1
|
Cerbin S, Ou S, Li Y, Sun Y, Jiang N. Distinct composition and amplification dynamics of transposable elements in sacred lotus (Nelumbo nucifera Gaertn.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:172-192. [PMID: 35959634 PMCID: PMC9804982 DOI: 10.1111/tpj.15938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/19/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Sacred lotus (Nelumbo nucifera Gaertn.) is a basal eudicot plant with a unique lifestyle, physiological features, and evolutionary characteristics. Here we report the unique profile of transposable elements (TEs) in the genome, using a manually curated repeat library. TEs account for 59% of the genome, and hAT (Ac/Ds) elements alone represent 8%, more than in any other known plant genome. About 18% of the lotus genome is comprised of Copia LTR retrotransposons, and over 25% of them are associated with non-canonical termini (non-TGCA). Such high abundance of non-canonical LTR retrotransposons has not been reported for any other organism. TEs are very abundant in genic regions, with retrotransposons enriched in introns and DNA transposons primarily in flanking regions of genes. The recent insertion of TEs in introns has led to significant intron size expansion, with a total of 200 Mb in the 28 455 genes. This is accompanied by declining TE activity in intergenic regions, suggesting distinct control efficacy of TE amplification in different genomic compartments. Despite the prevalence of TEs in genic regions, some genes are associated with fewer TEs, such as those involved in fruit ripening and stress responses. Other genes are enriched with TEs, and genes in epigenetic pathways are the most associated with TEs in introns, indicating a dynamic interaction between TEs and the host surveillance machinery. The dramatic differential abundance of TEs with genes involved in different biological processes as well as the variation of target preference of different TEs suggests the composition and activity of TEs influence the path of evolution.
Collapse
Affiliation(s)
- Stefan Cerbin
- Department of HorticultureMichigan State University1066 Bogue StreetEast LansingMI48824USA
- Present address:
Department of Ecology & Evolutionary BiologyUniversity of Kansas1200 Sunnyside AvenueLawrenceKS66045USA
| | - Shujun Ou
- Department of HorticultureMichigan State University1066 Bogue StreetEast LansingMI48824USA
- Present address:
Department of Computer ScienceJohns Hopkins UniversityBaltimoreMD21218USA
| | - Yang Li
- Department of Electrical EngineeringCity University of Hong KongKowloonHong Kong SARChina
| | - Yanni Sun
- Department of Electrical EngineeringCity University of Hong KongKowloonHong Kong SARChina
| | - Ning Jiang
- Department of HorticultureMichigan State University1066 Bogue StreetEast LansingMI48824USA
| |
Collapse
|
2
|
Tang Y, Li X, Hu C, Qiu X, Li J, Li X, Zhu H, Wang J, Sui J, Qiao L. Identification and characterization of transposable element AhMITE1 in the genomes of cultivated and two wild peanuts. BMC Genomics 2022; 23:500. [PMID: 35820800 PMCID: PMC9277781 DOI: 10.1186/s12864-022-08732-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/30/2022] [Indexed: 12/04/2022] Open
Abstract
Background The cultivated peanut (Arachis hypogaea L., AABB) is an allotetraploid hybrid between two diploid peanuts, A. duranensis (AA genome) and A. ipaensis (BB genome). Miniature inverted-repeat transposable elements (MITEs), some of which are known as active nonautonomous DNA transposons with high copy numbers, play important roles in genome evolution and diversification. AhMITE1, a member of the MITE family of transposons, but information on the peanut genomes is still limited. Here, we analyzed AhMITE1, AuMITE1 and ApMITE1 in the cultivated (A. hypogaea) and two wild peanut (A. duranensis and A. ipaensis) genomes. Results The cultivated and the two wild peanut genomes harbored 142, 14 and 21 AhMITE1, AuMITE1 and ApMITE1 family members, respectively. These three family members exhibited highly conserved TIR sequences, and insertions preferentially occurred within 2 kb upstream and downstream of gene-coding and AT-rich regions. Phylogenetic and pairwise nucleotide diversity analysis showed that AhMITE1 and ApMITE1 family members have undergone one round of amplification bursts during the evolution of the peanut genome. PCR analyses were performed in 23 peanut varieties and demonstrated that AhMITE1 is an active transposon and that hybridization or chemical mutagenesis can promote the mobilization of AhMITE1. Conclusions AhMITE1, AuMITE1 and ApMITE1 family members were identified based on local BLAST search with MAK between the cultivated and the two wild peanut genomes. The phylogenetic, nucleotide diversity and variation copy numbers of AhMITE1, AuMITE1 and ApMITE1 members provides opportunities for investigating their roles during peanut evolution. These findings will contribute to knowledge on diversity of AhMITE1, provide information about the potential impact on the gene expression and promote the development of DNA markers in peanut. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08732-0.
Collapse
Affiliation(s)
- Yanyan Tang
- College of Agronomy, Dry-Land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoting Li
- College of Agronomy, Dry-Land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao Agricultural University, Qingdao, 266109, China
| | - Changli Hu
- College of Agronomy, Dry-Land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaochen Qiu
- College of Agronomy, Dry-Land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jingjing Li
- College of Agronomy, Dry-Land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xin Li
- College of Agronomy, Dry-Land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hong Zhu
- College of Agronomy, Dry-Land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jingshan Wang
- College of Agronomy, Dry-Land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jiongming Sui
- College of Agronomy, Dry-Land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Lixian Qiao
- College of Agronomy, Dry-Land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
3
|
Liu F, Chern M, Jain R, Martin JA, Schakwitz WS, Ronald PC. Silencing of Dicer-like protein 2a restores the resistance phenotype in the rice mutant, sxi4 (suppressor of Xa21-mediated immunity 4). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:646-657. [PMID: 35106860 DOI: 10.1111/tpj.15692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The rice immune receptor XA21 confers resistance to Xanthomonas oryzae pv. oryzae (Xoo), and upon recognition of the RaxX21-sY peptide produced by Xoo, XA21 activates the plant immune response. Here we screened 21 000 mutant plants expressing XA21 to identify components involved in this response, and reported here the identification of a rice mutant, sxi4, which is susceptible to Xoo. The sxi4 mutant carries a 32-kb translocation from chromosome 3 onto chromosome 7 and displays an elevated level of DCL2a transcript, encoding a Dicer-like protein. Silencing of DCL2a in the sxi4 genetic background restores resistance to Xoo. RaxX21-sY peptide-treated leaves of sxi4 retain the hallmarks of XA21-mediated immune response. However, WRKY45-1, a known negative regulator of rice resistance to Xoo, is induced in the sxi4 mutant in response to RaxX21-sY peptide treatment. A CRISPR knockout of a short interfering RNA (TE-siRNA815) in the intron of WRKY45-1 restores the resistance phenotype in sxi4. These results suggest a model where DCL2a accumulation negatively regulates XA21-mediated immunity by altering the processing of TE-siRNA815.
Collapse
Affiliation(s)
- Furong Liu
- Department of Plant Pathology and Genome Center, University of California, Davis, CA, 95616, USA
| | - Mawsheng Chern
- Department of Plant Pathology and Genome Center, University of California, Davis, CA, 95616, USA
| | - Rashmi Jain
- Department of Plant Pathology and Genome Center, University of California, Davis, CA, 95616, USA
| | - Joel A Martin
- Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Wendy S Schakwitz
- Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Pamela C Ronald
- Department of Plant Pathology and Genome Center, University of California, Davis, CA, 95616, USA
- Feedstocks Division, The Joint Bioenergy Institute, Emeryville, CA, 94608, USA
| |
Collapse
|
4
|
Storer JM, Hubley R, Rosen J, Smit AFA. Methodologies for the De novo Discovery of Transposable Element Families. Genes (Basel) 2022; 13:709. [PMID: 35456515 PMCID: PMC9025800 DOI: 10.3390/genes13040709] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/07/2023] Open
Abstract
The discovery and characterization of transposable element (TE) families are crucial tasks in the process of genome annotation. Careful curation of TE libraries for each organism is necessary as each has been exposed to a unique and often complex set of TE families. De novo methods have been developed; however, a fully automated and accurate approach to the development of complete libraries remains elusive. In this review, we cover established methods and recent developments in de novo TE analysis. We also present various methodologies used to assess these tools and discuss opportunities for further advancement of the field.
Collapse
Affiliation(s)
| | | | | | - Arian F. A. Smit
- Institute for Systems Biology, Seattle, WA 98109, USA; (J.M.S.); (R.H.); (J.R.)
| |
Collapse
|
5
|
Zhao Y, Wu L, Fu Q, Wang D, Li J, Yao B, Yu S, Jiang L, Qian J, Zhou X, Han L, Zhao S, Ma C, Zhang Y, Luo C, Dong Q, Li S, Zhang L, Jiang X, Li Y, Luo H, Li K, Yang J, Luo Q, Li L, Peng S, Huang H, Zuo Z, Liu C, Wang L, Li C, He X, Friml J, Du Y. INDITTO2 transposon conveys auxin-mediated DRO1 transcription for rice drought avoidance. PLANT, CELL & ENVIRONMENT 2021; 44:1846-1857. [PMID: 33576018 DOI: 10.1111/pce.14029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Transposable elements exist widely throughout plant genomes and play important roles in plant evolution. Auxin is an important regulator that is traditionally associated with root development and drought stress adaptation. The DEEPER ROOTING 1 (DRO1) gene is a key component of rice drought avoidance. Here, we identified a transposon that acts as an autonomous auxin-responsive promoter and its presence at specific genome positions conveys physiological adaptations related to drought avoidance. Rice varieties with a high and auxin-mediated transcription of DRO1 in the root tip show deeper and longer root phenotypes and are thus better adapted to drought. The INDITTO2 transposon contains an auxin response element and displays auxin-responsive promoter activity; it is thus able to convey auxin regulation of transcription to genes in its proximity. In the rice Acuce, which displays DRO1-mediated drought adaptation, the INDITTO2 transposon was found to be inserted at the promoter region of the DRO1 locus. Transgenesis-based insertion of the INDITTO2 transposon into the DRO1 promoter of the non-adapted rice variety Nipponbare was sufficient to promote its drought avoidance. Our data identify an example of how transposons can act as promoters and convey hormonal regulation to nearby loci, improving plant fitness in response to different abiotic stresses.
Collapse
Affiliation(s)
- Yiting Zhao
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
- Shanxi Agricultural University/Shanxi Academy of Agricultural Sciences. The Industrial Crop Institute, Fenyang, China
| | - Lixia Wu
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Qijing Fu
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Dong Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jing Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Baolin Yao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Si Yu
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Li Jiang
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Jie Qian
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Xuan Zhou
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Li Han
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Shuanglu Zhao
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Canrong Ma
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Research and Development of Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yanfang Zhang
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Chongyu Luo
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Qian Dong
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Saijie Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Lina Zhang
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Xi Jiang
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Youchun Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Hao Luo
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Kuixiu Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Jing Yang
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Qiong Luo
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Lichi Li
- International Agriculture Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Sheng Peng
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Huichuan Huang
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Zhili Zuo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Changning Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Lei Wang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Research and Development of Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Chengyun Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Xiahong He
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Yunlong Du
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
6
|
Tomita M, Kanzaki T, Tanaka E. Clustered and dispersed chromosomal distribution of the two classes of Revolver transposon family in rye (Secale cereale). J Appl Genet 2021; 62:365-372. [PMID: 33694103 DOI: 10.1007/s13353-021-00617-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/27/2021] [Accepted: 02/05/2021] [Indexed: 11/26/2022]
Abstract
The chromosomal locations of a new class of Revolver transposon-like elements were analyzed by using FISH method on the metaphase chromosome in somatic cell division of the rye cultivar Petkus. First, the Revolver standard element probe λ2 was weakly hybridized throughout the rye chromosome, and comparatively large interstitial signals spotted with a dot shape were detected together with several telomeric regions. The dot shape interstitial signal was stably detected at one site on Chromosome (Chr) 1R (middle part of the interstitial region of the short arm), three sites on Chr 2R (distal part of the interstitial region and adjacent to the centromere on the short arm, middle part of the interstitial region of the long arm), and two sites on Chr 5R (middle part of the interstitial region and adjacent to the centromere on the long arm). The Revolver λ2 probe was effective for identification of 1R, 2R, and 5R chromosomes. On the other hand, Revolver nonautonomous element-specific L626-BARE-100 probe was strongly distributed throughout the rye chromosomes, and considerable numbers and diverse lengths of transcripts were detected by RT-PCR. Although the standard elements were found in localized clusters, the nonautonomous elements tended to be dispersed throughout the genome. Clustered nature of Revolver is a significantly rare case in genomics.
Collapse
Affiliation(s)
- Motonori Tomita
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Takaaki Kanzaki
- Faculty of Agriculture, Tottori University, 4-101 Koyama Minami, Tottori, 680-8550, Japan
| | - Eri Tanaka
- Faculty of Agriculture, Tottori University, 4-101 Koyama Minami, Tottori, 680-8550, Japan
| |
Collapse
|
7
|
Lyu S, Gao L, Zhang R, Zhang C, Hou X. Correlation Analysis of Expression Profile and Quantitative iTRAQ-LC-MS/MS Proteomics Reveals Resistance Mechanism Against TuMV in Chinese Cabbage ( Brassica rapa ssp. pekinensis). Front Genet 2020; 11:963. [PMID: 32973883 PMCID: PMC7469979 DOI: 10.3389/fgene.2020.00963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/31/2020] [Indexed: 12/26/2022] Open
Abstract
The arms race between plants and viruses never ceases. Chinese cabbage, an important type of Brassica vegetable crop, is vulnerable to plant virus infection, especially to Turnip mosaic virus (TuMV). To better examine the molecular mechanisms behind the virus infection, we conducted the correlation analysis of RNA-Seq and quantitative iTRAQ-LC-MS/MS in TuMV-infected and in healthy Chinese cabbage leaves. There were 757 differentially expressed genes and 75 differentially expressed proteins that were screened in Chinese cabbage plants infected with TuMV. These genes were enriched in many pathways, and among them, the plant hormone signal transduction, plant-pathogen interaction, and protein processing in the endoplasmic reticulum pathways were suggested to be closely related pathways. The correlation analysis between RNA-Seq and quantitative iTRAQ-LC-MS/MS was then further explored. Finally, we obtained a preliminary network of several candidate genes associated with TuMV infection, and we found that they mainly belonged to calcium signaling pathways, heat shock proteins, WRKY transcription factors, and non-specific lipid transfer proteins. These results may lead to a better understanding of antiviral mechanisms and of disease-resistant breeding.
Collapse
Affiliation(s)
- Shanwu Lyu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Liwei Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Rujia Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Changwei Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
8
|
Qiao L, Zheng L, Sheng C, Zhao H, Jin H, Niu D. Rice siR109944 suppresses plant immunity to sheath blight and impacts multiple agronomic traits by affecting auxin homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:948-964. [PMID: 31923320 DOI: 10.1111/tpj.14677] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/23/2019] [Accepted: 01/02/2020] [Indexed: 05/20/2023]
Abstract
Plant small RNAs (sRNAs) play significant roles in regulating various developmental processes and hormone signalling pathways involved in plant responses to a wide range of biotic and abiotic stresses. However, the functions of sRNAs in response to rice sheath blight remain unclear. We screened rice (Oryza sativa) sRNA expression patterns against Rhizoctonia solani and found that Tourist-miniature inverted-repeat transposable element (MITE)-derived small interfering RNA (siRNA) (here referred to as siR109944) expression was clearly suppressed upon R. solani infection. One potential target of siR109944 is the F-Box domain and LRR-containing protein 55 (FBL55), which encode the transport inhibitor response 1 (TIR1)-like protein. We found that rice had significantly enhanced susceptibility when siR109944 was overexpressed, while FBL55 OE plants showed resistance to R. solani challenge. Additionally, multiple agronomic traits of rice, including root length and flag leaf inclination, were affected by siR109944 expression. Auxin metabolism-related and signalling pathway-related genes were differentially expressed in the siR109944 OE and FBL55 OE plants. Importantly, pre-treatment with auxin enhanced sheath blight resistance by affecting endogenous auxin homeostasis in rice. Furthermore, transgenic Arabidopsis overexpressing siR109944 exhibited early flowering, increased tiller numbers, and increased susceptibility to R. solani. Our results demonstrate that siR109944 has a conserved function in interfering with plant immunity, growth, and development by affecting auxin homeostasis in planta. Thus, siR109944 provides a genetic target for plant breeding in the future. Furthermore, exogenous application of indole-3-acetic acid (IAA) or auxin analogues might effectively protect field crops against diseases.
Collapse
Affiliation(s)
- Lulu Qiao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Liyu Zheng
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Cong Sheng
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Hongwei Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Hailing Jin
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Dongdong Niu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| |
Collapse
|
9
|
Kojima KK. Structural and sequence diversity of eukaryotic transposable elements. Genes Genet Syst 2019; 94:233-252. [DOI: 10.1266/ggs.18-00024] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Kenji K. Kojima
- Genetic Information Research Institute
- Department of Life Sciences, National Cheng Kung University
| |
Collapse
|
10
|
Tang Y, Ma X, Zhao S, Xue W, Zheng X, Sun H, Gu P, Zhu Z, Sun C, Liu F, Tan L. Identification of an active miniature inverted-repeat transposable element mJing in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:639-653. [PMID: 30689248 PMCID: PMC6850418 DOI: 10.1111/tpj.14260] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/01/2019] [Accepted: 01/18/2019] [Indexed: 05/27/2023]
Abstract
Miniature inverted-repeat transposable elements (MITEs) are structurally homogeneous non-autonomous DNA transposons with high copy numbers that play important roles in genome evolution and diversification. Here, we analyzed the rice high-tillering dwarf (htd) mutant in an advanced backcross population between cultivated and wild rice, and identified an active MITE named miniature Jing (mJing). The mJing element belongs to the PIF/Harbinger superfamily. japonica rice var. Nipponbare and indica var. 93-11 harbor 72 and 79 mJing family members, respectively, have undergone multiple rounds of amplification bursts during the evolution of Asian cultivated rice (Oryza sativa L.). A heterologous transposition experiment in Arabidopsis thaliana indicated that the autonomous element Jing is likely to have provides the transposase needed for mJing mobilization. We identified 297 mJing insertion sites and their presence/absence polymorphism among 71 rice samples through targeted high-throughput sequencing. The results showed that the copy number of mJing varies dramatically among Asian cultivated rice (O. sativa), its wild ancestor (O. rufipogon), and African cultivated rice (O. glaberrima) and that some mJing insertions are subject to directional selection. These findings suggest that the amplification and removal of mJing elements have played an important role in rice genome evolution and species diversification.
Collapse
Affiliation(s)
- Yanyan Tang
- State Key Laboratory of Plant Physiology and BiochemistryChina Agricultural UniversityBeijing100193China
- National Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Xin Ma
- National Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Shuangshuang Zhao
- National Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Wei Xue
- National Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Xu Zheng
- National Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Hongying Sun
- National Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Ping Gu
- National Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Zuofeng Zhu
- National Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Chuanqing Sun
- State Key Laboratory of Plant Physiology and BiochemistryChina Agricultural UniversityBeijing100193China
- National Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Fengxia Liu
- State Key Laboratory of Plant Physiology and BiochemistryChina Agricultural UniversityBeijing100193China
- National Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Lubin Tan
- National Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| |
Collapse
|
11
|
Liu Y, Tahir Ul Qamar M, Feng JW, Ding Y, Wang S, Wu G, Ke L, Xu Q, Chen LL. Comparative analysis of miniature inverted-repeat transposable elements (MITEs) and long terminal repeat (LTR) retrotransposons in six Citrus species. BMC PLANT BIOLOGY 2019; 19:140. [PMID: 30987586 PMCID: PMC6466647 DOI: 10.1186/s12870-019-1757-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 04/04/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Miniature inverted-repeat transposable elements (MITEs) and long terminal repeat (LTR) retrotransposons are ubiquitous in plants genomes, and highly important in their evolution and diversity. However, their mechanisms of insertion/amplification and roles in Citrus genome's evolution/diversity are still poorly understood. RESULTS To address this knowledge gap, we developed different computational pipelines to analyze, annotate and classify MITEs and LTR retrotransposons in six different sequenced Citrus species. We identified 62,010 full-length MITEs from 110 distinguished families. We observed MITEs tend to insert in gene related regions and enriched in promoters. We found that DTM63 is possibly an active Mutator-like MITE family in the traceable past and may still be active in Citrus. The insertion of MITEs resulted in massive polymorphisms and played an important role in Citrus genome diversity and gene structure variations. In addition, 6630 complete LTR retrotransposons and 13,371 solo-LTRs were identified. Among them, 12 LTR lineages separated before the differentiation of mono- and dicotyledonous plants. We observed insertion and deletion of LTR retrotransposons was accomplished with a dynamic balance, and their half-life in Citrus was ~ 1.8 million years. CONCLUSIONS These findings provide insights into MITEs and LTR retrotransposons and their roles in genome diversity in different Citrus genomes.
Collapse
Affiliation(s)
- Yan Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Muhammad Tahir Ul Qamar
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jia-Wu Feng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yuduan Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Shuo Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Guizhi Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Lingjun Ke
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ling-Ling Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
12
|
Zhang HH, Zhou QZ, Wang PL, Xiong XM, Luchetti A, Raoult D, Levasseur A, Santini S, Abergel C, Legendre M, Drezen JM, Béliveau C, Cusson M, Jiang SH, Bao HO, Sun C, Bureau TE, Cheng PF, Han MJ, Zhang Z, Zhang XG, Dai FY. Unexpected invasion of miniature inverted-repeat transposable elements in viral genomes. Mob DNA 2018; 9:19. [PMID: 29946369 PMCID: PMC6004678 DOI: 10.1186/s13100-018-0125-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 06/12/2018] [Indexed: 12/31/2022] Open
Abstract
Background Transposable elements (TEs) are common and often present with high copy numbers in cellular genomes. Unlike in cellular organisms, TEs were previously thought to be either rare or absent in viruses. Almost all reported TEs display only one or two copies per viral genome. In addition, the discovery of pandoraviruses with genomes up to 2.5-Mb emphasizes the need for biologists to rethink the fundamental nature of the relationship between viruses and cellular life. Results Herein, we performed the first comprehensive analysis of miniature inverted-repeat transposable elements (MITEs) in the 5170 viral genomes for which sequences are currently available. Four hundred and fifty one copies of ten miniature inverted-repeat transposable elements (MITEs) were found and each MITE had reached relatively large copy numbers (some up to 90) in viruses. Eight MITEs belonging to two DNA superfamilies (hobo/Activator/Tam3 and Chapaev-Mirage-CACTA) were for the first time identified in viruses, further expanding the organismal range of these two superfamilies. TEs may play important roles in shaping the evolution of pandoravirus genomes, which were here found to be very rich in MITEs. We also show that putative autonomous partners of seven MITEs are present in the genomes of viral hosts, suggesting that viruses may borrow the transpositional machinery of their cellular hosts' autonomous elements to spread MITEs and colonize their own genomes. The presence of seven similar MITEs in viral hosts, suggesting horizontal transfers (HTs) as the major mechanism for MITEs propagation. Conclusions Our discovery highlights that TEs contribute to shape genome evolution of pandoraviruses. We concluded that as for cellular organisms, TEs are part of the pandoraviruses' diverse mobilome.
Collapse
Affiliation(s)
- Hua-Hao Zhang
- 1College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China.,2State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Qiu-Zhong Zhou
- 3School of Life Sciences, Chongqing University, Chongqing, 400044 China
| | - Ping-Lan Wang
- 1College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Xiao-Min Xiong
- 4Clinical Medical College, Jiujiang University, Jiujiang, China
| | - Andrea Luchetti
- 5Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | - Didier Raoult
- 6Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Aix-Marseille University, UM63, CNRS 7278, IRD 198, INSERM 1095, Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, AP-HM, 19-21 Boulevard Jean Moulin, 13385 Marseille, France
| | - Anthony Levasseur
- 6Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Aix-Marseille University, UM63, CNRS 7278, IRD 198, INSERM 1095, Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, AP-HM, 19-21 Boulevard Jean Moulin, 13385 Marseille, France
| | - Sebastien Santini
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique and Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), 13288 Marseille Cedex 9, France
| | - Chantal Abergel
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique and Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), 13288 Marseille Cedex 9, France
| | - Matthieu Legendre
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique and Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), 13288 Marseille Cedex 9, France
| | - Jean-Michel Drezen
- 8Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université François-Rabelais de Tours, UFR Sciences et Techniques, 37200 Tours, France
| | - Catherine Béliveau
- 9Laurentian Forestry Centre, Canadian Forest Service, Natural Resources Canada, Quebec, Canada
| | - Michel Cusson
- 9Laurentian Forestry Centre, Canadian Forest Service, Natural Resources Canada, Quebec, Canada
| | - Shen-Hua Jiang
- 1College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Hai-Ou Bao
- 1College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Cheng Sun
- 10Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Thomas E Bureau
- 11Department of Biology, McGill University, Montréal, Quebec, Canada
| | - Peng-Fei Cheng
- 12Poyang Lake Eco-economy Research Center, Jiujiang University, Jiujiang, China
| | - Min-Jin Han
- 2State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Ze Zhang
- 3School of Life Sciences, Chongqing University, Chongqing, 400044 China
| | - Xiao-Gu Zhang
- 1College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Fang-Yin Dai
- 2State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| |
Collapse
|
13
|
|
14
|
Abstract
LTR retrotransposons are the most abundant group of transposable elements (TEs) in plants. These elements can fall inside or close to genes, and therefore influence their expression and evolution. This review aims to examine how LTR retrotransposons, especially Ty1-copia elements, mediate gene regulation and evolution. Various stimuli, including polyploidization and biotic and abiotic elicitors, result in the transcription and movement of these retrotransposons, and can facilitate adaptation. The presence of cis-regulatory motifs in the LTRs are central to their stress-mediated responses and are shared with host stress-responsive genes, showing a complex evolutionary history in which TEs provide new regulatory units to genes. The presence of retrotransposon remnants in genes that are necessary for normal gene function, demonstrates the importance of exaptation and co-option, and is also a consequence of the abundance of these elements in plant genomes. Furthermore, insertions of LTR retrotransposons in and around genes provide potential for alternative splicing, epigenetic control, transduction, duplication and recombination. These characteristics can become an active part of the evolution of gene families as in the case of resistance genes (R-genes). The character of TEs as exclusively selfish is now being re-evaluated. Since genome-wide reprogramming via TEs is a long evolutionary process, the changes we can examine are case-specific and their fitness advantage may not be evident until TE-derived motifs and domains have been completely co-opted and fixed. Nevertheless, the presence of LTR retrotransposons inside genes and as part of gene promoter regions is consistent with their roles as engines of plant genome evolution.
Collapse
|
15
|
Zhang F, Wu ZC, Wang MM, Zhang F, Dingkuhn M, Xu JL, Zhou YL, Li ZK. Genome-wide association analysis identifies resistance loci for bacterial blight in a diverse collection of indica rice germplasm. PLoS One 2017; 12:e0174598. [PMID: 28355306 PMCID: PMC5371361 DOI: 10.1371/journal.pone.0174598] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/11/2017] [Indexed: 11/18/2022] Open
Abstract
Bacterial blight, which is caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the most devastating rice diseases worldwide. The development and use of disease-resistant cultivars have been the most effective strategy to control bacterial blight. Identifying the genes mediating bacterial blight resistance is a prerequisite for breeding cultivars with broad-spectrum and durable resistance. We herein describe a genome-wide association study involving 172 diverse Oryza sativa ssp. indica accessions to identify loci influencing the resistance to representative strains of six Xoo races. Twelve resistance loci containing 121 significantly associated signals were identified using 317,894 single nucleotide polymorphisms, which explained 13.3–59.9% of the variability in lesion length caused by Xoo races P1, P6, and P9a. Two hotspot regions (L11 and L12) were located within or nearby two cloned R genes (xa25 and Xa26) and one fine-mapped R gene (Xa4). Our results confirmed the relatively high resolution of genome-wide association studies. Moreover, we detected novel significant associations on chromosomes 2, 3, and 6–10. Haplotype analyses of xa25, the Xa26 paralog (MRKc; LOC_Os11g47290), and a Xa4 candidate gene (LOC_11g46870) revealed differences in bacterial blight resistance among indica subgroups. These differences were responsible for the observed variations in lesion lengths resulting from infections by Xoo races P1 and P9a. Our findings may be relevant for future studies involving bacterial blight resistance gene cloning, and provide insights into the genetic basis for bacterial blight resistance in indica rice, which may be useful for knowledge-based crop improvement.
Collapse
Affiliation(s)
- Fan Zhang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhi-Chao Wu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ming-Ming Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Zhang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Michael Dingkuhn
- Crop and Environmental Sciences Division, International Rice Research Institute, Los Baños, Laguna, Philippines
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR AGAP, Montpellier, France
| | - Jian-Long Xu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Institute of Breeding and Innovation, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- * E-mail: (YZ); (JX)
| | - Yong-Li Zhou
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Institute of Breeding and Innovation, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- * E-mail: (YZ); (JX)
| | - Zhi-Kang Li
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Institute of Breeding and Innovation, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| |
Collapse
|
16
|
Translational repression by a miniature inverted-repeat transposable element in the 3' untranslated region. Nat Commun 2017; 8:14651. [PMID: 28256530 PMCID: PMC5338036 DOI: 10.1038/ncomms14651] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/18/2017] [Indexed: 12/18/2022] Open
Abstract
Transposable elements constitute a substantial portion of eukaryotic genomes and contribute to genomic variation, function, and evolution. Miniature inverted-repeat transposable elements (MITEs), as DNA transposons, are widely distributed in plant and animal genomes. Previous studies have suggested that retrotransposons act as translational regulators; however, it remains unknown how host mRNAs are influenced by DNA transposons. Here we report a translational repression mechanism mediated by a stowaway-like MITE (sMITE) embedded in the 3'-untranslated region (3'-UTR) of Ghd2, a member of the CCT (CONSTANS [CO], CO-LIKE and TIMING OF CAB1) gene family in rice. Ghd2 regulates important agronomic traits, including grain number, plant height and heading date. Interestingly, the translational repression of Ghd2 by the sMITE mainly relies on Dicer-like 3a (OsDCL3a). Furthermore, other MITEs in the 3'-UTRs of different rice genes exhibit a similar effect on translational repression, thus suggesting that MITEs may exert a general regulatory function at the translational level.
Collapse
|
17
|
Slavokhotova AA, Shelenkov AA, Korostyleva TV, Rogozhin EA, Melnikova NV, Kudryavtseva AV, Odintsova TI. Defense peptide repertoire of Stellaria media predicted by high throughput next generation sequencing. Biochimie 2016; 135:15-27. [PMID: 28038935 DOI: 10.1016/j.biochi.2016.12.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/26/2016] [Indexed: 12/16/2022]
Abstract
Being perfectly adapted to diverse environments, chickweed (Stellaria media (L.) Vill), a ubiquitous garden weed, grows widely in Europe and North America. As opposed to the model plants, many weeds, and S. media in particular, have been poorly studied, although they are likely to contain promising components of immunity and novel resistance genes. In this study, for the first time RNA-seq analysis of healthy and infected with Fusarium oxysporum chickweed seedlings, as well as de novo transcriptome assembly and annotation, are presented. Note, this research is focused on antimicrobial peptides (AMPs), the major components of plant immune system. Using custom software developed earlier, 145 unique putative AMPs (pAMPs) including defensins, thionins, hevein-like peptides, snakins, alpha-hairpinins, LTPs, and cysteine-rich peptides with novel cysteine motifs were predicted. Furthermore, changes in AMP expression profile in response to fungal infection were traced. In addition, the comparison of chickweed AMP repertoire with those of other Caryophyllaceae plants whose transcriptomes are presently available is made. As a result, alpha-hairpinins and hevein-like peptides which display characteristic modular structure appear to be specific AMPs distinguishing S. media from Dianthus caryophyllus, Silene vulgaris, and Silene latifolia. Finally, revealing several AMPs with proven antimicrobial activity gives opportunity to conclude that the presented method of AMP repertoire analysis reveals highly active AMPs playing vital role in plant immunity.
Collapse
Affiliation(s)
- Anna A Slavokhotova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina Str., 119991 Moscow, Russian Federation.
| | - Andrey A Shelenkov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina Str., 119991 Moscow, Russian Federation.
| | - Tatyana V Korostyleva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina Str., 119991 Moscow, Russian Federation.
| | - Eugene A Rogozhin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russian Federation.
| | - Nataliya V Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova Str., Moscow 119991, Russian Federation.
| | - Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova Str., Moscow 119991, Russian Federation.
| | - Tatyana I Odintsova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina Str., 119991 Moscow, Russian Federation.
| |
Collapse
|
18
|
Zhang H, Tao Z, Hong H, Chen Z, Wu C, Li X, Xiao J, Wang S. Transposon-derived small RNA is responsible for modified function of WRKY45 locus. NATURE PLANTS 2016; 2:16016. [PMID: 27249351 DOI: 10.1038/nplants.2016.16] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/15/2016] [Indexed: 05/20/2023]
Abstract
Transposable elements (TEs) are an important source for generating small interfering RNAs (siRNAs) in plants and animals. Although TE-siRNA-induced silencing of TEs by RNA-directed DNA methylation (RdDM) in the maintenance of genome integrity has been intensively studied, it is unknown whether this type of silencing occurs in suppressing endogenous non-TE genes during host-pathogen interactions. Here we show that a TE-siRNA, TE-siR815, causes opposite functions for the two alleles, WRKY45-1 and WRKY45-2, of the WRKY45 transcription factor in rice resistance to Xanthomonas oryzae pv. oryzae, which causes the most devastating bacterial disease in rice worldwide. Expression of WRKY45-1, but not WRKY45-2, generated TE-siR815, which in turn repressed ST1, an important component in WRKY45-mediated resistance, by RdDM. Suppression of ST1 abolished WRKY45-mediated resistance leading to pathogen susceptibility. These results suggest that TE-siR815 contributes to the natural variation of the WRKY45 locus and TE-siR815-induced suppression of ST1 results in the negative role of WRKY45-1 but positive role of WRKY45-2 in regulating disease resistance.
Collapse
Affiliation(s)
- Haitao Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Zeng Tao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Hanming Hong
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Zhihui Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Changyin Wu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
19
|
Slavokhotova AA, Shelenkov AA, Odintsova TI. Prediction of Leymus arenarius (L.) antimicrobial peptides based on de novo transcriptome assembly. PLANT MOLECULAR BIOLOGY 2015; 89:203-14. [PMID: 26369913 DOI: 10.1007/s11103-015-0346-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/14/2015] [Indexed: 05/06/2023]
Abstract
Leymus arenarius is a unique wild growing Poaceae plant exhibiting extreme tolerance to environmental conditions. In this study we for the first time performed whole-transcriptome sequencing of lymegrass seedlings using Illumina platform followed by de novo transcriptome assembly and functional annotation. Our goal was to identify transcripts encoding antimicrobial peptides (AMPs), one of the key components of plant innate immunity. Using the custom software developed for this study that predicted AMPs and classified them into families, we revealed more than 160 putative AMPs in lymegrass seedlings. We classified them into 7 families based on their cysteine motifs and sequence similarity. The families included defensins, thionins, hevein-like peptides, snakins, cyclotide, alfa-hairpinins and LTPs. This is the first communication about the presence of almost all known AMP families in trascriptomic data of a single plant species. Additionally, cysteine-rich peptides that potentially represent novel families of AMPs were revealed. We have confirmed by RT-PCR validation the presence of 30 transcripts encoding selected AMPs in lymegrass seedlings. In summary, the presented method of pAMP prediction developed by us can be applied for relatively fast and simple screening of novel components of plant immunity system and is well suited for whole-transcriptome or genome analysis of uncharacterized plants.
Collapse
Affiliation(s)
- Anna A Slavokhotova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina Str., Moscow, Russia, 119991.
| | - Andrey A Shelenkov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina Str., Moscow, Russia, 119991
| | - Tatyana I Odintsova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina Str., Moscow, Russia, 119991
| |
Collapse
|
20
|
Abstract
Pong-like elements are members of the PIF/Harbinger superfamily of DNA transposons that has been described in many plants, animals, and fungi. Most Pong elements contain two open reading frames (ORFs). One encodes a transposase (ORF2) that catalyzes transposition of Pong and related non-autonomous elements, while the function of the second is unknown. Little is known about the evolutionary history of Pong elements in flowering plants. In this work, we present the first comprehensive analysis of the diversity, abundance, and evolution of the Pong-like transposase gene in the genomes of 21 diploid species from the wheat tribe, Triticeae, and we present the first convincing evidence of horizontal transfer of nuclear-encoded Pong elements in any organism. A phylogenetic analysis of nearly 300 Pong sequences based on a conserved region of the transposase domain revealed a complex evolutionary history of Pong elements that can be best explained by ancestral polymorphism, followed by differential evolutionary success of some transposase lineages, and by occasional horizontal transfer between phylogenetically distant genera. In addition, we used transposon display to estimate the abundance of the transposase gene within Triticeae genomes, and our results revealed varying levels of Pong proliferation, with numbers of transposase copies ranging from 22 to 92. Comparisons of Pong transposase abundance to flow cytometry estimates of genome size revealed that larger Triticeae genome size was not correlated with transposase abundance.
Collapse
|
21
|
Dai S, Hou J, Long Y, Wang J, Li C, Xiao Q, Jiang X, Zou X, Zou J, Meng J. Widespread and evolutionary analysis of a MITE family Monkey King in Brassicaceae. BMC PLANT BIOLOGY 2015; 15:149. [PMID: 26084405 PMCID: PMC4471910 DOI: 10.1186/s12870-015-0490-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/07/2015] [Indexed: 05/24/2023]
Abstract
BACKGROUND Miniature inverted repeat transposable elements (MITEs) are important components of eukaryotic genomes, with hundreds of families and many copies, which may play important roles in gene regulation and genome evolution. However, few studies have investigated the molecular mechanisms involved. In our previous study, a Tourist-like MITE, Monkey King, was identified from the promoter region of a flowering time gene, BnFLC.A10, in Brassica napus. Based on this MITE, the characteristics and potential roles on gene regulation of the MITE family were analyzed in Brassicaceae. RESULTS The characteristics of the Tourist-like MITE family Monkey King in Brassicaceae, including its distribution, copies and insertion sites in the genomes of major Brassicaceae species were analyzed in this study. Monkey King was actively amplified in Brassica after divergence from Arabidopsis, which was indicated by the prompt increase in copy number and by phylogenetic analysis. The genomic variations caused by Monkey King insertions, both intra- and inter-species in Brassica, were traced by PCR amplification. Genomic sequence analysis showed that most complete Monkey King elements are located in gene-rich regions, less than 3kb from genes, in both the B. rapa and A. thaliana genomes. Sixty-seven Brassica expressed sequence tags carrying Monkey King fragments were also identified from the NCBI database. Bisulfite sequencing identified specific DNA methylation of cytosine residues in the Monkey King sequence. A fragment containing putative TATA-box motifs in the MITE sequence could bind with nuclear protein(s) extracted from leaves of B. napus plants. A Monkey King-related microRNA, bna-miR6031, was identified in the microRNA database. In transgenic A. thaliana, when the Monkey King element was inserted upstream of 35S promoter, the promoter activity was weakened. CONCLUSION Monkey King, a Brassicaceae Tourist-like MITE family, has amplified relatively recently and has induced intra- and inter-species genomic variations in Brassica. Monkey King elements are most abundant in the vicinity of genes and may have a substantial effect on genome-wide gene regulation in Brassicaceae. Monkey King insertions potentially regulate gene expression and genome evolution through epigenetic modification and new regulatory motif production.
Collapse
Affiliation(s)
- Shutao Dai
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Jinna Hou
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
- Crop Designing Centre, Henan Academy of Agricultural Sciences, Zhenzhou, Henan, 450002, China.
| | - Yan Long
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Jing Wang
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Cong Li
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Qinqin Xiao
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Xiaoxue Jiang
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Xiaoxiao Zou
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Jun Zou
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Jinling Meng
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
22
|
Roffler S, Wicker T. Genome-wide comparison of Asian and African rice reveals high recent activity of DNA transposons. Mob DNA 2015; 6:8. [PMID: 25954322 PMCID: PMC4423477 DOI: 10.1186/s13100-015-0040-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/16/2015] [Indexed: 12/18/2022] Open
Abstract
Background DNA (Class II) transposons are ubiquitous in plant genomes. However, unlike for (Class I) retrotransposons, only little is known about their proliferation mechanisms, activity, and impact on genomes. Asian and African rice (Oryza sativa and O. glaberrima) diverged approximately 600,000 years ago. Their fully sequenced genomes therefore provide an excellent opportunity to study polymorphisms introduced from recent transposon activity. Results We manually analyzed 1,821 transposon related polymorphisms among which we identified 487 loci which clearly resulted from DNA transposon insertions and excisions. In total, we estimate about 4,000 (3.5% of all DNA transposons) to be polymorphic between the two species, indicating a high level of transposable element (TE) activity. The vast majority of the recently active elements are non-autonomous. Nevertheless, we identified multiple potentially functional autonomous elements. Furthermore, we quantified the impacts of insertions and excisions on the adjacent sequences. Transposon insertions were found to be generally precise, creating simple target site duplications. In contrast, excisions almost always go along with the deletion of flanking sequences and/or the insertion of foreign ‘filler’ segments. Some of the excision-triggered deletions ranged from hundreds to thousands of bp flanking the excision site. Furthermore, we found in some superfamilies unexpectedly low numbers of excisions. This suggests that some excisions might cause such large-scale rearrangements so that they cannot be detected anymore. Conclusions We conclude that the activity of DNA transposons (particularly the excision process) is a major evolutionary force driving the generation of genetic diversity. Electronic supplementary material The online version of this article (doi:10.1186/s13100-015-0040-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefan Roffler
- Institute for Plant Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| | - Thomas Wicker
- Institute for Plant Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| |
Collapse
|
23
|
Stratula OR, Kalendar RN, Sivolap YM. Allelic variants of the gene bamy1 barley in Eastern European and Central Asian areas. CYTOL GENET+ 2015. [DOI: 10.3103/s0095452715020103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Chen J, Lu C, Zhang Y, Kuang H. Miniature inverted-repeat transposable elements (MITEs) in rice were originated and amplified predominantly after the divergence of Oryza and Brachypodium and contributed considerable diversity to the species. Mob Genet Elements 2014; 2:127-132. [PMID: 23061018 PMCID: PMC3463468 DOI: 10.4161/mge.20773] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Miniature inverted-repeat transposable elements (MITEs) are ubiquitous in high eukaryotic genomes. More than 178,000 MITE sequences of 338 families are present in the genome of rice (Oryza sativa) cultivar Nipponbare. Interestingly, only two of the 338 MITE families have homologous sequences in the genome of Brachypodium distachyon, a relative in the grass family. Therefore, the vast majority of MITEs in the rice genome were originated and amplified after the divergence of Oryza and Brachypodium. Comparison between rice cultivar Nipponbare and another rice cultivar 93–11 showed 14.8% of MITEs exhibit presence/absence (P/A) polymorphism. The P/A polymorphism was mainly attributed to recent MITE transpositions, while less than 10% of the P/A polymorphism was caused by MITE excisions. Therefore, the high P/A polymorphisms of MITEs may generate considerable gene expression and phenotypic diversity for O. sativa.
Collapse
Affiliation(s)
- Jiongjiong Chen
- Key Laboratory of Horticulture Biology; Ministry of Education; Department of Vegetable Crops; College of Horticulture and Forestry Sciences; Huazhong Agricultural University; Wuhan, China
| | | | | | | |
Collapse
|
25
|
Naito K, Monden Y, Yasuda K, Saito H, Okumoto Y. mPing: The bursting transposon. BREEDING SCIENCE 2014; 64:109-14. [PMID: 25053919 PMCID: PMC4065317 DOI: 10.1270/jsbbs.64.109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 01/30/2014] [Indexed: 05/25/2023]
Abstract
Though transposable elements (TEs) have been considered as an efficient source of evolution, it has never been possible to test this hypothesis because most of TE insertions had occurred millions of years ago, or because currently active TEs have very few copies in a host genome. However, mPing, the first active DNA transposon in rice, was revealed to hold a key to answer this question. mPing has attained high copy numbers and still retained very high activity in a traditional rice strain, which enabled direct observation of behavior and impact of a bursting TE. A comprehensive analysis of mPing insertion sites has revealed it avoids exons but prefers promoter regions and thus moderately affects transcription of neighboring genes. Some of the mPing insertions have introduced possibly useful expression profile to adjacent genes that indicated TE's potential in de novo formation of gene regulatory network.
Collapse
Affiliation(s)
- Ken Naito
- Genetic Resource Center, National Institute of Agrobiological Sciences,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602,
Japan
| | - Yuki Monden
- Graduate School of Environmental and life Science, Okayama University,
3-1-1 Tsushima-naka, Kita, Okayama 700-8530,
Japan
| | - Kanako Yasuda
- Department of Agriculture, Kyoto University,
Kitashirakawa Oiwake, Sakyo, Kyoto 606-8502,
Japan
| | - Hiroki Saito
- Department of Agriculture, Kyoto University,
Kitashirakawa Oiwake, Sakyo, Kyoto 606-8502,
Japan
| | - Yutaka Okumoto
- Department of Agriculture, Kyoto University,
Kitashirakawa Oiwake, Sakyo, Kyoto 606-8502,
Japan
| |
Collapse
|
26
|
Yamaguchi T, Nakayama K, Hayashi T, Yazaki J, Kishimoto N, Kikuchi S, Koike S. cDNA Microarray Analysis of Rice Anther Genes under Chilling Stress at the Microsporogenesis Stage Revealed Two Genes with DNA TransposonCastawayin the 5′-Flanking Region. Biosci Biotechnol Biochem 2014; 68:1315-23. [PMID: 15215597 DOI: 10.1271/bbb.68.1315] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Rice is most chilling sensitive at the onset of microspore release. Chilling treatment at this stage causes male sterility. The gene expression profile during the microspore development process under chilling stress was revealed using a microarray that included 8,987 rice cDNAs. As many as 160 cDNAs were up- or down-regulated by chilling during the microspore release stage. RT-PCR analysis of 5 genes confirmed the microarray results. We identified 3 novel genes whose expression levels were remarkably changed by chilling in rice anther. A new cis element that includes a DNA transposon Castaway sequence was found in the 5' upstream region of two genes which were conspicuously down-regulated by chilling temperatures in rice anther.
Collapse
Affiliation(s)
- Tomoya Yamaguchi
- Plant Physiology Laboratory, National Agricultural Research Center for Tohoku Region, Morioka, Japan.
| | | | | | | | | | | | | |
Collapse
|
27
|
Vitte C, Fustier MA, Alix K, Tenaillon MI. The bright side of transposons in crop evolution. Brief Funct Genomics 2014; 13:276-95. [PMID: 24681749 DOI: 10.1093/bfgp/elu002] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The past decades have revealed an unexpected yet prominent role of so-called 'junk DNA' in the regulation of gene expression, thereby challenging our view of the mechanisms underlying phenotypic evolution. In particular, several mechanisms through which transposable elements (TEs) participate in functional genome diversity have been depicted, bringing to light the 'TEs bright side'. However, the relative contribution of those mechanisms and, more generally, the importance of TE-based polymorphisms on past and present phenotypic variation in crops species remain poorly understood. Here, we review current knowledge on both issues, and discuss how analyses of massively parallel sequencing data combined with statistical methodologies and functional validations will help unravelling the impact of TEs on crop evolution in a near future.
Collapse
|
28
|
Park KC, Son JH, Lee SII, Kim KS, Chang YS, Kim NS. Pong-like elements in Arabidopsis and Brassica rapa: its regulation of F-box protein gene in different ecotypes of Arabidopsis thaliana. Genes Genomics 2013. [DOI: 10.1007/s13258-013-0129-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
Minaya M, Pimentel M, Mason-Gamer R, Catalan P. Distribution and evolutionary dynamics of Stowaway Miniature Inverted repeat Transposable Elements (MITEs) in grasses. Mol Phylogenet Evol 2013; 68:106-18. [DOI: 10.1016/j.ympev.2013.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 03/02/2013] [Accepted: 03/06/2013] [Indexed: 12/24/2022]
|
30
|
Fattash I, Rooke R, Wong A, Hui C, Luu T, Bhardwaj P, Yang G. Miniature inverted-repeat transposable elements: discovery, distribution, and activity. Genome 2013; 56:475-86. [PMID: 24168668 DOI: 10.1139/gen-2012-0174] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Eukaryotic organisms have dynamic genomes, with transposable elements (TEs) as a major contributing factor. Although the large autonomous TEs can significantly shape genomic structures during evolution, genomes often harbor more miniature nonautonomous TEs that can infest genomic niches where large TEs are rare. In spite of their cut-and-paste transposition mechanisms that do not inherently favor copy number increase, miniature inverted-repeat transposable elements (MITEs) are abundant in eukaryotic genomes and exist in high copy numbers. Based on the large number of MITE families revealed in previous studies, accurate annotation of MITEs, particularly in newly sequenced genomes, will identify more genomes highly rich in these elements. Novel families identified from these analyses, together with the currently known families, will further deepen our understanding of the origins, transposase sources, and dramatic amplification of these elements.
Collapse
Affiliation(s)
- Isam Fattash
- a Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | | | | | | | | | | | | |
Collapse
|
31
|
Fernández-Medina RD, Ribeiro JMC, Carareto CMA, Velasque L, Struchiner CJ. Losing identity: structural diversity of transposable elements belonging to different classes in the genome of Anopheles gambiae. BMC Genomics 2012; 13:272. [PMID: 22726298 PMCID: PMC3442997 DOI: 10.1186/1471-2164-13-272] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 06/08/2012] [Indexed: 01/10/2023] Open
Abstract
Background Transposable elements (TEs), both DNA transposons and retrotransposons, are genetic elements with the main characteristic of being able to mobilize and amplify their own representation within genomes, utilizing different mechanisms of transposition. An almost universal feature of TEs in eukaryotic genomes is their inability to transpose by themselves, mainly as the result of sequence degeneration (by either mutations or deletions). Most of the elements are thus either inactive or non-autonomous. Considering that the bulk of some eukaryotic genomes derive from TEs, they have been conceived as “TE graveyards.” It has been shown that once an element has been inactivated, it progressively accumulates mutations and deletions at neutral rates until completely losing its identity or being lost from the host genome; however, it has also been shown that these “neutral sequences” might serve as raw material for domestication by host genomes. Results We have analyzed the sequence structural variations, nucleotide divergence, and pattern of insertions and deletions of several superfamilies of TEs belonging to both class I (long terminal repeats [LTRs] and non-LTRs [NLTRs]) and II in the genome of Anopheles gambiae, aiming at describing the landscape of deterioration of these elements in this particular genome. Our results describe a great diversity in patterns of deterioration, indicating lineage-specific differences including the presence of Solo-LTRs in the LTR lineage, 5′-deleted NLTRs, and several non-autonomous and MITEs in the class II families. Interestingly, we found fragments of NLTRs corresponding to the RT domain, which preserves high identity among them, suggesting a possible remaining genomic role for these domains. Conclusions We show here that the TEs in the An. gambiae genome deteriorate in different ways according to the class to which they belong. This diversity certainly has implications not only at the host genomic level but also at the amplification dynamic and evolution of the TE families themselves.
Collapse
Affiliation(s)
- Rita D Fernández-Medina
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| | | | | | | | | |
Collapse
|
32
|
Dong HT, Zhang L, Zheng KL, Yao HG, Chen J, Yu FC, Yu XX, Mao BZ, Zhao D, Yao J, Li DB. A Gaijin-like miniature inverted repeat transposable element is mobilized in rice during cell differentiation. BMC Genomics 2012; 13:135. [PMID: 22500940 PMCID: PMC3352178 DOI: 10.1186/1471-2164-13-135] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 04/13/2012] [Indexed: 12/24/2022] Open
Abstract
Background Miniature inverted repeat transposable element (MITE) is one type of transposable element (TE), which is largely found in eukaryotic genomes and involved in a wide variety of biological events. However, only few MITEs were proved to be currently active and their physiological function remains largely unknown. Results We found that the amplicon discrepancy of a gene locus LOC_Os01g0420 in different rice cultivar genomes was resulted from the existence of a member of Gaijin-like MITEs (mGing). This result indicated that mGing transposition was occurred at this gene locus. By using a modified transposon display (TD) analysis, the active transpositions of mGing were detected in rice Jiahua No. 1 genome under three conditions: in seedlings germinated from the seeds received a high dose γ-ray irradiation, in plantlets regenerated from anther-derived calli and from scutellum-derived calli, and were confirmed by PCR validation and sequencing. Sequence analysis revealed that single nucleotide polymorphisms (SNPs) or short additional DNA sequences at transposition sites post mGing transposition. It suggested that sequence modification was possibly taken place during mGing transposition. Furthermore, cell re-differentiation experiment showed that active transpositions of both mGing and mPing (another well studied MITE) were identified only in regenerated plantlets. Conclusions It is for the first time that mGing active transposition was demonstrated under γ-ray irradiation or in cell re-differentiation process in rice. This newly identified active MITE will provide a foundation for further analysis of the roles of MITEs in biological process.
Collapse
Affiliation(s)
- Hai-Tao Dong
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhang YM, Zheng YM, Xiao N, Wang LN, Zhang Y, Fang RX, Chen XY. Functional analysis of the HS185 regulatory element in the rice HSP70 promoter. Mol Biol Rep 2012; 39:1649-57. [PMID: 21633891 DOI: 10.1007/s11033-011-0904-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 05/18/2011] [Indexed: 01/19/2023]
Abstract
A series of HSP70 promoter deletion constructs was established. Analysis of beta-glucuronidase activities from the promoter deletion constructs in transient expression assays identified a cis-element, located from -493 to -308 bp upstream of the ATG start site. This element was designated as HS185 and has a crucial role in HSP70 promoter activity. HS185 has some characteristics of a miniature inverted-repeat transposable element (MITE), such as terminal inverted repeats (TIRs) (GGTCCCACA) and a putative target site duplication. There are 362 copies of homologous sequences of HS185 in the rice genome, which are preferentially distributed to non-coding regions. Based on these sequence features, we propose that HS185 is an uncharacterized rice MITE, possibly derived from the rice transposon Mutator-like element VIII family. Further transient expression assays showed that HS185 inhibited the enhancer activity of the cauliflower mosaic virus 35S promoter. These results demonstrate that not only is HS185 necessary for HSP70 promoter activity, but it also has a functional role as an insulator. This study explored new regulatory functions of non-coding repeat sequences in rice.
Collapse
Affiliation(s)
- Yu-Man Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
|
36
|
Tomita M, Okutani A, Beiles A, Nevo E. Genomic, RNA, and ecological divergences of the Revolver transposon-like multi-gene family in Triticeae. BMC Evol Biol 2011; 11:269. [PMID: 21943048 PMCID: PMC3203089 DOI: 10.1186/1471-2148-11-269] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 09/25/2011] [Indexed: 12/15/2022] Open
Abstract
Background Revolver is a newly discovered multi-gene family of transposable elements in the Triticeae genome. Revolver encompasses 2929 to 3041 bp, has 20 bp of terminal inverted repeated sequences at both ends, and contains a transcriptionally active gene encoding a DNA-binding-like protein. A putative TATA box is located at base 221, with a cap site at base 261 and a possible polyadenylation signal AATAAA at base 2918. Revolver shows considerable quantitative variation in wheat and its relatives. Results Revolver cDNAs varied between 395 and 2,182 bp in length. The first exon exhibited length variation, but the second and third exons were almost identical. These variants in the Revolver family shared the downstream region of the second intron, but varied structurally at the 5' first exon. There were 58 clones, which showed partial homology to Revolver, among 440,000 expressed sequence tagged (EST) clones sourced from Triticeae. In these Revolver homologues with lengths of 360-744 bp, the portion after the 2nd exon was conserved (65-79% homology), but the 1st exon sequences had mutually low homology, with mutations classified into 12 types, and did not have EST sequences with open reading frames (ORFs). By PCR with the 3'-flanking region of a typical genomic clone of Revolver-2 used as a single primer, rye chromosomes 1R and 5R could be simultaneously identified. Extensive eco-geographic diversity and divergence was observed among 161 genotypes of the single species Triticum dicoccoides collected from 18 populations in Israel with varying exposures to abiotic and biotic stresses (soil, temperature, altitude, water availability, and pathogens). Conclusions On the base of existing differences between Revolver variants, the molecular markers that can distinguish different rye chromosomes were developed. Eco-geographic diversification of wild emmer T. dicoccoides in Israel and high Revolver copy numbers are associated with higher rainfall and biotic stresses. The remarkable quantitative differences among copy numbers of Revolver in the same species from different ecosystems suggest strong amplification activity within the last 10,000 years. It is the interesting finding because the majority of Triticeae high-copy transposable elements seem to be inactive at the recent time except for BARE-1 element in Hordeum and the fact might be interesting to perceive the processes of plant adaptive evolution.
Collapse
Affiliation(s)
- Motonori Tomita
- Molecular Genetics Laboratory, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.
| | | | | | | |
Collapse
|
37
|
Sarilar V, Marmagne A, Brabant P, Joets J, Alix K. BraSto, a Stowaway MITE from Brassica: recently active copies preferentially accumulate in the gene space. PLANT MOLECULAR BIOLOGY 2011; 77:59-75. [PMID: 21626236 DOI: 10.1007/s11103-011-9794-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 05/12/2011] [Indexed: 05/02/2023]
Abstract
We characterized a Brassica miniature inverted repeat transposable element (MITE) from the Stowaway superfamily, designated BraSto (Bra ssica Sto waway). BraSto copy number was assessed using real-time quantitative PCR in the two diploid species B. rapa (genome A) and B. oleracea (genome C) and the corresponding allotetraploid species B. napus (genome AC). Phylogenetic relationships among a set of 131 BraSto copies were then analyzed. BraSto appears to have been only moderately amplified in the Brassica genome and was still active recently with marks of proliferation in both diploid Brassica species, which diverged 3.75 million years ago, but also in the allotetraploid species after reuniting of the two differentiated genomes. We characterized insertion sites for low-divergence BraSto copies among the gene space of the B. rapa genome using bioinformatics approaches. For BraSto copies localized nearby or within genes, we observed frequent associations of BraSto with putative promoters and regulatory regions of genes, but exclusion from coding regions. In addition, BraSto was significantly similar to several Brassica expressed sequence tags (ESTs), including stress-induced ESTs. We also demonstrated the enrichment of BraSto sequences in binding sites for transcription factors and other regulatory elements. Our results lead to the question of a role for BraSto in the regulation of gene expression: this putative role, if further confirmed experimentally, would help to obtain a new insight into the significance of MITEs in the functional plant genome.
Collapse
Affiliation(s)
- Véronique Sarilar
- AgroParisTech/CNRS, UMR 0320/UMR 8120 Génétique Végétale INRA/Univ. Paris-Sud/CNRS/AgroParisTech, Ferme du Moulon, 91190, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
38
|
Iorizzo M, Senalik DA, Grzebelus D, Bowman M, Cavagnaro PF, Matvienko M, Ashrafi H, Van Deynze A, Simon PW. De novo assembly and characterization of the carrot transcriptome reveals novel genes, new markers, and genetic diversity. BMC Genomics 2011; 12:389. [PMID: 21810238 PMCID: PMC3224100 DOI: 10.1186/1471-2164-12-389] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 08/02/2011] [Indexed: 12/17/2022] Open
Abstract
Background Among next generation sequence technologies, platforms such as Illumina and SOLiD produce short reads but with higher coverage and lower cost per sequenced nucleotide than 454 or Sanger. A challenge now is to develop efficient strategies to use short-read length platforms for de novo assembly and marker development. The scope of this study was to develop a de novo assembly of carrot ESTs from multiple genotypes using the Illumina platform, and to identify polymorphisms. Results A de novo assembly of transcriptome sequence from four genetic backgrounds produced 58,751 contigs and singletons. Over 50% of these assembled sequences were annotated allowing detection of transposable elements and new carrot anthocyanin genes. Presence of multiple genetic backgrounds in our assembly allowed the identification of 114 computationally polymorphic SSRs, and 20,058 SNPs at a depth of coverage of 20× or more. Polymorphisms were predominantly between inbred lines except for the cultivated x wild RIL pool which had high intra-sample polymorphism. About 90% and 88% of tested SSR and SNP primers amplified a product, of which 70% and 46%, respectively, were of the expected size. Out of verified SSR and SNP markers 84% and 82% were polymorphic. About 25% of SNPs genotyped were polymorphic in two diverse mapping populations. Conclusions This study confirmed the potential of short read platforms for de novo EST assembly and identification of genetic polymorphisms in carrot. In addition we produced the first large-scale transcriptome of carrot, a species lacking genomic resources.
Collapse
Affiliation(s)
- Massimo Iorizzo
- Department of Horticulture, University of Wisconsin, 1575 Linden Drive, Madison, WI 53706, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Fernández-Medina RD, Struchiner CJ, Ribeiro JMC. Novel transposable elements from Anopheles gambiae. BMC Genomics 2011; 12:260. [PMID: 21605407 PMCID: PMC3212995 DOI: 10.1186/1471-2164-12-260] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 05/23/2011] [Indexed: 12/25/2022] Open
Abstract
Background Transposable elements (TEs) are DNA sequences, present in the genome of most eukaryotic organisms that hold the key characteristic of being able to mobilize and increase their copy number within chromosomes. These elements are important for eukaryotic genome structure and evolution and lately have been considered as potential drivers for introducing transgenes into pathogen-transmitting insects as a means to control vector-borne diseases. The aim of this work was to catalog the diversity and abundance of TEs within the Anopheles gambiae genome using the PILER tool and to consolidate a database in the form of a hyperlinked spreadsheet containing detailed and readily available information about the TEs present in the genome of An. gambiae. Results Here we present the spreadsheet named AnoTExcel that constitutes a database with detailed information on most of the repetitive elements present in the genome of the mosquito. Despite previous work on this topic, our approach permitted the identification and characterization both of previously described and novel TEs that are further described in detailed. Conclusions Identification and characterization of TEs in a given genome is important as a way to understand the diversity and evolution of the whole set of TEs present in a given species. This work contributes to a better understanding of the landscape of TEs present in the mosquito genome. It also presents a novel platform for the identification, analysis, and characterization of TEs on sequenced genomes.
Collapse
Affiliation(s)
- Rita D Fernández-Medina
- Fundação Oswaldo Cruz, Escola Nacional de Saúde Pública Sergio Arouca, Av, Brasil, 4365, 21040 360, Rio de Janeiro, Brazil.
| | | | | |
Collapse
|
40
|
Tenaillon MI, Hufford MB, Gaut BS, Ross-Ibarra J. Genome size and transposable element content as determined by high-throughput sequencing in maize and Zea luxurians. Genome Biol Evol 2011; 3:219-29. [PMID: 21296765 PMCID: PMC3068001 DOI: 10.1093/gbe/evr008] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The genome of maize (Zea mays ssp. mays) consists mostly of transposable elements (TEs) and varies in size among lines. This variation extends to other species in the genus Zea: although maize and Zea luxurians diverged only ∼140,000 years ago, their genomes differ in size by ∼50%. We used paired-end Illumina sequencing to evaluate the potential contribution of TEs to the genome size difference between these two species. We aligned the reads both to a filtered gene set and to an exemplar database of unique repeats representing 1,514 TE families; ∼85% of reads mapped against TE repeats in both species. The relative contribution of TE families to the B73 genome was highly correlated with previous estimates, suggesting that reliable estimates of TE content can be obtained from short high-throughput sequencing reads, even at low coverage. Because we used paired-end reads, we could assess whether a TE was near a gene by determining if one paired read mapped to a TE and the second read mapped to a gene. Using this method, Class 2 DNA elements were found significantly more often in genic regions than Class 1 RNA elements, but Class 1 elements were found more often near other TEs. Overall, we found that both Class 1 and 2 TE families account for ∼70% of the genome size difference between B73 and luxurians. Interestingly, the relative abundance of TE families was conserved between species (r = 0.97), suggesting genome-wide control of TE content rather than family-specific effects.
Collapse
Affiliation(s)
- Maud I Tenaillon
- CNRS, UMR de Génétique Végétale, INRA/CNRS/Univ Paris-Sud/AgroParisTech, Ferme du Moulon, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
41
|
Lisch D, Slotkin RK. Strategies for silencing and escape: the ancient struggle between transposable elements and their hosts. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 292:119-52. [PMID: 22078960 DOI: 10.1016/b978-0-12-386033-0.00003-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over the past several years, there has been an explosion in our understanding of the mechanisms by which plant transposable elements (TEs) are epigenetically silenced and maintained in an inactive state over long periods of time. This highly efficient process results in vast numbers of inactive TEs; indeed, the majority of many plant genomes are composed of these quiescent elements. This observation has led to the rather static view that TEs represent an essentially inert portion of plant genomes. However, recent work has demonstrated that TE silencing is a highly dynamic process that often involves transcription of TEs at particular times and places during plant development. Plants appear to use transcripts from silenced TEs as an ongoing source of information concerning the mobile portion of the genome. In contrast to our understanding of silencing pathways, we know relatively little about the ways in which TEs evade silencing. However, vast differences in TE content between even closely related plant species suggest that they are often wildly successful at doing so. Here, we discuss TE activity in plants as the result of a constantly shifting balance between host strategies for TE silencing and TE strategies for escape and amplification.
Collapse
Affiliation(s)
- Damon Lisch
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | | |
Collapse
|
42
|
Tomita M, Tanisaka T. Long-culm mutations with dominant genes are induced by mPing transposon in rice. Hereditas 2010; 147:256-63. [DOI: 10.1111/j.1601-5223.2010.02162.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
43
|
Han Y, Wessler SR. MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences. Nucleic Acids Res 2010; 38:e199. [PMID: 20880995 PMCID: PMC3001096 DOI: 10.1093/nar/gkq862] [Citation(s) in RCA: 367] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Miniature inverted-repeat transposable elements (MITEs) are a special type of Class 2 non-autonomous transposable element (TE) that are abundant in the non-coding regions of the genes of many plant and animal species. The accurate identification of MITEs has been a challenge for existing programs because they lack coding sequences and, as such, evolve very rapidly. Because of their importance to gene and genome evolution, we developed MITE-Hunter, a program pipeline that can identify MITEs as well as other small Class 2 non-autonomous TEs from genomic DNA data sets. The output of MITE-Hunter is composed of consensus TE sequences grouped into families that can be used as a library file for homology-based TE detection programs such as RepeatMasker. MITE-Hunter was evaluated by searching the rice genomic database and comparing the output with known rice TEs. It discovered most of the previously reported rice MITEs (97.6%), and found sixteen new elements. MITE-Hunter was also compared with two other MITE discovery programs, FINDMITE and MUST. Unlike MITE-Hunter, neither of these programs can search large genomic data sets including whole genome sequences. More importantly, MITE-Hunter is significantly more accurate than either FINDMITE or MUST as the vast majority of their outputs are false-positives.
Collapse
Affiliation(s)
- Yujun Han
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
44
|
Han MJ, Shen YH, Gao YH, Chen LY, Xiang ZH, Zhang Z. Burst expansion, distribution and diversification of MITEs in the silkworm genome. BMC Genomics 2010; 11:520. [PMID: 20875122 PMCID: PMC2997013 DOI: 10.1186/1471-2164-11-520] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 09/27/2010] [Indexed: 01/31/2023] Open
Abstract
Background Miniature inverted-repeat transposable elements (MITEs) are widespread in plants and animals. Although silkworm (Bombyx mori) has a large amount of and a variety of transposable elements, the genome-wide information of the silkworm MITEs is unknown. Results We used structure-based and homology approaches to search for MITEs in the silkworm genome. We identified 17 MITE families with a total of 5785 members, accounting for ~0.4% of the genome. 7 of 17 MITE families are completely novel based on the nucleotide composition of target site duplication (TSD) and/or terminal inverted repeats (TIR). Silkworm MITEs were widely and nonrandom distributed in the genome. One family named BmMITE-2 might experience a recent burst expansion. Network and diversity analyses for each family revealed different diversification patterns of the silkworm MITEs, reflecting the signatures of genome-shocks that silkworm experienced. Most silkworm MITEs preferentially inserted into or near genes and BmMITE-11 that encodes a germline-restricted small RNA might silence its the closest genes in silkworm ovary through a small RNA pathway. Conclusions Silkworm harbors 17 MITE families. The silkworm MITEs preferred to reside in or near genes and one MITE might be involved in gene silence. Our results emphasize the exceptional role of MITEs in transcriptional regulation of genes and have general implications to understand interaction between MITEs and their host genome.
Collapse
Affiliation(s)
- Min-Jin Han
- The Key Sericultural Laboratory of Agricultural Ministry, Southwest University, Chongqing 400715, China.
| | | | | | | | | | | |
Collapse
|
45
|
Muñoz-López M, García-Pérez JL. DNA transposons: nature and applications in genomics. Curr Genomics 2010; 11:115-28. [PMID: 20885819 PMCID: PMC2874221 DOI: 10.2174/138920210790886871] [Citation(s) in RCA: 266] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2009] [Revised: 11/18/2009] [Accepted: 12/01/2009] [Indexed: 12/19/2022] Open
Abstract
Repeated DNA makes up a large fraction of a typical mammalian genome, and some repetitive elements are able to move within the genome (transposons and retrotransposons). DNA transposons move from one genomic location to another by a cut-and-paste mechanism. They are powerful forces of genetic change and have played a significant role in the evolution of many genomes. As genetic tools, DNA transposons can be used to introduce a piece of foreign DNA into a genome. Indeed, they have been used for transgenesis and insertional mutagenesis in different organisms, since these elements are not generally dependent on host factors to mediate their mobility. Thus, DNA transposons are useful tools to analyze the regulatory genome, study embryonic development, identify genes and pathways implicated in disease or pathogenesis of pathogens, and even contribute to gene therapy. In this review, we will describe the nature of these elements and discuss recent advances in this field of research, as well as our evolving knowledge of the DNA transposons most widely used in these studies.
Collapse
Affiliation(s)
- Martín Muñoz-López
- Andalusian Stem Cell Bank, Center for Biomedical Research, University of Granada, Avda. del Conocimiento s/n, Armilla, 18100, Granada, Spain
| | - José L. García-Pérez
- Andalusian Stem Cell Bank, Center for Biomedical Research, University of Granada, Avda. del Conocimiento s/n, Armilla, 18100, Granada, Spain
| |
Collapse
|
46
|
Zerjal T, Joets J, Alix K, Grandbastien MA, Tenaillon MI. Contrasting evolutionary patterns and target specificities among three Tourist-like MITE families in the maize genome. PLANT MOLECULAR BIOLOGY 2009; 71:99-114. [PMID: 19533380 DOI: 10.1007/s11103-009-9511-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 05/31/2009] [Indexed: 05/16/2023]
Abstract
Miniature inverted-repeat transposable elements (MITEs) are short, non autonomous DNA elements that are widespread and abundant in plant genomes. The high sequence and size conservation observed in many MITE families suggest that they have spread recently throughout their respective host genomes. Here we present a maize genome wide analysis of three Tourist-like MITE families, mPIF, and two previously uncharacterized families, ZmV1 and Zead8. We undertook a bioinformatic analysis of MITE insertion sites, developed methyl-sensitive transposon display (M-STD) assays to estimate the associated level of CpG methylation at MITE flanking regions, and conducted a population genetics approach to investigate MITE patterns of expansion. Our results reveal that the three MITE families insert into genomic regions that present specific molecular features: they are preferentially AT rich, present low level of cytosine methylation as compared to the LTR retrotransposon Grande, and target site duplications are flanked by large and conserved palindromic sequences. Moreover, the analysis of MITE distances from predicted genes shows that 73% of 263 copies are inserted at less than 5 kb from the nearest predicted gene, and copies from Zead8 family are significantly more abundant upstream of genes. By employing a population genetic approach we identified contrasting patterns of expansion among the three MITE families. All elements seem to have inserted roughly 1 million years ago but ZmV1 and Zead8 families present evidences for activity of several master copies within the last 0.4 Mya.
Collapse
Affiliation(s)
- Tatiana Zerjal
- Centre National de la Recherche Scientifique, UMR 0320/UMR 8120, Génétique Végétale, Gif-sur-Yvette, France.
| | | | | | | | | |
Collapse
|
47
|
Wang A, Yamakake J, Kudo H, Wakasa Y, Hatsuyama Y, Igarashi M, Kasai A, Li T, Harada T. Null mutation of the MdACS3 gene, coding for a ripening-specific 1-aminocyclopropane-1-carboxylate synthase, leads to long shelf life in apple fruit. PLANT PHYSIOLOGY 2009; 151:391-9. [PMID: 19587104 PMCID: PMC2735996 DOI: 10.1104/pp.109.135822] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 06/28/2009] [Indexed: 05/20/2023]
Abstract
Expression of MdACS1, coding for 1-aminocyclopropane-1-carboxylate synthase (ACS), parallels the level of ethylene production in ripening apple (Malus domestica) fruit. Here we show that expression of another ripening-specific ACS gene (MdACS3) precedes the initiation of MdACS1 expression by approximately 3 weeks; MdACS3 expression then gradually decreases as MdACS1 expression increases. Because MdACS3 expression continues in ripening fruit treated with 1-methylcyclopropene, its transcription appears to be regulated by a negative feedback mechanism. Three genes in the MdACS3 family (a, b, and c) were isolated from a genomic library, but two of them (MdACS3b and MdACS3c) possess a 333-bp transposon-like insertion in their 5' flanking region that may prevent transcription of these genes during ripening. A single nucleotide polymorphism in the coding region of MdACS3a results in an amino acid substitution (glycine-289 --> valine) in the active site that inactivates the enzyme. Furthermore, another null allele of MdACS3a, Mdacs3a, showing no ability to be transcribed, was found by DNA sequencing. Apple cultivars homozygous or heterozygous for both null allelotypes showed no or very low expression of ripening-related genes and maintained fruit firmness. These results suggest that MdACS3a plays a crucial role in regulation of fruit ripening in apple, and is a possible determinant of ethylene production and shelf life in apple fruit.
Collapse
Affiliation(s)
- Aide Wang
- Laboratory of Plant Breeding and Genetics, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bergemann M, Lespinet O, M'Barek SB, Daboussi MJ, Dufresne M. Genome-wide analysis of the Fusarium oxysporum mimp family of MITEs and mobilization of both native and de novo created mimps. J Mol Evol 2009; 67:631-42. [PMID: 18982380 DOI: 10.1007/s00239-008-9164-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 08/28/2008] [Indexed: 01/15/2023]
Abstract
We have performed a genome-wide analysis of the mimp family of miniature inverted-repeat transposable elements, taking advantage of the recent release of the F. oxysporum genome sequence. Using different approaches, we detected 103 mimp elements, corresponding to 75 nonredundant copies, half of which are located on a single small chromosome. Phylogenetic analysis identified at least six subfamilies, all remarkably homogeneous in size and sequence. Based on high sequence identity in the terminal inverted repeats (TIRs), mimp elements were connected to different impala members. To gain insights into the mechanisms at the origin and amplification of mimps, we studied the potential of impala to cross-mobilize different mimps, native but also created de novo by inserting a short DNA segment between two TIRs. Our results show that TIR sequences are the main requirement for mobilization but that additional parameters in the internal region are likely to influence transposition efficiency. Finally, we show that integration site preference of native versus newly transposed mimps greatly varies in the host genomes used in this study.
Collapse
Affiliation(s)
- Mara Bergemann
- Institut de Génétique et Microbiologie, Université Paris-Sud 11, CNRS, UMR8621, 91405 Orsay, France
| | | | | | | | | |
Collapse
|
49
|
Petersen G, Seberg O. StowawayMITEs inHordeum(Poaceae): evolutionary history, ancestral elements and classification. Cladistics 2009; 25:198-208. [DOI: 10.1111/j.1096-0031.2008.00245.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
50
|
The role of repetitive DNA in structure and evolution of sex chromosomes in plants. Heredity (Edinb) 2009; 102:533-41. [PMID: 19277056 DOI: 10.1038/hdy.2009.17] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Eukaryotic genomes contain a large proportion of repetitive DNA sequences, mostly transposable elements (TEs) and tandem repeats. These repetitive sequences often colonize specific chromosomal (Y or W chromosomes, B chromosomes) or subchromosomal (telomeres, centromeres) niches. Sex chromosomes, especially non-recombining regions of the Y chromosome, are subject to different evolutionary forces compared with autosomes. In non-recombining regions of the Y chromosome repetitive DNA sequences are accumulated, representing a dominant and early process forming the Y chromosome, probably before genes start to degenerate. Here we review the occurrence and role of repetitive DNA in Y chromosome evolution in various species with a focus on dioecious plants. We also discuss the potential link between recombination and transposition in shaping genomes.
Collapse
|