1
|
de Roij M, Borst JW, Weijers D. Protein degradation in auxin response. THE PLANT CELL 2024; 36:3025-3035. [PMID: 38652687 PMCID: PMC11371164 DOI: 10.1093/plcell/koae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/14/2024] [Accepted: 03/01/2024] [Indexed: 04/25/2024]
Abstract
The signaling molecule auxin sits at the nexus of plant biology where it coordinates essentially all growth and developmental processes. Auxin molecules are transported throughout plant tissues and are capable of evoking highly specific physiological responses by inducing various molecular pathways. In many of these pathways, proteolysis plays a crucial role for correct physiological responses. This review provides a chronology of the discovery and characterization of the auxin receptor, which is a fascinating example of separate research trajectories ultimately converging on the discovery of a core auxin signaling hub that relies on degradation of a family of transcriptional inhibitor proteins-the Aux/IAAs. Beyond describing the "classical" proteolysis-driven auxin response system, we explore more recent examples of the interconnection of proteolytic systems, which target a range of other auxin signaling proteins, and auxin response. By highlighting these emerging concepts, we provide potential future directions to further investigate the role of protein degradation within the framework of auxin response.
Collapse
Affiliation(s)
- Martijn de Roij
- Laboratory of Biochemistry, Wageningen University, Wageningen 6708WE, The Netherlands
| | - Jan Willem Borst
- Laboratory of Biochemistry, Wageningen University, Wageningen 6708WE, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Wageningen 6708WE, The Netherlands
| |
Collapse
|
2
|
Banerjee A, Roychoudhury A. Functional and molecular characterization of fluoride exporter (FEX) from rice and its constitutive overexpression in Nicotiana benthamiana to promote fluoride tolerance. PLANT CELL REPORTS 2021; 40:1751-1772. [PMID: 34173048 DOI: 10.1007/s00299-021-02737-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE Early induction of OsFEX was insufficient for fluoride adaptation in IR-64. Overexpression of OsFEX in yeast and Nicotiana benthamiana enhanced fluoride tolerance. The present study delineates the regulation of fluoride exporter (FEX) in the fluoride-sensitive rice cultivar, IR-64 and its efficacy in generating high fluoride tolerance in transgenic Nicotiana benthamiana. Gene and protein expression profiling revealed that OsFEX exhibited early induction during fluoride stress in the vegetative and reproductive tissues of IR-64, although the expression was suppressed upon prolonged stress treatment. Analysis of OsFEX promoter in transgenic N. benthamiana, using β-glucuronidase reporter assay confirmed its early inducible nature, since the reporter expression and activity peaked at 12 h of NaF stress, after which it was lowered. OsFEX expression was up regulated in the presence of gibberellic acid (GA) and melatonin, while it was suppressed by abscisic acid (ABA). Complementation of ΔFEX1ΔFEX2 yeast mutants with OsFEX enabled high fluoride tolerance, thus validating the functional efficiency of the transgene. Bioassay of transgenic N. benthamiana lines, expressing OsFEX either under its own promoter or under CaMV35S promoter, established that constitutive overexpression, rather than early induction of OsFEX was essential and crucial for generating fluoride tolerance in the transgenics. Overall, the suppression of OsFEX in the later growth phases of stressed IR-64 due to enhanced ABA conservation and lowered synthesis of GA, as supported by the application of the respective phytohormone biosynthetic inhibitors, such as sodium tungstate and paclobutrazol, accounted for the fluoride-hyperaccumulative nature of the rice cultivar.
Collapse
Affiliation(s)
- Aditya Banerjee
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, West Bengal, 700016, India
| | - Aryadeep Roychoudhury
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, West Bengal, 700016, India.
| |
Collapse
|
3
|
Rezaee S, Ahmadizadeh M, Heidari P. Genome-wide characterization, expression profiling, and post-transcriptional study of GASA gene family. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Lieberman-Lazarovich M, Yahav C, Israeli A, Efroni I. Deep Conservation of cis-Element Variants Regulating Plant Hormonal Responses. THE PLANT CELL 2019; 31:2559-2572. [PMID: 31467248 PMCID: PMC6881130 DOI: 10.1105/tpc.19.00129] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/27/2019] [Indexed: 05/14/2023]
Abstract
Phytohormones regulate many aspects of plant life by activating transcription factors (TFs) that bind sequence-specific response elements (REs) in regulatory regions of target genes. Despite their short length, REs are degenerate, with a core of just 3 to 4 bp. This degeneracy is paradoxical, as it reduces specificity and REs are extremely common in the genome. To study whether RE degeneracy might serve a biological function, we developed an algorithm for the detection of regulatory sequence conservation and applied it to phytohormone REs in 45 angiosperms. Surprisingly, we found that specific RE variants are highly conserved in core hormone response genes. Experimental evidence showed that specific variants act to regulate the magnitude and spatial profile of hormonal response in Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum). Our results suggest that hormone-regulated TFs bind a spectrum of REs, each coding for a distinct transcriptional response profile. Our approach has implications for precise genome editing and for rational promoter design.
Collapse
Affiliation(s)
- Michal Lieberman-Lazarovich
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, The Hebrew University, Rehovot 7610001, Israel
| | - Chen Yahav
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, The Hebrew University, Rehovot 7610001, Israel
| | - Alon Israeli
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, The Hebrew University, Rehovot 7610001, Israel
| | - Idan Efroni
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, The Hebrew University, Rehovot 7610001, Israel
| |
Collapse
|
5
|
Regulatory Mechanism of ABA and ABI3 on Vegetative Development in the Moss Physcomitrella patens. Int J Mol Sci 2018; 19:ijms19092728. [PMID: 30213069 PMCID: PMC6164827 DOI: 10.3390/ijms19092728] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/01/2018] [Accepted: 09/02/2018] [Indexed: 12/21/2022] Open
Abstract
The moss Physcomitrella patens is a model system for studying plant developmental processes. ABSCISIC ACID INSENSITIVE3 (ABI3), a transcription factor of the ABA signaling pathway, plays an important role in plant growth and development in vascular plant. To understand the regulatory mechanism of ABA and PpABI3 on vegetative development in Physcomitrella patens, we applied physiological, cellular, and RNA-seq analyses in wild type (WT) plants and ∆abi3 mutants. During ABA treatment, the growth of gametophytes was inhibited to a lesser extent ∆abi3 plants compared with WT plants. Microscopic observation indicated that the differentiation of caulonemata from chloronemata was accelerated in ∆abi3 plants when compared with WT plants, with or without 10 μM of ABA treatment. Under normal conditions, auxin concentration in ∆abi3 plants was markedly higher than that in WT plants. The auxin induced later differentiation of caulonemata from chloronemata, and the phenotype of ∆abi3 plants was similar to that of WT plants treated with exogenous indole-3-acetic acid (IAA). RNA-seq analysis showed that the PpABI3-regulated genes overlapped with genes regulated by the ABA treatment, and about 78% of auxin-related genes regulated by the ABA treatment overlapped with those regulated by PpABI3. These results suggested that ABA affected vegetative development partly through PpABI3 regulation in P. patens; PpABI3 is a negative regulator of vegetative development in P. patens, and the vegetative development regulation by ABA and PpABI3 might occur by regulating the expression of auxin-related genes. PpABI3 might be associated with cross-talk between ABA and auxin in P. patens.
Collapse
|
6
|
Huang KL, Ma GJ, Zhang ML, Xiong H, Wu H, Zhao CZ, Liu CS, Jia HX, Chen L, Kjorven JO, Li XB, Ren F. The ARF7 and ARF19 Transcription Factors Positively Regulate PHOSPHATE STARVATION RESPONSE1 in Arabidopsis Roots. PLANT PHYSIOLOGY 2018; 178:413-427. [PMID: 30026290 PMCID: PMC6130041 DOI: 10.1104/pp.17.01713] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 07/12/2018] [Indexed: 05/19/2023]
Abstract
PHOSPHATE STARVATION RESPONSE1 (PHR1) is a key regulatory component of the response to phosphate (Pi) starvation. However, the regulation of PHR1 in this response remains poorly understood. Here, we report that PHR1 is a target of the transcription factors AUXIN RESPONSE FACTOR7 (ARF7) and ARF19 and is positively regulated by auxin signaling in Arabidopsis (Arabidopsis thaliana) roots. PHR1 expression was induced by exogenous auxin and suppressed by auxin transport inhibitors in Arabidopsis roots. In the PHR1 promoter, three auxin-response elements, which are bound directly by ARF7 and ARF19, were shown to be essential for PHR1 expression. The arf7, arf19, and arf7 arf19 mutants showed down-regulated expression of PHR1 and downstream Pi starvation-induced genes in roots; they also exhibited defective Pi uptake in roots and overaccumulation of anthocyanin in shoots. The induction of lateral root formation in response to low Pi and to exogenous auxin was decreased in the phr1 mutant, whereas the expression of LATERAL ORGAN BOUNDARIES-DOMAIN16 (LBD16) and LBD29 was not changed significantly. PHR1 acted independently of LBD16 and LBD29 in the regulation of lateral root formation in response to low Pi. Under low-Pi conditions, lateral root impairment in the arf7 arf19 mutant was partially rescued by constitutive expression of PHR1, demonstrating that reduced PHR1 expression contributed to the arf7 arf19 phenotype. In addition to PHR1, other genes encoding MYB-CC members also were targets of ARF7 and ARF19. Our work thus reveals a mechanism coordinating auxin signaling and the PHR1 regulon in Arabidopsis responses to Pi deficiency.
Collapse
Affiliation(s)
- Ke-Lin Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Guang-Jing Ma
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Mei-Li Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Huan Xiong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Huan Wu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Cai-Zhi Zhao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Chun-Sen Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Han-Xin Jia
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Liang Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture and Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | | | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Feng Ren
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
7
|
Prediction of auxin response elements based on data fusion in Arabidopsis thaliana. Mol Biol Rep 2018; 45:763-772. [PMID: 29936576 DOI: 10.1007/s11033-018-4216-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/14/2018] [Indexed: 01/05/2023]
Abstract
The plant hormone "auxin" is a key regulator of plant development and environmental responses. Many genes in Arabidopsis thaliana are known to be up-regulated in response to auxin. Auxin response factors activate or repress the expression of genes by binding at their promoter regions within auxin response elements (AuxRE) that are key regulatory cis-acting motives. Therefore, the identification of auxin-response elements is among the most important issues to understand the auxin regulation mechanisms. Thus, searching the TGTCTC motif is an unreliable method to identify AuxRE because many AuxRE variants may also be functional. In the present study, we perform an In-silico prediction of AuxREs in promoters of primary auxin responsive genes. We exploit microarray data of auxin response in Arabidopsis thaliana seedlings, in order to provide biological annotation to AuxRE. We apply a data fusion method based on the combined use of evidence theory and fuzzy sets to scan upstream sequences of response genes.
Collapse
|
8
|
Roosjen M, Paque S, Weijers D. Auxin Response Factors: output control in auxin biology. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:179-188. [PMID: 28992135 DOI: 10.1093/jxb/erx237] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The phytohormone auxin is involved in almost all developmental processes in land plants. Most, if not all, of these processes are mediated by changes in gene expression. Auxin acts on gene expression through a short nuclear pathway that converges upon the activation of a family of DNA-binding transcription factors. These AUXIN RESPONSE FACTORS (ARFs) are thus the effector of auxin response and translate the chemical signal into the regulation of a defined set of genes. Given the limited number of dedicated components in auxin signaling, distinct properties among the ARF family probably contribute to the establishment of multiple unique auxin responses in plant development. In the two decades following the identification of the first ARF in Arabidopsis, much has been learnt about how these transcription factors act, and how they generate unique auxin responses. Progress in genetics, biochemistry, genomics, and structural biology has helped to develop mechanistic models for ARF action. However, despite intensive efforts, many central questions are yet to be addressed. In this review, we highlight what has been learnt about ARF transcription factors, and identify outstanding questions and challenges for the near future.
Collapse
Affiliation(s)
- Mark Roosjen
- Laboratory of Biochemistry, Wageningen University, The Netherlands
| | - Sébastien Paque
- Laboratory of Biochemistry, Wageningen University, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, The Netherlands
| |
Collapse
|
9
|
Pařízková B, Pernisová M, Novák O. What Has Been Seen Cannot Be Unseen-Detecting Auxin In Vivo. Int J Mol Sci 2017; 18:ijms18122736. [PMID: 29258197 PMCID: PMC5751337 DOI: 10.3390/ijms18122736] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/10/2017] [Accepted: 12/12/2017] [Indexed: 12/24/2022] Open
Abstract
Auxins mediate various processes that are involved in plant growth and development in response to specific environmental conditions. Its proper spatio-temporal distribution that is driven by polar auxin transport machinery plays a crucial role in the wide range of auxins physiological effects. Numbers of approaches have been developed to either directly or indirectly monitor auxin distribution in vivo in order to elucidate the basis of its precise regulation. Herein, we provide an updated list of valuable techniques used for monitoring auxins in plants, with their utilities and limitations. Because the spatial and temporal resolutions of the presented approaches are different, their combination may provide a comprehensive outcome of auxin distribution in diverse developmental processes.
Collapse
Affiliation(s)
- Barbora Pařízková
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Markéta Pernisová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
- Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic.
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| |
Collapse
|
10
|
McAdam EL, Meitzel T, Quittenden LJ, Davidson SE, Dalmais M, Bendahmane AI, Thompson R, Smith JJ, Nichols DS, Urquhart S, Gélinas-Marion A, Aubert G, Ross JJ. Evidence that auxin is required for normal seed size and starch synthesis in pea. THE NEW PHYTOLOGIST 2017; 216:193-204. [PMID: 28748561 DOI: 10.1111/nph.14690] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/31/2017] [Indexed: 05/02/2023]
Abstract
In recent years the biosynthesis of auxin has been clarified with the aid of mutations in auxin biosynthesis genes. However, we know little about the effects of these mutations on the seed-filling stage of seed development. Here we investigate a key auxin biosynthesis mutation of the garden pea, which results in auxin deficiency in developing seeds. We exploit the large seed size of this model species, which facilitates the measurement of compounds in individual seeds. The mutation results in small seeds with reduced starch content and a wrinkled phenotype at the dry stage. The phenotypic effects of the mutation were fully reversed by introduction of the wild-type gene as a transgene, and partially reversed by auxin application. The results indicate that auxin is required for normal seed size and starch accumulation in pea, an important grain legume crop.
Collapse
Affiliation(s)
- Erin L McAdam
- School of Biological Sciences, University of Tasmania, Sandy Bay, 7001, Australia
| | - Tobias Meitzel
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, D-06466, Germany
| | - Laura J Quittenden
- School of Biological Sciences, University of Tasmania, Sandy Bay, 7001, Australia
| | - Sandra E Davidson
- School of Biological Sciences, University of Tasmania, Sandy Bay, 7001, Australia
| | - Marion Dalmais
- Institute of Plant Sciences - Paris-Saclay, Bâtiment 630, Plateau du Moulon Rue Noetzlin CS 80004, 91192, Gif-sur-Yvette Cedex, France
| | - Abdelhafid I Bendahmane
- Institute of Plant Sciences - Paris-Saclay, Bâtiment 630, Plateau du Moulon Rue Noetzlin CS 80004, 91192, Gif-sur-Yvette Cedex, France
| | - Richard Thompson
- INRA (National Institute for Agronomic Research), UMR 1347 Agroécologie, BP 86510, Dijon, France
| | - Jennifer J Smith
- School of Biological Sciences, University of Tasmania, Sandy Bay, 7001, Australia
| | - David S Nichols
- Central Science Laboratory, University of Tasmania, Sandy Bay, 7001, Australia
| | - Shelley Urquhart
- School of Biological Sciences, University of Tasmania, Sandy Bay, 7001, Australia
| | | | - Gregoire Aubert
- INRA (National Institute for Agronomic Research), UMR 1347 Agroécologie, BP 86510, Dijon, France
| | - John J Ross
- School of Biological Sciences, University of Tasmania, Sandy Bay, 7001, Australia
| |
Collapse
|
11
|
Hou J, Jiang P, Qi S, Zhang K, He Q, Xu C, Ding Z, Zhang K, Li K. Isolation and Functional Validation of Salinity and Osmotic Stress Inducible Promoter from the Maize Type-II H+-Pyrophosphatase Gene by Deletion Analysis in Transgenic Tobacco Plants. PLoS One 2016; 11:e0154041. [PMID: 27101137 PMCID: PMC4839719 DOI: 10.1371/journal.pone.0154041] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/07/2016] [Indexed: 11/19/2022] Open
Abstract
Salinity and drought severely affect both plant growth and productivity, making the isolation and characterization of salinity- or drought-inducible promoters suitable for genetic improvement of crop resistance highly desirable. In this study, a 1468-bp sequence upstream of the translation initiation codon ATG of the promoter for ZmGAPP (maize Type-II H+-pyrophosphatase gene) was cloned. Nine 5´ deletion fragments (D1-D9) of different lengths of the ZmGAPP promoter were fused with the GUS reporter and translocated into tobacco. The deletion analysis showed that fragments D1-D8 responded well to NaCl and PEG stresses, whereas fragment D9 and CaMV 35S did not. The D8 segment (219 bp; -219 to -1 bp) exhibited the highest promoter activity of all tissues, with the exception of petals among the D1-D9 transgenic tobacco, which corresponds to about 10% and 25% of CaMV 35S under normal and NaCl or PEG stress conditions, respectively. As such, the D8 segment may confer strong gene expression in a salinity and osmotic stress inducible manner. A 71-bp segment (-219 to -148 bp) was considered as the key region regulating ZmGAPP response to NaCl or PEG stress, as transient transformation assays demonstrated that the 71-bp sequence was sufficient for the salinity or osmotic stress response. These results enhance our understanding of the molecular mechanisms regulating ZmGAPP expression, and that the D8 promoter would be an ideal candidate for moderating expression of drought and salinity response genes in transgenic plants.
Collapse
Affiliation(s)
- Jiajia Hou
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Shanda South Road 27, Jinan, Shandong, 250100, China
| | - Pingping Jiang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Shanda South Road 27, Jinan, Shandong, 250100, China
| | - Shoumei Qi
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Shanda South Road 27, Jinan, Shandong, 250100, China
| | - Ke Zhang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Shanda South Road 27, Jinan, Shandong, 250100, China
| | - Qiuxia He
- Biology Institute of Shandong Academy of Sciences, Jinan, Shandong, China
| | - Changzheng Xu
- RCBB, College of Resources and Environment, Southwest University, Tiansheng Road 2, Beibei Dist., 400716, Chongqing, China
| | - Zhaohua Ding
- Maize Institute of Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Kewei Zhang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Shanda South Road 27, Jinan, Shandong, 250100, China
| | - Kunpeng Li
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Shanda South Road 27, Jinan, Shandong, 250100, China
| |
Collapse
|
12
|
Wang L, Wu N, Zhu Y, Song W, Zhao X, Li Y, Hu Y. The divergence and positive selection of the plant-specific BURP-containing protein family. Ecol Evol 2015; 5:5394-5412. [PMID: 30151141 PMCID: PMC6102523 DOI: 10.1002/ece3.1792] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/13/2015] [Accepted: 09/17/2015] [Indexed: 11/21/2022] Open
Abstract
BURP domain-containing proteins belong to a plant-specific protein family and have diverse roles in plant development and stress responses. However, our understanding about the genetic divergence patterns and evolutionary rates of these proteins remain inadequate. In this study, 15 plant genomes were explored to elucidate the genetic origins, divergence, and functions of these proteins. One hundred and twenty-five BURP protein-encoding genes were identified from four main plant lineages, including 13 higher plant species. The absence of BURP family genes in unicellular and multicellular algae suggests that this family (1) appeared when plants shifted from relatively stable aquatic environments to land, where conditions are more variable and stressful, and (2) is critical in the adaptation of plants to adverse environments. Promoter analysis revealed that several responsive elements to plant hormones and external environment stresses are concentrated in the promoter region of BURP protein-encoding genes. This finding confirms that these genes influence plant stress responses. Several segmentally and tandem-duplicated gene pairs were identified from eight plant species. Thus, in general, BURP domain-containing genes have been subject to strong positive selection, even though these genes have conformed to different expansion models in different species. Our study also detected certain critical amino acid sites that may have contributed to functional divergence among groups or subgroups. Unexpectedly, all of the critical amino acid residues of functional divergence and positive selection were exclusively located in the C-terminal region of the BURP domain. In conclusion, our results contribute novel insights into the genetic divergence patterns and evolutionary rates of BURP proteins.
Collapse
Affiliation(s)
- Lihui Wang
- College of Life SciencesCapital Normal UniversityBeijing100048China
| | - Ningning Wu
- College of Life SciencesCapital Normal UniversityBeijing100048China
| | - Yan Zhu
- College of Life SciencesCapital Normal UniversityBeijing100048China
| | - Wanlu Song
- College of Life SciencesCapital Normal UniversityBeijing100048China
| | - Xin Zhao
- College of Life SciencesCapital Normal UniversityBeijing100048China
| | - Yaxuan Li
- College of Life SciencesCapital Normal UniversityBeijing100048China
| | - Yingkao Hu
- College of Life SciencesCapital Normal UniversityBeijing100048China
| |
Collapse
|
13
|
Ponomarenko PM, Ponomarenko MP. Sequence-based prediction of transcription upregulation by auxin in plants. J Bioinform Comput Biol 2015; 13:1540009. [PMID: 25666655 DOI: 10.1142/s0219720015400090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Auxin is one of the main regulators of growth and development in plants. Prediction of auxin response based on gene sequence is of high importance. We found the TGTCNC consensus of 111 known natural and artificially mutated auxin response elements (AuxREs) with measured auxin-caused relative increase in genes' transcription levels, so-called either "a response to auxin" or "an auxin response." This consensus was identical to the most cited AuxRE motif. Also, we found several DNA sequence features that correlate with auxin-caused increase in genes' transcription levels, namely: number of matches with TGTCNC, homology score based on nucleotide frequencies at the consensus positions, abundances of five trinucleotides and five B-helical DNA features around these known AuxREs. We combined these correlations using a four-step empirical model of auxin response based on a gene's sequence with four steps, namely: (1) search for AuxREs with no auxin; (2) stop at the found AuxRE; (3) repression of the basal transcription of the gene having this AuxRE; and (4) manifold increase of this gene's transcription in response to auxin. Independently measured increases in transcription levels in response to auxin for 70 Arabidopsis genes were found to significantly correlate with predictions of this equation (r = 0.44, p < 0.001) as well as with TATA-binding protein (TBP)'s affinity to promoters of these genes and with nucleosome packing of these promoters (both, p < 0.025). Finally, we improved our equation for prediction of a gene's transcription increase in response to auxin by taking into account TBP-binding and nucleosome packing (r = 0.53, p < 10(-6)). Fisher's F-test validated the significant impact of both TBP/promoter-affinity and promoter nucleosome on auxin response in addition to those of AuxRE, F = 4.07, p < 0.025. It means that both TATA-box and nucleosome should be taken into account to recognize transcription factor binding sites upon DNA sequences: in the case of the TATA-less nucleosome-rich promoters, recognition scores must be higher than in the case of the TATA-containing nucleosome-free promoters at the same transcription activity.
Collapse
Affiliation(s)
- Petr M Ponomarenko
- Children's Hospital Los Angeles, 4640 Hollywood Blvd, Los Angeles, CA 90027, USA
| | | |
Collapse
|
14
|
Coevolution Pattern and Functional Conservation or Divergence of miR167s and their targets across Diverse Plant Species. Sci Rep 2015; 5:14611. [PMID: 26459056 PMCID: PMC4602222 DOI: 10.1038/srep14611] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/02/2015] [Indexed: 01/21/2023] Open
Abstract
microRNAs (miRNAs), a class of endogenously produced small non-coding RNAs of 20–21 nt length, processed from precursor miRNAs, regulate many developmental processes by negatively regulating the target genes in both animals and plants. The coevolutionary pattern of a miRNA family and their targets underscores its functional conservation or diversification. The miR167 regulates various aspects of plant development in Arabidopsis by targeting ARF6 and ARF8. The evolutionary conservation or divergence of miR167s and their target genes are poorly understood till now. Here we show the evolutionary relationship among 153 MIR167 genes obtained from 33 diverse plant species. We found that out of the 153 of miR167 sequences retrieved from the “miRBase”, 27 have been annotated to be processed from the 3′ end, and have diverged distinctively from the other miR167s produced from 5′ end. Our analysis reveals that gma-miR167h/i and mdm-miR167a are processed from 3′ end and have evolved separately, diverged most resulting in novel targets other than their known ones, and thus led to functional diversification, especially in apple and soybean. We also show that mostly conserved miR167 sequences and their target AUXIN RESPONSE FACTORS (ARFs) have gone through parallel evolution leading to functional diversification among diverse plant species.
Collapse
|
15
|
Dinesh DC, Kovermann M, Gopalswamy M, Hellmuth A, Calderón Villalobos LIA, Lilie H, Balbach J, Abel S. Solution structure of the PsIAA4 oligomerization domain reveals interaction modes for transcription factors in early auxin response. Proc Natl Acad Sci U S A 2015; 112:6230-5. [PMID: 25918389 PMCID: PMC4434759 DOI: 10.1073/pnas.1424077112] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The plant hormone auxin activates primary response genes by facilitating proteolytic removal of auxin/indole-3-acetic acid (AUX/IAA)-inducible repressors, which directly bind to transcriptional auxin response factors (ARF). Most AUX/IAA and ARF proteins share highly conserved C-termini mediating homotypic and heterotypic interactions within and between both protein families. The high-resolution NMR structure of C-terminal domains III and IV of the AUX/IAA protein PsIAA4 from pea (Pisum sativum) revealed a globular ubiquitin-like β-grasp fold with homologies to the Phox and Bem1p (PB1) domain. The PB1 domain of wild-type PsIAA4 features two distinct surface patches of oppositely charged amino acid residues, mediating front-to-back multimerization via electrostatic interactions. Mutations of conserved basic or acidic residues on either face suppressed PsIAA4 PB1 homo-oligomerization in vitro and confirmed directional interaction of full-length PsIAA4 in vivo (yeast two-hybrid system). Mixing of oppositely mutated PsIAA4 PB1 monomers enabled NMR mapping of the negatively charged interface of the reconstituted PsIAA4 PB1 homodimer variant, whose stoichiometry (1:1) and equilibrium binding constant (KD ∼ 6.4 μM) were determined by isothermal titration calorimetry. In silico protein-protein docking studies based on NMR and yeast interaction data derived a model of the PsIAA4 PB1 homodimer, which is comparable with other PB1 domain dimers, but indicated considerable differences between the homodimeric interfaces of AUX/IAA and ARF PB1 domains. Our study provides an impetus for elucidating the molecular determinants that confer specificity to complex protein-protein interaction circuits between members of the two central families of transcription factors important to the regulation of auxin-responsive gene expression.
Collapse
Affiliation(s)
| | - Michael Kovermann
- Institute of Physics, Biophysics and Mitteldeutsches Zentrum für Struktur und Dynamik der Proteine
| | - Mohanraj Gopalswamy
- Institute of Physics, Biophysics and Mitteldeutsches Zentrum für Struktur und Dynamik der Proteine
| | - Antje Hellmuth
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, D-06120 Halle, Germany
| | | | - Hauke Lilie
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, D-06120 Halle, Germany; and
| | - Jochen Balbach
- Institute of Physics, Biophysics and Mitteldeutsches Zentrum für Struktur und Dynamik der Proteine;
| | - Steffen Abel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, D-06120 Halle, Germany; Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, D-06120 Halle, Germany; and Department of Plant Sciences, University of California, Davis, CA 95616
| |
Collapse
|
16
|
Mironova VV, Omelyanchuk NA, Wiebe DS, Levitsky VG. Computational analysis of auxin responsive elements in the Arabidopsis thaliana L. genome. BMC Genomics 2014; 15 Suppl 12:S4. [PMID: 25563792 PMCID: PMC4331925 DOI: 10.1186/1471-2164-15-s12-s4] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Auxin responsive elements (AuxRE) were found in upstream regions of target genes for ARFs (Auxin response factors). While Chip-seq data for most of ARFs are still unavailable, prediction of potential AuxRE is restricted by consensus models that detect too many false positive sites. Using sequence analysis of experimentally proven AuxREs, we revealed both an extended nucleotide context pattern for AuxRE itself and three distinct types of its coupling motifs (Y-patch, AuxRE-like, and ABRE-like), which together with AuxRE may form the composite elements. Computational analysis of the genome-wide distribution of the predicted AuxREs and their impact on auxin responsive gene expression allowed us to conclude that: (1) AuxREs are enriched around the transcription start site with the maximum density in 5'UTR; (2) AuxREs mediate auxin responsive up-regulation, not down-regulation. (3) Directly oriented single AuxREs and reverse multiple AuxREs are mostly associated with auxin responsiveness. In the composite AuxRE elements associated with auxin response, ABRE-like and Y-patch are 5'-flanking or overlapping AuxRE, whereas AuxRE-like motif is 3'-flanking. The specificity in location and orientation of the coupling elements suggests them as potential binding sites for ARFs partners.
Collapse
|
17
|
Liu X, Dinh TT, Li D, Shi B, Li Y, Cao X, Guo L, Pan Y, Jiao Y, Chen X. AUXIN RESPONSE FACTOR 3 integrates the functions of AGAMOUS and APETALA2 in floral meristem determinacy. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:629-41. [PMID: 25187180 PMCID: PMC4215321 DOI: 10.1111/tpj.12658] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 08/13/2014] [Accepted: 08/27/2014] [Indexed: 05/19/2023]
Abstract
In Arabidopsis, AUXIN RESPONSE FACTOR 3 (ARF3) belongs to the auxin response factor (ARF) family that regulates the expression of auxin-responsive genes. ARF3 is known to function in leaf polarity specification and gynoecium patterning. In this study, we discovered a previously unknown role for ARF3 in floral meristem (FM) determinacy through the isolation and characterization of a mutant of ARF3 that enhanced the FM determinacy defects of agamous (ag)-10, a weak ag allele. Central players in FM determinacy include WUSCHEL (WUS), a gene critical for FM maintenance, and AG and APETALA2 (AP2), which regulate FM determinacy by repression and promotion of WUS expression, respectively. We showed that ARF3 confers FM determinacy through repression of WUS expression, and associates with the WUS locus in part in an AG-dependent manner. We demonstrated that ARF3 is a direct target of AP2 and partially mediates AP2's function in FM determinacy. ARF3 exhibits dynamic and complex expression patterns in floral organ primordia; altering the patterns spatially compromised FM determinacy. This study uncovered a role for ARF3 in FM determinacy and revealed relationships among genes in the genetic network governing FM determinacy.
Collapse
Affiliation(s)
- Xigang Liu
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural, Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and, Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Rd, Shijiazhuang 050021, China
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521
- Corresponding authors. , , Address: Center for Agricultural Resources Research, 286 Huaizhong Rd, Shijiazhuang, 050021, China. Tel: 86-311-85810502, Fax: 86-311-85815093
| | - Thanh Theresa Dinh
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521
| | - Dongming Li
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural, Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and, Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Rd, Shijiazhuang 050021, China
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521
| | - Bihai Shi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental, Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongpeng Li
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural, Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and, Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Rd, Shijiazhuang 050021, China
| | - Xiuwei Cao
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural, Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and, Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Rd, Shijiazhuang 050021, China
| | - Lin Guo
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural, Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and, Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Rd, Shijiazhuang 050021, China
| | - Yanyun Pan
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental, Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521
- Howard Hughes Medical Institute, University of California, Riverside, CA 92521
- Corresponding authors. , , Address: Center for Agricultural Resources Research, 286 Huaizhong Rd, Shijiazhuang, 050021, China. Tel: 86-311-85810502, Fax: 86-311-85815093
| |
Collapse
|
18
|
Zhu Y, Wu N, Song W, Yin G, Qin Y, Yan Y, Hu Y. Soybean (Glycine max) expansin gene superfamily origins: segmental and tandem duplication events followed by divergent selection among subfamilies. BMC PLANT BIOLOGY 2014; 14:93. [PMID: 24720629 PMCID: PMC4021193 DOI: 10.1186/1471-2229-14-93] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 03/27/2014] [Indexed: 05/05/2023]
Abstract
BACKGROUND Expansins are plant cell wall loosening proteins that are involved in cell enlargement and a variety of other developmental processes. The expansin superfamily contains four subfamilies; namely, α-expansin (EXPA), β-expansin (EXPB), expansin-like A (EXLA), and expansin-like B (EXLB). Although the genome sequencing of soybeans is complete, our knowledge about the pattern of expansion and evolutionary history of soybean expansin genes remains limited. RESULTS A total of 75 expansin genes were identified in the soybean genome, and grouped into four subfamilies based on their phylogenetic relationships. Structural analysis revealed that the expansin genes are conserved in each subfamily, but are divergent among subfamilies. Furthermore, in soybean and Arabidopsis, the expansin gene family has been mainly expanded through tandem and segmental duplications; however, in rice, segmental duplication appears to be the dominant process that generates this superfamily. The transcriptome atlas revealed notable differential expression in either transcript abundance or expression patterns under normal growth conditions. This finding was consistent with the differential distribution of the cis-elements in the promoter region, and indicated wide functional divergence in this superfamily. Moreover, some critical amino acids that contribute to functional divergence and positive selection were detected. Finally, site model and branch-site model analysis of positive selection indicated that the soybean expansin gene superfamily is under strong positive selection, and that divergent selection constraints might have influenced the evolution of the four subfamilies. CONCLUSION This study demonstrated that the soybean expansin gene superfamily has expanded through tandem and segmental duplication. Differential expression indicated wide functional divergence in this superfamily. Furthermore, positive selection analysis revealed that divergent selection constraints might have influenced the evolution of the four subfamilies. In conclusion, the results of this study contribute novel detailed information about the molecular evolution of the expansin gene superfamily in soybean.
Collapse
Affiliation(s)
- Yan Zhu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ningning Wu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Wanlu Song
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Guangjun Yin
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yajuan Qin
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yueming Yan
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yingkao Hu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
19
|
MIRONOVA VICTORIAV, OMELYANCHUK NADYAA, SAVINA MARIAS, PONOMARENKO PETRM, PONOMARENKO MIKHAILP, LIKHOSHVAI VITALYA, KOLCHANOV NIKOLAYA. HOW MULTIPLE AUXIN RESPONSIVE ELEMENTS MAY INTERACT IN PLANT PROMOTERS: A REVERSE PROBLEM SOLUTION. J Bioinform Comput Biol 2013; 11:1340011. [DOI: 10.1142/s0219720013400118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Plant hormone auxin is a key regulator of growth and development. Auxin affects gene expression through ARF transcription factors, which bind specifically auxin responsive elements (AuxREs). Auxin responsive genes usually have more than one AuxRE, for example, a widely used auxin sensor DR5 contains seven AuxREs. Auxin responsive regions of several plant genes have been studied using sets of transgenic constructions in which the activity of one or several AuxREs were abolished. Here we present the method for analysis of the datasets on promoter activity assays having promoter sequences, namely, number and sequences of AuxREs, altogether with their measured auxin induction level. The method for a reverse problem solution considers two extreme models of AuxRE cooperation. Additive model describes auxin induction level of a gene as a sum of the individual AuxREs impacts. Multiplicative model considers pure cooperation between the AuxREs, where the combined effect is the multiplication of the individual AuxRE impacts. The reverse problem solution allows estimating the impact of an individual AuxRE into the induction level and the model for their cooperation. For promoters of three genes belonging to different plant species we showed that the multiplicative model fits better than additive. The reverse problem solution also suggests repressive state of auxin responsive promoters before auxin induction. The developed method provides possibility to investigate AuxRE structure-activity relationship and may be used as the basis for a novel approach for AuxRE recognition.
Collapse
Affiliation(s)
- VICTORIA V. MIRONOVA
- Institute of Cytology and Genetics SB RAS, 10 Lavrentyev Ave., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia
| | - NADYA A. OMELYANCHUK
- Institute of Cytology and Genetics, 10 Lavrentyev Ave., Novosibirsk 630090, Russia
| | - MARIA S. SAVINA
- Institute of Cytology and Genetics, 10 Lavrentyev Ave., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia
| | - PETR M. PONOMARENKO
- Institute of Cytology and Genetics, 10 Lavrentyev Ave., Novosibirsk 630090, Russia
| | | | - VITALY A. LIKHOSHVAI
- Institute of Cytology and Genetics, 10 Lavrentyev Ave., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia
| | - NIKOLAY A. KOLCHANOV
- Institute of Cytology and Genetics, 10 Lavrentyev Ave., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia
| |
Collapse
|
20
|
Lv D, Ge Y, Jia B, Bai X, Bao P, Cai H, Ji W, Zhu Y. miR167c is induced by high alkaline stress and inhibits two auxin response factors in Glycine soja. JOURNAL OF PLANT BIOLOGY 2012; 55:373-380. [DOI: 10.1007/s12374-011-0350-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
|
21
|
Kim HJ, Murai N, Fang DD, Triplett BA. Functional analysis of Gossypium hirsutum cellulose synthase catalytic subunit 4 promoter in transgenic Arabidopsis and cotton tissues. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:323-32. [PMID: 21421377 DOI: 10.1016/j.plantsci.2010.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 09/23/2010] [Accepted: 10/06/2010] [Indexed: 05/10/2023]
Abstract
Gossypium hirsutum cellulose synthase catalytic subunit 4 (GhCesA4) plays an important role in cellulose biosynthesis during cotton fiber development. The transcript levels of GhCesA4 are significantly up-regulated as secondary cell wall cellulose is produced in developing cotton fibers. To understand the molecular mechanisms involved in transcriptional regulation of GhCesA4, β-glucuronidase (GUS) activity regulated by a GhCesA4 promoter (-2574/+56) or progressively deleted promoters were determined in both cotton tissues and transgenic Arabidopsis. The spatial regulation of GhCesA4 expression was similar between cotton tissues and transgenic Arabidopsis. GUS activity regulated by the GhCesA4 promoter (-2574/+56) was found in trichomes and root vascular tissues in both cotton and transgenic Arabidopsis. The -2574/-1824 region was responsible for up-regulation of GhCesA4 expression in trichomes and root vascular tissues in transgenic Arabidopsis. The -1824/-1355 region negatively regulated GhCesA4 expression in most Arabidopsis vascular tissues. For vascular expression in stems and leaves, the -898/-693 region was required. The -693/-320 region of the GhCesA4 promoter was necessary for basal expression of GhCesA4 in cotton roots as well as Arabidopsis roots. Exogenous phytohormonal treatments on transgenic Arabidopsis revealed that phytohormones may be involved in the differential regulation of GhCesA4 during cotton fiber development.
Collapse
Affiliation(s)
- Hee Jin Kim
- Southern Regional Research Center, Cotton Fiber Bioscience, USDA-ARS, 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA.
| | | | | | | |
Collapse
|
22
|
Abstract
The history of plant biology is inexorably intertwined with the conception and discovery of auxin, followed by the many decades of research to comprehend its action during growth and development. Growth responses to auxin are complex and require the coordination of auxin production, transport, and perception. In this overview of past auxin research, we limit our discourse to the mechanism of auxin action. We attempt to trace the almost epic voyage from the birth of the hormonal concept in plants to the recent crystallographic studies that resolved the TIR1-auxin receptor complex, the first structural model of a plant hormone receptor. The century-long endeavor is a beautiful illustration of the power of scientific reasoning and human intuition, but it also brings to light the fact that decisive progress is made when new technologies emerge and disciplines unite.
Collapse
Affiliation(s)
- Steffen Abel
- Department of Molecular Signal Processing, Leibniz-Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany.
| | | |
Collapse
|
23
|
Martí E, Carrera E, Ruiz-Rivero O, García-Martínez JL. Hormonal regulation of tomato gibberellin 20-oxidase1 expressed in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:1188-96. [PMID: 20570010 DOI: 10.1016/j.jplph.2010.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 03/30/2010] [Accepted: 03/31/2010] [Indexed: 05/14/2023]
Abstract
Gibberellin 20-oxidases, enzymes of gibberellin (GA) biosynthesis, play an important role in (GA) homeostasis. To investigate the regulation of tomato SlGA20ox1 expression, a genomic clone was isolated, its promoter transcriptionally fused to the GUS reporter gene, and the construct used to transform Arabidopsis. Expression was found in diverse vegetative (leaves and roots) and reproductive (flowers) organs. GUS staining was also localized in the columella of secondary roots. GA negative feed-back regulation of SlGA20ox1:GUS was shown to be active both in tomato and in transformed Arabidopsis. Auxin (indol-3-acetic acid, 2,4-dichlorophenoxyacetic acid and naphtaleneacetic acid), triiodobenzoic acid (an inhibitor of auxin transport) and benzyladenine (a cytokinin) treatment induced SlGA20ox1:GUS expression associated with increased auxin content and/or signaling, detected using DR5:GUS expression as a marker. Interestingly, SlGA20ox:GUS expression was induced by auxin and root excision in the hypocotyl, an organ not showing GUS staining in control seedlings. In etiolated seedlings, SlGA20ox1:GUS expression occurred in the elongating hypocotyl region of etiolated seedlings and was down-regulated upon transfer to light associated with decrease of growth rate elongation. Our results show that feed-back, auxin and light regulation of SlGA20ox1 expression depends on DNA elements contained within the first 834bp of the 5' upstream promoter region. Putative DNA regulatory sequences involved in negative feed-back regulation and auxin response were identified in that promoter.
Collapse
Affiliation(s)
- Esmeralda Martí
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | | | | | | |
Collapse
|
24
|
Peremarti A, Twyman RM, Gómez-Galera S, Naqvi S, Farré G, Sabalza M, Miralpeix B, Dashevskaya S, Yuan D, Ramessar K, Christou P, Zhu C, Bassie L, Capell T. Promoter diversity in multigene transformation. PLANT MOLECULAR BIOLOGY 2010; 73:363-78. [PMID: 20354894 DOI: 10.1007/s11103-010-9628-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 03/11/2010] [Indexed: 05/03/2023]
Abstract
Multigene transformation (MGT) is becoming routine in plant biotechnology as researchers seek to generate more complex and ambitious phenotypes in transgenic plants. Every nuclear transgene requires its own promoter, so when coordinated expression is required, the introduction of multiple genes leads inevitably to two opposing strategies: different promoters may be used for each transgene, or the same promoter may be used over and over again. In the former case, there may be a shortage of different promoters with matching activities, but repetitious promoter use may in some cases have a negative impact on transgene stability and expression. Using illustrative case studies, we discuss promoter deployment strategies in transgenic plants that increase the likelihood of successful and stable multiple transgene expression.
Collapse
Affiliation(s)
- Ariadna Peremarti
- Departament de Producció Vegetal i Ciència Forestal, ETSEA, Universitat de Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Like animals, plants have evolved into complex organisms. Developmental cohesion between tissues and cells is possible due to signaling molecules (messengers) like hormones. The first hormone discovered in plants was auxin. This phytohormone was first noticed because of its involvement in the response to directional light. Nowadays, auxin has been established as a central key player in the regulation of plant growth and development and in responses to environmental changes. At the cellular level, auxin controls division, elongation, and differentiation as well as the polarity of the cell. Auxin, to integrate so many different signals, needs to be regulated at many different levels. A tight regulation of auxin synthesis, activity, degradation as well as transport has been demonstrated. Another possibility to modulate auxin signaling is to modify the capacity of response of the cells by expressing differentially the signaling components. In this review, we provide an overview of the present knowledge in auxin biology, with emphasis on root development.
Collapse
Affiliation(s)
- Alexandre Tromas
- Centre National de la Recherche Scientifique, UPR 2355, institut des sciences du végétal, 1 avenue de la Terrasse, Gif-sur-Yvette cedex, France
| | | |
Collapse
|
26
|
Abstract
Plant hormones control most aspects of the plant life cycle by regulating genome expression. Expression of auxin-responsive genes involves interactions among auxin-responsive DNA sequence elements, transcription factors and trans-acting transcriptional repressors. Transcriptional output from these auxin signaling complexes is regulated by proteasome-mediated degradation that is triggered by interaction with auxin receptor-E3 ubiquitin ligases such SCF(TIR1). Auxin signaling components are conserved throughout land plant evolution and have proliferated and specialized to control specific developmental processes.
Collapse
Affiliation(s)
- Elisabeth J Chapman
- Division of Biology, University of California, San Diego, La Jolla, California 92093-0116, USA.
| | | |
Collapse
|
27
|
Sungur C, Miller S, Bergholz J, Hoye RC, Brisbois RG, Overvoorde P. The Small Molecule 2-Furylacrylic Acid Inhibits Auxin-Mediated Responses in Arabidopsis thaliana. ACTA ACUST UNITED AC 2007; 48:1693-701. [DOI: 10.1093/pcp/pcm141] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Dong MA, Bufford JL, Oono Y, Church K, Dau MQ, Michels K, Haughton M, Tallman G. Heat suppresses activation of an auxin-responsive promoter in cultured guard cell protoplasts of tree tobacco. PLANT PHYSIOLOGY 2007; 145:367-77. [PMID: 17704234 PMCID: PMC2048722 DOI: 10.1104/pp.107.104646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 08/13/2007] [Indexed: 05/16/2023]
Abstract
Cultured guard cell protoplasts (GCP) of tree tobacco (Nicotiana glauca) comprise a novel system for investigating the cell signaling mechanisms that lead to acquired thermotolerance and thermoinhibition. At 32 degrees C in a medium containing an auxin (1-naphthaleneacetic acid [NAA]) and a cytokinin (6-benzylaminopurine), GCP expand, regenerate cell walls, dedifferentiate, and divide. At 38 degrees C, GCP acquire thermotolerance within 24 h, but their expansion is limited and they neither regenerate walls nor reenter the cell cycle. These putative indicators of auxin insensitivity led us to hypothesize that heat suppresses induction of auxin-regulated genes in GCP. Protoplasts were transformed with BA-mgfp5-ER, in which the BA auxin-responsive promoter regulates transcription of mgfp5-ER encoding thermostable green fluorescent protein (GFP) or with a similar 35S-cauliflower mosaic virus constitutive promoter construct. Heat suppressed NAA-mediated activation of BA. After 21 h at 32 degrees C in media with NAA, 49.0% +/- 3.9% of BA-mgfp5-ER transformants strongly expressed GFP; expression percentages were similar to those of 35S-mgfp5-ER transformants at 32 degrees C or 38 degrees C. After 21 h at 38 degrees C in media with NAA, 7.9% +/- 1.6% of BA-mgfp5-ER transformants weakly expressed GFP, similar to GCP cultured at 32 degrees C in media lacking NAA. Expression at 38 degrees C was not increased by incubating for 48 h or increasing NAA concentrations 20-fold. After 9 to 12 h at 38 degrees C, BA was no longer activated when cells were transferred to 32 degrees C. Heat-stressed cells accumulate reactive oxygen species, and hydrogen peroxide (H(2)O(2)) suppresses auxin-responsive promoter activation in Arabidopsis (Arabidopsis thaliana) mesophyll protoplasts. H(2)O(2) did not suppress BA activation at 32 degrees C, nor did superoxide and H(2)O(2) scavengers prevent BA suppression at 38 degrees C.
Collapse
Affiliation(s)
- Malia A Dong
- Willamette University, Department of Biology, Salem, Oregon 97301, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Indole-3-acetic acid (IAA or auxin) is essential throughout the life cycle of a plant. It controls diverse cellular processes, including gene expression. The hormone is perceived by a ubiquitin protein ligase (E3) and triggers the rapid destruction of repressors, called Aux/IAA proteins. The first structural model of a plant hormone receptor illustrates how auxin promotes Aux/IAA substrate recruitment by extending the hydrophobic protein-interaction surface. This work establishes a novel mechanism of E3 regulation by small molecules and promises a novel strategy for the treatment of human disorders associated with defective ubiquitin-dependent proteolysis.
Collapse
Affiliation(s)
- Steffen Abel
- Department of Plant Sciences, University of California-Davis, Davis, California 95616, USA.
| |
Collapse
|
30
|
Liu K, Kang BC, Jiang H, Moore SL, Li H, Watkins CB, Setter TL, Jahn MM. A GH3-like gene, CcGH3, isolated from Capsicum chinense L. fruit is regulated by auxin and ethylene. PLANT MOLECULAR BIOLOGY 2005; 58:447-64. [PMID: 16021332 DOI: 10.1007/s11103-005-6505-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Accepted: 04/26/2005] [Indexed: 05/03/2023]
Abstract
Auxin, which has been implicated in multiple biochemical and physiological processes, elicits three classes of genes (Aux/IAAs, SAURs and GH3s) that have been characterized by their early or primary responses to the hormone. A new GH3-like gene was identified from a suppressive subtraction hybridization (SSH) library of pungent pepper (Capsicum chinense L.) cDNAs. This gene, CcGH3, possessed several auxin- and ethylene-inducible elements in the putative promoter region. Upon further investigation, CcGH3 was shown to be auxin-inducible in shoots, flower buds, sepals, petals and most notably ripening and mature pericarp and placenta. Paradoxically, this gene was expressed in fruit when auxin levels were decreasing, consistent with ethylene-inducibility. Further experiments demonstrated that CcGH3 was induced by endogenous ethylene, and that transcript accumulation was inhibited by 1-methylcyclopropene, an inhibitor of ethylene perception. When over-expressed in tomato, CcGH3 hastened ripening of ethylene-treated fruit. These results implicate CcGH3 as a factor in auxin and ethylene regulation of fruit ripening and suggest that it may be a point of intersection in the signaling by these two hormones.
Collapse
MESH Headings
- Arabidopsis/genetics
- Blotting, Northern
- Capsicum/genetics
- Capsicum/metabolism
- Cyclopropanes/pharmacology
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Ethylenes/pharmacology
- Fruit/genetics
- Fruit/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Plant/drug effects
- Glucuronidase/genetics
- Glucuronidase/metabolism
- Indoleacetic Acids/metabolism
- Indoleacetic Acids/pharmacology
- Solanum lycopersicum/genetics
- Molecular Sequence Data
- Nucleic Acid Hybridization/methods
- Phylogeny
- Plant Growth Regulators/pharmacology
- Plant Proteins/genetics
- Plants, Genetically Modified
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Response Elements/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Alignment
- Sequence Analysis, DNA
- Transcription Initiation Site
- Transfection
Collapse
Affiliation(s)
- Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agriculture University, 430070, Wuhan, Hubei Province, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Song J, Chai Y, Pang Y, Zuo K, Fei J, Liu X, Sun X, Tang K. Isolation and characterization of an IAA-responsive gene from Gossypium barbadense L. ACTA ACUST UNITED AC 2004; 15:71-6. [PMID: 15354358 DOI: 10.1080/10425170310001652183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The full-length cDNA of an IAA-responsive gene was cloned from Gossypium barbadense L. (designated as Gbiaa-Re) by rapid amplification of cDNA ends (RACE). Gbiaa-Re gene was 1043-bp long and contained a 573-bp open reading frame encoding a polypeptide of 190 amino acid residues. Homology analysis revealed that Gbiaa-Re strongly resembled known plant IAA-responsive genes. The conserved integrated domain "AUX_IAA, AUX/IAA family" resided within the region from L11, to V190 of GbIAA-RE, and the 4 typically conserved domains of IAA-responsive gene family were all found in GbIAA-RE. The secondary structure of GbIAA-RE consisted of 20.53% alpha helix, 13.68% extended strand and 65.79% random coil. In total, 12 phosphorylation sites, 1 N-glycosylation site and 4 O-beta-GlcNAc attachment sites were predicted. Southern blot analysis indicated that Gbiaa-Re belonged to a low-copy gene family. Semi-quantitative PCR analysis indicated that the expression of Gbiaa-Re gene was inducible by IAA. Our studies suggested that Gbiaa-Re was a new member of plant AUX/IAA gene family.
Collapse
Affiliation(s)
- Jun Song
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Morgan-Tan International Center for Life Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Komarnytsky S, Borisjuk N. Functional analysis of promoter elements in plants. GENETIC ENGINEERING 2004; 25:113-41. [PMID: 15260236 DOI: 10.1007/978-1-4615-0073-5_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Affiliation(s)
- Slavko Komarnytsky
- Biotech Center, Cook College, Rutgers University, 59 Dudley Rd., New Brunswick, NJ 08901-8520, USA
| | | |
Collapse
|
33
|
Rahman A, Hosokawa S, Oono Y, Amakawa T, Goto N, Tsurumi S. Auxin and ethylene response interactions during Arabidopsis root hair development dissected by auxin influx modulators. PLANT PHYSIOLOGY 2002; 130:1908-17. [PMID: 12481073 PMCID: PMC166701 DOI: 10.1104/pp.010546] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2002] [Revised: 07/15/2002] [Accepted: 09/02/2002] [Indexed: 05/18/2023]
Abstract
The plant hormones auxin and ethylene have been shown to play important roles during root hair development. However, cross talk between auxin and ethylene makes it difficult to understand the independent role of either hormone. To dissect their respective roles, we examined the effects of two compounds, chromosaponin I (CSI) and 1-naphthoxyacetic acid (1-NOA), on the root hair developmental process in wild-type Arabidopsis, ethylene-insensitive mutant ein2-1, and auxin influx mutants aux1-7, aux1-22, and double mutant aux1-7 ein2. Beta-glucuronidase (GUS) expression analysis in the BA-GUS transgenic line, consisting of auxin-responsive domains of PS-IAA4/5 promoter and GUS reporter, revealed that 1-NOA and CSI act as auxin uptake inhibitors in Arabidopsis roots. The frequency of root hairs in ein2-1 roots was greatly reduced in the presence of CSI or 1-NOA, suggesting that endogenous auxin plays a critical role for the root hair initiation in the absence of an ethylene response. All of these mutants showed a reduction in root hair length, however, the root hair length could be restored with a variable concentration of 1-naphthaleneacetic acid (NAA). NAA (10 nM) restored the root hair length of aux1 mutants to wild-type level, whereas 100 nM NAA was needed for ein2-1 and aux1-7 ein2 mutants. Our results suggest that insensitivity in ethylene response affects the auxin-driven root hair elongation. CSI exhibited a similar effect to 1-NOA, reducing root hair growth and the number of root hair-bearing cells in wild-type and ein2-1 roots, while stimulating these traits in aux1-7and aux1-7ein2 roots, confirming that CSI is a unique modulator of AUX1.
Collapse
Affiliation(s)
- Abidur Rahman
- Graduate School of Science and Technology, Kobe University, Kobe, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Avsian-Kretchmer O, Cheng JC, Chen L, Moctezuma E, Sung ZR. Indole acetic acid distribution coincides with vascular differentiation pattern during Arabidopsis leaf ontogeny. PLANT PHYSIOLOGY 2002; 130:199-209. [PMID: 12226500 PMCID: PMC166553 DOI: 10.1104/pp.003228] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2002] [Revised: 05/17/2002] [Accepted: 05/28/2002] [Indexed: 05/18/2023]
Abstract
We used an anti-indole acetic acid (IAA or auxin) monoclonal antibody-based immunocytochemical procedure to monitor IAA level in Arabidopsis tissues. Using immunocytochemistry and the IAA-driven beta-glucuronidase (GUS) activity of Aux/IAA promoter::GUS constructs to detect IAA distribution, we investigated the role of polar auxin transport in vascular differentiation during leaf development in Arabidopsis. We found that shoot apical cells contain high levels of IAA and that IAA decreases as leaf primordia expand. However, seedlings grown in the presence of IAA transport inhibitors showed very low IAA signal in the shoot apical meristem (SAM) and the youngest pair of leaf primordia. Older leaf primordia accumulate IAA in the leaf tip in the presence or absence of IAA transport inhibition. We propose that the IAA in the SAM and the youngest pair of leaf primordia is transported from outside sources, perhaps the cotyledons, which accumulate more IAA in the presence than in the absence of transport inhibition. The temporal and spatial pattern of IAA localization in the shoot apex indicates a change in IAA source during leaf ontogeny that would influence flow direction and, consequently, the direction of vascular differentiation. The IAA production and transport pattern suggested by our results could explain the venation pattern, and the vascular hypertrophy caused by IAA transport inhibition. An outside IAA source for the SAM supports the notion that IAA transport and procambium differentiation dictate phyllotaxy and organogenesis.
Collapse
Affiliation(s)
- Orna Avsian-Kretchmer
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
35
|
Kepinski S, Leyser O. Ubiquitination and auxin signaling: a degrading story. THE PLANT CELL 2002; 14 Suppl:S81-S95. [PMID: 12782723 PMCID: PMC151249 DOI: 10.1105/tpc.010447] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2001] [Accepted: 02/05/2002] [Indexed: 05/17/2023]
Affiliation(s)
| | - Ottoline Leyser
- To whom correspondence should be addressed. E-mail ; fax 44-1904-434312
| |
Collapse
|
36
|
Oono Y, Ooura C, Uchimiya H. Expression pattern of Aux/IAA genes in the iaa3/shy2-1D mutant of Arabidopsis thaliana (L.). ANNALS OF BOTANY 2002; 89:77-82. [PMID: 12096821 PMCID: PMC4233774 DOI: 10.1093/aob/mcf007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A semi-dominant mutant suppressor of hy2 (shy2-1D) of Arabidopsis thaliana, originally isolated as a photomorphogenesis mutant, shows altered auxin responses. Recent molecular cloning revealed that the SHY2 gene is identical to the IAA3 gene, a member of the primary auxin-response genes designated the Aux/IAA gene family. Because Aux/IAA proteins are reported to interact with auxin response factors, we investigated the pattern of expression of early auxin genes in the iaa3/shy2-1D mutant. RNA hybridization analysis showed that levels of mRNA accumulation of the early genes were reduced dramatically in the iaa3/shy2-1D mutants, although auxin still enhanced gene expression in the iaa3/shy2-1D mutant. Histochemical analysis using a fusion gene of the auxin responsive domain (AuxRD) and the GUS gene showed no IAA-inducible GUS expression in the root elongation zone of the iaa3/shy2-1D mutant. On the other hand, ectopic GUS expression occurred in the hypocotyl, cotyledon, petiole and root vascular tissues in the absence of auxin. These results suggest that IAA3/SHY2 functions both negatively and positively on early auxin gene expression.
Collapse
Affiliation(s)
- Yutaka Oono
- Advanced Science Research Center, Japan Atomic Energy Research Institute, Takasaki, Gunma.
| | | | | |
Collapse
|
37
|
O'Grady K, Goekjian VH, Naim CJ, Nagao RT, Key JL. The transcript abundance of GmGT-2, a new member of the GT-2 family of transcription factors from soybean, is down-regulated by light in a phytochrome-dependent manner. PLANT MOLECULAR BIOLOGY 2001; 47:367-78. [PMID: 11587508 DOI: 10.1023/a:1011629307051] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A new member of the GT-2 family of transcription factors, GmGT-2, was isolated from soybean while screening a cDNA library with a protein binding site (D1) in the promoter of Aux28, a member of the Aux/IAA family of auxin-responsive genes. GmGT-2 possesses various primary amino acid sequence characteristics common to all GT-2 factors thus far isolated, including sequence identity in the twin trihelix DNA-binding domains. Recombinant GmGT-2 expressed in Escherichia coli binds oligotetramers of both D1 and various GT-boxes. However, unlike other known members of the GT-2 family, GmGT-2 message levels are down-regulated by light in a phytochrome-dependent manner. Evidence is presented that the expression levels of Aux28 mRNA are also down-regulated by phytochrome. These results and other referenced data implicate the possible convergence of phytochrome and auxin signaling pathways.
Collapse
MESH Headings
- Amino Acid Sequence
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- DNA, Plant/chemistry
- DNA, Plant/genetics
- DNA, Plant/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Down-Regulation
- Gene Expression Regulation, Developmental/radiation effects
- Gene Expression Regulation, Plant/radiation effects
- Hypocotyl/genetics
- Hypocotyl/growth & development
- Hypocotyl/metabolism
- Indoleacetic Acids/pharmacology
- Light
- Molecular Sequence Data
- Phytochrome/physiology
- Plant Proteins/drug effects
- Plant Proteins/genetics
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/genetics
- Protein Binding/radiation effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Glycine max/genetics
- Glycine max/growth & development
- Transcription Factors/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- K O'Grady
- Department of Botany, University of Georgia, Athens 30602-7229, USA.
| | | | | | | | | |
Collapse
|
38
|
Ouellet F, Overvoorde PJ, Theologis A. IAA17/AXR3: biochemical insight into an auxin mutant phenotype. THE PLANT CELL 2001; 13:829-41. [PMID: 11283339 PMCID: PMC135541 DOI: 10.1105/tpc.13.4.829] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2000] [Accepted: 02/08/2001] [Indexed: 05/18/2023]
Abstract
The Aux/IAA genes are rapidly and specifically induced by the plant hormone auxin. The proteins encoded by this gene family are short-lived nuclear proteins that are capable of homodimerizing and heterodimerizing. Molecular, biochemical, and genetic data suggest that these proteins are involved in auxin signaling. The pleiotropic morphological phenotype and altered auxin responses of the semidominant axr3-1 mutant of Arabidopsis result from a single amino acid change in the conserved domain II of the Aux/IAA protein IAA17. Here, we show that the biochemical effect of this gain-of-function mutation is to increase the half-life of the iaa17/axr3-1 protein by sevenfold. Intragenic mutations that suppress the iaa17/axr3-1 phenotype have been described. The iaa17/axr3-1R3 revertant contains a second site mutation in domain I and the iaa17/axr3-1R2 revertant contains a second site mutation in domain III. Transient expression assays show that the mutant forms of IAA17/AXR3 retain the ability to accumulate in the nucleus. Using the yeast two hybrid system, we show that the iaa17/axr3-1 mutation does not affect homodimerization. However, the iaa17/axr3-1 revertants counteract the increased levels of iaa17/axr3-1 protein by decreasing the capacity of the mutant protein to homodimerize. Interestingly, heterodimerization of the revertant forms of IAA17/AXR3 with IAA3/SHY2, another Aux/IAA protein, and ARF1 or ARF5/MP proteins is affected only by changes in domain III. Collectively, the results provide biochemical evidence that the revertant mutations in the IAA17/AXR3 gene affect the capacity of the encoded protein to dimerize with itself, other members of the Aux/IAA protein family, and members of the ARF protein family. By extension, these findings may provide insight into the effects of analogous mutations in other members of the Aux/IAA gene family.
Collapse
Affiliation(s)
- F Ouellet
- Plant Gene Expression Center, 800 Buchanan Street, Albany, California 94710, USA
| | | | | |
Collapse
|
39
|
Ishiki Y, Oda A, Yaegashi Y, Orihara Y, Arai T, Hirabayashi T, Nakagawa H, Sato T. Cloning of an auxin-responsive 1-aminocyclopropane-1-carboxylate synthase gene (CMe-ACS2) from melon and the expression of ACS genes in etiolated melon seedlings and melon fruits. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2000; 159:173-181. [PMID: 11074269 DOI: 10.1016/s0168-9452(00)00298-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Two cDNA fragments (pCMe-ACS2 and 3) encoding auxin-responsive 1-aminocyclopropane-1-carboxylate synthase (ACS; EC.4.4.1.14) have been isolated from melon, and the expression patterns of the genes in etiolated melon seedlings and melon fruit have been determined by RT-PCR analysis. The deduced amino acid sequences of pCMe-ACS2 and 3 were homologous to those of AT-ACS6 and 4, which were auxin-responsive ACS genes of Arabidopsis. Both CMe-ACS2 and 3 were auxin-responsive ACS genes and their expressions in roots and hypocotyls were induced by treatment with indole acetic acid (IAA, 100 µM). The mRNA level of CMe-ACS2 in the fruit increased after pollination. Those of both CMe-ACS2 and 3 temporarily increased in the mesocarp tissues at the preclimacteric stage (from day 3 to day 5 after harvest) during ripening, while that of CMe-ACS3 was lower than that of CMe-ACS2. The increase in the mRNA level of CMe-ACS1 (wound- and ripening-induced gene, T. Miki, M. Yamamoto, N. Nakagawa, O. Ogura, H. Mori, H. Imaseki, T. Sato, Nucleotide sequence of a cDNA for 1-aminocyclopropane-1-carboxylate synthase from melon fruits, Plant Physiol. 107 (1995) 297-298.) in the mesocarp tissue was not observed until 5 days after harvest. A genomic DNA encoding CMe-ACS2 was isolated and its nucleotide sequence was determined. Nucleotide sequences resembling the auxin-responsive elements (AuxRE) D1 and D4 (the TGTCTC element) in the GH3 gene from soybean, and the auxin-responsive domain (AuxRD) B in PS-IAA4/5 from pea were found in the 5'-flanking region of the CMe-ACS2 gene.
Collapse
Affiliation(s)
- Y Ishiki
- Faculty of Horticulture, Chiba University, 648 Matsudo, 271, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Nebenführ A, White TJ, Lomax TL. The diageotropica mutation alters auxin induction of a subset of the Aux/IAA gene family in tomato. PLANT MOLECULAR BIOLOGY 2000; 44:73-84. [PMID: 11094981 DOI: 10.1023/a:1006437205596] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The diageotropica (dgt) mutation has been proposed to affect either auxin perception or responsiveness in tomato plants. It has previously been demonstrated that the expression of one member of the Aux/IAA family of auxin-regulated genes is reduced in dgt plants. Here, we report the cloning of ten new members of the tomato Aux/IAA family by PCR amplification based on conserved protein domains. All of the gene family members except one (LelAA7) are expressed in etiolated tomato seedlings, although they demonstrate tissue specificity (e.g. increased expression in hypocotyls vs. roots) within the seedling. The wild-type auxin-response characteristics of the expression of these tomato LelAA genes are similar to those previously described for Aux/IAA family members in Arabidopsis. In dgt seedlings, auxin stimulation of gene expression was reduced in only a subset of LelAA genes (LelAA5, 8, 10, and 11), with the greatest reduction associated with those genes with the strongest wild-type response to auxin. The remaining LelAA genes tested exhibited essentially the same induction levels in response to the hormone in both dgt and wild-type hypocotyls. These results confirm that dgt plants can perceive auxin and suggest that a specific step in early auxin signal transduction is disrupted by the dgt mutation.
Collapse
MESH Headings
- Amino Acid Sequence
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Dose-Response Relationship, Drug
- Gene Expression Regulation, Plant/drug effects
- Indoleacetic Acids/pharmacology
- Solanum lycopersicum/drug effects
- Solanum lycopersicum/genetics
- Solanum lycopersicum/growth & development
- Molecular Sequence Data
- Multigene Family
- Mutation
- Phylogeny
- Plant Proteins/genetics
- Plants/drug effects
- Plants/genetics
- RNA, Plant/drug effects
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- A Nebenführ
- Department of Botany and Plant Pathology and Center for Gene Research and Biotechnology, Oregon State University, Corvallis 97331-2902, USA
| | | | | |
Collapse
|
41
|
Gray WM, del Pozo JC, Walker L, Hobbie L, Risseeuw E, Banks T, Crosby WL, Yang M, Ma H, Estelle M. Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev 1999; 13:1678-91. [PMID: 10398681 PMCID: PMC316846 DOI: 10.1101/gad.13.13.1678] [Citation(s) in RCA: 406] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The plant hormone auxin regulates diverse aspects of plant growth and development. We report that in Arabidopsis, auxin response is dependent on a ubiquitin-ligase (E3) complex called SCFTIR1. The complex consists of proteins related to yeast Skp1p and Cdc53p called ASK and AtCUL1, respectively, as well as the F-box protein TIR1. Mutations in either ASK1 or TIR1 result in decreased auxin response. Further, overexpression of TIR1 promotes auxin response suggesting that SCFTIR1 is limiting for the response. These results provide new support for a model in which auxin action depends on the regulated proteolysis of repressor proteins.
Collapse
Affiliation(s)
- W M Gray
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Rogers SW, Rogers JC. Cloning and characterization of a gibberellin-induced RNase expressed in barley aleurone cells. PLANT PHYSIOLOGY 1999; 119:1457-64. [PMID: 10198105 PMCID: PMC32031 DOI: 10.1104/pp.119.4.1457] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/1998] [Accepted: 12/28/1998] [Indexed: 05/23/2023]
Abstract
We cloned a cDNA for a gibberellin-induced ribonuclease (RNase) expressed in barley (Hordeum vulgare) aleurone and the gene for a second barley RNase expressed in leaf tissue. The protein encoded by the cDNA is unique among RNases described to date in that it contains a novel 23-amino acid insert between the C2 and C3 conserved sequences. Expression of the recombinant protein in tobacco (Nicotiana tabacum) suspension-cultured protoplasts gave an active RNase of the expected size, confirming the enzymatic activity of the protein. Analyses of hormone regulation of expression of mRNA for the aleurone RNase revealed that, like the pattern for alpha-amylase, mRNA levels increased in the presence of gibberellic acid, and its antagonist abscisic acid prevented this effect. Quantitative studies at early times demonstrated that cycloheximide treatment of aleurone layers increased mRNA levels 4-fold, whereas a combination of gibberellin plus cycloheximide treatment was required to increase alpha-amylase mRNA levels to the same extent. These results are consistent with loss of repression as an initial effect of gibberellic acid on transcription of those genes, although the regulatory pathways for the two genes may differ.
Collapse
MESH Headings
- Amino Acid Sequence
- Cloning, Molecular
- Cycloheximide/pharmacology
- DNA, Complementary/genetics
- DNA, Plant/genetics
- Enzyme Induction/drug effects
- Gene Expression
- Gibberellins/pharmacology
- Hordeum/drug effects
- Hordeum/enzymology
- Hordeum/genetics
- Molecular Sequence Data
- Plants, Genetically Modified
- Plants, Toxic
- Protein Synthesis Inhibitors/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Recombinant Proteins/genetics
- Ribonucleases/biosynthesis
- Ribonucleases/genetics
- Sequence Homology, Amino Acid
- Nicotiana/genetics
Collapse
Affiliation(s)
- S W Rogers
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, USA.
| | | |
Collapse
|
43
|
|
44
|
Oono Y, Chen QG, Overvoorde PJ, Köhler C, Theologis A. age Mutants of Arabidopsis exhibit altered auxin-regulated gene expression. THE PLANT CELL 1998; 10:1649-62. [PMID: 9761792 PMCID: PMC143942 DOI: 10.1105/tpc.10.10.1649] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
An Arabidopsis transgenic line was constructed expressing beta-glucuronidase (GUS) via the auxin-responsive domains (AuxRDs) A and B (BA-GUS) of the PS-IAA4/5 gene in an indoleacetic acid (IAA)-dependent fashion. GUS expression was preferentially enhanced in the root elongation zone after treatment of young seedlings with 10(-7) M IAA. Expression of the BA-GUS gene in the axr1, axr4, and aux1 mutants required 10- to 100-fold higher auxin concentration than that in the wild-type background. GUS expression was nil in the axr 2 and axr 3 mutants. The transgene was used to isolate mutants exhibiting altered auxin-responsive gene expression (age). Two mutants, age1 and age2, were isolated and characterized. age1 showed enhanced sensitivity to IAA, with strong GUS expression localized in the root elongation zone in the presence of 10(-8) M IAA. In contrast, age2 exhibited ectopic GUS expression associated with the root vascular tissue, even in the absence of exogenous IAA. Morphological and molecular analyses indicated that the age1 and age2 alleles are involved in the regulation of gene expression in response to IAA.
Collapse
Affiliation(s)
- Y Oono
- Plant Gene Expression Center, 800 Buchanan Street, Albany, California 94710, USA
| | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- R Hooley
- IACR-Long Ashton Research Station University of Bristol Department of Agricultural Sciences Long Ashton Bristol, BS41 9AF United Kingdom
| |
Collapse
|
46
|
Guilfoyle T, Hagen G, Ulmasov T, Murfett J. How does auxin turn on genes? PLANT PHYSIOLOGY 1998; 118:341-7. [PMID: 9765520 PMCID: PMC1539191 DOI: 10.1104/pp.118.2.341] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Affiliation(s)
- T Guilfoyle
- Department of Biochemistry, 117 Schweitzer Hall, Columbia, Missouri 65211, USA.
| | | | | | | |
Collapse
|
47
|
Ruegger M, Dewey E, Gray WM, Hobbie L, Turner J, Estelle M. The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast grr1p. Genes Dev 1998; 12:198-207. [PMID: 9436980 PMCID: PMC316440 DOI: 10.1101/gad.12.2.198] [Citation(s) in RCA: 445] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/1997] [Accepted: 11/14/1997] [Indexed: 02/05/2023]
Abstract
Genetic analysis in Arabidopsis has led to the identification of several genes that are required for auxin response. One of these genes, AXR1, encodes a protein related to yeast Aos1p, a protein that functions to activate the ubiquitin-related protein Smt3p. Here we report the identification of a new gene called TRANSPORT INHIBITOR RESPONSE 1 (TIR1). The tir1 mutants are deficient in a variety of auxin-regulated growth processes including hypocotyl elongation and lateral root formation. These results indicate that TIR1 is also required for normal response to auxin. Further, mutations in TIR1 display a synergistic interaction with mutations in AXR1, suggesting that the two genes function in overlapping pathways. The TIR1 protein contains a series of leucine-rich repeats and a recently identified motif called an F box. Sequence comparisons indicate that TIR1 is related to the yeast protein Grr1p and the human protein SKP2. Because Grr1p and other F-box proteins have been implicated in ubiquitin-mediated processes, we speculate that auxin response depends on the modification of a key regulatory protein(s) by ubiquitin or a ubiquitin-related protein.
Collapse
Affiliation(s)
- M Ruegger
- Department of Biology, Indiana University, Bloomington, Indiana 47405 USA
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
The plant hormone auxin regulates plant physiology by modulating the interaction of transcription factors with auxin response elements (AuxREs) of the affected genes. A transcription factor, Auxin Response Factor 1 (ARF1), that binds to the sequence TGTCTC in AuxREs was cloned from Arabidopsis by using a yeast one-hybrid system. ARF1 has an amino-terminal DNA-binding domain related to the carboxyl terminus of the maize transactivator Viviparous-1. Sequence requirements for ARF1 binding in vitro are identical to those that confer auxin responsiveness in vivo. The carboxyl terminus of ARF1 contains two motifs found in the Aux/IAA class of proteins and appears to mediate protein-protein interactions.
Collapse
Affiliation(s)
- T Ulmasov
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211, USA
| | | | | |
Collapse
|
49
|
Berna A, Bernier F. Regulated expression of a wheat germin gene in tobacco: oxalate oxidase activity and apoplastic localization of the heterologous protein. PLANT MOLECULAR BIOLOGY 1997; 33:417-29. [PMID: 9049263 DOI: 10.1023/a:1005745015962] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Wheat (Triticum aestivum) germin is a homopentameric glycoprotein whose synthesis is allied with seed germination. Germin pentamers show an unusual resistance to dissociation and possess an oxalate oxidase (OxO) activity. In order to increase our knowledge of germin gene expression, the function(s) of germin during development and possible uses in plant genetic engineering, an in vivo expression system is required. To this end, a gene for germin, named gf-2.8, was studied by expressing either promoter-GUS fusions or the intact gene in transgenic tobacco (Nicotiana tabacum) plants. Heterologous gene transcription was monitored in vitro and in vivo by GUS or OxO activity and was found to occur in developing seeds and in seedlings. This transcription was stimulated by auxins, as would be expected because of the presence of putative auxin-responsive elements in the promoter of the gf-2.8 gene. Auxin stimulation also extended to young leaves since OxO activity could be detected in treated but not in untreated leaves. The biochemical characteristics of wheat germin were also conserved in a transgenic host: the OxO activity was present under the form of a doublet co-migrating with germin G and G' isoforms. Also, germin distributed between a soluble and an apoplastic fractions despite the fact that wheat cell wall substantially differs from tobacco cell wall. Therefore, tobacco constitutes a suitable host for in vivo studies of this monocotyledon gene.
Collapse
Affiliation(s)
- A Berna
- I.B.M.P. du C.N.R.S., Institut de Botanique, Université Louis Pasteur, Strasbourg, France
| | | |
Collapse
|
50
|
Xiang C, Miao ZH, Lam E. Coordinated activation of as-1-type elements and a tobacco glutathione S-transferase gene by auxins, salicylic acid, methyl-jasmonate and hydrogen peroxide. PLANT MOLECULAR BIOLOGY 1996; 32:415-26. [PMID: 8980490 DOI: 10.1007/bf00019093] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The molecular mechanism of signal transduction pathways which mediate the action of phytohormones are poorly understood. Recently, we and others have shown that the as -1 type cis-acting elements can respond to auxin and salicylic acid, two well-characterized signaling molecules in plants. In the present work, we have examined a comprehensive set of physiological and abiotic agents and found that auxin, salicylic acid and methyl-jasmonate are three effective inducers of the as-1-type elements in transgenic tobacco. Using a cell suspension culture containing a synthetic promoter-GUS fusion, we demonstrated rapid and sensitive induction of the as-1-type element by these phytohormones. Furthermore, a tobacco glutathione S-transferase gene, GNT35, that contains an as-1-type binding site in its promoter is also inducible by auxin, salicylic acid and methyl-jasmonate with similar kinetics. As Ulmasov et al. have recently reported, we found that the as-1-type elements can also respond to weak/inactive analogues of auxin and salicylic acid. In addition, we show that hydrogen peroxide can also effectively activate the expression of GNT35 as well as the as-1-type element in a cell suspension culture, but not with whole seedlings. These results are discussed with respect to the possible mechanism(s) through which a single cis element may respond to a diverse array of molecules.
Collapse
Affiliation(s)
- C Xiang
- AgBiotech Center, Rutgers University, New Brunswick, NJ 08903-0231, USA
| | | | | |
Collapse
|