1
|
Bai X, Qiu Y, Wang J, Dong Y, Zhang T, Jin H. Panax quinquefolium saponins attenuates microglia activation following acute cerebral ischemia-reperfusion injury via Nrf2/miR-103-3p/TANK pathway. Cell Biol Int 2024; 48:201-215. [PMID: 37885132 DOI: 10.1002/cbin.12100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 09/20/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Ischemic stroke is one of the leading causes of death and disability among adults worldwide. Intravenous thrombolysis is the only approved pharmacological treatment for acute ischemic stroke. However, reperfusion by thrombolysis will lead to the rapid activation of microglia cells which induces interferon-inflammatory response in the ischemic brain tissues. Panax quinquefolium saponins (PQS) has been proven to be effective in acute ischemic stroke, but there is no unified understanding about its specific mechanism. Here, we will report for the first time that PQS can significantly inhibit the activation of microglia cells in cerebral of MCAO rats via activation of Nrf2/miR-103-3p/TANK axis. Our results showed that PQS can directly bind to Nrf2 protein and inhibit its ubiquitination, which result in the indirectly enhancing the expression of TANK protein via transcriptional regulation on miR-103-3p, and finally to suppress the nuclear factor kappa-B dominated rapid activation of microglial cells induced by oxygen-glucose deprivation/reoxygenation vitro and cerebral ischemia-reperfusion injury in vivo. In conclusion, our study not only revealed the new mechanism of PQS in protecting against the inflammatory activation of microglia cells caused by cerebral ischemia-reperfusion injury, but also suggested that Nrf2 is a potential target for development of new drugs of ischemic stroke. More importantly, our study also reminded that miR-103-3p might be used as a prognostic biomarker for patients with ischemic stroke.
Collapse
Affiliation(s)
- Xuesong Bai
- Department of Pharmacy, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Yan Qiu
- Department of Pharmacy, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Jian Wang
- Department of Pharmacy, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Yafen Dong
- Department of Pharmacy, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Tao Zhang
- Department of Laboratory Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Jin
- Department of Pharmacy, Shanghai Pudong New Area People's Hospital, Shanghai, China
| |
Collapse
|
2
|
Lee JH, Udayantha HMV, Wan Q, Lee J. TRAF family member-associated NF-κB activator (TANK) regulates the antiviral function and NF-κB activation in red-spotted grouper (Epinephelus akaara). FISH & SHELLFISH IMMUNOLOGY 2023; 143:109186. [PMID: 37884106 DOI: 10.1016/j.fsi.2023.109186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
The TRAF family member-associated nuclear factor kappa B (NF-κB) activator (TANK) regulates the NF-κB activation through the TRAF-mediated signaling pathway and is involved in the antiviral pathway by inducing the interferon (IFN) production. In the present study, we identified a TANK ortholog from the red-spotted grouper (Epinephelus akaara) and analyzed its immunological functions. The coding sequence of EaTANK consists of 1047 base pairs and encodes a 348 amino acids protein. The predicted molecular weight and theoretical isoelectric point (pI) were 38.92 kDa and 5.39, respectively. According to the phylogenetic analysis, EaTANK was closely clustered with fish TANK orthologs, exhibiting the highest identity (97.1 %) and similarity (97.1 %) to that of Epinephelus lanceolatus. A highly conserved TBK1/IKKi binding domain (TBD) was identified between 110 and 164 residues. Our tissue distribution analysis showed that EaTANK mRNA was ubiquitously expressed in 12 tested tissues, with the highest expression in the spleen and peripheral blood cells (PBCs). According to the immune challenge experiments, EaTANK mRNA expression in PBCs was significantly elevated following stimulation with polyinosinic:polycytidylic acid [poly (I:C)], lipopolysaccharide (LPS), or nervous necrosis virus (NNV). We also observed a significant elevation in the mRNA expression of downstream antiviral pathway-related genes (ISG15, IRF3, and IRF7) in EaTANK-overexpressing fathead minnow (FHM) cells against poly (I:C) stimulation. Moreover, the replication of 6 genes in the VHSV genome was inhibited by the overexpression of EaTANK. Finally, we confirmed that the expression of NFKB1 mRNA and promoter binding activity of NF-κB was significantly increased in poly (I:C)-stimulated EaTANK-overexpressing FHM cells. In conclusion, the results of this study suggest that TANK significantly contributes to the antiviral response and regulation of NF-κB activity in red-spotted grouper.
Collapse
Affiliation(s)
- Ji Hun Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - H M V Udayantha
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
3
|
Li S, Guo Y, Hu H, Gao N, Yan X, Zhou Q, Liu H. TANK shapes an immunosuppressive microenvironment and predicts prognosis and therapeutic response in glioma. Front Immunol 2023; 14:1138203. [PMID: 37215097 PMCID: PMC10196049 DOI: 10.3389/fimmu.2023.1138203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Background Glioma, the most prevalent malignant intracranial tumor, poses a significant threat to patients due to its high morbidity and mortality rates, but its prognostic indicators remain inaccurate. Although TRAF-associated NF-kB activator (TANK) interacts and cross-regulates with cytokines and microenvironmental immune cells, it is unclear whether TANK plays a role in the immunologically heterogeneous gliomas. Methods TANK mRNA expression patterns in public databases were analyzed, and qPCR and IHC were performed in an in-house cohort to confirm the clinical significance of TANK. Then, we systematically evaluated the relationship between TANK expression and immune characteristics in the glioma microenvironment. Additionally, we evaluated the ability of TANK to predict treatment response in glioma. TANK-associated risk scores were developed by LASSO-Cox regression and machine learning, and their prognostic ability was tested. Results TANK was specifically overexpressed in glioma and enriched in the malignant phenotype, and its overexpression was related to poor prognosis. The presence of a tumor microenvironment that is immunosuppressive was evident by the negative correlations between TANK expression and immunomodulators, steps in the cancer immunity cycle, and immune checkpoints. Notably, treatment for cancer may be more effective when immunotherapy is combined with anti-TANK therapy. Prognosis could be accurately predicted by the TANK-related risk score. Conclusions High expression of TANK is associated with the malignant phenotype of glioma, as it shapes an immunosuppressive tumor microenvironment. Additionally, TANK can be used as a predictive biomarker for responses to various treatments and prognosis.
Collapse
Affiliation(s)
- Shasha Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China
| | - Youwei Guo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Huijuan Hu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Na Gao
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xuejun Yan
- Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Quanwei Zhou
- The National Key Clinical Specialty, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hui Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Cao YY, Zhang Y, Gerile W, Guo Y, Wu LN, Wu LL, Song K, Lu WH, Yu JB. PLK1 protects intestinal barrier function during sepsis by targeting mitochondrial dynamics through TANK-NF-κB signalling. Mol Med 2022; 28:163. [PMID: 36581806 PMCID: PMC9801534 DOI: 10.1186/s10020-022-00597-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Intestinal barrier integrity in the pathogenesis of sepsis is critical. Despite an abundance of evidence, the molecular mechanism of the intestinal barrier in sepsis pathology remains unclear. Here, we report a protective role of polo-like kinase 1 (PLK1) in intestinal barrier integrity during sepsis. METHODS Mice with PLK1 overexpression (CAG-PLK1 mice) or PLK1 inhibition (BI2536-treated mice) underwent caecal ligation and puncture (CLP) to establish a sepsis model. The intestinal barrier function, apoptosis in the intestinal epithelium, mitochondrial function and NF-κB signalling activity were evaluated. To suppress the activation of NF-κB signalling, the NF-κB inhibitor PDTC, was administered. The Caco-2 cell line was chosen to establish an intestinal epithelial injury model in vitro. RESULTS Sepsis destroyed intestinal barrier function, induced excessive apoptosis in the intestinal epithelium, and disrupted the balance of mitochondrial dynamics in wild-type mice. PLK1 overexpression alleviated sepsis-induced damage to the intestinal epithelium by inhibiting the activation of NF-κB signalling. PLK1 colocalized and interacted with TANK in Caco-2 cells. Transfecting Caco-2 cells with TANK-SiRNA suppressed NF-κB signalling and ameliorated mitochondrial dysfunction, apoptosis and the high permeability of cells induced by lipopolysaccharide (LPS). Furthermore, TANK overexpression impaired the protective effect of PLK1 on LPS-induced injuries in Caco-2 cells. CONCLUSION Our findings reveal that the PLK1/TANK/NF-κB axis plays a crucial role in sepsis-induced intestinal barrier dysfunction by regulating mitochondrial dynamics and apoptosis in the intestinal epithelium and might be a potential therapeutic target in the clinic.
Collapse
Affiliation(s)
- Ying-Ya Cao
- Department of Anaesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100 China ,grid.452929.10000 0004 8513 0241Department of Critical Care Medicine, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001 Anhui China
| | - Yuan Zhang
- Department of Anaesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100 China
| | - Wuyun Gerile
- Department of Anaesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100 China
| | - Yan Guo
- Department of Anaesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100 China
| | - Li-Na Wu
- Department of Anaesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100 China
| | - Li-Li Wu
- Department of Anaesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100 China
| | - Kai Song
- Department of Anaesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100 China
| | - Wei-Hua Lu
- grid.452929.10000 0004 8513 0241Department of Critical Care Medicine, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001 Anhui China
| | - Jian-Bo Yu
- Department of Anaesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100 China
| |
Collapse
|
5
|
Siegmund D, Wagner J, Wajant H. TNF Receptor Associated Factor 2 (TRAF2) Signaling in Cancer. Cancers (Basel) 2022; 14:cancers14164055. [PMID: 36011046 PMCID: PMC9406534 DOI: 10.3390/cancers14164055] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/05/2022] [Accepted: 08/19/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Tumor necrosis factor (TNF) receptor associated factor-2 (TRAF2) is an intracellular adapter protein with E3 ligase activity, which interacts with a plethora of other signaling proteins, including plasma membrane receptors, kinases, phosphatases, other E3 ligases, and deubiquitinases. TRAF2 is involved in various cancer-relevant cellular processes, such as the activation of transcription factors of the NFκB family, stimulation of mitogen-activated protein (MAP) kinase cascades, endoplasmic reticulum (ER) stress signaling, autophagy, and the control of cell death programs. In a context-dependent manner, TRAF2 promotes tumor development but it can also act as a tumor suppressor. Based on a general description, how TRAF2 in concert with TRAF2-interacting proteins and other TRAF proteins act at the molecular level is discussed for its importance for tumor development and its potential usefulness as a therapeutic target in cancer therapy. Abstract Tumor necrosis factor (TNF) receptor associated factor-2 (TRAF2) has been originally identified as a protein interacting with TNF receptor 2 (TNFR2) but also binds to several other receptors of the TNF receptor superfamily (TNFRSF). TRAF2, often in concert with other members of the TRAF protein family, is involved in the activation of the classical NFκB pathway and the stimulation of various mitogen-activated protein (MAP) kinase cascades by TNFRSF receptors (TNFRs), but is also required to inhibit the alternative NFκB pathway. TRAF2 has also been implicated in endoplasmic reticulum (ER) stress signaling, the regulation of autophagy, and the control of cell death programs. TRAF2 fulfills its functions by acting as a scaffold, bringing together the E3 ligase cellular inhibitor of apoptosis-1 (cIAP1) and cIAP2 with their substrates and various regulatory proteins, e.g., deubiquitinases. Furthermore, TRAF2 can act as an E3 ligase by help of its N-terminal really interesting new gene (RING) domain. The finding that TRAF2 (but also several other members of the TRAF family) interacts with the latent membrane protein 1 (LMP1) oncogene of the Epstein–Barr virus (EBV) indicated early on that TRAF2 could play a role in the oncogenesis of B-cell malignancies and EBV-associated non-keratinizing nasopharyngeal carcinoma (NPC). TRAF2 can also act as an oncogene in solid tumors, e.g., in colon cancer by promoting Wnt/β-catenin signaling. Moreover, tumor cell-expressed TRAF2 has been identified as a major factor-limiting cancer cell killing by cytotoxic T-cells after immune checkpoint blockade. However, TRAF2 can also be context-dependent as a tumor suppressor, presumably by virtue of its inhibitory effect on the alternative NFκB pathway. For example, inactivating mutations of TRAF2 have been associated with tumor development, e.g., in multiple myeloma and mantle cell lymphoma. In this review, we summarize the various TRAF2-related signaling pathways and their relevance for the oncogenic and tumor suppressive activities of TRAF2. Particularly, we discuss currently emerging concepts to target TRAF2 for therapeutic purposes.
Collapse
|
6
|
Wakabayashi A, Yoshinaga M, Takeuchi O. TANK prevents IFN-dependent fatal diffuse alveolar hemorrhage by suppressing DNA-cGAS aggregation. Life Sci Alliance 2021; 5:5/2/e202101067. [PMID: 34819357 PMCID: PMC8616552 DOI: 10.26508/lsa.202101067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/24/2022] Open
Abstract
Diffuse alveolar hemorrhage (DAH) is one of the serious complications associated with systemic lupus erythematosus, an autoimmune disease whose pathogenesis involves type I IFNs and cytokines. Here, we show that TANK, a negative regulator of the NF-κB signaling via suppression of TRAF6 ubiquitination, is critical for the amelioration of fatal DAH caused by lung vascular endothelial cell death in a mouse model of systemic lupus erythematosus. The development of fatal DAH in the absence of TANK is mediated by type I IFN signaling, but not IL-6. We further uncover that STING, an adaptor essential for the signaling of cytoplasmic DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS), plays a critical role in DAH under Tank deficiency. TANK controls cGAS-mediated cGAMP production and suppresses DNA-mediated induction of IFN-stimulated genes in macrophages by inhibiting the formation of DNA-cGAS aggregates containing ubiquitin. Collectively, TANK inhibits the cGAS-dependent recognition of cytoplasmic DNA to prevent fatal DAH in the murine lupus model.
Collapse
Affiliation(s)
- Atsuko Wakabayashi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masanori Yoshinaga
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Zheng J, Xu Y, Khan A, Sun P, Sun Y, Fan K, Yin W, Wang S, Li H, Sun N. Curcumol inhibits encephalomyocarditis virus by promoting IFN-β secretion. BMC Vet Res 2021; 17:318. [PMID: 34587973 PMCID: PMC8482695 DOI: 10.1186/s12917-021-03015-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/03/2021] [Indexed: 11/28/2022] Open
Abstract
Background Encephalomyocarditis virus (EMCV) infection can cause reproductive failure in sows and acute myocarditis and sudden death in piglets. It has caused huge economic losses to the global pig industry and that is why it is necessary to develop effective new treatment compounds. Zedoary turmeric oil has been used for treating myocarditis. Curcumol extracted from the roots of curcuma is one of the main active ingredient of zedoary turmeric oil. The anti-EMCV activity of curcumol along with the molecular mechanisms involved with a focus on IFN-β signaling pathway was investigated in this study. Method 3-(4,5-dimethyithiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to determine the maximum non-toxic concentration (MNTC), 50% cytotoxic concentration (CC50), maximum inhibition rate (MIR) and 50% effective concentration (EC50) against EMCV. Through EMCV load, the anti-viral effect of curcumol was quantitatively determined using real-time quantitative PCR (qPCR). The effect of curcumol on the expression of IFN-β was investigated using real-time quantitative PCR and ELISA. Western blot was used to determine the amounts of MDA5, MAVS, TANK, IRF3 and P-IRF3 proteins in human embryonic kidney 293 T (HEK-293 T) cells infected with EMCV. Results The results of MTT showed that compared with the ribavirin positive control group, the maximum inhibition ratio (MIR) of curcumol was greater but the selection index (SI) value was much smaller than that of ribavirin. The results of qPCR showed that curcumol and ribavirin significantly reduced the replication of EMCV in HEK-293 T cells. The curcumol (0.025 mg/mL) treatment has significantly increased IFN-β mRNA expression in the EMCV-infected HEK-293 T cells while ribavirin treatment did not. The results of ELISA showed that curcumol (0.025 mg/mL and 0.0125 mg/mL) has significantly increased the expression of IFN-β protein in EMCV-infected HEK-293 T cells. The results of Western blot showed that curcumol can inhibit the degradation of TANK protein mediated by EMCV and promote the expression of MDA5 and P-IRF3, while the protein expression level of MAVS and IRF3 remain unchanged. Conclusion Curcumol has biological activity against EMCV which we suggest that IFN-β signaling pathway is one of its mechanisms. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-03015-4.
Collapse
Affiliation(s)
- Jiangang Zheng
- College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan, Shanxi, 030000, P.R. China
| | - Yinlan Xu
- College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan, Shanxi, 030000, P.R. China
| | - Ajab Khan
- College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan, Shanxi, 030000, P.R. China
| | - Panpan Sun
- Laboratory Animal Center, Shanxi Agricultural University, Taiyuan, Shanxi, 030000, P.R. China
| | - Yaogui Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan, Shanxi, 030000, P.R. China
| | - Kuohai Fan
- Laboratory Animal Center, Shanxi Agricultural University, Taiyuan, Shanxi, 030000, P.R. China
| | - Wei Yin
- College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan, Shanxi, 030000, P.R. China
| | - Shaoyu Wang
- School of Community Health, Faculty of Science, Charles Sturt University, Bathurst, New South Wales, 2800, Australia
| | - Hongquan Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan, Shanxi, 030000, P.R. China.
| | - Na Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan, Shanxi, 030000, P.R. China.
| |
Collapse
|
8
|
Pang Y, Ma M, Wang D, Li X, Jiang L. TANK Promotes Pressure Overload Induced Cardiac Hypertrophy via Activating AKT Signaling Pathway. Front Cardiovasc Med 2021; 8:687540. [PMID: 34540911 PMCID: PMC8446676 DOI: 10.3389/fcvm.2021.687540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/19/2021] [Indexed: 01/14/2023] Open
Abstract
Background: TANK (TRAF family member associated NF-κB activator) acts as a member of scaffold proteins participated in the development of multiple diseases. However, its function in process of cardiac hypertrophy is still unknown. Methods and Results: In this study, we observed an increased expression of TANK in murine hypertrophic hearts after aortic banding, suggesting that TANK may be involved in the pathogenesis of cardiac hypertrophy. We generated cardiac-specific TANK knockout mice, and subsequently subjected to aortic banding for 4–8 weeks. TANK knockout mice showed attenuated cardiac hypertrophy and dysfunction compared to the control group. In contrast, cardiac-specific TANK transgenic mice showed opposite signs. Consistently, in vitro experiments revealed that TANK knockdown decreased the cell size and expression of hypertrophic markers. Mechanistically, AKT signaling was inhibited in TANK knockout mice, but activated in TANK transgenic mice after aortic banding. Blocking AKT signaling with a pharmacological AKT inhibitor alleviated the cardiac hypertrophy and dysfunction in TANK transgenic mice. Conclusions: Collectively, we identified TANK accelerates the progression of pathological cardiac hypertrophy and is a potential therapeutic target.
Collapse
Affiliation(s)
- Yanan Pang
- Division of Cardiology, TongRen Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minglu Ma
- Division of Cardiology, TongRen Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong Wang
- Division of Cardiology, TongRen Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xun Li
- Department of Cardiology, The First Affliated Hospital of Soochow University, Suzhou, China
| | - Li Jiang
- Division of Cardiology, TongRen Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Kumar V. Toll-like receptors in sepsis-associated cytokine storm and their endogenous negative regulators as future immunomodulatory targets. Int Immunopharmacol 2020; 89:107087. [PMID: 33075714 PMCID: PMC7550173 DOI: 10.1016/j.intimp.2020.107087] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022]
Abstract
Sepsis infects more than 48.9 million people world-wide, with 19.7 million deaths. Cytokine storm plays a significant role in sepsis, along with severe COVID-19. TLR signaling pathways plays a crucial role in generating the cytokine storm. Endogenous negative regulators of TLR signaling are crucial to regulate cytokine storm.
Cytokine storm generates during various systemic acute infections, including sepsis and current pandemic called COVID-19 (severe) causing devastating inflammatory conditions, which include multi-organ failure or multi-organ dysfunction syndrome (MODS) and death of the patient. Toll-like receptors (TLRs) are one of the major pattern recognition receptors (PRRs) expressed by immune cells as well as non-immune cells, including neurons, which play a crucial role in generating cytokine storm. They recognize microbial-associated molecular patterns (MAMPs, expressed by pathogens) and damage or death-associate molecular patterns (DAMPs; released and/expressed by damaged/killed host cells). Upon recognition of MAMPs and DAMPs, TLRs activate downstream signaling pathways releasing several pro-inflammatory mediators [cytokines, chemokines, interferons, and reactive oxygen and nitrogen species (ROS or RNS)], which cause acute inflammation meant to control the pathogen and repair the damage. Induction of an exaggerated response due to genetic makeup of the host and/or persistence of the pathogen due to its evasion mechanisms may lead to severe systemic inflammatory condition called sepsis in response to the generation of cytokine storm and organ dysfunction. The activation of TLR-induced inflammatory response is hardwired to the induction of several negative feedback mechanisms that come into play to conclude the response and maintain immune homeostasis. This state-of-the-art review describes the importance of TLR signaling in the onset of the sepsis-associated cytokine storm and discusses various host-derived endogenous negative regulators of TLR signaling pathways. The subject is very important as there is a vast array of genes and processes implicated in these negative feedback mechanisms. These molecules and mechanisms can be targeted for developing novel therapeutic drugs for cytokine storm-associated diseases, including sepsis, severe COVID-19, and other inflammatory diseases, where TLR-signaling plays a significant role.
Collapse
Affiliation(s)
- V Kumar
- Children Health Clinical Unit, Faculty of Medicine, Mater Research, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia; School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia.
| |
Collapse
|
10
|
Wei J, Li C, Ou J, Zhang X, Liu Z, Qin Q. The roles of grouper TANK in innate immune defense against iridovirus and nodavirus infections. FISH & SHELLFISH IMMUNOLOGY 2020; 104:506-516. [PMID: 32585359 DOI: 10.1016/j.fsi.2020.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
The TRAF family member-associated nuclear factor (NF)-κB activator (TANK) was first identified as a TRAF-binding protein with both stimulatory and inhibitory properties in host innate immune activation. To elucidate the roles of TANK in teleosts, we cloned and characterized the TANK homologue of orange-spotted grouper (Epinephelus coioides). The open reading frame (ORF) of EcTANK consists of 1026 nucleotides encoding a 342 amino acid protein with a predicted molecular mass of 38.24 kDa. EcTANK shares 89.47% and 88.89% identity with Larimichthys crocea TANK and Lates calcarifer TANK, respectively. EcTANK was distributed in all 11 examined tissues. The expression of EcTANK in the spleen increased after infection with Singapore grouper iridovirus (SGIV) and red-spotted grouper nervous necrosis virus (RGNNV). EcTANK was mainly located in the cytoplasm of grouper spleen cells. EcTANK enhanced SGIV and RGNNV replication during viral infection in vitro. Overexpression EcTANK decreased the expression levels of interferon-associated cytokines and pro-inflammatory factors, and enhanced activation of NF-κB. Taken together, these results suggest that EcTANK may play an important role in antiviral innate immune activation in grouper.
Collapse
Affiliation(s)
- Jingguang Wei
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China.
| | - Chen Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China
| | - Jisheng Ou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xin Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China
| | - Zetian Liu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, PR China.
| |
Collapse
|
11
|
Transcriptome study reveals apoptosis of porcine kidney cells induced by fumonisin B1 via TNF signalling pathway. Food Chem Toxicol 2020; 139:111274. [DOI: 10.1016/j.fct.2020.111274] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/13/2020] [Accepted: 03/13/2020] [Indexed: 02/06/2023]
|
12
|
Glial cells involvement in spinal muscular atrophy: Could SMA be a neuroinflammatory disease? Neurobiol Dis 2020; 140:104870. [PMID: 32294521 DOI: 10.1016/j.nbd.2020.104870] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/16/2020] [Accepted: 04/10/2020] [Indexed: 01/11/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a severe, inherited disease characterized by the progressive degeneration and death of motor neurons of the anterior horns of the spinal cord, which results in muscular atrophy and weakness of variable severity. Its early-onset form is invariably fatal in early childhood, while milder forms lead to permanent disability, physical deformities and respiratory complications. Recently, two novel revolutionary therapies, antisense oligonucleotides and gene therapy, have been approved, and might prove successful in making long-term survival of these patients likely. In this perspective, a deep understanding of the pathogenic mechanisms and of their impact on the interactions between motor neurons and other cell types within the central nervous system (CNS) is crucial. Studies using SMA animal and cellular models have taught us that the survival and functionality of motor neurons is highly dependent on a whole range of other cell types, namely glial cells, which are responsible for a variety of different functions, such as neuronal trophic support, synaptic remodeling, and immune surveillance. Thus, it emerges that SMA is likely a non-cell autonomous, multifactorial disease in which the interaction of different cell types and disease mechanisms leads to motor neurons failure and loss. This review will introduce the different glial cell types in the CNS and provide an overview of the role of glial cells in motor neuron degeneration in SMA. Furthermore, we will discuss the relevance of these findings so far and the potential impact on the success of available therapies and on the development of novel ones.
Collapse
|
13
|
|
14
|
Recognition of TRAIP with TRAFs: Current understanding and associated diseases. Int J Biochem Cell Biol 2019; 115:105589. [DOI: 10.1016/j.biocel.2019.105589] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/31/2019] [Accepted: 08/13/2019] [Indexed: 01/02/2023]
|
15
|
Voccola S, Polvere I, Madera JR, Paolucci M, Varricchio E, Telesio G, Porcaro P, Vito P, Stilo R, Zotti T. CARD14/CARMA2sh and TANK differentially regulate poly(I:C)-induced inflammatory reaction in keratinocytes. J Cell Physiol 2019; 235:1895-1902. [PMID: 31486084 DOI: 10.1002/jcp.29161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 08/26/2019] [Indexed: 12/31/2022]
Abstract
CARD14/CARMA2sh (CARMA2sh) is a scaffold protein whose mutations are associated with the onset of human genetic psoriasis and other inflammatory skin disorders. Here we show that the immunomodulatory adapter protein TRAF family member-associated NF-κB activator (TANK) forms a complex with CARMA2sh and MALT1 in a human keratinocytic cell line. We also show that CARMA2 and TANK are individually required to activate the nuclear factor κB (NF-κB) response following exposure to polyinosinic-polycytidylic (poly [I:C]), an agonist of toll-like receptor 3. Finally, we present data indicating that TANK is essential for activation of the TBK1/IRF3 pathway following poly (I:C) stimulation, whereas CARMA2sh functions as a repressor of it. More important, we report that two CARMA2sh mutants associated with psoriasis bind less efficiently to TANK and are therefore less effective in suppressing the TBK1/IRF3 pathway. Overall, our data indicate that TANK and CARMA2sh regulate TLR3 signaling in human keratinocytes, which could play a role in the pathophysiology of psoriasis.
Collapse
Affiliation(s)
- Serena Voccola
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy.,Genus Biotech, Università del Sannio, Benevento, Italy
| | - Immacolata Polvere
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy.,Genus Biotech, Università del Sannio, Benevento, Italy
| | - Jessica R Madera
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| | - Marina Paolucci
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| | - Ettore Varricchio
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| | - Gianluca Telesio
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| | - Piero Porcaro
- Genus Biotech, Università del Sannio, Benevento, Italy.,Consorzio Sannio Tech, Strada Statale Appia, Benevento, Benevento, Italy
| | - Pasquale Vito
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy.,Genus Biotech, Università del Sannio, Benevento, Italy
| | - Romania Stilo
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| | - Tiziana Zotti
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy.,Genus Biotech, Università del Sannio, Benevento, Italy
| |
Collapse
|
16
|
Lee KJ, Park KH, Hahn JH. Alleviation of Ultraviolet-B Radiation-Induced Photoaging by a TNFR Antagonistic Peptide, TNFR2-SKE. Mol Cells 2019; 42:151-160. [PMID: 30703869 PMCID: PMC6399009 DOI: 10.14348/molcells.2018.0423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/13/2018] [Accepted: 01/01/2019] [Indexed: 11/27/2022] Open
Abstract
Ultraviolet (UV) radiation of the sunlight, especially UVA and UVB, is the primary environmental cause of skin damage, including topical inflammation, premature skin aging, and skin cancer. Previous reports show that activation of nuclear factor-κB (NF-κB) in human skin fibroblasts and keratinocytes after UV exposure induces the expression and release of proinflammatory cytokines, such as interleukin-1 (IL-1) and tumor necrosis factor-α (TNF-α), and subsequently leads to the production of matrix metalloproteases (MMPs) and growth factor basic fibroblast growth factor (bFGF). Here, we demonstrated that TNFR2-SKEE and TNFR2-SKE, oligopeptides from TNF receptor-associated factor 2 (TRAF2)-binding site of TNF receptor 2 (TNFR2), strongly inhibited the interaction of TNFR1 as well as TNFR2 with TRAF2. In particular, TNFR2-SKE suppressed UVB- or TNF-α-induced nuclear translocalization of activated NF-κB in mouse fibroblasts. It decreased the expression of bFGF, MMPs, and COX2, which were upregulated by TNF-α, and increased procollagen production, which was reduced by TNF-α. Furthermore, TNFR2-SKE inhibited the UVB-induced proliferation of keratinocytes and melanocytes in the mouse skin and the infiltration of immune cells into inflamed tissues. These results suggest that TNFR2-SKE may possess the clinical potency to alleviate UV-induced photoaging in human skin.
Collapse
Affiliation(s)
- Kyoung-Jin Lee
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 24341,
Korea
| | - Kyeong Han Park
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 24341,
Korea
| | - Jang-Hee Hahn
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 24341,
Korea
| |
Collapse
|
17
|
Shin CH, Choi DS. Essential Roles for the Non-Canonical IκB Kinases in Linking Inflammation to Cancer, Obesity, and Diabetes. Cells 2019; 8:cells8020178. [PMID: 30791439 PMCID: PMC6406369 DOI: 10.3390/cells8020178] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/13/2019] [Accepted: 02/18/2019] [Indexed: 12/17/2022] Open
Abstract
Non-canonical IκB kinases (IKKs) TBK1 and IKKε have essential roles as regulators of innate immunity and cancer. Recent work has also implicated these kinases in distinctively controlling glucose homeostasis and repressing adaptive thermogenic and mitochondrial biogenic response upon obesity-induced inflammation. Additionally, TBK1 and IKKε regulate pancreatic β-cell regeneration. In this review, we summarize current data on the functions and molecular mechanisms of TBK1 and IKKε in orchestrating inflammation to cancer, obesity, and diabetes.
Collapse
Affiliation(s)
- Chong Hyun Shin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
18
|
Feng C, Zhang Y, Li J, Liu J, Wu H, Xiao J, Feng H. Molecular cloning and characterization of TANK of black carp Mylopharyngodon piceus. FISH & SHELLFISH IMMUNOLOGY 2018; 81:113-120. [PMID: 30017926 DOI: 10.1016/j.fsi.2018.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
The TRAF family member-associated NF-κB activator (TANK) is linked to the regulation of the transcription of NF-κB in mammals; however, its role in interferon induction is unclear. To elucidate the roles of TANK in teleost, the TANK homologue of black carp (Mylopharyngodon piceus) has been cloned and characterized in this paper. The open reading frame (ORF) of black carp TANK (bcTANK) comprises 1050 nucleotides and the predicted bcTANK protein contains 350 amino acids. The transcription of bcTANK in host cells increased in response to the stimulation of LPS, poly (I:C), SVCV and GCRV. bcTANK migrated around 50 KDa in immunoblot assay and was identified as a cytosolic protein by immunofluorescent staining in both EPC and HeLa cells. bcTANK could not induce the activity of IFN promoter in luciferase reporter assay in EPC cells; however, the IFN-activation ability of bcTANK was obviously enhanced when the cells were treated with LPS, poly (I:C) or virus. Both CPE ratio and virus titer in the media of EPC cells expressing bcTANK were obviously lower than those of the control cells, which were examined by violet crystal staining and plaque assay separately. Taken together, our data support the conclusion that bcTANK plays an important role in the antiviral innate immune activation of black carp.
Collapse
Affiliation(s)
- Chaoliang Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yinyin Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Ji Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Hui Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
19
|
Huang L, Xiong T, Yu H, Zhang Q, Zhang K, Li C, Hu L, Zhang Y, Zhang L, Liu Q, Wang S, He X, Bu Z, Cai X, Cui S, Li J, Weng C. Encephalomyocarditis virus 3C protease attenuates type I interferon production through disrupting the TANK-TBK1-IKKε-IRF3 complex. Biochem J 2017; 474:2051-2065. [PMID: 28487378 PMCID: PMC5465970 DOI: 10.1042/bcj20161037] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 05/07/2017] [Accepted: 05/09/2017] [Indexed: 01/01/2023]
Abstract
TRAF family member-associated NF-κB activator (TANK) is a scaffold protein that assembles into the interferon (IFN) regulator factor 3 (IRF3)-phosphorylating TANK-binding kinase 1 (TBK1)-(IκB) kinase ε (IKKε) complex, where it is involved in regulating phosphorylation of the IRF3 and IFN production. However, the functions of TANK in encephalomyocarditis virus (EMCV) infection-induced type I IFN production are not fully understood. Here, we demonstrated that, instead of stimulating type I IFN production, the EMCV-HB10 strain infection potently inhibited Sendai virus- and polyI:C-induced IRF3 phosphorylation and type I IFN production in HEK293T cells. Mechanistically, EMCV 3C protease (EMCV 3C) cleaved TANK and disrupted the TANK-TBK1-IKKε-IRF3 complex, which resulted in the reduction in IRF3 phosphorylation and type I IFN production. Taken together, our findings demonstrate that EMCV adopts a novel strategy to evade host innate immune responses through cleavage of TANK.
Collapse
Affiliation(s)
- Li Huang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, China
| | - Tao Xiong
- College of Life Sciences, Yangtze University, Jingzhou 434100, China
| | - Huibin Yu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, China
| | - Quan Zhang
- College of Life Sciences, Yangtze University, Jingzhou 434100, China
| | - Kunli Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, China
| | - Changyao Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, China
| | - Liang Hu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, China
| | - Yuanfeng Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, China
| | - Lijie Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, China
| | - Qinfang Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, China
| | - Shengnan Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, China
| | - Xijun He
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, China
| | - Zhigao Bu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, China
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, China
| | - Shangjin Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiangnan Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, China
| | - Changjiang Weng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, China
| |
Collapse
|
20
|
Wang W, Mani AM, Wu ZH. DNA damage-induced nuclear factor-kappa B activation and its roles in cancer progression. JOURNAL OF CANCER METASTASIS AND TREATMENT 2017; 3:45-59. [PMID: 28626800 PMCID: PMC5472228 DOI: 10.20517/2394-4722.2017.03] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA damage is a vital challenge to cell homeostasis. Cellular responses to DNA damage (DDR) play essential roles in maintaining genomic stability and survival, whose failure could lead to detrimental consequences such as cancer development and aging. Nuclear factor-kappa B (NF-κB) is a family of transcription factors that plays critical roles in cellular stress response. Along with p53, NF-κB modulates transactivation of a large number of genes which participate in various cellular processes involved in DDR. Here the authors summarize the recent progress in understanding DNA damage response and NF-κB signaling pathways. This study particularly focuses on DNA damage-induced NF-κB signaling cascade and its physiological and pathological significance in B cell development and cancer therapeutic resistance. The authors also discuss promising strategies for selectively targeting this genotoxic NF-κB signaling aiming to antagonize acquired resistance and resensitize refractory cancer cells to cytotoxic treatments.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Arul M. Mani
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Zhao-Hui Wu
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
21
|
Rudnicki M, Perco P, D Haene B, Leierer J, Heinzel A, Mühlberger I, Schweibert N, Sunzenauer J, Regele H, Kronbichler A, Mestdagh P, Vandesompele J, Mayer B, Mayer G. Renal microRNA- and RNA-profiles in progressive chronic kidney disease. Eur J Clin Invest 2016; 46:213-26. [PMID: 26707063 DOI: 10.1111/eci.12585] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 12/20/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) contribute to chronic kidney disease (CKD) progression via regulating mRNAs involved in renal homeostasis. However, their association with clinical outcome remains poorly understood. MATERIALS AND METHODS We performed miRNA and mRNA expression profiling on renal biopsy sections by qPCR (miRNA) and microarrays (mRNA) in a discovery (n = 43) and in a validation (n = 29) cohort. miRNAs differentiating stable and progressive cases were inversely correlated with putative target mRNAs, which were further characterized by pathway analysis using KEGG pathways. RESULTS miR-30d, miR-140-3p, miR-532-3p, miR-194, miR-190, miR-204 and miR-206 were downregulated in progressive cases. These seven miRNAs correlated with upregulated 29 target mRNAs involved in inflammatory response, cell-cell interaction, apoptosis and intra-cellular signalling. In particular, miR-206 and miR-532-3p were associated with distinct biological processes via the expression of their target mRNAs: Reduced expression of miR-206 in progressive disease correlated with the upregulation of target mRNAs participating in inflammatory pathways (CCL19, CXCL1, IFNAR2, NCK2, PTK2B, PTPRC, RASGRP1 and TNFRSF25). Progressive cases also showed a lower expression of miR-532-3p and an increased expression of target transcripts involved in apoptosis pathways (MAP3K14, TNFRSF10B/TRAIL-R2, TRADD and TRAF2). In the validation cohort, we confirmed the decreased expression of miR-206 and miR-532-3p, and the inverse correlation of these miRNAs with the expression of nine of the 12 target genes. The levels of the identified miRNAs and the target mRNAs correlated with clinical parameters and histological damage indices. CONCLUSIONS These results suggest the involvement of specific miRNAs and mRNAs in biological pathways associated with the progression of CKD.
Collapse
Affiliation(s)
- Michael Rudnicki
- Department of Internal Medicine IV - Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria
| | - Paul Perco
- Emergentec Biodevelopment GmbH, Vienna, Austria
| | | | - Johannes Leierer
- Department of Internal Medicine IV - Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria
| | | | | | - Ninella Schweibert
- Department of Internal Medicine IV - Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria
| | - Judith Sunzenauer
- Department of Internal Medicine IV - Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria.,Department of Nephrology, KH Elisabethinen, Linz, Austria
| | - Heinz Regele
- Institute of Pathology, Medical University Vienna, Vienna, Austria
| | - Andreas Kronbichler
- Department of Internal Medicine IV - Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria
| | | | | | - Bernd Mayer
- Emergentec Biodevelopment GmbH, Vienna, Austria
| | - Gert Mayer
- Department of Internal Medicine IV - Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
22
|
Huang L, Liu Q, Zhang L, Zhang Q, Hu L, Li C, Wang S, Li J, Zhang Y, Yu H, Wang Y, Zhong Z, Xiong T, Xia X, Wang X, Yu L, Deng G, Cai X, Cui S, Weng C. Encephalomyocarditis Virus 3C Protease Relieves TRAF Family Member-associated NF-κB Activator (TANK) Inhibitory Effect on TRAF6-mediated NF-κB Signaling through Cleavage of TANK. J Biol Chem 2015; 290:27618-32. [PMID: 26363073 PMCID: PMC4646013 DOI: 10.1074/jbc.m115.660761] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/24/2015] [Indexed: 12/24/2022] Open
Abstract
TRAF family member-associated NF-κB activator (TANK) is a negative regulator of canonical NF-κB signaling in the Toll-like receptor- and B-cell receptor-mediated signaling pathways. However, functions of TANK in viral infection-mediated NF-κB activation remain unclear. Here, we reported that TANK was cleaved by encephalomyocarditis virus 3C at the 197 and 291 glutamine residues, which depends on its cysteine protease activity. In addition, encephalomyocarditis virus 3C impaired the ability of TANK to inhibit TRAF6-mediated NF-κB signaling. Interestingly, we found that several viral proteases encoded by the foot and mouth disease virus, porcine reproductive and respiratory syndrome virus, and equine arteritis virus also cleaved TANK. Our results suggest that TANK is a novel target of some viral proteases, indicating that some positive RNA viruses have evolved to utilize their major proteases to regulate NF-κB activation.
Collapse
Affiliation(s)
- Li Huang
- From the State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001
| | - Qinfang Liu
- From the State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001
| | - Lijie Zhang
- From the State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001
| | - Quan Zhang
- From the State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, the College of Life Sciences, Yangtze University, Jingzhou 434100
| | - Liang Hu
- From the State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001
| | - Changyao Li
- From the State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001
| | - Shengnan Wang
- From the State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001
| | - Jiangnan Li
- From the State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001
| | - Yuanfeng Zhang
- From the State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001
| | - Huibin Yu
- From the State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001
| | - Yan Wang
- From the State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, the Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650093, and
| | - Zhaohua Zhong
- the Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Tao Xiong
- the College of Life Sciences, Yangtze University, Jingzhou 434100
| | - Xueshan Xia
- the Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650093, and
| | - Xiaojun Wang
- From the State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001
| | - Li Yu
- From the State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001
| | - Guohua Deng
- From the State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001
| | - Xuehui Cai
- From the State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001
| | - Shangjin Cui
- From the State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001,
| | - Changjiang Weng
- From the State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001,
| |
Collapse
|
23
|
Wang W, Huang X, Xin HB, Fu M, Xue A, Wu ZH. TRAF Family Member-associated NF-κB Activator (TANK) Inhibits Genotoxic Nuclear Factor κB Activation by Facilitating Deubiquitinase USP10-dependent Deubiquitination of TRAF6 Ligase. J Biol Chem 2015; 290:13372-85. [PMID: 25861989 DOI: 10.1074/jbc.m115.643767] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Indexed: 01/26/2023] Open
Abstract
DNA damage-induced NF-κB activation plays a critical role in regulating cellular response to genotoxic stress. However, the molecular mechanisms controlling the magnitude and duration of this genotoxic NF-κB signaling cascade are poorly understood. We recently demonstrated that genotoxic NF-κB activation is regulated by reversible ubiquitination of several essential mediators involved in this signaling pathway. Here we show that TRAF family member-associated NF-κB activator (TANK) negatively regulates NF-κB activation by DNA damage via inhibiting ubiquitination of TRAF6. Despite the lack of a deubiquitination enzyme domain, TANK has been shown to negatively regulate the ubiquitination of TRAF proteins. We found TANK formed a complex with MCPIP1 (also known as ZC3H12A) and a deubiquitinase, USP10, which was essential for the USP10-dependent deubiquitination of TRAF6 and the resolution of genotoxic NF-κB activation upon DNA damage. Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated deletion of TANK in human cells significantly enhanced NF-κB activation by genotoxic treatment, resulting in enhanced cell survival and increased inflammatory cytokine production. Furthermore, we found that the TANK-MCPIP1-USP10 complex also decreased TRAF6 ubiquitination in cells treated with IL-1β or LPS. In accordance, depletion of USP10 enhanced NF-κB activation induced by IL-1β or LPS. Collectively, our data demonstrate that TANK serves as an important negative regulator of NF-κB signaling cascades induced by genotoxic stress and IL-1R/Toll-like receptor stimulation in a manner dependent on MCPIP1/USP10-mediated TRAF6 deubiquitination.
Collapse
Affiliation(s)
- Wei Wang
- From the Department of Pathology and Laboratory Medicine and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Xuan Huang
- the Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Hong-Bo Xin
- the Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Mingui Fu
- the Department of Basic Medical Science, University of Missouri Kansas City, Kansas City, Missouri 64108, and
| | - Aimin Xue
- the Department of Forensic Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhao-Hui Wu
- From the Department of Pathology and Laboratory Medicine and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163,
| |
Collapse
|
24
|
Park ES, Choi S, Shin B, Yu J, Yu J, Hwang JM, Yun H, Chung YH, Choi JS, Choi Y, Rho J. Tumor necrosis factor (TNF) receptor-associated factor (TRAF)-interacting protein (TRIP) negatively regulates the TRAF2 ubiquitin-dependent pathway by suppressing the TRAF2-sphingosine 1-phosphate (S1P) interaction. J Biol Chem 2015; 290:9660-73. [PMID: 25716317 DOI: 10.1074/jbc.m114.609685] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Indexed: 11/06/2022] Open
Abstract
The signaling pathway downstream of TNF receptor (TNFR) is involved in the induction of a wide range of cellular processes, including cell proliferation, activation, differentiation, and apoptosis. TNFR-associated factor 2 (TRAF2) is a key adaptor molecule in TNFR signaling complexes that promotes downstream signaling cascades, such as nuclear factor-κB (NF-κB) and mitogen-activated protein kinase activation. TRAF-interacting protein (TRIP) is a known cellular binding partner of TRAF2 and inhibits TNF-induced NF-κB activation. Recent findings that TRIP plays a multifunctional role in antiviral response, cell proliferation, apoptosis, and embryonic development have increased our interest in exploring how TRIP can affect the TNFR-signaling pathway on a molecular level. In our current study, we demonstrated that TRIP is negatively involved in the TNF-induced inflammatory response through the down-regulation of proinflammatory cytokine production. Here, we demonstrated that the TRAF2-TRIP interaction inhibits Lys(63)-linked TRAF2 ubiquitination by inhibiting TRAF2 E3 ubiquitin (Ub) ligase activity. The TRAF2-TRIP interaction inhibited the binding of sphingosine 1-phosphate, which is a cofactor of TRAF2 E3 Ub ligase, to the TRAF2 RING domain. Finally, we demonstrated that TRIP functions as a negative regulator of proinflammatory cytokine production by inhibiting TNF-induced NF-κB activation. These results indicate that TRIP is an important cellular regulator of the TNF-induced inflammatory response.
Collapse
Affiliation(s)
- Eui-Soon Park
- From the Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 305-764, Korea
| | - Seunga Choi
- From the Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 305-764, Korea
| | - Bongjin Shin
- From the Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 305-764, Korea
| | - Jungeun Yu
- From the Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 305-764, Korea
| | - Jiyeon Yu
- From the Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 305-764, Korea
| | - Jung-Me Hwang
- From the Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 305-764, Korea
| | - Hyeongseok Yun
- From the Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 305-764, Korea
| | - Young-Ho Chung
- the Division of Life Science, Korea Basic Science Institute, Daejeon 305-333, Korea, and
| | - Jong-Soon Choi
- the Division of Life Science, Korea Basic Science Institute, Daejeon 305-333, Korea, and
| | - Yongwon Choi
- the Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Jaerang Rho
- From the Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 305-764, Korea,
| |
Collapse
|
25
|
Patient samples of renal cell carcinoma show reduced expression of TRAF1 compared with normal kidney and functional studies in vitro indicate TRAF1 promotes apoptosis: potential for targeted therapy. Pathology 2014; 44:453-9. [PMID: 22810054 DOI: 10.1097/pat.0b013e3283557748] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIMS The tumour necrosis factor (TNF) receptor-associated factor (TRAF) family of proteins links the TNF receptor superfamily to cell signalling cascades. TRAF1 is involved in regulation of apoptosis, proliferation, differentiation and stress responses. It has a role in development of several malignancies, but no information for renal cell carcinoma (RCC) is available. METHODS Expression profiles for TRAF1 were investigated in 121 samples of human RCC of various subtypes plus paired normal kidney prepared in tissue microarrays, in comparison with apoptosis (morphology, ApopTag) and mitosis (morphology, proliferating cell nuclear antigen/PCNA). TRAF1 function was tested in vitro in RCC ACHN cells. TRAF1 short interfering RNA (siRNA) was used to inhibit expression of TRAF1 in ACHN cells untreated or treated with cancer therapies known to induce apoptosis (20 Gy X-irradiation and/or 500 IU/mL interferon-alpha). RESULTS In patient samples, TRAF1 localised to proximal tubular epithelium in normal kidney and was significantly decreased in clear cell RCC as one group (p < 0.01) and all other RCC subclassifications grouped together (p < 0.05). There was little apoptosis identified in any RCC samples. In vitro, TRAF1 siRNA caused significant reduction in TRAF1 expression and a concurrent decrease in apoptosis and increase in proliferative activity (both p < 0.05) in the ACHN RCC cells treated with radiation and interferon-alpha. CONCLUSION TRAF1 may have a pro-apoptotic, anti-mitotic role in RCC. The low TRAF1 expression in untreated RCC patient samples compared with normal kidney, and the localisation of TRAF1 to the proximal tubular epithelium from which many RCC originate, may indicate a potential for targeted therapy in RCC.
Collapse
|
26
|
Salerno KM, Jing X, Diges CM, Davis BM, Albers KM. TRAF family member-associated NF-kappa B activator (TANK) expression increases in injured sensory neurons and is transcriptionally regulated by Sox11. Neuroscience 2013; 231:28-37. [PMID: 23201825 PMCID: PMC3558548 DOI: 10.1016/j.neuroscience.2012.11.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 11/08/2012] [Accepted: 11/12/2012] [Indexed: 12/17/2022]
Abstract
Peripheral nerve injury evokes rapid and complex changes in gene transcription and cellular signaling pathways. Understanding how these changes are functionally related is essential for developing new approaches that accelerate and improve nerve regeneration. Toward this goal we found that nerve injury induces a rapid and significant up-regulation of the transcription factor Sox11 in dorsal root ganglia (DRG) neurons. Gain and loss of function studies have shown this increase is essential for normal axon regeneration. To determine how Sox11 impacts neuronal gene expression, DRG neurons were treated with Sox11 siRNA to identify potential transcriptional targets. One gene significantly reduced by Sox11 knockdown was TRAF (tumor necrosis factor (TNF) receptor-associated factor)-associated NF-κB activator (TANK). Here we show that TANK is expressed in DRG neurons, that TANK expression is increased in response to peripheral nerve injury and that Sox11 overexpression in vitro increases TANK expression. Injury and in vitro overexpression were also found to preferentially increase TANK transcript variant 3 and a larger TANK protein isoform. To determine if Sox11 regulates TANK transcription bioinformatic analysis was used to identify potential Sox-binding motifs within 5kbp of the TANK 5' untranslated region (UTR) across several mammalian genomes. Two sites in the mouse TANK gene were examined. Luciferase expression assays coupled with site-directed mutagenesis showed each site contributes to enhanced TANK promoter activity. In addition, chromatin immunoprecipitation assays showed direct Sox11 binding in regions containing the two identified Sox motifs in the mouse TANK 5'-UTR. These studies are the first to show that TANK is expressed in DRG neurons, that TANK is increased by peripheral nerve injury and that the regulation of TANK expression is, at least in part, controlled by the injury-associated transcription factor Sox11.
Collapse
Affiliation(s)
- K M Salerno
- Pittsburgh Center for Pain Research, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | | | | | | | | |
Collapse
|
27
|
Combination chemotherapy of serine protease inhibitor nafamostat mesilate with oxaliplatin targeting NF-κB activation for pancreatic cancer. Cancer Lett 2013; 333:89-95. [PMID: 23348695 DOI: 10.1016/j.canlet.2013.01.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/11/2013] [Accepted: 01/11/2013] [Indexed: 12/14/2022]
Abstract
In this study, we assessed if nafamostat mesilate may enhance anti-tumor effects of oxaliplatin on Panc-1 cells and pancreatic cancer mouse model. In combination treatment with nafamostat mesilate and oxaliplatin, NF-κB activation was inhibited by suppressing IκBα phosphorylation, and caspase-8-mediated apoptosis was more prominent than that treated with oxaliplatin alone, both in vitro and in vivo. Nafamostat mesilate reduced proliferation rate of Panc-1 cells as compared with oxaliplatin alone in vitro and enhanced oxaliplatin-induced tumor growth inhibition in vivo. Combination chemotherapy using nafamostat mesilate and oxaliplatin induces synergistic cytotoxicity in pancreatic cancer and could be a novel strategy for treatment.
Collapse
|
28
|
Wu M, Wang Y, Deng L, Chen W, Li YP. TRAF family member-associated NF-κB activator (TANK) induced by RANKL negatively regulates osteoclasts survival and function. Int J Biol Sci 2012; 8:1398-407. [PMID: 23139637 PMCID: PMC3492797 DOI: 10.7150/ijbs.5079] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 10/18/2012] [Indexed: 12/28/2022] Open
Abstract
Osteoclasts are the principle bone-resorbing cells. Precise control of balanced osteoclast activity is indispensable for bone homeostasis. Osteoclast activation mediated by RANK-TRAF6 axis has been clearly identified. However, a negative regulation-machinery in osteoclast remains unclear. TRAF family member-associated NF-κB activator (TANK) is induced by about 10 folds during osteoclastogenesis, according to a genome-wide analysis of gene expression before and after osteoclast maturation, and confirmed by western blot and quantitative RT-PCR. Bone marrow macrophages (BMMs) transduced with lentivirus carrying tank-shRNA were induced to form osteoclast in the presence of RANKL and M-CSF. Tank expression was downregulated by 90% by Tank-shRNA, which is confirmed by western blot. Compared with wild-type (WT) cells, osteoclastogenesis of Tank-silenced BMMs was increased, according to tartrate-resistant acid phosphatase (TRAP) stain on day 5 and day 7. Number of bone resorption pits by Tank-silenced osteoclasts was increased by 176% compared with WT cells, as shown by wheat germ agglutinin (WGA) stain and scanning electronic microscope (SEM) analysis. Survival rate of Tank-silenced mature osteoclast is also increased. However, acid production of Tank-knockdown cells was not changed compared with control cells. IκBα phosphorylation is increased in tank-silenced cells, indicating that TANK may negatively regulate NF-κB activity in osteoclast. In conclusion, Tank, whose expression is increased during osteoclastogenesis, inhibits osteoclast formation, activity and survival, by regulating NF-κB activity and c-FLIP expression. Tank enrolls itself in a negative feedback loop in bone resorption. These results may provide means for therapeutic intervention in diseases of excessive bone resorption.
Collapse
Affiliation(s)
- Mengrui Wu
- 1. Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham AL 35294-2182, USA
- 2. Institute of Genetics, Life Science College, Zhejiang University, 388 Yuhang Road, Hangzhou 310058, People's Republic of China
| | - Yiping Wang
- 1. Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham AL 35294-2182, USA
- 2. Institute of Genetics, Life Science College, Zhejiang University, 388 Yuhang Road, Hangzhou 310058, People's Republic of China
| | - Lianfu Deng
- 3. Shanghai Key laboratory, Shanghai Institute of Trauma and Orthopaedics, Ruijin Hospital, School of Medicine, Shanghai Jiao-Tong University, 197 Rui Jin Er Road, Shanghai 200025, P.R.China
| | - Wei Chen
- 1. Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham AL 35294-2182, USA
| | - Yi-Ping Li
- 1. Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham AL 35294-2182, USA
- 2. Institute of Genetics, Life Science College, Zhejiang University, 388 Yuhang Road, Hangzhou 310058, People's Republic of China
| |
Collapse
|
29
|
Sakamaki K, Takagi C, Kitayama A, Kurata T, Yamamoto TS, Chiba K, Kominami K, Jung SK, Okawa K, Nozaki M, Kubota HY, Ueno N. Multiple functions of FADD in apoptosis, NF-κB-related signaling, and heart development in Xenopus embryos. Genes Cells 2012; 17:875-96. [PMID: 23025414 DOI: 10.1111/gtc.12004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 08/19/2012] [Indexed: 12/26/2022]
Abstract
FADD is an adaptor protein that transmits apoptotic signals from death receptors. Additionally, FADD has been shown to play a role in various functions including cell proliferation. However, the physiological role of FADD during embryonic development remains to be delineated. Here, we show the novel roles FADD plays in development and the molecular mechanisms of these roles in Xenopus embryos. By whole-mount in situ hybridization and RT-PCR analysis, we observed that fadd is constantly expressed in early embryos. The upregulation or downregulation of FADD proteins by embryonic manipulation resulted in induction of apoptosis or size changes in the heart during development. Expression of a truncated form of FADD, FADDdd, which lacks pro-apoptotic activity, caused growth retardation of embryos associated with dramatic expressional fluctuations of genes that are regulated by NF-κB. Moreover, we isolated a homolog of mammalian cullin-4 (Cul4), a component of the ubiquitin E3 ligase family, as a FADDdd-interacting molecule in Xenopus embryos. Thus, our study shows that FADD has multiple functions in embryos; it plays a part in the regulation of NF-κB activation and heart formation, in addition to apoptosis. Furthermore, our findings provide new insights into how Cul4-based ligase is related to FADD signaling in embryogenesis.
Collapse
Affiliation(s)
- Kazuhiro Sakamaki
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Khan B, Basit S, Touseef M, Tariq M, Khan MN, Ahmad W. A novel chondroectodermal dysplasia mapped to chromosome 2q24.1-q31.1. Eur J Med Genet 2012; 55:455-60. [DOI: 10.1016/j.ejmg.2012.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Accepted: 04/07/2012] [Indexed: 12/01/2022]
|
31
|
Maruyama K, Kawagoe T, Kondo T, Akira S, Takeuchi O. TRAF family member-associated NF-κB activator (TANK) is a negative regulator of osteoclastogenesis and bone formation. J Biol Chem 2012; 287:29114-24. [PMID: 22773835 DOI: 10.1074/jbc.m112.347799] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The differentiation of bone-resorbing osteoclasts is induced by RANKL signaling, and leads to the activation of NF-κB via TRAF6 activation. TRAF family member-associated NF-κB activator (TANK) acts as a negative regulator of Toll-like receptors (TLRs) and B-cell receptor (BCR) signaling by inhibiting TRAF6 activation. Tank(-/-) mice spontaneously develop autoimmune glomerular nephritis in an IL-6-dependent manner. Despite its importance in the TCRs and BCR-activated TRAF6 inhibition, the involvement of TANK in RANKL signaling is poorly understood. Here, we report that TANK is a negative regulator of osteoclast differentiation. The expression levels of TANK mRNA and protein were up-regulated during RANKL-induced osteoclastogenesis, and overexpression of TANK in vitro led to a decrease in osteoclast formation. The in vitro osteoclastogenesis of Tank(-/-) cells was significantly increased, accompanied by increased ubiquitination of TRAF6 and enhanced canonical NF-κB activation in response to RANKL stimulation. Tank(-/-) mice showed severe trabecular bone loss, but increased cortical bone mineral density, because of enhanced bone erosion and formation. TANK mRNA expression was induced during osteoblast differentiation and Tank(-/-) osteoblasts exhibited enhaced NF-κB activation, IL-11 expression, and bone nodule formation than wild-type control cells. Finally, wild-type mice transplanted with bone marrow cells from Tank(-/-) mice showed trabecular bone loss analogous to that in Tank(-/-) mice. These findings demonstrate that TANK is critical for osteoclastogenesis by regulating NF-κB, and is also important for proper bone remodeling.
Collapse
Affiliation(s)
- Kenta Maruyama
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (IFReC), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
32
|
He BL, Yuan JM, Yang LY, Xie JF, Weng SP, Yu XQ, He JG. The viral TRAF protein (ORF111L) from infectious spleen and kidney necrosis virus interacts with TRADD and induces caspase 8-mediated apoptosis. PLoS One 2012; 7:e37001. [PMID: 22615868 PMCID: PMC3352826 DOI: 10.1371/journal.pone.0037001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 04/11/2012] [Indexed: 12/28/2022] Open
Abstract
Infectious spleen and kidney necrosis virus (ISKNV) is the type species of the Megalocytivirus genus of the Iridoviridae family. It causes a serious and potentially pandemic disease in wild and cultured fishes. ISKNV infection induces evident apoptosis in mandarin fish (Siniperca chuatsi) and zebrafish (Danio renio). However, the mechanism is still unknown. After a genome-wide bioinformatics analysis of ISKNV-encoded proteins, the ISKNV open reading frame 111L (ORF111L) shows a high similarity to the tumour necrosis factor receptor-associated factor (TRAF) encoded by fish, mice and mammals, which is essential for apoptotic signal transduction. Moreover, ORF111L was verified to directly interact with the zebrafish TNF receptor type 1 associated death domain protein (TRADD). A recombinant plasmid containing the DNA sequence of ORF111L was constructed and microinjected into zebrafish embryos at the 1–2 cell stage to investigate its biological function in vivo. ORF111L overexpression in the embryos resulted in increased apoptosis. ORF111L-induced apoptosis was clearly associated with significant caspase 8 upregulation and activation. The knockdown of zebrafish caspase 8 expression effectively blocked the apoptosis induced by ORF111L overexpression. Significantly, ORF111L overexpression resulted in much stronger effect on caspase 8 and caspase 3 upregulation compared to zebrafish TRAF2. This is the first report of a viral protein similar to TRAF that interacts with TRADD and induces caspase 8-mediated apoptosis, which may provide novel insights into the pathogenesis of ISKNV infection.
Collapse
Affiliation(s)
- Bai-Liang He
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ji-Min Yuan
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Lu-Yun Yang
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jun-Feng Xie
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Shao-Ping Weng
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiao-Qiang Yu
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Jian-Guo He
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
- * E-mail:
| |
Collapse
|
33
|
Song QL, He XX, Yang H, Li J, Chen M, Wang MY, Liu Q, Yu JL, Yao JJ, Liu LF, Sun SZ, Lin JS. Association of a TANK gene polymorphism with outcomes of hepatitis B virus infection in a Chinese Han population. Viral Immunol 2012; 25:73-8. [PMID: 22225470 DOI: 10.1089/vim.2011.0053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The host genetic compound plays a vital role in determining clinical outcomes of hepatitis B virus (HBV) infection. The tumor necrosis factor receptor-associated factor family member-associated nuclear factor-κB (NF-κB) activator (TANK) takes part in the tumor necrosis factor-α (TNF-α)-mediated NF-κB signaling pathway and the interferon (IFN)-induction pathways that have relevance to HBV-related liver disease. In this report, we explored whether the intronic polymorphism rs3820998 of the TANK gene was associated with outcomes of HBV infection by binary logistic regression analysis. A total of 1305 unrelated Han Chinese patients recruited from Wuhan, including 180 acute-on-chronic hepatitis B liver failure (ACLF-HBV) patients, 331 HBV-related liver cirrhosis (LC) patients, 308 HBV-related hepatocellular carcinoma (HCC) patients, and 486 asymptomatic HBV carriers (AsC) were genotyped using the TaqMan probe method. Logistic analysis revealed that the single-nucleotide polymorphism (SNP) rs3820998 was significantly associated with susceptibility to ACLF-HBV (dominant model, OR 0.643, 95% CI 0.428,0.964, p=0.033; additive model, OR 0.640, 95% CI 0.414,0.990, p=0.045), and LC (recessive model, OR 0.398, 95% CI 0.164,0.966, p=0.042; additive model, OR 0.379, 95% CI 0.155,0.928, p=0.034). These results indicate that the G > T variant is a protective factor in the development of ACLF-HBV and LC, and that the SNP rs3820998 in the TANK gene may play a role in mediating susceptibility to ACLF-HBV and LC in a Chinese Han population.
Collapse
Affiliation(s)
- Qi-Long Song
- Institute of Liver Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
The TRAF-associated protein TANK facilitates cross-talk within the IkappaB kinase family during Toll-like receptor signaling. Proc Natl Acad Sci U S A 2011; 108:17093-8. [PMID: 21949249 DOI: 10.1073/pnas.1114194108] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Toll-like receptor (TLR) ligands that signal via TIR-domain-containing adapter-inducing IFNβ (TRIF) activate the IκB kinase (IKK)-related kinases, TRAF associated NFκB activator (TANK)-binding kinase-1 (TBK1) and IKKε, which then phosphorylate IRF3 and induce the production of IFNβ. Here we show that TBK1 and IKKε are also activated by TLR ligands that signal via MyD88. Notably, the activation of IKKε is rapid, transient, and it precedes a more prolonged activation of TBK1. The MyD88- and TRIF-dependent signaling pathways activate the IKK-related kinases by two signaling pathways. One is mediated by the canonical IKKs, whereas the other culminates in the autoactivation of the IKK-related kinases. Once activated, TBK1/IKKε then phosphorylate and inhibit the canonical IKKs. The negative regulation of the canonical IKKs by the IKK-related kinases occurs in both the TRIF- and MyD88-dependent TLR pathways, whereas IRF3 phosphorylation is restricted to the TRIF-dependent signaling pathway. We have discovered that the activation of IKKε is abolished, the activation of TBK1 is reduced, and the interaction between the IKK-related kinases and the canonical IKKs is suppressed in TANK(-/-) macrophages, preventing the IKK-related kinases from negatively regulating the canonical IKKs. In contrast, IRF3 phosphorylation and IFNβ production was normal in TANK(-/-) macrophages. Our results demonstrate a key role for TANK in enabling the canonical IKKs and the IKK-related kinases to regulate each other, which is required to limit the strength of TLR signaling and ultimately, prevent autoimmunity.
Collapse
|
35
|
Abstract
NF-κB transcription factors are critical regulators of immunity, stress responses, apoptosis and differentiation. A variety of stimuli coalesce on NF-κB activation, which can in turn mediate varied transcriptional programs. Consequently, NF-κB-dependent transcription is not only tightly controlled by positive and negative regulatory mechanisms but also closely coordinated with other signaling pathways. This intricate crosstalk is crucial to shaping the diverse biological functions of NF-κB into cell type- and context-specific responses.
Collapse
|
36
|
Shi HX, Liu X, Wang Q, Tang PP, Liu XY, Shan YF, Wang C. Mitochondrial ubiquitin ligase MARCH5 promotes TLR7 signaling by attenuating TANK action. PLoS Pathog 2011; 7:e1002057. [PMID: 21625535 PMCID: PMC3098239 DOI: 10.1371/journal.ppat.1002057] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 03/21/2011] [Indexed: 11/29/2022] Open
Abstract
The signaling of Toll-like receptors (TLRs) is the host's first line of defense against microbial invasion. The mitochondrion is emerging as a critical platform for antiviral signal transduction. The regulatory role of mitochondria for TLR signaling remains to be explored. Here, we show that the mitochondrial outer-membrane protein MARCH5 positively regulates TLR7 signaling. Ectopic expression or knockdown of MARCH5 enhances or impairs NF-κB-mediated gene expression, respectively. MARCH5 interacts specifically with TANK, and this interaction is enhanced by R837 stimulation. MARCH5 catalyzes the K63-linked poly-ubiquitination of TANK on its Lysines 229, 233, 280, 302 and 306, thus impairing the ability of TANK to inhibit TRAF6. Mislocalization of MARCH5 abolishes its action on TANK, revealing the critical role of mitochondria in modulating innate immunity. Arguably, this represents the first study linking mitochondria to TLR signaling. In 2005, MAVS was characterized as the critical adaptor protein for the signal transduction of RIG-I-like receptors (RLRs). This provided the first link between mitochondria and the intracellular antiviral defense system. From then on, exploring the potential functions of novel mitochondrial proteins in microbe-host interactions became a rapidly expanding frontier. Notably, it remains unknown whether mitochondrial proteins can directly regulate TLR signaling. Here, we demonstrate that the mitochondrial protein MARCH5 positively modulates TLR7 signaling. Our study reveals that MARCH5 is a novel E3 ubiquitin ligase and catalyzes the K63-linked poly-ubiquitination of TANK. This modification releases the inhibitory effects of TANK on TRAF6. Arguably, this represents the first study linking mitochondria to TLR signaling, shedding new light on the role of mitochondria in the proinflammatory response.
Collapse
Affiliation(s)
- He-Xin Shi
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xing Liu
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiang Wang
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pei-Pei Tang
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xin-Yi Liu
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Fei Shan
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chen Wang
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
37
|
Inducible SUMO modification of TANK alleviates its repression of TLR7 signalling. EMBO Rep 2011; 12:129-35. [PMID: 21212807 DOI: 10.1038/embor.2010.207] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 11/09/2010] [Accepted: 11/25/2010] [Indexed: 11/09/2022] Open
Abstract
Adaptor proteins allow temporal and spatial coordination of signalling. In this study, we show SUMOylation of the adaptor protein TANK and its interacting kinase TANK-binding kinase 1 (TBK1). Modification of TANK by the small ubiquitin-related modifier (SUMO) at the evolutionarily conserved Lys 282 is triggered by the kinase activities of IκB kinase ɛ (IKKɛ) and TBK1. Stimulation of TLR7 leads to inducible SUMOylation of TANK, which in turn weakens the interaction with IKKɛ and thus relieves the negative function of TANK on signal propagation. Reconstitution experiments show that an absence of TANK SUMOylation impairs inducible expression of distinct TLR7-dependent target genes, providing a molecular mechanism that allows the control of TANK function.
Collapse
|
38
|
Abstract
The IκB Kinase (IKK)-related kinases TBK1 and IKKɛ have essential roles as regulators of innate immunity by modulating interferon and NF-κB signaling. Recent work has also implicated these non-canonical IKKs in malignant transformation. IKKɛ is amplified in ∼30% of breast cancers and transforms cells through the activation of NF-κB. TBK1 participates in RalB-mediated inflammatory responses and cell survival, and is essential for the survival of non-small cell lung cancers driven by oncogenic KRAS. The delineation of target substrates and downstream activities for TBK1 and IKKɛ has begun to define their role(s) in promoting tumorigenesis. In this review, we will highlight the mechanisms by which IKKɛ and TBK1 orchestrate pathways involved in inflammation and cancer.
Collapse
|
39
|
Biomarkers for the Diagnosis of the Stable Kidney Transplant and Chronic Transplant Injury Using the ProtoArray® Technology. Transplant Proc 2010; 42:3475-81. [DOI: 10.1016/j.transproceed.2010.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 09/07/2010] [Indexed: 12/20/2022]
|
40
|
Zhang W, Wang J, Zhang Y, Yuan Y, Guan W, Jin C, Chen H, Wang X, Yang X, He F. The scaffold protein TANK/I-TRAF inhibits NF-kappaB activation by recruiting polo-like kinase 1. Mol Biol Cell 2010; 21:2500-13. [PMID: 20484576 PMCID: PMC2903677 DOI: 10.1091/mbc.e09-08-0715] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 04/12/2010] [Accepted: 05/10/2010] [Indexed: 01/26/2023] Open
Abstract
TANK/I-TRAF is a TRAF-binding protein that negatively regulates NF-kappaB activation. The underlying mechanism of this activity remains unclear. Here we show that TANK directly interacts with PLK1, a conserved cell cycle-regulated kinase. PLK1 inhibits NF-kappaB transcriptional activation induced by TNF-alpha, IL-1beta, or several activators, but not by nuclear transcription factor p65. PLK1 expression reduces the DNA-binding activity of NF-kappaB induced by TNF-alpha. Moreover, endogenous activation of PLK1 reduces the TNF-induced phosphorylation of endogenous IkappaBalpha. PLK1 is bound to NEMO (IKKgamma) through TANK to form a ternary complex in vivo. We describe a new regulatory mechanism for PLK1: PLK1 negatively regulates TNF-induced IKK activation by inhibiting the ubiquitination of NEMO. These findings reveal that the scaffold protein TANK recruits PLK1 to negatively regulate NF-kappaB activation and provide direct evidence that PLK1 is required for the repression function of TANK.
Collapse
Affiliation(s)
- Wanqiao Zhang
- *State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China; and
| | - Jian Wang
- *State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China; and
| | - Ying Zhang
- *State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China; and
| | - Yanzhi Yuan
- *State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China; and
| | - Wei Guan
- *State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China; and
| | - Chaozhi Jin
- *State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China; and
| | - Hui Chen
- *State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China; and
| | - Xiaohui Wang
- *State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China; and
| | - Xiaoming Yang
- *State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China; and
| | - Fuchu He
- *State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China; and
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
41
|
Yin H, Gao L, Shen B, Chao L, Chao J. Kallistatin inhibits vascular inflammation by antagonizing tumor necrosis factor-alpha-induced nuclear factor kappaB activation. Hypertension 2010; 56:260-7. [PMID: 20566960 DOI: 10.1161/hypertensionaha.110.152330] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Kallistatin is a plasma protein with anti-inflammatory properties. In this study, we investigated the role and mechanisms of kallistatin in inhibiting endothelial inflammation through its heparin-binding domain. We showed that recombinant wild-type kallistatin dose-dependently competed with tumor necrosis factor (TNF)-alpha binding to TNF-alpha receptor in endothelial cells, whereas kallistatin mutant at the heparin-binding domain had no effect. Kallistatin, but not kallistatin mutant at the heparin-binding domain, abrogated TNF-alpha-induced endothelial cell activation, as evidenced by inhibition of TNF receptor 1-associated death domain protein activation, inhibitor of nuclear factor kappaB-alpha degradation, nuclear factor kappaB translocation, and p38 mitogen-activated protein kinase phosphorylation, as well as cell adhesion molecule and cytokine expression. Moreover, kallistatin, but not kallistatin mutant at the heparin-binding domain, inhibited TNF-alpha-induced human monocytic THP-1 cell adhesion to endothelial cells and prevented vascular endothelial growth factor-induced endothelial permeability. In mice, kallistatin gene delivery prevented vascular leakage provoked by complement factor C5a, whereas delivery of kallistatin heparin mutant gene had no effect. Similarly, gene transfer of kallistatin, but not the kallistatin heparin mutant, inhibited collagen/adjuvant-induced arthritis in rats. These results indicate that kallistatin's heparin-binding site plays an essential role in preventing TNF-alpha-mediated endothelial activation and reducing vascular endothelial growth factor-induced vascular permeability, resulting in attenuation of vascular inflammation in cultured endothelial cells and animal models. This study identifies a protective role of kallistatin in vascular injury, thereby implicating the therapeutic potential of kallistatin for vascular and inflammatory diseases.
Collapse
Affiliation(s)
- Hang Yin
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | | | | | | | | |
Collapse
|
42
|
Kanno Y, Sakurai D, Hase H, Kojima H, Kobata T. TACI induces cIAP1-mediated ubiquitination of NIK by TRAF2 and TANK to limit non-canonical NF-kappaB signaling. J Recept Signal Transduct Res 2010; 30:121-32. [PMID: 20184394 DOI: 10.3109/10799891003634509] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
B-cell-activating factor of the TNF family (BAFF) is a critical factor for B-cell survival and maturation through non-canonical nuclear factor kappaB (NF-kappaB) pathway, a NF-kappaB inducing kinase (NIK)-dependent pathway for the processing of NF-kappaB2 p100 to generate p52. While BAFF acts primarily through BAFF receptor (BAFF-R), the transmembrane activator and CAML interactor (TACI), the other receptor for BAFF, is thought to serve as a negative regulator for B-cell responses. However, how TACI regulates NF-kappaB2 activity is largely unknown. In this study, we showed that constitutive activation of TACI signaling suppressed BAFF-R-mediated NF-kappaB2 p100 processing with the up-regulation of cellular inhibitors of apoptosis 1 (cIAP1) and TNF receptor associated factor (TRAF)-associated NF-kappaB activator (TANK). The ubiquitination of NIK by cIAP1 was inhibited by the expression of TRAF2 with physical binding to cIAP1. TANK deficiency by small interfering RNA (siRNA) impaired TACI-dependent inhibition of NF-kappaB2 p100 processing. TANK also inhibited TRAF2-mediated cIAP1 inactivation. Moreover, the recruitment of TRAF2 to TACI induced the ubiquitination of NIK. Taken together, the regulation of NIK by TACI through the interaction of TANK/TRAF2/cIAP1 plays a pivotal role in the suppression of non-canonical NF-kappaB signaling.
Collapse
Affiliation(s)
- Yumiko Kanno
- Department of Immunology, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | | | | | | | | |
Collapse
|
43
|
Ward SJ, Karakoula K, Phipps KP, Harkness W, Hayward R, Thompson D, Jacques TS, Harding B, Darling JL, Thomas DGT, Warr TJ. Cytogenetic analysis of paediatric astrocytoma using comparative genomic hybridisation and fluorescence in-situ hybridisation. J Neurooncol 2010; 98:305-18. [DOI: 10.1007/s11060-009-0081-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Accepted: 11/30/2009] [Indexed: 11/29/2022]
|
44
|
Abstract
The stimulation of TLR4 by LPS activates two distinct signaling pathways leading to the expression of diverse inflammatory genes. Intensive studies over the past decade have revealed the components involved in these signaling pathways, however, more recently the focus has shifted somewhat towards the components that regulate these pathways. Several regulatory mechanisms, including localisation of components, splice variants and inhibitory molecules will be discussed in this review.
Collapse
Affiliation(s)
- Anne F McGettrick
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland.
| | | |
Collapse
|
45
|
Ha H, Han D, Choi Y. TRAF-mediated TNFR-family signaling. CURRENT PROTOCOLS IN IMMUNOLOGY 2009; Chapter 11:11.9D.1-11.9D.19. [PMID: 19918944 DOI: 10.1002/0471142735.im1109ds87] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The tumor necrosis factor (TNF) superfamily consists of a wide variety of cell-bound and secreted proteins that regulate numerous cellular processes. In particular, TNF-family proteins regulate the proliferation and death of tumor cells, as well as activated immune cells. This overview discusses the mammalian TNF receptor-associated factors (TRAFs), of which TRAF1, 2, 3, 5, and 6 have been shown to interact directly or indirectly with members of the TNF receptor superfamily. Structural features of TRAF proteins are described along with a discussion of TRAF-interacting proteins and the signaling pathways activated by the TRAF proteins. Finally, we examine the phenotypes observed in TRAF-knockout mice.
Collapse
Affiliation(s)
- Hyunil Ha
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Daehee Han
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Yongwon Choi
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
46
|
Papadimitriou D, Le Verche V, Jacquier A, Ikiz B, Przedborski S, Re DB. Inflammation in ALS and SMA: sorting out the good from the evil. Neurobiol Dis 2009; 37:493-502. [PMID: 19833209 DOI: 10.1016/j.nbd.2009.10.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 09/28/2009] [Accepted: 10/02/2009] [Indexed: 01/02/2023] Open
Abstract
Indices of neuroinflammation are found in a variety of diseases of the CNS including amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). Over the years, neuroinflammation, in degenerative disorders of the CNS, has evolved from being regarded as an innocent bystander accomplishing its housekeeping function secondary to neurodegeneration to being considered as a bona fide contributor to the disease process and, in some situations, as a putative initiator of the disease. Herein, we will review neuroinflammation in both ALS and SMA not only from the angle of neuropathology but also from the angle of its potential role in the pathogenesis and treatment of these two dreadful paralytic disorders.
Collapse
|
47
|
Central role of TRAF-interacting protein in a new model of brain sexual differentiation. Proc Natl Acad Sci U S A 2009; 106:16692-7. [PMID: 19805359 DOI: 10.1073/pnas.0906293106] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sexually dimorphic brain nuclei underlie gender-specific neural functions and susceptibility to disease, but the developmental basis of dimorphisms is poorly understood. In these studies, we focused on the anteroventral periventricular nucleus (AVPV), a nucleus that is larger in females and critical for the female-typical cyclic surge pattern of luteinizing hormone (LH) release. Sex differences in the size and function of the AVPV result from apoptosis that occurs preferentially in the developing male. To identify upstream pathways responsible for sexual differentiation of the AVPV, we used targeted apoptosis microarrays and in vivo and in vitro follow-up studies. We found that the tumor necrosis factor alpha (TNFalpha)-TNF receptor 2 (TNFR2)-NFkappaB cell survival pathway is active in postnatal day 2 (PND2) female AVPV and repressed in male counterparts. Genes encoding key members of this pathway were expressed exclusively in GABAergic neurons. One gene in particular, TNF receptor-associated factor 2 (TRAF2)-inhibiting protein (trip), was higher in males and it inhibited both TNFalpha-dependent NFkappaB activation and bcl-2 gene expression. The male AVPV also had higher levels of bax and bad mRNA, but neither of these genes was regulated by either TNFalpha or TRIP. Finally, the trip gene was not expressed in the sexually dimorphic nucleus of the preoptic area (SDN-POA), a nucleus in which apoptosis is higher in females than males. These findings form the basis of a new model of sexual differentiation of the AVPV that may also apply to the development of other sexually dimorphic nuclei.
Collapse
|
48
|
Kawagoe T, Takeuchi O, Takabatake Y, Kato H, Isaka Y, Tsujimura T, Akira S. TANK is a negative regulator of Toll-like receptor signaling and is critical for the prevention of autoimmune nephritis. Nat Immunol 2009; 10:965-72. [PMID: 19668221 PMCID: PMC2910115 DOI: 10.1038/ni.1771] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 06/16/2009] [Indexed: 11/27/2022]
Abstract
The intensity and duration of immune responses are controlled by multiple proteins that modulate Toll-like receptor (TLR) signaling. TRAF family member-associated NF-κB activator (TANK) has been implicated in positive regulation of interferon-regulatory factor-3 as well as NF-κB. Here we demonstrate that TANK is not involved in interferon responses, and is a negative regulator of proinflammatory cytokine production induced by TLR signaling. TLR-induced polyubiquitination of TRAF6 was upregulated in Tank−/−macrophages. Notably, Tank−/− mice spontaneously developed fatal glomerulonephritis owing to deposition of immune complexes. Autoantibody production in Tank−/− mice was rescued by antibiotic treatment or the absence of interleukin (IL)-6 or MyD88. These results demonstrate that constitutive TLR signaling by intestinal commensal microflora is suppressed by TANK.
Collapse
Affiliation(s)
- Tatsukata Kawagoe
- Laboratory of Host Defense, World Premier International Immunology Frontier Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
de Vries DR, Ter Linde JJM, van Herwaarden MA, Schwartz MP, Shephard P, Geng MM, Smout AJPM, Samsom M. In GERD patients, mucosal repair associated genes are upregulated in non-inflamed oesophageal epithelium. J Cell Mol Med 2009; 13:936-47. [PMID: 19413890 PMCID: PMC3823409 DOI: 10.1111/j.1582-4934.2008.00626.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 12/09/2008] [Indexed: 12/13/2022] Open
Abstract
Previous studies addressing the effects of acid reflux and PPI therapy on gene expression in oesophageal epithelium concentrated on inflamed tissue. We aimed to determine changes in gene expression in non-inflamed oesophageal epithelium of GERD patients. Therefore, we included 20 GERD patients with pathological total 24-hr acid exposure of 6-12% and SAP > or = 95%. Ten patients discontinued PPI treatment (PPI-), 10 took pantoprazole 40 mg bid (PPI+). Ten age/sex-matched healthy controls were recruited. Biopsies were taken from non-inflamed mucosa 6 cm and 16 cm proximal to the squamocolumnar junction (SCJ). Gene expression profiling of biopsies from 6 cm was performed on Human Genome U133 Plus 2.0 arrays (Affymetrix). Genes exhibiting a fold change >1.4 (t-test P-value < 1(E)- 4) were considered differentially expressed. Results were confirmed by real-time RT-PCR. In PPI- patients, 92 microarray probesets were deregulated. The majority of the corresponding genes were associated with cell-cell contacts, cytoskeletal reorganization and cellular motility, suggesting facilitation of a migratory phenotype. Genes encoding proteins with anti-apoptotic or anti-proliferative functions or stress-protective functions were also deregulated. No probesets were deregulated in PPI+ patients. QPCR analysis of 20 selected genes confirmed most of the deregulations in PPI- patients, and showed several deregulated genes in PPI+ patients as well. In the biopsies taken at 16 cm QPCR revealed no deregulations of the selected genes. We conclude that upon acid exposure, oesophageal epithelial cells activate a process globally known as epithelial restitution: up-regulation of anti-apoptotic, anti-oxidant and migration associated genes. Possibly this process helps maintaining barrier function.
Collapse
Affiliation(s)
- D R de Vries
- Department of Gastroenterology and Hepatology, University Medical Center, Utrecht, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Clément JF, Meloche S, Servant MJ. The IKK-related kinases: from innate immunity to oncogenesis. Cell Res 2009; 18:889-99. [PMID: 19160540 DOI: 10.1038/cr.2008.273] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Over the past four years, the field of the innate immune response has been highly influenced by the discovery of the IkappaB kinase (IKK)-related kinases, TANK Binding Kinase 1 (TBK1) and IKKi, which regulate the activity of interferon regulatory factor (IRF)-3/IRF-7 and NF-kappaB transcription factors. More recently, additional essential components of the signaling pathways that activate these IKK homologues have been discovered. These include the RNA helicases RIGi and MDA5, and the downstream mitochondrial effector known as CARDIF/MAVS/VISA/IPS-1. In addition to their essential functions in controlling the innate immune response, recent studies have highlighted a role of these kinases in cell proliferation and oncogenesis. The canonical IKKs are well recognized to be a bridge linking chronic inflammation to cancer. New findings now suggest that the IKK-related kinases TBK1 and IKKi also participate in signaling pathways that impact on cell transformation and tumor progression. This review will therefore summarize and discuss the role of TBK1 and IKKi in cellular transformation and oncogenesis by focusing on their regulation and substrate specificity.
Collapse
Affiliation(s)
- Jean-François Clément
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7
| | | | | |
Collapse
|