School
of Science, University of Waikato, Hamilton 3240, New Zealand
| | - Erica J. Prentice
- School
of Science, University of Waikato, Hamilton 3240, New Zealand
| | - Joanne K. Hobbs
- School
of Science, University of Waikato, Hamilton 3240, New Zealand
| | | | | | - Christopher R. Pudney
- Department
of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Emily J. Parker
- Biomolecular
Interaction Centre and Department of Chemistry, University of Canterbury, Christchurch 8041, New Zealand
| | - Louis A. Schipper
- School
of Science, University of Waikato, Hamilton 3240, New Zealand
| |
Collapse
|