1
|
Zhang X, Feng Y, Gao F, Li T, Guo Y, Ge S, Wang N. Expression and clinical significance of U2AF homology motif kinase 1 in oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 138:626-634. [PMID: 39129074 DOI: 10.1016/j.oooo.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/03/2024] [Accepted: 07/14/2024] [Indexed: 08/13/2024]
Abstract
OBJECTIVE U2AF homology motif kinase 1 (UHMK1) is a newly discovered molecule that may have multiple functions. Recent studies have revealed that UHMK1 had aberrant expression in many tumors and was associated with tumor progression. However, UHMK1 was rarely reported in oral squamous cell carcinoma (OSCC). STUDY DESIGN In this study, Western blot, quantitative real-time polymerase chain reaction (PCR), and immunohistochemistry were used to detect the expression of UHMK1 in OSCC and peritumoral non-neoplastic tissues. Then, its relationship with clinicopathologic parameters was analyzed. The Kaplan-Meier method and Cox regression model were used to analyze the effects of UHMK1 expression on the prognosis and survival of OSCC patients. RESULTS Our results showed that UHMK1 had higher expression in OSCC tissues compared with in peritumoral non-neoplastic tissues, and its high expression was associated with high TNM stage and lymph node metastasis. High UHMK1 expression was related to short overall and disease-free survival times. Moreover, UHMK1 expression was identified as an independent prognostic factor that influences overall and disease-free survival of OSCC patients. CONCLUSIONS High expression of UHMK1 is associated with the poor prognosis of patients, and it can be used as a potential prognostic molecule for OSCC.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Yuanyong Feng
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Fei Gao
- Deparment of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tongtong Li
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Yan Guo
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Shengyou Ge
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Ning Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
2
|
Li Y, Wang S, Jin K, Jin W, Si L, Zhang H, Tian H. UHMK1 promotes lung adenocarcinoma oncogenesis by regulating the PI3K/AKT/mTOR signaling pathway. Thorac Cancer 2023; 14:1077-1088. [PMID: 36919755 PMCID: PMC10125785 DOI: 10.1111/1759-7714.14850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Effective targeted therapy for lung adenocarcinoma (LUAD), the number one cancer killer worldwide, continues to be a difficult problem because of the limitation of number of applicable patients and acquired resistance. Identifying more promising drug targets for LUAD treatment holds immense clinical significance. Recent studies have revealed that the U2 auxiliary factor (U2AF) homology motif kinase 1 (UHMK1) is a robust pro-oncogenic factor in many cancers. However, its biological functions and the underlying molecular mechanisms in LUAD have not been investigated. METHODS The UHMK1 expression in LUAD cells and tissues was evaluated by bioinformatics analysis, immunohistochemistry (IHC), western blotting (WB), and real time quantitative polymerase chain reaction (RT-qPCR) assays. A series of gain- and loss-of-function experiments for UHMK1 were carried out to investigate its biological functions in LUAD in vitro and in vivo. The mechanisms underlying UHMK1's effects in LUAD were analyzed by transcriptome sequencing and WB assays. RESULTS UHMK1 expression was aberrantly elevated in LUAD tumors and cell lines and positively correlated with tumor size and unfavorable patient prognosis. Functionally, UHMK1 displayed robust pro-oncogenic capacity in LUAD and mechanistically exerted its biological effects via the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway. CONCLUSION UHMK1 is a potent oncogene in LUAD. Targeting UHMK1 may significantly improve the effect of LUAD treatment via inhibiting multiple biological ways of LUAD progression.
Collapse
Affiliation(s)
- Yongmeng Li
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Shuai Wang
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Kai Jin
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Wenxing Jin
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Libo Si
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Huiying Zhang
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Hui Tian
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| |
Collapse
|
3
|
Arfelli VC, Chang YC, Bagnoli JW, Kerbs P, Ciamponi FE, Paz LMDS, Pankivskyi S, de Matha Salone J, Maucuer A, Massirer KB, Enard W, Kuster B, Greif PA, Archangelo LF. UHMK1 is a novel splicing regulatory kinase. J Biol Chem 2023; 299:103041. [PMID: 36803961 PMCID: PMC10033318 DOI: 10.1016/j.jbc.2023.103041] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/18/2023] [Accepted: 02/04/2023] [Indexed: 02/19/2023] Open
Abstract
The U2AF Homology Motif Kinase 1 (UHMK1) is the only kinase that contains the U2AF homology motif, a common protein interaction domain among splicing factors. Through this motif, UHMK1 interacts with the splicing factors SF1 and SF3B1, known to participate in the 3' splice site recognition during the early steps of spliceosome assembly. Although UHMK1 phosphorylates these splicing factors in vitro, the involvement of UHMK1 in RNA processing has not previously been demonstrated. Here, we identify novel putative substrates of this kinase and evaluate UHMK1 contribution to overall gene expression and splicing, by integrating global phosphoproteomics, RNA-seq, and bioinformatics approaches. Upon UHMK1 modulation, 163 unique phosphosites were differentially phosphorylated in 117 proteins, of which 106 are novel potential substrates of this kinase. Gene Ontology analysis showed enrichment of terms previously associated with UHMK1 function, such as mRNA splicing, cell cycle, cell division, and microtubule organization. The majority of the annotated RNA-related proteins are components of the spliceosome but are also involved in several steps of gene expression. Comprehensive analysis of splicing showed that UHMK1 affected over 270 alternative splicing events. Moreover, splicing reporter assay further supported UHMK1 function on splicing. Overall, RNA-seq data demonstrated that UHMK1 knockdown had a minor impact on transcript expression and pointed to UHMK1 function in epithelial-mesenchymal transition. Functional assays demonstrated that UHMK1 modulation affects proliferation, colony formation, and migration. Taken together, our data implicate UHMK1 as a splicing regulatory kinase, connecting protein regulation through phosphorylation and gene expression in key cellular processes.
Collapse
Affiliation(s)
- Vanessa C Arfelli
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Yun-Chien Chang
- Proteomics and Bioanalytics, School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Johannes W Bagnoli
- Anthropology & Human Genomics, Department of Biology II, Ludwig-Maximilians-University (LMU), Martinsried, Germany
| | - Paul Kerbs
- Laboratory for Experimental Leukemia and Lymphoma Research, Munich University Hospital, Ludwig-Maximilians University (LMU), Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, Munich, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felipe E Ciamponi
- Center for Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Laissa M da S Paz
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Serhii Pankivskyi
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, Evry, France
| | | | - Alexandre Maucuer
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, Evry, France
| | - Katlin B Massirer
- Center for Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Wolfgang Enard
- Anthropology & Human Genomics, Department of Biology II, Ludwig-Maximilians-University (LMU), Martinsried, Germany
| | - Bernhard Kuster
- Proteomics and Bioanalytics, School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Philipp A Greif
- Laboratory for Experimental Leukemia and Lymphoma Research, Munich University Hospital, Ludwig-Maximilians University (LMU), Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, Munich, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Leticia Fröhlich Archangelo
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
4
|
UHMK1 aids colorectal cancer cell proliferation and chemoresistance through augmenting IL-6/STAT3 signaling. Cell Death Dis 2022; 13:424. [PMID: 35501324 PMCID: PMC9061793 DOI: 10.1038/s41419-022-04877-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 12/14/2022]
Abstract
UHMK1, a serine/threonine kinase with a U2AF homology motif, is implicated in RNA processing and protein phosphorylation. Increasing evidence has indicated its involvement in tumorigenesis. However, it remains to be elucidated whether UHMK1 plays a role in the development of colorectal cancer (CRC). Here, we demonstrated that UHMK1 was frequently upregulated in CRC samples compared with adjacent normal tissue and high expression of UHMK1 predicted poor outcomes. Knockdown of UHMK1 by siRNAs restrained CRC cell proliferation and increased oxaliplatin sensitivity, whereas overexpression of UHMK1 promoted CRC cell growth and oxaliplatin resistance, suggesting that UHMK1 plays important oncogenic roles in CRC. Mechanistically, we showed that UHMK1 had a significant effect on IL6/STAT3 signaling by interacting with STAT3. The interaction of UHMK1 with STAT3 enhanced STAT3 activity in regulating gene transcription. Furthermore, we found that STAT3 could in turn transcriptionally activate UHMK1 expression in CRC cells. The complementary experiments for cell growth and oxaliplatin resistance indicated the interdependent relationship between UHMK1 and STAT3. Thus, these collective findings uncovered a new UHMK1/STAT3 positive feedback regulatory loop contributing to CRC development and chemoresistance.
Collapse
|
5
|
Chu YD, Lin WR, Lin YH, Kuo WH, Tseng CJ, Lim SN, Huang YL, Huang SC, Wu TJ, Lin KH, Yeh CT. COX5B-Mediated Bioenergetic Alteration Regulates Tumor Growth and Migration by Modulating AMPK-UHMK1-ERK Cascade in Hepatoma. Cancers (Basel) 2020; 12:cancers12061646. [PMID: 32580279 PMCID: PMC7352820 DOI: 10.3390/cancers12061646] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/19/2020] [Indexed: 01/27/2023] Open
Abstract
The oxidative phosphorylation machinery in mitochondria, which generates the main bioenergy pool in cells, includes four enzyme complexes for electron transport and ATP synthase. Among them, the cytochrome c oxidase (COX), which constitutes the fourth complex, has been suggested as the major regulatory site. Recently, abnormalities in COX were linked to tumor progression in several cancers. However, it remains unclear whether COX and its subunits play a role in tumor progression of hepatoma. To search for the key regulatory factor(s) in COX for hepatoma development, in silico analysis using public transcriptomic database followed by validation for postoperative outcome associations using independent in-house patient cohorts was performed. In which, COX5B was highly expressed in hepatoma and associated with unfavorable postoperative prognosis. In addressing the role of COX5B in hepatoma, the loss- and gain-of-function experiments for COX5B were conducted. Consequently, COX5B expression was associated with increased hepatoma cell proliferation, migration and xenograft growth. Downstream effectors searched by cDNA microarray analysis identified UHMK1, an oncogenic protein, which manifested a positively correlated expression level of COX5B. The COX5B-mediated regulatory event on UHMK1 expression was subsequently demonstrated as bioenergetic alteration-dependent activation of AMPK in hepatoma cells. Phosphoproteomic analysis uncovered activation of ERK- and stathmin-mediated pathways downstream of UHMK1. Finally, comprehensive phenotypic assays supported the impacts of COX5B-UHMK1-ERK axis on hepatoma cell growth and migration.
Collapse
Affiliation(s)
- Yu-De Chu
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-D.C.); (W.-R.L.); (Y.-H.L.); (W.-H.K.); (T.-J.W.); (K.-H.L.)
| | - Wey-Ran Lin
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-D.C.); (W.-R.L.); (Y.-H.L.); (W.-H.K.); (T.-J.W.); (K.-H.L.)
- Department of Hepatology and Gastroenterology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Internal Medicine, Chang Gung University College of Medicine, Taoyuan 333, Taiwan; (C.-J.T.); (S.-N.L.)
| | - Yang-Hsiang Lin
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-D.C.); (W.-R.L.); (Y.-H.L.); (W.-H.K.); (T.-J.W.); (K.-H.L.)
| | - Wen-Hsin Kuo
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-D.C.); (W.-R.L.); (Y.-H.L.); (W.-H.K.); (T.-J.W.); (K.-H.L.)
| | - Chin-Ju Tseng
- Department of Internal Medicine, Chang Gung University College of Medicine, Taoyuan 333, Taiwan; (C.-J.T.); (S.-N.L.)
| | - Siew-Na Lim
- Department of Internal Medicine, Chang Gung University College of Medicine, Taoyuan 333, Taiwan; (C.-J.T.); (S.-N.L.)
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Yen-Lin Huang
- Department of Anatomic Pathology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-L.H.); (S.-C.H.)
| | - Shih-Chiang Huang
- Department of Anatomic Pathology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-L.H.); (S.-C.H.)
| | - Ting-Jung Wu
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-D.C.); (W.-R.L.); (Y.-H.L.); (W.-H.K.); (T.-J.W.); (K.-H.L.)
| | - Kwang-Huei Lin
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-D.C.); (W.-R.L.); (Y.-H.L.); (W.-H.K.); (T.-J.W.); (K.-H.L.)
| | - Chau-Ting Yeh
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-D.C.); (W.-R.L.); (Y.-H.L.); (W.-H.K.); (T.-J.W.); (K.-H.L.)
- Department of Hepatology and Gastroenterology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Internal Medicine, Chang Gung University College of Medicine, Taoyuan 333, Taiwan; (C.-J.T.); (S.-N.L.)
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence: ; Tel.: +886-3-3281200 (ext. 8129)
| |
Collapse
|
6
|
The Multifaceted Roles of the Tumor Susceptibility Gene 101 (TSG101) in Normal Development and Disease. Cancers (Basel) 2020; 12:cancers12020450. [PMID: 32075127 PMCID: PMC7073217 DOI: 10.3390/cancers12020450] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022] Open
Abstract
The multidomain protein encoded by the Tumor Susceptibility Gene 101 (TSG101) is ubiquitously expressed and is suggested to function in diverse intracellular processes. In this review, we provide a succinct overview of the main structural features of the protein and their suggested roles in molecular and cellular functions. We then summarize, in more detail, key findings from studies using genetically engineered animal models that demonstrate essential functions of TSG101 in cell proliferation and survival, normal tissue homeostasis, and tumorigenesis. Despite studies on cell lines that provide insight into the molecular underpinnings by which TSG101 might function as a negative growth regulator, a biologically significant role of TSG101 as a tumor suppressor has yet to be confirmed using genuine in vivo cancer models. More recent observations from several cancer research teams suggest that TSG101 might function as an oncoprotein. A potential role of post-translational mechanisms that control the expression of the TSG101 protein in cancer is being discussed. In the final section of the review, we summarize critical issues that need to be addressed to gain a better understanding of biologically significant roles of TSG101 in cancer.
Collapse
|
7
|
Wei T, Weiler SME, Tóth M, Sticht C, Lutz T, Thomann S, De La Torre C, Straub B, Merker S, Ruppert T, Marquardt J, Singer S, Gretz N, Schirmacher P, Breuhahn K. YAP-dependent induction of UHMK1 supports nuclear enrichment of the oncogene MYBL2 and proliferation in liver cancer cells. Oncogene 2019; 38:5541-5550. [PMID: 30936457 DOI: 10.1038/s41388-019-0801-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/01/2019] [Accepted: 03/16/2019] [Indexed: 02/03/2023]
Abstract
The oncogene yes-associated protein (YAP) is a key modifier of liver homeostasis and regulates mitosis in hepatocytes as well as in malignantly transformed cells. However, the question of how YAP supports cell proliferation in hepatocellular carcinoma (HCC) is not well understood. Here we identified U2AF momology motif kinase 1 (UHMK1) as a direct transcriptional target of YAP and the transcription factor forkhead box M1 (FOXM1), which supports HCC cell proliferation but not migration. Indeed, UHMK1 stimulates the expression of genes that are specific for cell cycle regulation and which are known downstream effectors of YAP. By using BioID labeling and mass spectrometry, the dimerization partner, RB-like, E2F and multi-vulval class B (DREAM) complex constituent MYB proto-oncogene like 2 (MYBL2, B-MYB) was identified as a direct UHMK1 interaction partner. Like YAP, UHMK1 stimulates nuclear enrichment of MYBL2, which is associated HCC cell proliferation and the expression of the cell cycle regulators CCNB1, CCNB2, KIF20A, and MAD2L1. The association between YAP, UHMK1, MYBL2, and proliferation was confirmed in YAPS127A-transgenic mice and human HCC tissues. In summary, we provide a model by which YAP supports cell proliferation through the induction of important cell cycle regulators in a UHMK1- and MYBL2-dependent manner.
Collapse
Affiliation(s)
- Teng Wei
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Marcell Tóth
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Carsten Sticht
- Medical Faculty Mannheim, Medical Research Center, University of Heidelberg, Mannheim, Germany
| | - Teresa Lutz
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Thomann
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Carolina De La Torre
- Medical Faculty Mannheim, Medical Research Center, University of Heidelberg, Mannheim, Germany
| | - Beate Straub
- Institute of Pathology, Johannes Gutenberg University, Mainz, Germany
| | - Sabine Merker
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Thomas Ruppert
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Jens Marquardt
- Department of Medicine I, Johannes Gutenberg University, Mainz, Germany
| | - Stephan Singer
- Institute of Pathology, University Medicine Greifswald, Greifswald, Germany
| | - Norbert Gretz
- Medical Faculty Mannheim, Medical Research Center, University of Heidelberg, Mannheim, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
8
|
Costa AC, Carvalho F, Cabanes D, Sousa S. Stathmin recruits tubulin to Listeria monocytogenes-induced actin comets and promotes bacterial dissemination. Cell Mol Life Sci 2019; 76:961-975. [PMID: 30506415 PMCID: PMC11105747 DOI: 10.1007/s00018-018-2977-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/24/2018] [Accepted: 11/22/2018] [Indexed: 01/18/2023]
Abstract
The tubulin cytoskeleton is one of the main components of the cytoarchitecture and is involved in several cellular functions. Here, we examine the interplay between Listeria monocytogenes (Lm) and the tubulin cytoskeleton upon cellular infection. We show that non-polymeric tubulin is present throughout Lm actin comet tails and, to a less extent, in actin clouds. Moreover, we demonstrate that stathmin, a regulator of microtubule dynamics, is also found in these Lm-associated actin structures and is required for tubulin recruitment. Depletion of host stathmin results in longer comets containing less F-actin, which may be correlated with higher levels of inactive cofilin in the comet, thus suggesting a defect on local F-actin dynamics. In addition, intracellular bacterial speed is significantly reduced in stathmin-depleted cells, revealing the importance of stathmin/tubulin in intracellular Lm motility. In agreement, the area of infection foci and the total bacterial loads are also significantly reduced in stathmin-depleted cells. Collectively, our results demonstrate that stathmin promotes efficient cellular infection, possibly through tubulin recruitment and control of actin dynamics at Lm-polymerized actin structures.
Collapse
Affiliation(s)
- Ana Catarina Costa
- Group of Molecular Microbiology, i3S-Instituto de Investigação e Inovação em Saúde, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Filipe Carvalho
- Group of Molecular Microbiology, i3S-Instituto de Investigação e Inovação em Saúde, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, 25 Rue du Dr Roux, 75015, Paris, France
| | - Didier Cabanes
- Group of Molecular Microbiology, i3S-Instituto de Investigação e Inovação em Saúde, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Sandra Sousa
- Group of Molecular Microbiology, i3S-Instituto de Investigação e Inovação em Saúde, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
| |
Collapse
|
9
|
Barbutti I, Machado-Neto JA, Arfelli VC, de Melo Campos P, Traina F, Saad STO, Archangelo LF. The U2AF homology motif kinase 1 (UHMK1) is upregulated upon hematopoietic cell differentiation. Biochim Biophys Acta Mol Basis Dis 2018; 1864:959-966. [PMID: 29307747 DOI: 10.1016/j.bbadis.2018.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/10/2017] [Accepted: 01/03/2018] [Indexed: 01/05/2023]
Abstract
UHMK1 (KIS) is a nuclear serine/threonine kinase that possesses a U2AF homology motif and phosphorylates and regulates the activity of the splicing factors SF1 and SF3b155. Mutations in these components of the spliceosome machinery have been recently implicated in leukemogenesis. The fact that UHMK1 regulates these factors suggests that UHMK1 might be involved in RNA processing and perhaps leukemogenesis. Here we analyzed UHMK1 expression in normal hematopoietic and leukemic cells as well as its function in leukemia cell line. In the normal hematopoietic compartment, markedly higher levels of transcripts were observed in differentiated lymphocytes (CD4+, CD8+ and CD19+) compared to the progenitor enriched subpopulation (CD34+) or leukemia cell lines. UHMK1 expression was upregulated in megakaryocytic-, monocytic- and granulocytic-induced differentiation of established leukemia cell lines and in erythrocytic-induced differentiation of CD34+ cells. No aberrant expression was observed in patient samples of myelodysplastic syndrome (MDS), acute myeloid (AML) or lymphoblastic (ALL) leukemia. Nonetheless, in MDS patients, increased levels of UHMK1 expression positively impacted event free and overall survival. Lentivirus mediated UHMK1 knockdown did not affect proliferation, cell cycle progression, apoptosis or migration of U937 leukemia cells, although UHMK1 silencing strikingly increased clonogenicity of these cells. Thus, our results suggest that UHMK1 plays a role in hematopoietic cell differentiation and suppression of autonomous clonal growth of leukemia cells.
Collapse
Affiliation(s)
- Isabella Barbutti
- Hematology and Transfusion Medicine Center, State University of Campinas (UNICAMP), Carlos Chagas 480, 13083-878 Campinas, SP, Brazil
| | - João Agostinho Machado-Neto
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Vanessa Cristina Arfelli
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Paula de Melo Campos
- Hematology and Transfusion Medicine Center, State University of Campinas (UNICAMP), Carlos Chagas 480, 13083-878 Campinas, SP, Brazil
| | - Fabiola Traina
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sara Teresinha Olalla Saad
- Hematology and Transfusion Medicine Center, State University of Campinas (UNICAMP), Carlos Chagas 480, 13083-878 Campinas, SP, Brazil
| | - Leticia Fröhlich Archangelo
- Hematology and Transfusion Medicine Center, State University of Campinas (UNICAMP), Carlos Chagas 480, 13083-878 Campinas, SP, Brazil; Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
10
|
Burgess SG, Oleksy A, Cavazza T, Richards MW, Vernos I, Matthews D, Bayliss R. Allosteric inhibition of Aurora-A kinase by a synthetic vNAR domain. Open Biol 2017; 6:rsob.160089. [PMID: 27411893 PMCID: PMC4967828 DOI: 10.1098/rsob.160089] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/17/2016] [Indexed: 01/15/2023] Open
Abstract
The vast majority of clinically approved protein kinase inhibitors target the ATP-binding pocket directly. Consequently, many inhibitors have broad selectivity profiles and most have significant off-target effects. Allosteric inhibitors are generally more selective, but are difficult to identify because allosteric binding sites are often unknown or poorly characterized. Aurora-A is activated through binding of TPX2 to an allosteric site on the kinase catalytic domain, and this knowledge could be exploited to generate an inhibitor. Here, we generated an allosteric inhibitor of Aurora-A kinase based on a synthetic, vNAR single domain scaffold, vNAR-D01. Biochemical studies and a crystal structure of the Aurora-A/vNAR-D01 complex show that the vNAR domain overlaps with the TPX2 binding site. In contrast with the binding of TPX2, which stabilizes an active conformation of the kinase, binding of the vNAR domain stabilizes an inactive conformation, in which the αC-helix is distorted, the canonical Lys-Glu salt bridge is broken and the regulatory (R-) spine is disrupted by an additional hydrophobic side chain from the activation loop. These studies illustrate how single domain antibodies can be used to characterize the regulatory mechanisms of kinases and provide a rational basis for structure-guided design of allosteric Aurora-A kinase inhibitors.
Collapse
Affiliation(s)
- Selena G Burgess
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, UK
| | - Arkadiusz Oleksy
- Centre for Therapeutics Discovery, MRC Technology, The Accelerator Building, Stevenage, Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2FX, UK
| | - Tommaso Cavazza
- Cell and Developmental Biology program, Centre for Genomic Regulation (CRG) and UPF, Dr Aiguader 88, 08003 Barcelona, Spain
| | - Mark W Richards
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, UK
| | - Isabelle Vernos
- Cell and Developmental Biology program, Centre for Genomic Regulation (CRG) and UPF, Dr Aiguader 88, 08003 Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - David Matthews
- Centre for Therapeutics Discovery, MRC Technology, The Accelerator Building, Stevenage, Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2FX, UK
| | - Richard Bayliss
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, UK
| |
Collapse
|
11
|
Marschalek R. Systematic Classification of Mixed-Lineage Leukemia Fusion Partners Predicts Additional Cancer Pathways. Ann Lab Med 2017; 36:85-100. [PMID: 26709255 PMCID: PMC4713862 DOI: 10.3343/alm.2016.36.2.85] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/26/2015] [Accepted: 12/03/2015] [Indexed: 11/19/2022] Open
Abstract
Chromosomal translocations of the human mixed-lineage leukemia (MLL) gene have been analyzed for more than 20 yr at the molecular level. So far, we have collected about 80 direct MLL fusions (MLL-X alleles) and about 120 reciprocal MLL fusions (X-MLL alleles). The reason for the higher amount of reciprocal MLL fusions is that the excess is caused by 3-way translocations with known direct fusion partners. This review is aiming to propose a solution for an obvious problem, namely why so many and completely different MLL fusion alleles are always leading to the same leukemia phenotypes (ALL, AML, or MLL). This review is aiming to explain the molecular consequences of MLL translocations, and secondly, the contribution of the different fusion partners. A new hypothesis will be posed that can be used for future research, aiming to find new avenues for the treatment of this particular leukemia entity.
Collapse
Affiliation(s)
- Rolf Marschalek
- Institute of Pharmaceutical Biology/DCAL, Goethe-University of Frankfurt, Biocenter, Frankfurt/Main, Germany.
| |
Collapse
|
12
|
Choi HJ, Park H, Zhang L, Kim JH, Kim YA, Yang JY, Pei YF, Tian Q, Shen H, Hwang JY, Deng HW, Cho NH, Shin CS. Genome-wide association study in East Asians suggests UHMK1 as a novel bone mineral density susceptibility gene. Bone 2016; 91:113-21. [PMID: 27424934 DOI: 10.1016/j.bone.2016.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 07/11/2016] [Accepted: 07/13/2016] [Indexed: 12/20/2022]
Abstract
To identify genetic variants that influence bone mineral density (BMD) in East Asians, we performed a quantitative trait analysis of lumbar spine, total hip and femoral neck BMD in a Korean population-based cohort (N=2729) and follow-up replication analysis in a Chinese Han population and two Caucasian populations (N=1547, 2250 and 987, respectively). From the meta-analysis of the stage 1 discovery analysis and stage 2 replication analysis, we identified four BMD loci that reached near-genome-wide significance level (P<5×10(-7)). One locus on 1q23 (UHMK1, rs16863247, P=4.1×10(-7) for femoral neck BMD and P=3.2×10(-6) for total hip BMD) was a novel BMD signal. Interestingly, rs16863247 was very rare in Caucasians (minor allele frequency<0.01), indicating that this association could be specific to East Asians. In gender specific analysis, rs1160574 on 1q32 (KCNH1) was associated with femoral neck BMD (P=2.1×10(-7)) in female subjects. rs9371538 in the known BMD region on 6q25 ESR1 was associated with lumbar spine BMD (P=5.6×10(-9)). rs7776725 in the known BMD region on 7q31 WTN16 was associated with total hip BMD (P=8.6×10(-9)). In osteoblasts, endogenous UHMK1 expression was increased during differentiation and UHMK1 knockdown decreased its differentiation, while UHMK1 overexpression increased its differentiation. In osteoclasts, endogenous UHMK1 expression was decreased during differentiation and UHMK1 knockdown increased its differentiation, while UHMK1 overexpression decreased its differentiation. In conclusion, our genome-wide association study identified the UHMK1 gene as a novel BMD locus specific to East Asians. Functional studies suggest a role of UHMK1 on regulation of osteoblasts and osteoclasts.
Collapse
Affiliation(s)
- Hyung Jin Choi
- Department of Anatomy, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyojung Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Lei Zhang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Jiangsu, PR China
| | - Jung Hee Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ye An Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae-Yeon Yang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yu-Fang Pei
- Department of Epidemiology, School of Public Health, Soochow University, Jiangsu, PR China
| | - Qing Tian
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, USA
| | - Hui Shen
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, USA
| | - Joo-Yeon Hwang
- Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Cheongju, Republic of Korea
| | - Hong-Wen Deng
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, USA
| | - Nam H Cho
- Department of Preventive Medicine, Ajou University School of Medicine, Suwon, Republic of Korea.
| | - Chan Soo Shin
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Kuang XY, Jiang HS, Li K, Zheng YZ, Liu YR, Qiao F, Li S, Hu X, Shao ZM. The phosphorylation-specific association of STMN1 with GRP78 promotes breast cancer metastasis. Cancer Lett 2016; 377:87-96. [PMID: 27130664 DOI: 10.1016/j.canlet.2016.04.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/19/2016] [Accepted: 04/22/2016] [Indexed: 11/26/2022]
Abstract
Metastasis is a major cause of death in patients with breast cancer. Stathmin1 (STMN1) is a phosphoprotein associated with cancer metastasis. It exhibits a complicated phosphorylation pattern in response to various extracellular signals, but its signaling mechanism is poorly understood. In this study, we report that phosphorylation of STMN1 at Ser25 and Ser38 is necessary to maintain cell migration capabilities and is associated with shorter disease-free survival (DFS) in breast cancer. In addition, we report that glucose-regulated protein of molecular mass 78 (GRP78) is a novel phospho-STMN1 binding protein upon STMN1 Ser25/Ser38 phosphorylation. This phosphorylation-dependent interaction is regulated by MEK kinase and is required for STMN1-GRP78 complex stability and STMN1-mediated migration. We also propose a prognostic model based on phospho-STMN1 and GRP78 to assess metastatic risk in breast cancer patients.
Collapse
Affiliation(s)
- Xia-Ying Kuang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Breast Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - He-Sheng Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kai Li
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yi-Zi Zheng
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Rong Liu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Feng Qiao
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shan Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Hu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Institutes of Biomedical Science, Fudan University, Shanghai, China.
| |
Collapse
|
14
|
Pillich H, Puri M, Chakraborty T. ActA of Listeria monocytogenes and Its Manifold Activities as an Important Listerial Virulence Factor. Curr Top Microbiol Immunol 2016; 399:113-132. [PMID: 27726006 DOI: 10.1007/82_2016_30] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Listeria monocytogenes is a ubiquitously occurring gram-positive bacterium in the environment that causes listeriosis, one of the deadliest foodborne infections known today. It is a versatile facultative intracellular pathogen capable of growth within the host's cytosolic compartment. Following entry into the host cell, L. monocytogenes escapes from vacuolar compartments to the cytosol, where the bacterium begins a remarkable journey within the host cytoplasm, culminating in bacterial spread from cell to cell, to deeper tissues and organs. This dissemination process depends on the ability of the bacterium to harness central components of the host cell actin cytoskeleton using the surface bound bacterial factor ActA (actin assembly inducing protein). Hence ActA plays a major role in listerial virulence, and its absence renders bacteria intracellularly immotile and essentially non-infectious. As the bacterium, moving by building a network of filamentous actin behind itself that is often referred to as its actin tail, encounters cell-cell contacts it forms double-vacuolar protrusions that allow it to enter the neighboring cell where the cycle then continues. Recent studies have now implicated ActA in other stages of the life cycle of L. monocytogenes. These include extracellular properties of aggregation and biofilm formation to mediate colonization of the gut lumen, promotion and enhancement of bacterial host cell entry, evasion of autophagy, vacuolar exit, as well as nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB) activation. These novel properties provide a new view of ActA and help explain its role as an essential virulence factor of L. monocytogenes.
Collapse
Affiliation(s)
- Helena Pillich
- Institute of Medical Microbiology, Justus-Liebig University Giessen, Schubertstrasse 81, 35392, Giessen, Germany
| | - Madhu Puri
- Institute of Medical Microbiology, Justus-Liebig University Giessen, Schubertstrasse 81, 35392, Giessen, Germany
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus-Liebig University Giessen, Schubertstrasse 81, 35392, Giessen, Germany.
| |
Collapse
|
15
|
Wesselborg S, Stork B. Autophagy signal transduction by ATG proteins: from hierarchies to networks. Cell Mol Life Sci 2015; 72:4721-57. [PMID: 26390974 PMCID: PMC4648967 DOI: 10.1007/s00018-015-2034-8] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 08/13/2015] [Accepted: 08/31/2015] [Indexed: 02/07/2023]
Abstract
Autophagy represents an intracellular degradation process which is involved in both cellular homeostasis and disease settings. In the last two decades, the molecular machinery governing this process has been characterized in detail. To date, several key factors regulating this intracellular degradation process have been identified. The so-called autophagy-related (ATG) genes and proteins are central to this process. However, several additional molecules contribute to the outcome of an autophagic response. Several review articles describing the molecular process of autophagy have been published in the recent past. In this review article we would like to add the most recent findings to this knowledge, and to give an overview of the network character of the autophagy signaling machinery.
Collapse
Affiliation(s)
- Sebastian Wesselborg
- Institute of Molecular Medicine I, Heinrich-Heine-University, Universitätsstr. 1, Building 23.12, 40225, Düsseldorf, Germany
| | - Björn Stork
- Institute of Molecular Medicine I, Heinrich-Heine-University, Universitätsstr. 1, Building 23.12, 40225, Düsseldorf, Germany.
| |
Collapse
|
16
|
Gain-of-function mutant p53 downregulates miR-223 contributing to chemoresistance of cultured tumor cells. Oncogene 2013; 33:1601-8. [PMID: 23584479 DOI: 10.1038/onc.2013.106] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 01/29/2013] [Accepted: 02/13/2013] [Indexed: 12/23/2022]
Abstract
Mutant p53 proteins are expressed at high frequency in human tumors and are associated with poor clinical prognosis and resistance to chemotherapeutic treatments. Here we show that mutant p53 proteins downregulate micro-RNA (miR)-223 expression in breast and colon cancer cell lines. Mutant p53 binds the miR-223 promoter and reduces its transcriptional activity. This requires the transcriptional repressor ZEB-1. We found that miR-223 exogenous expression sensitizes breast and colon cancer cell lines expressing mutant p53 to treatment with DNA-damaging drugs. Among the putative miR-223 targets, we focused on stathmin-1 (STMN-1), an oncoprotein known to confer resistance to chemotherapeutic drugs associated with poor clinical prognosis. Mutant p53 silencing or miR-223 exogenous expression lowers the levels of STMN-1 and knockdown of STMN-1 by small interfering RNA increases cell death of mutant p53-expressing cell lines. On the basis of these findings, we propose that one of the pathways affected by mutant p53 to increase cellular resistance to chemotherapeutic agents involves miR-223 downregulation and the consequent upregulation of STMN-1.
Collapse
|
17
|
Archangelo LF, Greif PA, Maucuer A, Manceau V, Koneru N, Bigarella CL, Niemann F, dos Santos MT, Kobarg J, Bohlander SK, Saad STO. The CATS (FAM64A) protein is a substrate of the Kinase Interacting Stathmin (KIS). BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1269-79. [PMID: 23419774 DOI: 10.1016/j.bbamcr.2013.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 01/21/2013] [Accepted: 02/08/2013] [Indexed: 12/22/2022]
Abstract
The CATS protein (also known as FAM64A and RCS1) was first identified as a novel CALM (PICALM) interactor that influences the subcellular localization of the leukemogenic fusion protein CALM/AF10. CATS is highly expressed in cancer cell lines in a cell cycle dependent manner and is induced by mitogens. CATS is considered a marker for proliferation, known to control the metaphase-to-anaphase transition during the cell division. Using CATS as a bait in a yeast two-hybrid screen we identified the Kinase Interacting Stathmin (KIS or UHMK1) protein as a CATS interacting partner. The interaction between CATS and KIS was confirmed by GST pull-down, co-immunoprecipitation and co-localization experiments. Using kinase assay we showed that CATS is a substrate of KIS and mapped the phosphorylation site to CATS serine 131 (S131). Protein expression analysis revealed that KIS levels changed in a cell cycle-dependent manner and in the opposite direction to CATS levels. In a reporter gene assay KIS was able to enhance the transcriptional repressor activity of CATS, independent of CATS phophorylation at S131. Moreover, we showed that CATS and KIS antagonize the transactivation capacity of CALM/AF10.In summary, our results show that CATS interacts with and is a substrate for KIS, suggesting that KIS regulates CATS function.
Collapse
|
18
|
Radhakrishnan GK, Splitter GA. Modulation of host microtubule dynamics by pathogenic bacteria. Biomol Concepts 2012; 3:571-580. [PMID: 23585820 DOI: 10.1515/bmc-2012-0030] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The eukaryotic cytoskeleton is a vulnerable target of many microbial pathogens during the course of infection. Rearrangements of host cytoskeleton benefit microbes in various stages of their infection cycle such as invasion, motility, and persistence. Bacterial pathogens deliver a number of effector proteins into host cells for modulating the dynamics of actin and microtubule cytoskeleton. Alteration of the actin cytoskeleton is generally achieved by bacterial effectors that target the small GTPases of the host. Modulation of microtubule dynamics involves direct interaction of effector proteins with the subunits of microtubules or recruiting cellular proteins that affect microtubule dynamics. This review will discuss effector proteins from animal and human bacterial pathogens that either destabilize or stabilize host micro-tubules to advance the infectious process. A compilation of these research findings will provide an overview of known and unknown strategies used by various bacterial effectors to modulate the host microtubule dynamics. The present review will undoubtedly help direct future research to determine the mechanisms of action of many bacterial effector proteins and contribute to understanding the survival strategies of diverse adherent and invasive bacterial pathogens.
Collapse
Affiliation(s)
- Girish K Radhakrishnan
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
19
|
Bhandari YR, Chapagain PP, Gerstman BS. Lattice model simulations of the effects of the position of a peptide trigger segment on helix folding and dimerization. J Chem Phys 2012; 137:105103. [DOI: 10.1063/1.4752247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
20
|
Imami K, Sugiyama N, Imamura H, Wakabayashi M, Tomita M, Taniguchi M, Ueno T, Toi M, Ishihama Y. Temporal profiling of lapatinib-suppressed phosphorylation signals in EGFR/HER2 pathways. Mol Cell Proteomics 2012; 11:1741-57. [PMID: 22964224 DOI: 10.1074/mcp.m112.019919] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Lapatinib is a clinically potent kinase inhibitor for breast cancer patients because of its outstanding selectivity for epidermal growth factor receptor (EGFR) and EGFR2 (also known as HER2). However, there is only limited information about the in vivo effects of lapatinib on EGFR/HER2 and downstream signaling targets. Here, we profiled the lapatinib-induced time- and dose-dependent phosphorylation dynamics in SKBR3 breast cancer cells by means of quantitative phosphoproteomics. Among 4953 identified phosphopeptides from 1548 proteins, a small proportion (5-7%) was regulated at least twofold by 1-10 μm lapatinib. We obtained a comprehensive phosphorylation map of 21 sites on EGFR/HER2, including nine novel sites on HER2. Among them, serine/threonine phosphosites located in a small region of HER2 (amino acid residues 1049-1083) were up-regulated by the drug, whereas all other sites were down-regulated. We show that cAMP-dependent protein kinase is involved in phosphorylation of this particular region of HER2 and regulates HER2 tyrosine kinase activity. Computational analyses of quantitative phosphoproteome data indicated for the first time that protein-protein networks related to cytoskeletal organization and transcriptional/translational regulation, such as RNP complexes (i.e. hnRNP, snRNP, telomerase, ribosome), are linked to EGFR/HER2 signaling networks. To our knowledge, this is the first report to profile the temporal response of phosphorylation dynamics to a kinase inhibitor. The results provide new insights into EGFR/HER2 regulation through region-specific phosphorylation, as well as a global view of the cellular signaling networks associated with the anti-breast cancer action of lapatinib.
Collapse
Affiliation(s)
- Koshi Imami
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Manceau V, Kremmer E, Nabel EG, Maucuer A. The protein kinase KIS impacts gene expression during development and fear conditioning in adult mice. PLoS One 2012; 7:e43946. [PMID: 22937132 PMCID: PMC3427225 DOI: 10.1371/journal.pone.0043946] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/27/2012] [Indexed: 11/18/2022] Open
Abstract
The brain-enriched protein kinase KIS (product of the gene UHMK1) has been shown to phosphorylate the human splicing factor SF1 in vitro. This phosphorylation in turn favors the formation of a U2AF65-SF1-RNA complex which occurs at the 3′ end of introns at an early stage of spliceosome assembly. Here, we analyzed the effects of KIS knockout on mouse SF1 phosphorylation, physiology, adult behavior, and gene expression in the neonate brain. We found SF1 isoforms are differently expressed in KIS-ko mouse brains and fibroblasts. Re-expression of KIS in fibroblasts restores a wild type distribution of SF1 isoforms, confirming the link between KIS and SF1. Microarray analysis of transcripts in the neonate brain revealed a subtle down-regulation of brain specific genes including cys-loop ligand-gated ion channels and metabolic enzymes. Q-PCR analyses confirmed these defects and point to an increase of pre-mRNA over mRNA ratios, likely due to changes in splicing efficiency. While performing similarly in prepulse inhibition and most other behavioral tests, KIS-ko mice differ in spontaneous activity and contextual fear conditioning. This difference suggests that disregulation of gene expression due to KIS inactivation affects specific brain functions.
Collapse
Affiliation(s)
- Valérie Manceau
- INSERM, UMR-S 839, Paris, France
- Université Pierre et Marie Curie, Paris, France
- Institut du Fer à Moulin, Paris, France
| | - Elisabeth Kremmer
- Institute of Molecular Immunology, Helmholtz Zentrum München, München, Germany
| | - Elizabeth G. Nabel
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alexandre Maucuer
- INSERM, UMR-S 839, Paris, France
- Université Pierre et Marie Curie, Paris, France
- Institut du Fer à Moulin, Paris, France
- * E-mail:
| |
Collapse
|
22
|
Belletti B, Baldassarre G. Stathmin: a protein with many tasks. New biomarker and potential target in cancer. Expert Opin Ther Targets 2011; 15:1249-66. [PMID: 21978024 DOI: 10.1517/14728222.2011.620951] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Stathmin is a microtubule-destabilizing phosphoprotein, firstly identified as the downstream target of many signal transduction pathways. Several studies then indicated that stathmin is overexpressed in many types of human malignancies, thus deserving the name of Oncoprotein 18 (Op18). At molecular level, stathmin depolymerizes microtubules by either sequestering free tubulin dimers or directly inducing microtubule-catastrophe. A crucial role for stathmin in the control of mitosis has been proposed, since both its overexpression and its downregulation induce failure in the correct completion of cell division. Accordingly, stathmin is an important target of the main regulator of M phase, cyclin-dependent kinase 1. AREAS COVERED Recent evidences support a role for stathmin in the regulation of cell growth and motility, both in vitro and in vivo, and indicate its involvement in advanced, invasive and metastatic cancer more than in primary tumors. EXPERT OPINION Many studies suggest that high stathmin expression levels in cancer negatively influence the response to microtubule-targeting drugs. These notions together with the fact that stathmin is expressed at very low levels in most adult tissues strongly support the use of stathmin as marker of prognosis and as target for novel anti-tumoral and anti-metastatic therapies.
Collapse
Affiliation(s)
- Barbara Belletti
- National Cancer Institute, Centro di Riferimento Oncologico, Division of Experimental Oncology 2, Via Franco Gallini, 2, 33081 Aviano, Italy
| | | |
Collapse
|
23
|
Francone VP, Ifrim MF, Rajagopal C, Leddy CJ, Wang Y, Carson JH, Mains RE, Eipper BA. Signaling from the secretory granule to the nucleus: Uhmk1 and PAM. Mol Endocrinol 2010; 24:1543-58. [PMID: 20573687 DOI: 10.1210/me.2009-0381] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Neurons and endocrine cells package peptides in secretory granules (large dense-core vesicles) for storage and stimulated release. Studies of peptidylglycine alpha-amidating monooxygenase (PAM), an essential secretory granule membrane enzyme, revealed a pathway that can relay information from secretory granules to the nucleus, resulting in alterations in gene expression. The cytosolic domain (CD) of PAM, a type 1 membrane enzyme essential for the production of amidated peptides, is basally phosphorylated by U2AF homology motif kinase 1 (Uhmk1) and other Ser/Thr kinases. Proopiomelanocortin processing in AtT-20 corticotrope tumor cells was increased when Uhmk1 expression was reduced. Uhmk1 was concentrated in the nucleus, but cycled rapidly between nucleus and cytosol. Endoproteolytic cleavage of PAM releases a soluble CD fragment that localizes to the nucleus. Localization of PAM-CD to the nucleus was decreased when PAM-CD with phosphomimetic mutations was examined and when active Uhmk1 was simultaneously overexpressed. Membrane-tethering Uhmk1 did not eliminate its ability to exclude PAM-CD from the nucleus, suggesting that cytosolic Uhmk1 could cause this response. Microarray analysis demonstrated the ability of PAM to increase expression of a small subset of genes, including aquaporin 1 (Aqp1) in AtT-20 cells. Aqp1 mRNA levels were higher in wild-type mice than in mice heterozygous for PAM, indicating that a similar relationship occurs in vivo. Expression of PAM-CD also increased Aqp1 levels whereas expression of Uhmk1 diminished Aqp1 expression. The outlines of a pathway that ties secretory granule metabolism to the transcriptome are thus apparent.
Collapse
Affiliation(s)
- Victor P Francone
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06032, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
TSG101, identified by screening a cancer cDNA library and soft agar assay, promotes cell proliferation in human lung cancer. Mol Biol Rep 2009; 37:2829-38. [PMID: 19787439 DOI: 10.1007/s11033-009-9835-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 09/08/2009] [Indexed: 10/20/2022]
Abstract
Understanding the genesis and development of tumors is an essential component in cancer research. It is of interest to discover unknown genes that are responsible for cellular transformation. A cDNA library of a highly metastatic lung adenocarcinoma cell line was constructed. This library was introduced into the NIH3T3 mouse embryonic fibroblast cell line to screen for cDNAs that increase anchorage-independent colony formation in soft agar. The expression of TSG101 in lung cancer cell lines and specimens was confirmed using reverse transcription-polymerase chain reaction. The level of TSG101 protein in transfected A549 cells was determined by western blotting. Cell-cycle distribution was analyzed using a FACStar Plus flow cytometer. One of the candidate cDNAs that increases anchorage-independent colony formation was shown to correspond to the TSG101 cDNA sequence. Levels of TSG101 mRNA were higher in lung cancer cell lines and specimens compared to matched normal lung tissues. Ectopic expression of TSG101 in the A549 lung adenocarcinoma cell line increased the numbers of cells in S phase, suggesting an increased cell proliferation rate. These results indicate that TSG101 may induce the malignant phenotype of cells.
Collapse
|
25
|
Bristow GC, Lane TA, Walker M, Chen L, Sei Y, Hyde TM, Kleinman JE, Harrison PJ, Eastwood SL. Expression of kinase interacting with stathmin (KIS, UHMK1) in human brain and lymphoblasts: Effects of schizophrenia and genotype. Brain Res 2009; 1301:197-206. [PMID: 19747464 DOI: 10.1016/j.brainres.2009.08.090] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 08/25/2009] [Accepted: 08/26/2009] [Indexed: 12/26/2022]
Abstract
Single nucleotide polymorphisms (SNPs) within the gene encoding the serine/threonine kinase KIS (Kinase Interacting with Stathmin, also known as UHMK1) have recently been associated with schizophrenia. As none of the disease associated SNPs are coding, they may confer susceptibility by altering some facet of KIS expression. Here we have characterised the cellular distribution of KIS in human brain using in situ hybridisation and immunohistochemistry, and quantified KIS protein and mRNA in two large brain series to determine if KIS expression is altered in schizophrenia or bipolar disorder or in relation to a schizophrenia-associated SNP (rs7513662). Post-mortem tissue from the superior temporal gyrus of schizophrenia and control subjects, and also dorsolateral prefrontal cortex, anterior cingulate cortex, and cerebellum from schizophrenia, bipolar disorder, and control subjects were used. KIS expression was measured by quantitative PCR (mRNA) and immunoautoradiography (protein), and was also quantified by immunoblot in lymphoblast cell lines derived from schizophrenia and control subjects. Our results demonstrate that KIS is expressed in neurons, and its encoded protein is localised to the nucleus and cytoplasm. No difference in KIS expression was found between diagnostic groups, or in the lymphoblast cell lines, and no effect of rs7513662 genotype on KIS expression was found. Hence, these data do not provide support for the hypothesis that altered expression is the mechanism by which genetic variation of KIS may increase susceptibility to schizophrenia, nor evidence that KIS expression is altered in the disease itself, at least in terms of the parameters studied here.
Collapse
Affiliation(s)
- Greg C Bristow
- University Department of Psychiatry, Warneford Hospital, Oxford, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Langenickel TH, Olive M, Boehm M, San H, Crook MF, Nabel EG. KIS protects against adverse vascular remodeling by opposing stathmin-mediated VSMC migration in mice. J Clin Invest 2008; 118:3848-59. [PMID: 19033656 DOI: 10.1172/jci33206] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 09/17/2008] [Indexed: 11/17/2022] Open
Abstract
Vascular proliferative diseases are characterized by VSMC proliferation and migration. Kinase interacting with stathmin (KIS) targets 2 key regulators of cell proliferation and migration, the cyclin-dependent kinase inhibitor p27Kip1 and the microtubule-destabilizing protein stathmin. Phosphorylation of p27Kip1 by KIS leads to cell-cycle progression, whereas the target sequence and the physiological relevance of KIS-mediated stathmin phosphorylation in VSMCs are unknown. Here we demonstrated that vascular wound repair in KIS-/- mice resulted in accelerated formation of neointima, which is composed predominantly of VSMCs. Deletion of KIS increased VSMC migratory activity and cytoplasmic tubulin destabilizing activity, but abolished VSMC proliferation through the delayed nuclear export and degradation of p27Kip1. This promigratory phenotype resulted from increased stathmin protein levels, caused by a lack of KIS-mediated stathmin phosphorylation at serine 38 and diminished stathmin protein degradation. Downregulation of stathmin in KIS-/- VSMCs fully restored the phenotype, and stathmin-deficient mice demonstrated reduced lesion formation in response to vascular injury. These data suggest that KIS protects against excessive neointima formation by opposing stathmin-mediated VSMC migration and that VSMC migration represents a major mechanism of vascular wound repair, constituting a relevant target and mechanism for therapeutic interventions.
Collapse
Affiliation(s)
- Thomas H Langenickel
- Vascular Biology and Genomics Section, Genome Technology Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | | | | | | | | | | |
Collapse
|
27
|
Chapagain PP, Liu Y, Gerstman BS. The trigger sequence in the GCN4 leucine zipper: α-helical propensity and multistate dynamics of folding and dimerization. J Chem Phys 2008; 129:175103. [DOI: 10.1063/1.3006421] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
28
|
Manceau V, Kielkopf CL, Sobel A, Maucuer A. Different requirements of the kinase and UHM domains of KIS for its nuclear localization and binding to splicing factors. J Mol Biol 2008; 381:748-62. [PMID: 18588901 DOI: 10.1016/j.jmb.2008.06.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 06/07/2008] [Accepted: 06/10/2008] [Indexed: 11/29/2022]
Abstract
The protein kinase KIS is made by the juxtaposition of a unique kinase domain and a C-terminal domain with a U2AF homology motif (UHM), a sequence motif for protein interaction initially identified in the heterodimeric pre-mRNA splicing factor U2AF. This domain of KIS is closely related to the C-terminal UHM domain of the U2AF large subunit, U2AF(65). KIS phosphorylates the splicing factor SF1, which in turn enhances SF1 binding to U2AF(65) and the 3' splice site, an event known to take place at an early step of spliceosome assembly. Here, the analysis of the subcellular localization of mutated forms of KIS indicates that the kinase domain of KIS is the necessary domain for its nuclear localization. As in the case of U2AF(65), the UHM-containing C-terminal domain of KIS is required for binding to the splicing factors SF1 and SF3b155. The efficiency of KIS binding to SF1 and SF3b155 is similar to that of U2AF(65) in pull-down assays. These results further support the functional link of KIS with splicing factors. Interestingly, when compared to other UHM-containing proteins, KIS presents a different specificity for the UHM docking sites that are present in the N-terminal region of SF3b155, thus providing a new insight into the variety of interactions mediated by UHM domains.
Collapse
Affiliation(s)
- Valérie Manceau
- Institut National de la Santé et de la Recherche Médicale, UMR839, 17, rue du Fer à Moulin, F-75005 Paris, France
| | | | | | | |
Collapse
|
29
|
Mahapatra NR, Taupenot L, Courel M, Mahata SK, O'Connor DT. The trans-Golgi proteins SCLIP and SCG10 interact with chromogranin A to regulate neuroendocrine secretion. Biochemistry 2008; 47:7167-78. [PMID: 18549247 DOI: 10.1021/bi7019996] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Secretion of proteins and peptides from eukaryotic cells takes place by both constitutive and regulated pathways. Regulated secretion may involve interplay of proteins that are currently unknown. Recent studies suggest an important role of chromogranin A (CHGA) in the regulated secretory pathway in neuroendocrine cells, but the mechanism by which CHGA enters the regulated pathway, or even triggers the formation of the pathway, remains unclear. In this study, we used a transcriptome/proteome-wide approach, to discover binding partners for CHGA, by employing a phage display cDNA library method. Several proteins within or adjacent to the secretory pathway were initially detected as binding partners of recombinant human CHGA. We then focused on the trans-Golgi protein SCLIP (STMN3) and its stathmin paralog SCG10 (STMN2) for functional study. Co-immunoprecipitation experiments confirmed the interaction of each of these two proteins with CHGA in vitro. SCLIP and SCG10 were colocalized to the Golgi apparatus of chromaffin cells in vivo and shared localization with CHGA as it transited the Golgi. Downregulation of either SCLIP or SCG10 by synthetic siRNAs virtually abolished chromaffin cell secretion of a transfected CHGA-EAP chimera (expressing CHGA fused to an enzymatic reporter, and trafficked to the regulated pathway). SCLIP siRNA also decreased the level of secretion of endogenous CHGA and SCG2, as well as transfected human growth hormone, while SCG10 siRNA decreased the level of regulated secretion of endogenous CHGB. Moreover, a dominant negative mutant of SCG10 (Cys 22,Cys 24-->Ala 22,Ala 24) significantly blocked secretion of the transfected CHGA-EAP chimera. A decrease in the buoyant density of chromaffin granules was observed after downregulation of SCG10 by siRNA, suggesting participation of these stathmins in granule formation or maturation. We conclude that SCLIP and SCG10 interact with CHGA, share partial colocalization in the Golgi apparatus, and may be necessary for typical transmitter storage and release from chromaffin cells.
Collapse
Affiliation(s)
- Nitish R Mahapatra
- Department of Medicine, Center for Human Genetics and Genomics, University of California at San Diego, La Jolla, California 92093-0838, USA.
| | | | | | | | | |
Collapse
|
30
|
Confirmation of the genetic association between the U2AF homology motif (UHM) kinase 1 (UHMK1) gene and schizophrenia on chromosome 1q23.3. Eur J Hum Genet 2008; 16:1275-82. [DOI: 10.1038/ejhg.2008.76] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
31
|
Hecker LA, Alcon TC, Honavar VG, Greenlee MHW. Using a seed-network to query multiple large-scale gene expression datasets from the developing retina in order to identify and prioritize experimental targets. Bioinform Biol Insights 2008; 2:401-12. [PMID: 19812791 PMCID: PMC2735966 DOI: 10.4137/bbi.s417] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Understanding the gene networks that orchestrate the differentiation of retinal progenitors into photoreceptors in the developing retina is important not only due to its therapeutic applications in treating retinal degeneration but also because the developing retina provides an excellent model for studying CNS development. Although several studies have profiled changes in gene expression during normal retinal development, these studies offer at best only a starting point for functional studies focused on a smaller subset of genes. The large number of genes profiled at comparatively few time points makes it extremely difficult to reliably infer gene networks from a gene expression dataset. We describe a novel approach to identify and prioritize from multiple gene expression datasets, a small subset of the genes that are likely to be good candidates for further experimental investigation. We report progress on addressing this problem using a novel approach to querying multiple large-scale expression datasets using a 'seed network' consisting of a small set of genes that are implicated by published studies in rod photoreceptor differentiation. We use the seed network to identify and sort a list of genes whose expression levels are highly correlated with those of multiple seed network genes in at least two of the five gene expression datasets. The fact that several of the genes in this list have been demonstrated, through experimental studies reported in the literature, to be important in rod photoreceptor function provides support for the utility of this approach in prioritizing experimental targets for further experimental investigation. Based on Gene Ontology and KEGG pathway annotations for the list of genes obtained in the context of other information available in the literature, we identified seven genes or groups of genes for possible inclusion in the gene network involved in differentiation of retinal progenitor cells into rod photoreceptors. Our approach to querying multiple gene expression datasets using a seed network constructed from known interactions between specific genes of interest provides a promising strategy for focusing hypothesis-driven experiments using large-scale 'omics' data.
Collapse
Affiliation(s)
- Laura A Hecker
- Interdepartmental Neuroscience Program, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
32
|
Petrovic V, Costa RH, Lau LF, Raychaudhuri P, Tyner AL. FoxM1 regulates growth factor-induced expression of kinase-interacting stathmin (KIS) to promote cell cycle progression. J Biol Chem 2007; 283:453-460. [PMID: 17984092 DOI: 10.1074/jbc.m705792200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Forkhead box M1 (FoxM1) transcription factor is essential for cell cycle progression and mitosis. FoxM1 regulates expression of Skp2 and Cks1, subunits of the SCF ubiquitin ligase complex, which ubiquitinates p27(Kip1) and targets it for degradation. Kinase-interacting stathmin (KIS) is a growth factor-dependent nuclear kinase that regulates cell cycle progression by phosphorylating p27(Kip1) to promote its nuclear export. Here we present an additional mechanism of FoxM1-mediated regulation of p27(Kip1) and provide evidence that FoxM1 regulates growth factor-induced expression of KIS. In cells harboring FoxM1 deletion or expressing FoxM1-short interfering RNA, the expression of KIS is impaired, leading to an accumulation of p27(Kip1) in the nucleus. Furthermore, we show that KIS is a direct transcriptional target of FoxM1. Thus FoxM1 promotes cell cycle progression by down-regulating p27(Kip1) through multiple mechanisms.
Collapse
Affiliation(s)
- Vladimir Petrovic
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, Illinois 60607
| | - Robert H Costa
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, Illinois 60607
| | - Lester F Lau
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, Illinois 60607
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, Illinois 60607
| | - Angela L Tyner
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, Illinois 60607.
| |
Collapse
|
33
|
Gan B, Guan JL. FIP200, a key signaling node to coordinately regulate various cellular processes. Cell Signal 2007; 20:787-94. [PMID: 18036779 DOI: 10.1016/j.cellsig.2007.10.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 10/23/2007] [Indexed: 01/18/2023]
Abstract
A central question in cell biology is how various cellular processes are coordinately regulated in normal cell and how dysregulation of the normal signaling pathways leads to diseases such as cancer. Recent studies have identified FIP200 as a crucial signaling component to coordinately regulate different cellular events by its interaction with multiple signaling pathways. This review will focus on the cellular functions of FIP200 and its interacting proteins, as well as the emerging roles of FIP200 in embryogenesis and cancer development. Further understanding of FIP200 function might provide novel therapeutic targets for human diseases such as cancer.
Collapse
Affiliation(s)
- Boyi Gan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | | |
Collapse
|
34
|
Young TW, Rosen DG, Mei FC, Li N, Liu J, Wang XF, Cheng X. Up-regulation of tumor susceptibility gene 101 conveys poor prognosis through suppression of p21 expression in ovarian cancer. Clin Cancer Res 2007; 13:3848-54. [PMID: 17606716 DOI: 10.1158/1078-0432.ccr-07-0337] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The function of tumor susceptibility gene 101 (TSG101) in ovarian carcinogenesis is largely unexplored. The aim of this study is to investigate the role of TSG101 in human ovarian cancer development, to examine the expression levels of TSG101 in ovarian carcinomas, and to correlate the results with clinicopathologic variables and survival. EXPERIMENTAL DESIGN Human ovarian cancer tissue arrays that contain duplicates of 422 cases of primary ovarian carcinoma were used to probe the expression levels of TSG101 and p21 in epithelial ovarian cancer. In vitro studies in ovarian cancer cells using TSG101-specific small interfering RNA (siRNA) were done to further elucidate the mechanism of TSG101-mediated p21 regulation. RESULTS We show that TSG101 is increasingly overexpressed in borderline tumors and low-grade and high-grade carcinomas. Patients with low expression of TSG101 survive longer than those with high expression. Suppressing TSG101 by siRNA in ovarian cancer cells led to growth inhibition, cell cycle arrest, and apoptosis with concurrent increases in p21 mRNA and protein. Consistent with this negative association between TSG101 and p21, expression levels of these two markers are inversely correlated in ovarian cancer. CONCLUSIONS TSG101 negatively regulates p21 levels, and up-regulation of TSG101 is associated with poor prognosis in ovarian cancer.
Collapse
Affiliation(s)
- Travis W Young
- Department of Pharmacology and Toxicology, Sealy Center for Cancer Cell Biology, The University of Texas Medical Branch, Galveston, Texas 77555-1031, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Puri V, McQuillin A, Choudhury K, Datta S, Pimm J, Thirumalai S, Krasucki R, Lawrence J, Quested D, Bass N, Moorey H, Morgan J, Punukollu B, Kandasami G, Curtis D, Gurling H. Fine mapping by genetic association implicates the chromosome 1q23.3 gene UHMK1, encoding a serine/threonine protein kinase, as a novel schizophrenia susceptibility gene. Biol Psychiatry 2007; 61:873-9. [PMID: 16978587 DOI: 10.1016/j.biopsych.2006.06.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Revised: 06/06/2006] [Accepted: 06/08/2006] [Indexed: 11/30/2022]
Abstract
BACKGROUND Linkage studies by us and others have confirmed that chromosome 1q23.3 is a susceptibility locus for schizophrenia. Based on this information, several research groups have published evidence that markers within both the RGS4 and CAPON genes, which are 700 kb apart, independently showed allelic association with schizophrenia. Tests of allelic association with both of these genes in our case control sample were negative. Therefore, we carried out further fine mapping between the RGS4 and CAPON genes. METHODS Twenty-nine SNP and microsatellite markers in the 1q23.3 region were genotyped in the United Kingdom based sample of 450 cases and 450 supernormal control subjects. RESULTS We detected positive allelic association after the eighth marker was genotyped and found that three microsatellite markers (p = .011, p = .014, p = .049) and two SNPs (p = .004, p = .043) localized in the 700 kb region between the RGS4 and CAPON genes, within the UHMK1 gene, were associated with schizophrenia. Tests of significance for marker rs10494370 remained significant following Bonferroni correction (alpha = .006) for multiple tests. Tests of haplotypic association were also significant for UHMK1 (p = .009) using empirical permutation tests, which make it unnecessary to further correct for both multiple alleles and multiple markers. CONCLUSIONS These results provide preliminary evidence that the UHMK1 gene increases susceptibility to schizophrenia. Further confirmation in adequately powered samples is needed. UHMK1 is a serine threonine kinase nuclear protein and is highly expressed in regions of the brain implicated in schizophrenia.
Collapse
Affiliation(s)
- Vinay Puri
- Molecular Psychiatry Laboratory, Department of Mental Health Sciences, University College London Medical School, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Manceau V, Swenson M, Le Caer JP, Sobel A, Kielkopf CL, Maucuer A. Major phosphorylation of SF1 on adjacent Ser-Pro motifs enhances interaction with U2AF65. FEBS J 2006; 273:577-87. [PMID: 16420481 PMCID: PMC1949809 DOI: 10.1111/j.1742-4658.2005.05091.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Protein phosphorylation ensures the accurate and controlled expression of the genome, for instance by regulating the activities of pre-mRNA splicing factors. Here we report that splicing factor 1 (SF1), which is involved in an early step of intronic sequence recognition, is highly phosphorylated in mammalian cells on two serines within an SPSP motif at the junction between its U2AF65 and RNA binding domains. We show that SF1 interacts in vitro with the protein kinase KIS, which possesses a 'U2AF homology motif' (UHM) domain. The UHM domain of KIS is required for KIS and SF1 to interact, and for KIS to efficiently phosphorylate SF1 on the SPSP motif. Importantly, SPSP phosphorylation by KIS increases binding of SF1 to U2AF65, and enhances formation of the ternary SF1-U2AF65-RNA complex. These results further suggest that this phosphorylation event has an important role for the function of SF1, and possibly for the structural rearrangements associated with spliceosome assembly and function.
Collapse
Affiliation(s)
- Valérie Manceau
- INSERM U706, Institut du Fer à Moulin, 17, rue du Fer à Moulin, F-75005 Paris, France; UPMC, F-75005 Paris, France
| | - Matthew Swenson
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205,USA
| | - Jean-Pierre Le Caer
- Ecole Polytechnique, Laboratoire de Chimie des Mécanismes Réactionnels, Route de Saclay, F-91128 Palaiseau, France
| | - André Sobel
- INSERM U706, Institut du Fer à Moulin, 17, rue du Fer à Moulin, F-75005 Paris, France; UPMC, F-75005 Paris, France
| | - Clara L. Kielkopf
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205,USA
| | - Alexandre Maucuer
- INSERM U706, Institut du Fer à Moulin, 17, rue du Fer à Moulin, F-75005 Paris, France; UPMC, F-75005 Paris, France
| |
Collapse
|
37
|
Watanabe R, Chano T, Inoue H, Isono T, Koiwai O, Okabe H. Rb1cc1 is critical for myoblast differentiation through Rb1 regulation. Virchows Arch 2005; 447:643-8. [PMID: 15968549 DOI: 10.1007/s00428-004-1183-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Accepted: 11/19/2004] [Indexed: 10/25/2022]
Abstract
Rb1-inducible coiled-coil 1 (Rb1cc1) expressed at high levels is associated with the maturation of human embryonic musculoskeletal cells. To clarify the molecular role of Rb1cc1 in muscular differentiation, we investigated the expression of Rb1cc1 and other genes that regulate differentiation in murine embryonic tissues and in C2C12 myoblasts. We also evaluated the effects of RNA interference (RNAi)-mediated Rb1cc1 knockdown on C2C12 myoblast differentiation. After Rb1cc1, Rb1 and myosin heavy chain (Myhc) were expressed in mouse embryonic muscles. The synchronous expression of Rb1cc1 and Rb1 predicted Myhc expression during C2C12 myoblast differentiation. RNAi-mediated knockdown of Rb1cc1 led to Rb1 suppression, and C2C12 myoblasts failed to differentiate. These results indicated that Rb1cc1 is a potent regulator of the Rb1 pathway and a novel mediator that plays a crucial role in muscular differentiation. Rb1cc1 expression is, thus, a prerequisite for myogenic differentiation.
Collapse
Affiliation(s)
- Ryosuke Watanabe
- Department of Applied Biological Science, Faculty of Science and Technology, Science University of Tokyo, 278-0022 Chiba , Japan
| | | | | | | | | | | |
Collapse
|
38
|
Giampietro C, Luzzati F, Gambarotta G, Giacobini P, Boda E, Fasolo A, Perroteau I. Stathmin expression modulates migratory properties of GN-11 neurons in vitro. Endocrinology 2005; 146:1825-34. [PMID: 15625246 DOI: 10.1210/en.2004-0972] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Expression of stathmin, a microtubule-associated cytoplasmic protein, prominently localized in neuroproliferative zones and neuronal migration pathways in brain, was investigated in the GnRH neuroendocrine system in vivo and the function was analyzed using an in vitro approach. Here we present novel data demonstrating that GnRH migrating neurons in nasal regions and basal forebrain areas of mouse embryos express stathmin protein. In addition, this expression pattern is dependent on location, as GnRH neurons reaching the hypothalamus are stathmin negative. Immortalized GN-11 cells, which retain many characteristics of migrating GnRH neurons, strongly express stathmin mRNA and protein. The role of stathmin in GnRH migratory properties was evaluated using GN-11 cell line. We up-regulated [stathmin-transfected clones (STMN)+] and down-regulated (STMN-) the expression of stathmin in GN-11 cells, and we investigated changes in cell morphology and motility in vitro. Cells overexpressing stathmin assume a spindle-shaped morphology and their proliferation, as well as their motility, is higher with respect to parental cells. Furthermore, they do not aggregate and express low levels of cadherins compared with control cells. STMN- GN-11 cells are endowed with multipolar processes, and they show a decreased motility and express high levels of cadherin protein. Our findings suggest that stathmin plays a permissive role in GnRH cell motility, possibly via modulation of cadherins expression.
Collapse
Affiliation(s)
- Costanza Giampietro
- Department of Human and Animal Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy
| | | | | | | | | | | | | |
Collapse
|
39
|
Carstens MJ, Krempler A, Triplett AA, van Lohuizen M, Wagner KU. Cell cycle arrest and cell death are controlled by p53-dependent and p53-independent mechanisms in Tsg101-deficient cells. J Biol Chem 2004; 279:35984-94. [PMID: 15210712 PMCID: PMC1201394 DOI: 10.1074/jbc.m400408200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our previous studies have shown that cells conditionally deficient in Tsg101 arrested at the G(1)/S cell cycle checkpoint and died. We created a series of Tsg101 conditional knock-out cell lines that lack p53, p21(Cip1), or p19(Arf) to determine the involvement of the Mdm2-p53 circuit as a regulator for G(1)/S progression and cell death. In this new report we show that the cell cycle arrest in Tsg101-deficient cells is p53-dependent, but a null mutation of the p53 gene is unable to maintain cell survival. The deletion of the Cdkn1a gene in Tsg101 conditional knock-out cells resulted in G(1)/S progression, suggesting that the p53-dependent G(1) arrest in the Tsg101 knock-out is mediated by p21(Cip1). The Cre-mediated excision of Tsg101 in immortalized fibroblasts that lack p19(Arf) seemed not to alter the ability of Mdm2 to sequester p53, and the p21-mediated G(1) arrest was not restored. Based on these findings, we propose that the p21-dependent cell cycle arrest in Tsg101-deficient cells is an indirect consequence of cellular stress and not caused by a direct effect of Tsg101 on Mdm2 function as previously suggested. Finally, the deletion of Tsg101 from primary tumor cells that express mutant p53 and that lack p21(Cip1) expression results in cell death, suggesting that additional transforming mutations during tumorigenesis do not affect the important role of Tsg101 for cell survival.
Collapse
Affiliation(s)
- Marissa J. Carstens
- From the Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska 68198-6805 and
| | - Andrea Krempler
- From the Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska 68198-6805 and
| | - Aleata A. Triplett
- From the Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska 68198-6805 and
| | - Maarten van Lohuizen
- The Netherlands Cancer Institute, Department of Molecular Genetics, H5, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Kay-Uwe Wagner
- From the Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska 68198-6805 and
| |
Collapse
|
40
|
Abstract
Recent structures of the heterodimeric splicing factor U2 snRNP auxiliary factor (U2AF) have revealed two unexpected examples of RNA recognition motif (RRM)-like domains with specialized features for protein recognition. These unusual RRMs, called U2AF homology motifs (UHMs), represent a novel class of protein recognition motifs. Defining a set of rules to distinguish traditional RRMs from UHMs is key to identifying novel UHM family members. Here we review the critical sequence features necessary to mediate protein-UHM interactions, and perform comprehensive database searches to identify new members of the UHM family. The resulting implications for the functional and evolutionary relationships among candidate UHM family members are discussed.
Collapse
Affiliation(s)
- Clara L. Kielkopf
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
- Corresponding author. E-MAIL ; FAX (410) 955-2926
| | - Stephan Lücke
- Howard Hughes Medical Institute, Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Michael R. Green
- Howard Hughes Medical Institute, Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
- Corresponding author. E-MAIL ; FAX (508) 856-5473
| |
Collapse
|
41
|
Curmi PA, Gavet O, Charbaut E, Ozon S, Lachkar-Colmerauer S, Manceau V, Siavoshian S, Maucuer A, Sobel A. Stathmin and its phosphoprotein family: general properties, biochemical and functional interaction with tubulin. Cell Struct Funct 2004; 24:345-57. [PMID: 15216892 DOI: 10.1247/csf.24.345] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Stathmin, also referred to as Op18, is a ubiquitous cytosolic phosphoprotein, proposed to be a small regulatory protein and a relay integrating diverse intracellular signaling pathways involved in the control of cell proliferation, differentiation and activities. It interacts with several putative downstream target and/or partner proteins. One major action of stathmin is to interfere with microtubule dynamics, by inhibiting the formation of microtubules and/or favoring their depolymerization. Stathmin (S) interacts directly with soluble tubulin (T), which results in the formation of a T2S complex which sequesters free tubulin and therefore impedes microtubule formation. However, it has been also proposed that stathmin's action on microtubules might result from the direct promotion of catastrophes, which is still controversial. Phosphorylation of stathmin regulates its biological actions: it reduces its affinity for tubulin and hence its action on microtubule dynamics, which allows for example progression of cells through mitosis. Stathmin is also the generic element of a protein family including the neural proteins SCG10, SCLIP and RB3/RB3'/RB3". Interestingly, the stathmin-like domains of these proteins also possess a tubulin binding activity in vitro. In vivo, the transient expression of neural phosphoproteins of the stathmin family leads to their localization at Golgi membranes and, as previously described for stathmin and SCG10, to the depolymerization of interphasic microtubules. Altogether, the same mechanism for microtubule destabilization, that implies tubulin sequestration, is a common feature likely involved in the specific biological roles of each member of the stathmin family.
Collapse
Affiliation(s)
- P A Curmi
- INSERM U440, Institut du Fer à Moulin, 17 rue du Fer à Moulin, 75005, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Grenningloh G, Soehrman S, Bondallaz P, Ruchti E, Cadas H. Role of the microtubule destabilizing proteins SCG10 and stathmin in neuronal growth. ACTA ACUST UNITED AC 2004; 58:60-9. [PMID: 14598370 DOI: 10.1002/neu.10279] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The related proteins SCG10 and stathmin are highly expressed in the developing nervous system. Recently it was discovered that they are potent microtubule destabilizing factors. While stathmin is expressed in a variety of cell types and shows a cytosolic distribution, SCG10 is neuron-specific and membrane-associated. It contains an N-terminal targeting sequence that mediates its transport to the growing tips of axons and dendrites. SCG10 accumulates in the central domain of the growth cone, a region that also contains highly dynamic microtubules. These dynamic microtubules are known to be important for growth cone advance and responses to guidance cues. Because overexpression of SCG10 strongly enhances neurite outgrowth, SCG10 appears to be an important factor for the dynamic assembly and disassembly of growth cone microtubules during axonal elongation. Phosphorylation negatively regulates the microtubule destabilizing activity of SCG10 and stathmin, suggesting that these proteins may link extracellular signals to the rearrangement of the neuronal cytoskeleton. A role for these proteins in axonal elongation is also supported by their growth-associated expression pattern in nervous system development as well as during neuronal regeneration.
Collapse
Affiliation(s)
- Gabriele Grenningloh
- Institut de Biologie Cellulaire et de Morphologie, Université de Lausanne, 1005 Lausanne, Suisse
| | | | | | | | | |
Collapse
|
43
|
Bièche I, Manceau V, Curmi PA, Laurendeau I, Lachkar S, Leroy K, Vidaud D, Sobel A, Maucuer A. Quantitative RT-PCR reveals a ubiquitous but preferentially neural expression of the KIS gene in rat and human. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 114:55-64. [PMID: 12782393 DOI: 10.1016/s0169-328x(03)00132-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
KIS is the only known protein kinase that possesses an RNA recognition motif. This original structure indicates a role for KIS in the maturation of RNAs possibly by phosphorylating and regulating the activities of RNA associated factors. Another function of KIS has recently been unravelled--it negatively regulates the cdk inhibitor p27Kip1 and thus promotes cell cycle progression through G1. In order to explore the functional expression of this kinase, we quantified its mRNA in a wide range of rat and human tissues, during development and in tumors. In both species, the highest level of KIS gene expression was in adult neural tissues. Interestingly, within the adult rat brain, KIS mRNA is enriched in several areas including the substantia nigra compacta and nuclei of the brain stem. Furthermore, KIS gene expression increases dramatically during brain development. Altogether our results point to a ubiquitous function for KIS together with a particular implication during neural differentiation or in the function of mature neural cells. No dysregulation of KIS gene expression was detected in human tumors from breast, bladder, prostate, liver and kidney origins. On the other hand, the KIS gene was overexpressed in NF1-associated plexiform neurofibromas and malignant peripheral nerve sheath tumors (MPNSTs) as compared to dermal neurofibroma which suggests a possible implication of KIS in the genesis of NF1-associated tumors.
Collapse
Affiliation(s)
- Ivan Bièche
- Laboratoire de Génétique Moléculaire-UPRES EA 3618, Faculté des Sciences Pharmaceutiques et Biologiques, Université René Descartes-Paris V, 75006 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Tamura K, Hara T, Yoshie M, Irie S, Sobel A, Kogo H. Enhanced expression of uterine stathmin during the process of implantation and decidualization in rats. Endocrinology 2003; 144:1464-73. [PMID: 12639930 DOI: 10.1210/en.2002-220834] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We used the library subtraction technique to identify genes specifically expressed in the rat uterus during early pregnancy. One such gene was that for stathmin, a factor that is associated with tubulin binding and the destabilization of microtubules. Stathmin was expressed at higher levels in implantation sites than in interimplantation sites on d 6 and 7 of pregnancy; the levels on d 6 and 7 were higher in implantation sites than in the entire uterus on d 3-5 of pregnancy or in nonpregnant uteri. Intense expression of stathmin mRNA was primarily limited to the subluminal stromal cells at the implantation site. Expression was also detected in the decidual zones and was accentuated during the period of decidualization (d 7-12). In the delayed implantation pregnant rat model, uterine stathmin expression was low, but increased after implantation induced by administration of 17beta-estradiol to the progesterone-primed animal. Further, decidualization in the pseudopregnant rat, induced by intrauterine infusion of oil, enhanced stathmin expression. Stathmin expression clearly increases in the uterus when stimulated by embryo implantation and decidualization and may play a role in the early stages of pregnancy.
Collapse
Affiliation(s)
- Kazuhiro Tamura
- Department of Pharmacology, Tokyo University of Pharmacy and Life Science, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Chen G, Wang H, Gharib TG, Huang CC, Thomas DG, Shedden KA, Kuick R, Taylor JMG, Kardia SLR, Misek DE, Giordano TJ, Iannettoni MD, Orringer MB, Hanash SM, Beer DG. Overexpression of oncoprotein 18 correlates with poor differentiation in lung adenocarcinomas. Mol Cell Proteomics 2003; 2:107-16. [PMID: 12644570 DOI: 10.1074/mcp.m200055-mcp200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We examined the expression of oncoprotein 18 (Op18) in 93 lung adenocarcinomas and 10 uninvolved lung samples using quantitative two-dimensional PAGE analysis with confirmation by mass spectrometry and two-dimensional Western blot analysis. mRNA expression was examined using oligonucleotide microarrays, and the cellular localization of the Op18 protein was examined using immunohistochemical analysis of tissue microarrays. Three phosphorylated forms and one unphosphorylated form of the Op18 protein were identified and found to be overexpressed in lung adenocarcinomas as compared with normal lung. The percentage of phosphorylated to total Op18 protein isoforms increased from 3.2% in normal lung to 7.9% in lung tumors. Both the phosphorylated and unphosphorylated Op18 proteins were significantly increased in poorly differentiated tumors as compared with moderately or well differentiated lung adenocarcinomas (p<0.03), suggesting that up-regulated expression of Op18 reflects a poor differentiation status and higher cell proliferation rates. This was further verified in A549 and SKLU1 lung adenocarcinoma cell lines by examining Op18 levels and phosphorylation status following treatment that altered either cell proliferation or differentiation. The increased expression of Op18 protein was significantly correlated with its mRNA level indicating that increased transcription likely underlies elevated expression of Op18. The overexpression of Op18 proteins in poorly differentiated lung adenocarcinomas and the elevated expression of the phosphorylated forms of Op18 may offer a new target for drug- or gene-directed therapy and may have potential utility as a tumor marker.
Collapse
Affiliation(s)
- Guoan Chen
- Department of Surgery, The University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Mori N, Morii H. SCG10-related neuronal growth-associated proteins in neural development, plasticity, degeneration, and aging. J Neurosci Res 2002; 70:264-73. [PMID: 12391585 DOI: 10.1002/jnr.10353] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neuronal growth-associated proteins (nGAPs) are in general neuron-specific gene products whose expression correlates tightly with neuronal process outgrowth and/or regeneration, and are mostly good downstream targets of neurotrophin stimulation. Expression of genes encoding nGAPs such as GAP-43, SCG10, and stathmin is upregulated following lesioning of cortical and hippocampal regions of the adult rat brain. In the brains of aged animals, however, the magnitude of the response is reduced, whereas the time course of the response is mostly unchanged when compared with that for brains of young ones. Expression of GAP-43 and stathmin is reduced by aging, and is also changed in age-related neurodegenerative conditions such as Alzheimer's disease in humans. Certain nGAPs are induced during long-term potentiation (LTP) and also during critical periods of song-learning and ocular dominance column formation in birds and cats, respectively. Recent evidence further supports the idea that functional synaptic modulation is often associated with remodeling of synaptic structures. These results suggest that neurotrophin-responsive nGAPs serve as molecular markers of neuronal plasticity during development and aging, and that the neuronal plasticity decreases, at least in certain neuronal circuits, in the aged brain and neurodegenerative diseases. Recent findings on the roles of stathmin and SCG10-related proteins in microtubule destabilization and its functional block by phosphorylation further support the importance of the SCG10 family proteins in neuronal cytoskeletal regulation, particularly as to microtubule dynamics. We summarize here a decade of research on SCG10 and its related molecules with special interests to brain aging and disease.
Collapse
Affiliation(s)
- Nozomu Mori
- Department of Molecular Genetics, National Institute for Longevity Sciences, and Program of "Protecting the Brain", CREST, JST, Morioka, Oobu, Aichi, Japan.
| | | |
Collapse
|
48
|
Misek DE, Chang CL, Kuick R, Hinderer R, Giordano TJ, Beer DG, Hanash SM. Transforming properties of a Q18-->E mutation of the microtubule regulator Op18. Cancer Cell 2002; 2:217-28. [PMID: 12242154 DOI: 10.1016/s1535-6108(02)00124-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We have identified a somatic mutation in Op18 in a human esophageal adenocarcinoma. The mutant form of Op18 (M-Op18) was cloned and sequenced, revealing a substitution of a G for C at nucleotide 155, which results in a Q18-->E substitution in the protein. M-Op18 cDNA was expressed in NIH/3T3 cells, which resulted in foci formation and tumor growth in immunodeficient mice. Cell cycle analysis of M-Op18-expressing cells revealed a doubling in the percentage of cells in G2/M relative to cells overexpressing wild-type Op18, a decrease in M-Op18-specific phosphorylation, and alterations in tubulin ultrastructure in M-Op18-expressing cells. These results suggest that the somatic mutation identified in Op18 has profound effects on cell homeostasis that may lead to tumorigenicity.
Collapse
Affiliation(s)
- David E Misek
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Liu RT, Huang CC, You HL, Chou FF, Hu CCA, Chao FP, Chen CM, Cheng JT. Overexpression of tumor susceptibility gene TSG101 in human papillary thyroid carcinomas. Oncogene 2002; 21:4830-7. [PMID: 12101421 DOI: 10.1038/sj.onc.1205612] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2001] [Revised: 04/17/2002] [Accepted: 04/26/2002] [Indexed: 11/08/2022]
Abstract
Functional inactivation of tumor susceptibility gene tsg101 leads to cellular transformation and tumorigenesis in mice. While human TSG101 is located in a region where frequent loss of heterozygosity can be detected in a variety of cancers, no genomic deletion in TSG101 gene has been reported, casting a doubt on the role of TSG101 as a classical tumor suppressor. Some studies have revealed that TSG101 is a frequent target of splicing defects, which correlate with cellular stress and p53 status. Furthermore, recent reports have identified TSG101 as a part of the MDM2/p53 regulatory circuitry, a well-recognized circuitry that upon deregulation results in tumorigenesis. Interestingly, overexpression of tsg101 from an adventitious promoter also leads to neoplastic transformation. On the basis of this information, we have analysed TSG101 gene expression in 20 human papillary thyroid carcinomas (PTCs) by immunohistochemistry and demonstrated that the overexpression of TSG101 protein is closely associated with human PTCs. Further sequence analysis reveals no mutation in cDNA region encoding steadiness box in these PTC specimens, indicating that the upregulation of TSG101 protein is not caused by the alteration of this region. In situ hybridization analysis confirms that overexpression of TSG101 also occurs at the transcriptional level. In addition, semi-quantitative RT-PCR and subsequent Southern hybridization verify that the amounts of TSG101 transcripts are indeed lower in three normal thyroid tissues than in PTC specimens. Here we report the upregulation of TSG101 expression in PTC cells, providing the first evidence of the association of TSG101 overexpression with human tumors and suggesting that upregulation of TSG101 steady-state level might play a role in mediating tumorigenesis of human PTC.
Collapse
Affiliation(s)
- Rue-Tsuan Liu
- Division of Metabolism, Chang Gung Memorial Hospital, Kaohsiung, Taiwan 833, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Boehm M, Yoshimoto T, Crook MF, Nallamshetty S, True A, Nabel GJ, Nabel EG. A growth factor-dependent nuclear kinase phosphorylates p27(Kip1) and regulates cell cycle progression. EMBO J 2002; 21:3390-401. [PMID: 12093740 PMCID: PMC126092 DOI: 10.1093/emboj/cdf343] [Citation(s) in RCA: 226] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The cyclin-dependent kinase inhibitor, p27(Kip1), which regulates cell cycle progression, is controlled by its subcellular localization and subsequent degradation. p27(Kip1) is phosphorylated on serine 10 (S10) and threonine 187 (T187). Although the role of T187 and its phosphorylation by Cdks is well-known, the kinase that phosphorylates S10 and its effect on cell proliferation has not been defined. Here, we identify the kinase responsible for S10 phosphorylation as human kinase interacting stathmin (hKIS) and show that it regulates cell cycle progression. hKIS is a nuclear protein that binds the C-terminal domain of p27(Kip1) and phosphorylates it on S10 in vitro and in vivo, promoting its nuclear export to the cytoplasm. hKIS is activated by mitogens during G(0)/G(1), and expression of hKIS overcomes growth arrest induced by p27(Kip1). Depletion of KIS using small interfering RNA (siRNA) inhibits S10 phosphorylation and enhances growth arrest. p27(-/-) cells treated with KIS siRNA grow and progress to S/G(2 )similar to control treated cells, implicating p27(Kip1) as the critical target for KIS. Through phosphorylation of p27(Kip1) on S10, hKIS regulates cell cycle progression in response to mitogens.
Collapse
Affiliation(s)
| | | | | | | | | | - Gary J. Nabel
- Cardiovascular Branch, NHLBI, and
Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA Corresponding author e-mail:
| | - Elizabeth G. Nabel
- Cardiovascular Branch, NHLBI, and
Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA Corresponding author e-mail:
| |
Collapse
|