1
|
Gamble N, Bradu A, Caldwell JA, McKeever J, Bolonduro O, Ermis E, Kaiser C, Kim Y, Parks B, Klemm S, Greenleaf WJ, Crabtree GR, Koh AS. PU.1 and BCL11B sequentially cooperate with RUNX1 to anchor mSWI/SNF to poise the T cell effector landscape. Nat Immunol 2024; 25:860-872. [PMID: 38632339 PMCID: PMC11089574 DOI: 10.1038/s41590-024-01807-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/11/2024] [Indexed: 04/19/2024]
Abstract
Adaptive immunity relies on specialized effector functions elicited by lymphocytes, yet how antigen recognition activates appropriate effector responses through nonspecific signaling intermediates is unclear. Here we examined the role of chromatin priming in specifying the functional outputs of effector T cells and found that most of the cis-regulatory landscape active in effector T cells was poised early in development before the expression of the T cell antigen receptor. We identified two principal mechanisms underpinning this poised landscape: the recruitment of the nucleosome remodeler mammalian SWItch/Sucrose Non-Fermentable (mSWI/SNF) by the transcription factors RUNX1 and PU.1 to establish chromatin accessibility at T effector loci; and a 'relay' whereby the transcription factor BCL11B succeeded PU.1 to maintain occupancy of the chromatin remodeling complex mSWI/SNF together with RUNX1, after PU.1 silencing during lineage commitment. These mechanisms define modes by which T cells acquire the potential to elicit specialized effector functions early in their ontogeny and underscore the importance of integrating extrinsic cues to the developmentally specified intrinsic program.
Collapse
Affiliation(s)
- Noah Gamble
- Department of Pathology, University of Chicago, Chicago, IL, USA
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL, USA
| | - Alexandra Bradu
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Jason A Caldwell
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Joshua McKeever
- Department of Pathology, University of Chicago, Chicago, IL, USA
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, IL, USA
| | - Olubusayo Bolonduro
- Department of Pathology, University of Chicago, Chicago, IL, USA
- Committee on Genetics, Genomics, Systems Biology, University of Chicago, Chicago, IL, USA
| | - Ebru Ermis
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Caroline Kaiser
- Department of Pathology, University of Chicago, Chicago, IL, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - YeEun Kim
- Immunology Program, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Benjamin Parks
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Sandy Klemm
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - William J Greenleaf
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Gerald R Crabtree
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Andrew S Koh
- Department of Pathology, University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Jana M, Mondal S, Jana A, Pahan K. Induction of IL-2 by interleukin-12 p40 homodimer and IL-12, but not IL-23, in microglia and macrophages: Implications for multiple sclerosis. Cytokine 2024; 174:156457. [PMID: 38056248 PMCID: PMC10872483 DOI: 10.1016/j.cyto.2023.156457] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/11/2023] [Accepted: 11/26/2023] [Indexed: 12/08/2023]
Abstract
The level of IL-2 increases markedly in serum and central nervous system (CNS) of patients with multiple sclerosis (MS) and animals with experimental allergic encephalomyelitis (EAE). However, mechanisms by which IL-2 is induced under autoimmune demyelinating conditions are poorly understood. The present study underlines the importance of IL-12p40 homodimer (p402), the so-called biologically inactive molecule, in inducing the expression of IL-2 in mouse BV-2 microglial cells, primary mouse and human microglia, mouse peritoneal macrophages, RAW264.7 macrophages, and T cells. Interestingly, we found that p402 and IL-12p70 (IL-12), but not IL-23, dose-dependently induced the production of IL-2 and the expression of IL-2 mRNA in microglial cells. Similarly, p402 also induced the activation of IL-2 promoter in microglial cells and RAW264.7 cells. Among various stimuli tested, p402 was the most potent stimulus followed by IFN-γ, bacterial lipopolysaccharide, HIV-1 gp120, and IL-12 in inducing the activation of IL-2 promoter in microglial cells. Moreover, p402, but not IL-23, increased NFATc2 mRNA expression and the transcriptional activity of NFAT. Furthermore, induction of IL-2 mRNA expression by over-expression of p40, but not by p19, cDNA indicated that p40, but not p19, is responsible for the induction of IL-2 mRNA in microglia. Finally, by using primary microglia from IL to 12 receptor β1 deficient (IL-12Rβ1-/-) and IL-12 receptor β2 deficient (IL-12Rβ2-/-) mice, we demonstrate that p402 induces the expression of IL-2 via IL-12Rβ1, but not IL-12Rβ2. In experimental autoimmune encephalomyelitis, an animal model of MS, neutralization of p402 by mAb a3-1d led to decrease in clinical symptoms and reduction in IL-2 in T cells and microglia. These results delineate a new biological function of p402, which is missing in the so-called autoimmune cytokine IL-23, and raise the possibility of controlling increased IL-2 and the disease process of MS via neutralization of p402.
Collapse
Affiliation(s)
- Malabendu Jana
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Susanta Mondal
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Arundhati Jana
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA; Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, 820 South Damen Avenue, Chicago, IL, USA.
| |
Collapse
|
3
|
Behrens G, Heissmeyer V. Cooperation of RNA-Binding Proteins – a Focus on Roquin Function in T Cells. Front Immunol 2022; 13:839762. [PMID: 35251035 PMCID: PMC8894612 DOI: 10.3389/fimmu.2022.839762] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/31/2022] [Indexed: 12/18/2022] Open
Abstract
Post-transcriptional gene regulation by RNA-binding proteins (RBPs) is important in the prevention of inflammatory and autoimmune diseases. With respect to T cell activation and differentiation, the RBPs Roquin-1/2 and Regnase-1 play pivotal roles by inducing degradation and/or translational silencing of target mRNAs. These targets encode important proinflammatory mediators and thus Roquin and Regnase-1 functions dampen cellular programs that can lead to inflammation and autoimmune disease. Recent findings demonstrate direct physical interaction of both RBPs. Here, we propose that cooperativity of trans-acting factors may be more generally used to reinforce the regulatory impact on selected targets and promote specific cell fate decisions. We develop this concept for Roquin and Regnase-1 function in resting and activated T cells and discuss the involvement in autoimmunity as well as how the therapeutic potential can be used in anti-tumor therapies.
Collapse
Affiliation(s)
- Gesine Behrens
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
| | - Vigo Heissmeyer
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, Munich, Germany
- *Correspondence: Vigo Heissmeyer,
| |
Collapse
|
4
|
Chiu CY, Chang JJ, Dantanarayana AI, Soloman A, Evans VA, Pascoe R, Gubser C, Trautman L, Fromentin R, Chomont N, McMahon JH, Cameron PU, Rasmussen TA, Lewin SR. Combination Immune Checkpoint Blockade Enhances IL-2 and CD107a Production from HIV-Specific T Cells Ex Vivo in People Living with HIV on Antiretroviral Therapy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:54-62. [PMID: 34853078 PMCID: PMC8702486 DOI: 10.4049/jimmunol.2100367] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/13/2021] [Indexed: 01/03/2023]
Abstract
In people with HIV (PWH) on antiretroviral therapy (ART), immune dysfunction persists, including elevated expression of immune checkpoint (IC) proteins on total and HIV-specific T cells. Reversing immune exhaustion is one strategy to enhance the elimination of HIV-infected cells that persist in PWH on ART. We aimed to evaluate whether blocking CTL-associated protein 4 (CTLA-4), programmed cell death protein 1 (PD-1), T cell Ig domain and mucin domain 3 (TIM-3), T cell Ig and ITIM domain (TIGIT) and lymphocyte activation gene-3 (LAG-3) alone or in combination would enhance HIV-specific CD4+ and CD8+ T cell function ex vivo. Intracellular cytokine staining was performed using human PBMCs from PWH on ART (n = 11) and expression of CD107a, IFN-γ, TNF-α, and IL-2 was quantified with HIV peptides and Abs to IC. We found the following: 1) IC blockade enhanced the induction of CD107a and IL-2 but not IFN-γ and TNF-α in response to Gag and Nef peptides; 2) the induction of CD107a and IL-2 was greatest with multiple combinations of two Abs; and 3) Abs to LAG-3, CTLA-4, and TIGIT in combinations showed synergistic induction of IL-2 in HIV-specific CD8+ and CD107a and IL-2 production in HIV-specific CD4+ and CD8+ T cells. These results demonstrate that the combination of Abs to LAG-3, CTLA-4, or TIGIT can increase the frequency of cells expressing CD107a and IL-2 that associated with cytotoxicity and survival of HIV-specific CD4+ and CD8+ T cells in PWH on ART. These combinations should be further explored for an HIV cure.
Collapse
Affiliation(s)
- Chris Y. Chiu
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Judy J. Chang
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Ashanti I. Dantanarayana
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Ajantha Soloman
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Vanessa A. Evans
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Rachel Pascoe
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Céline Gubser
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Lydie Trautman
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Rémi Fromentin
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec H2X 3E4, Canada
| | - Nicolas Chomont
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec H2X 3E4, Canada;,Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - James H. McMahon
- Department of Infectious Diseases, Monash University and the Alfred Hospital, Melbourne, Victoria 3010, Australia
| | - Paul U. Cameron
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia;,Department of Infectious Diseases, Monash University and the Alfred Hospital, Melbourne, Victoria 3010, Australia
| | - Thomas A. Rasmussen
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Sharon R. Lewin
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia;,Department of Infectious Diseases, Monash University and the Alfred Hospital, Melbourne, Victoria 3010, Australia;,Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000
| |
Collapse
|
5
|
Uesugi S, Hakozaki M, Kanno Y, Takahashi H, Kudo Y, Kimura KI, Yamada H, Yano A. A yeast-based screening system identified bakkenolide B contained in Petasites japonicus as an inhibitor of interleukin-2 production in a human T cell line. Biosci Biotechnol Biochem 2021; 85:2153-2160. [PMID: 34251393 DOI: 10.1093/bbb/zbab130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/02/2021] [Indexed: 01/13/2023]
Abstract
Ca2+ signaling is related to various diseases such as allergies, diabetes, and cancer. We explored Ca2+ signaling inhibitors in natural resources using a yeast-based screening method and found bakkenolide B from the flower buds of edible wild plant, Petasites japonicus, using the YNS17 strain (zds1Δ erg3Δ pdr1/3Δ). Bakkenolide B exhibited growth-restoring activity against the YNS17 strain and induced Li+ sensitivity of wild-type yeast cells, suggesting that it inhibits the calcineurin pathway. Additionally, bakkenolide B inhibited interleukin-2 production at gene and protein levels in Jurkat cells, a human T cell line, but not the in vitro phosphatase activity of human recombinant calcineurin, an upstream regulator of interleukin-2 production. Furthermore, bakkenolide A showed weak activity in YNS17 and Jurkat cells compared with bakkenolide B. These findings revealed new biological effects and the structure-activity relationships of bakkenolides contained in P. japonicus as inhibitors of interleukin-2 production in human T cells.
Collapse
Affiliation(s)
- Shota Uesugi
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | | | - Yuko Kanno
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Honoka Takahashi
- Graduate School of Arts and Sciences, Graduate Course in Biological Chemistry and Food Science, Iwate University, Morioka, Iwate, Japan
| | - Yui Kudo
- Graduate School of Arts and Sciences, Graduate Course in Biological Chemistry and Food Science, Iwate University, Morioka, Iwate, Japan
| | - Ken-Ichi Kimura
- Graduate School of Arts and Sciences, Graduate Course in Biological Chemistry and Food Science, Iwate University, Morioka, Iwate, Japan
| | - Hidetoshi Yamada
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
- Department of Life and Health Sciences, Teikyo University of Science, Adachi-ku, Tokyo, Japan
| | - Akira Yano
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| |
Collapse
|
6
|
Yue T, Zhan X, Zhang D, Jain R, Wang KW, Choi JH, Misawa T, Su L, Quan J, Hildebrand S, Xu D, Li X, Turer E, Sun L, Moresco EMY, Beutler B. SLFN2 protection of tRNAs from stress-induced cleavage is essential for T cell-mediated immunity. Science 2021; 372:372/6543/eaba4220. [PMID: 33986151 PMCID: PMC8442736 DOI: 10.1126/science.aba4220] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/02/2020] [Accepted: 03/25/2021] [Indexed: 01/05/2023]
Abstract
Reactive oxygen species (ROS) increase in activated T cells because of metabolic activity induced to support T cell proliferation and differentiation. We show that these ROS trigger an oxidative stress response that leads to translation repression. This response is countered by Schlafen 2 (SLFN2), which directly binds transfer RNAs (tRNAs) to protect them from cleavage by the ribonuclease angiogenin. T cell-specific SLFN2 deficiency results in the accumulation of tRNA fragments, which inhibit translation and promote stress-granule formation. Interleukin-2 receptor β (IL-2Rβ) and IL-2Rγ fail to be translationally up-regulated after T cell receptor stimulation, rendering SLFN2-deficient T cells insensitive to interleukin-2's mitogenic effects. SLFN2 confers resistance against the ROS-mediated translation-inhibitory effects of oxidative stress normally induced by T cell activation, permitting the robust protein synthesis necessary for T cell expansion and immunity.
Collapse
Affiliation(s)
- Tao Yue
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaoming Zhan
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Duanwu Zhang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ruchi Jain
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kuan-wen Wang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jin Huk Choi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Takuma Misawa
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lijing Su
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiexia Quan
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sara Hildebrand
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Darui Xu
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaohong Li
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Emre Turer
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Internal Medicine, Division of Gastroenterology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lei Sun
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eva Marie Y. Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Correspondence to:
| |
Collapse
|
7
|
Rothenberg EV. Logic and lineage impacts on functional transcription factor deployment for T-cell fate commitment. Biophys J 2021; 120:4162-4181. [PMID: 33838137 PMCID: PMC8516641 DOI: 10.1016/j.bpj.2021.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/22/2021] [Accepted: 04/02/2021] [Indexed: 11/19/2022] Open
Abstract
Transcription factors are the major agents that read the regulatory sequence information in the genome to initiate changes in expression of specific genes, both in development and in physiological activation responses. Their actions depend on site-specific DNA binding and are largely guided by their individual DNA target sequence specificities. However, their action is far more conditional in a real developmental context than would be expected for simple reading of local genomic DNA sequence, which is common to all cells in the organism. They are constrained by slow-changing chromatin states and by interactions with other transcription factors, which affect their occupancy patterns of potential sites across the genome. These mechanisms lead to emergent discontinuities in function even for transcription factors with minimally changing expression. This is well revealed by diverse lineages of blood cells developing throughout life from hematopoietic stem cells, which use overlapping combinations of transcription factors to drive strongly divergent gene regulation programs. Here, using development of T lymphocytes from hematopoietic multipotent progenitor cells as a focus, recent evidence is reviewed on how binding specificity and dynamics, transcription factor cooperativity, and chromatin state changes impact the effective regulatory functions of key transcription factors including PU.1, Runx1, Notch-RBPJ, and Bcl11b.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California.
| |
Collapse
|
8
|
Chen JC, Ou LS, Kuo ML, Tseng LY, Chang HL. Fetal exposure to oncoantigen elicited antigen-specific adaptive immunity against tumorigenesis. J Immunother Cancer 2020; 8:e000137. [PMID: 32561637 PMCID: PMC7304846 DOI: 10.1136/jitc-2019-000137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Envisioned as a similar process to tumorigenesis in terms of biological behaviors and molecular basis, embryogenesis necessitates an immune surveillance system to eliminate erratically transformed cells. Our previous study demonstrated that fetal macrophage-like phagocytes triggered Th2-skewed immunity following endocytosing prenatally administered ovalbumin to facilitate postnatal allergic airway responses, highlighting the critical role fetal phagocytes played in dealing with antigens present in developing fetuses and shaping subsequent immune responses. It prompted us to examine whether fetuses could mount Th1 tumoricidal immunity against tumorigenesis following in utero exposure to tumor antigens. METHODS Gestational day 14 murine fetuses underwent in utero injection of Th1-promoting human papilloma virus (HPV) E7 peptides. Postnatally, recipients were examined for immunological consequences and the resistance to TC-1 tumorigenesis. RESULTS Fetal exposure to HPV E7 did not cause tolerance but rather immunization in the recipients, characterized by proinflammatory Th1 polarization of their lymphocytes. Fetal macrophage-like phagocytes were responsible for taking up HPV E7 and triggering HPV E7-specific T-cell cytotoxicity and humoral immunity that rendered recipients resistant to TC-1 tumorigenesis in postnatal life. Adoptive transfer of HPV E7-loaded fetal phagocytes also elicited Th1 immunity with rapid expansion of HPV E7-specific cytotoxic CD8+ T-cell clones in response to TC-1 cell challenge so as to protect the recipients from TC-1 tumorigenesis, but failed to completely eliminate pre-existing TC-1 cells despite perceptible attenuation of local TC-1 tumor growth. CONCLUSIONS Our study revealed that Th2-biasing fetus was not immune-privileged to foreign peptides, but competent to mount Th1 cytotoxic immunity and generate immunoglobulins against tumorigenesis following in utero exposure to Th1-promoting oncoantigen. It shed light on the role of fetal macrophage-like phagocytes in bridging toward tumor antigen-specific cellular and humoral immunity potentially as an immune surveillance system to eliminate transformed cells that might be egressing during embryogenesis and leftover until postnatal life.
Collapse
Affiliation(s)
- Jeng-Chang Chen
- Department of Surgery, Chang Gung Children's Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Liang-Shiou Ou
- Division of Allergy, Asthma and Rheumatology, Department of Pediatrics, Chang Gung Children's Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Ling Kuo
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Li-Yun Tseng
- Pediatric Research Center, Chang Gung Children's Hospital, Taoyuan, Taiwan
| | - Hsueh-Ling Chang
- Pediatric Research Center, Chang Gung Children's Hospital, Taoyuan, Taiwan
| |
Collapse
|
9
|
Rothenberg EV. Encounters across networks: Windows into principles of genomic regulation. Mar Genomics 2019; 44:3-12. [PMID: 30661741 DOI: 10.1016/j.margen.2019.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/06/2019] [Accepted: 01/06/2019] [Indexed: 12/13/2022]
Abstract
Gene regulatory networks account for the ability of the genome to program development in complex multi-cellular organisms. Such networks are based on principles of gene regulation by combinations of transcription factors that bind to specific cis-regulatory DNA sites to activate transcription. These cis-regulatory regions mediate logic processing at each network node, enabling progressive increases in organismal complexity with development. Gene regulatory network explanations of development have been shown to account for patterning and cell type diversification in fly and sea urchin embryonic systems, where networks are characterized by fast coupling between transcriptional inputs and changes in target gene transcription rates, and crucial cis-regulatory elements are concentrated relatively close to the protein coding sequences of the target genes, thus facilitating their identification. Stem cell-based development in post-embryonic mammalian systems also depends on gene networks, but differs from the fly and sea urchin systems. First, the number of regulatory elements per gene and the distances between regulatory elements and the genes they control are considerably larger, forcing searches via genome-wide transcription factor binding surveys rather than functional assays. Second, the intrinsic timing of network state transitions can be slowed considerably by the need to undo stem-cell chromatin configurations, which presumably add stability to stem-cell states but retard responses to transcription factor changes during differentiation. The dispersed, partially redundant cis-regulatory systems controlling gene expression and the slow state transition kinetics in these systems already reveal new insights and opportunities to extend understanding of the repertoire of gene networks and regulatory system logic.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
10
|
Katsuyama T, Tsokos GC, Moulton VR. Aberrant T Cell Signaling and Subsets in Systemic Lupus Erythematosus. Front Immunol 2018; 9:1088. [PMID: 29868033 PMCID: PMC5967272 DOI: 10.3389/fimmu.2018.01088] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/01/2018] [Indexed: 12/20/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic multi-organ debilitating autoimmune disease, which mainly afflicts women in the reproductive years. A complex interaction of genetics, environmental factors and hormones result in the breakdown of immune tolerance to "self" leading to damage and destruction of multiple organs, such as the skin, joints, kidneys, heart and brain. Both innate and adaptive immune systems are critically involved in the misguided immune response against self-antigens. Dendritic cells, neutrophils, and innate lymphoid cells are important in initiating antigen presentation and propagating inflammation at lymphoid and peripheral tissue sites. Autoantibodies produced by B lymphocytes and immune complex deposition in vital organs contribute to tissue damage. T lymphocytes are increasingly being recognized as key contributors to disease pathogenesis. CD4 T follicular helper cells enable autoantibody production, inflammatory Th17 subsets promote inflammation, while defects in regulatory T cells lead to unchecked immune responses. A better understanding of the molecular defects including signaling events and gene regulation underlying the dysfunctional T cells in SLE is necessary to pave the path for better management, therapy, and perhaps prevention of this complex disease. In this review, we focus on the aberrations in T cell signaling in SLE and highlight therapeutic advances in this field.
Collapse
Affiliation(s)
| | | | - Vaishali R. Moulton
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
11
|
Hipp N, Symington H, Pastoret C, Caron G, Monvoisin C, Tarte K, Fest T, Delaloy C. IL-2 imprints human naive B cell fate towards plasma cell through ERK/ELK1-mediated BACH2 repression. Nat Commun 2017; 8:1443. [PMID: 29129929 PMCID: PMC5682283 DOI: 10.1038/s41467-017-01475-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 09/19/2017] [Indexed: 01/23/2023] Open
Abstract
Plasma cell differentiation is a tightly regulated process that requires appropriate T cell helps to reach the induction threshold. To further understand mechanisms by which T cell inputs regulate B cell fate decision, we investigate the minimal IL-2 stimulation for triggering human plasma cell differentiation in vitro. Here we show that the timed repression of BACH2 through IL-2-mediated ERK/ELK1 signalling pathway directs plasma cell lineage commitment. Enforced BACH2 repression in activated B cells unlocks the plasma cell transcriptional program and induces their differentiation into immunoglobulin M-secreting cells. RNA-seq and ChIP-seq results further identify BACH2 target genes involved in this process. An active regulatory region within the BACH2 super-enhancer, under ELK1 control and differentially regulated upon B-cell activation and cellular divisions, helps integrate IL-2 signal. Our study thus provides insights into the temporal regulation of BACH2 and its targets for controlling the differentiation of human naive B cells. T cells help B cells to differentiate into antibody-producing plasma cells. Here the authors show that T cells produce interleukin-2 to activate ERK/ELK1 and suppress BACH2 expression by modulating the BACH2 super-enhancer, thereby altering BACH2 downstream transcription programs for plasma cell differentiation.
Collapse
Affiliation(s)
- Nicolas Hipp
- UMR U1236, Université de Rennes 1, INSERM, Etablissement Français du Sang (EFS) de Bretagne, Equipe labellisée Ligue contre le Cancer, Labex IGO, 2 Av du Pr Léon Bernard, 35043, Rennes, France
| | - Hannah Symington
- UMR U1236, Université de Rennes 1, INSERM, Etablissement Français du Sang (EFS) de Bretagne, Equipe labellisée Ligue contre le Cancer, Labex IGO, 2 Av du Pr Léon Bernard, 35043, Rennes, France
| | - Cédric Pastoret
- UMR U1236, Université de Rennes 1, INSERM, Etablissement Français du Sang (EFS) de Bretagne, Equipe labellisée Ligue contre le Cancer, Labex IGO, 2 Av du Pr Léon Bernard, 35043, Rennes, France.,Laboratoire d'Hématologie, Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033, Rennes Cedex 9, France
| | - Gersende Caron
- UMR U1236, Université de Rennes 1, INSERM, Etablissement Français du Sang (EFS) de Bretagne, Equipe labellisée Ligue contre le Cancer, Labex IGO, 2 Av du Pr Léon Bernard, 35043, Rennes, France.,Laboratoire d'Hématologie, Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033, Rennes Cedex 9, France
| | - Céline Monvoisin
- UMR U1236, Université de Rennes 1, INSERM, Etablissement Français du Sang (EFS) de Bretagne, Equipe labellisée Ligue contre le Cancer, Labex IGO, 2 Av du Pr Léon Bernard, 35043, Rennes, France
| | - Karin Tarte
- UMR U1236, Université de Rennes 1, INSERM, Etablissement Français du Sang (EFS) de Bretagne, Equipe labellisée Ligue contre le Cancer, Labex IGO, 2 Av du Pr Léon Bernard, 35043, Rennes, France.,Laboratoire d'Immunologie, Thérapie Cellulaire et Hématopoïèse (ITeCH), Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033, Rennes Cedex 9, France
| | - Thierry Fest
- UMR U1236, Université de Rennes 1, INSERM, Etablissement Français du Sang (EFS) de Bretagne, Equipe labellisée Ligue contre le Cancer, Labex IGO, 2 Av du Pr Léon Bernard, 35043, Rennes, France. .,Laboratoire d'Hématologie, Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033, Rennes Cedex 9, France.
| | - Céline Delaloy
- UMR U1236, Université de Rennes 1, INSERM, Etablissement Français du Sang (EFS) de Bretagne, Equipe labellisée Ligue contre le Cancer, Labex IGO, 2 Av du Pr Léon Bernard, 35043, Rennes, France.
| |
Collapse
|
12
|
Tetradecanol reduces EL-4 T cell growth by the down regulation of NF-κB mediated IL-2 secretion. Eur J Pharmacol 2017; 799:135-142. [PMID: 28167257 DOI: 10.1016/j.ejphar.2017.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/05/2017] [Accepted: 02/02/2017] [Indexed: 12/11/2022]
Abstract
Tetradecanol is a straight-chain saturated fatty alcohol purified from Dendropanax morbifera leaves. We found that tetradecanol (30μM) reduced specifically the growth of T cells such as EL-4 T cell and isolated murine CD4+ T cells. In this study, we investigated the effects of tetradecanol on the regulation of interlukin-2 (IL-2), a potent T cell growth factor. Tetradecanol significantly inhibited IL-2 secretion in EL-4 T cells activated with phorbol 12-myristate 13-acetate (PMA) plus ionomycin (Io) and also in isolated murine CD4+ T cells activated with anti-CD3 and anti-CD28 antibodies. Next, we examined the effect of tetradecanol on the transcriptional activity related to IL-2 production in T cells. Tetradecanol decreased PMA/Io-induced promoter activity of NF-κB in EL-4 T cells, but did not show any significant effects on the promoters of activator protein 1 (AP-1) and nuclear factor of activated T cells (NF-AT). Tetradecanol inhibited IκBα degradation and nuclear translocation of NF-κB subunit, p65 in PMA/Io-activated EL-4 T cells. These results suggest that tetradecanol might have immunosuppressive effects on T cell mediated disorders. Using a chronic allergic contact dermatitis model induced by repeated application of oxazolone, we showed that tetradecanol reduced ear thickness induced by oxazolone.
Collapse
|
13
|
Tomala J, Kovar M. IL-2/anti-IL-2 mAb immunocomplexes: A renascence of IL-2 in cancer immunotherapy? Oncoimmunology 2015; 5:e1102829. [PMID: 27141363 DOI: 10.1080/2162402x.2015.1102829] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/28/2015] [Indexed: 10/22/2022] Open
Abstract
The in vivo biological activity of IL-2 can be dramatically increased by complexing with anti-IL-2 mAb. Moreover, IL-2/anti-IL-2 mAb immunocomplexes selectively stimulate different subsets of immune cells, depending on the clone of anti-IL-2 mAb that is used. Thus, IL-2/S4B6 mAb complexes strongly stimulate CD122high populations, namely NK and memory CD8+ T cells. They also intermediately stimulate Treg cells. Conversely, IL-2/JES6.1 mAb immunocomplexes have no stimulatory activity for CD122high populations. However, they potently and highly selectively stimulate CD25+ cells (i.e., Treg and activated T cells). IL-2/S4B6 mAb immunocomplexes have also been shown to possess antitumor activity in various mouse tumor models.
Collapse
Affiliation(s)
- Jakub Tomala
- Laboratory of Tumor Immunology, Institute of Microbiology, Academy of Sciences of the Czech Republic , Prague, Czech Republic
| | - Marek Kovar
- Laboratory of Tumor Immunology, Institute of Microbiology, Academy of Sciences of the Czech Republic , Prague, Czech Republic
| |
Collapse
|
14
|
Long-Range Transcriptional Control of the Il2 Gene by an Intergenic Enhancer. Mol Cell Biol 2015; 35:3880-91. [PMID: 26351138 DOI: 10.1128/mcb.00592-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/28/2015] [Indexed: 02/08/2023] Open
Abstract
Interleukin-2 (IL-2) is a potent cytokine with roles in both immunity and tolerance. Genetic studies in humans and mice demonstrate a role for Il2 in autoimmune disease susceptibility, and for decades the proximal Il2 upstream regulatory region has served as a paradigm of tissue-specific, inducible gene regulation. In this study, we have identified a novel long-range enhancer of the Il2 gene located 83 kb upstream of the transcription start site. This element can potently enhance Il2 transcription in recombinant reporter assays in vitro, and the native region undergoes chromatin remodeling, transcribes a bidirectional enhancer RNA, and loops to physically interact with the Il2 gene in vivo in a CD28-dependent manner in CD4(+) T cells. This cis regulatory element is evolutionarily conserved and is situated near a human single-nucleotide polymorphism (SNP) associated with multiple autoimmune disorders. These results indicate that the regulatory architecture of the Il2 locus is more complex than previously appreciated and suggest a novel molecular basis for the genetic association of Il2 polymorphism with autoimmune disease.
Collapse
|
15
|
Suauam P, Yingyongnarongkul BE, Palaga T, Miyakawa T, Yompakdee C. Clausmarin A, Potential Immunosuppressant Revealed by Yeast-Based Assay and Interleukin-2 Production Assay in Jurkat T Cells. PLoS One 2015; 10:e0136804. [PMID: 26313553 PMCID: PMC4552291 DOI: 10.1371/journal.pone.0136804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/07/2015] [Indexed: 11/18/2022] Open
Abstract
Small-molecule inhibitors of Ca2+-signaling pathways are of medicinal importance, as exemplified by the immunosuppressants FK506 and cyclosporin A. Using a yeast-based assay devised for the specific detection of Ca2+-signaling inhibitors, clausmarin A, a previously reported terpenoid coumarin, was identified as an active substance. Here, we investigated the likely mechanism of clausmarin A action in yeast and Jurkat T-cells. In the presence of 100 mM CaCl2 in the growth medium of Ca2+-sensitive Δzds1 strain yeast, clausmarin A exhibited a dose-dependent alleviation of various defects due to hyperactivation of Ca2+ signaling, such as growth inhibition, polarized bud growth and G2 phase cell-cycle arrest. Furthermore, clausmarin A inhibited the growth of Δmpk1 (lacking the Mpk1 MAP kinase pathway) but not Δcnb1 (lacking the calcineurin pathway) strain, suggesting that clausmarin A inhibited the calcineurin pathway as presumed from the synthetic lethality of these pathways. Furthermore, clausmarin A alleviated the serious defects of a strain expressing a constitutively active form of calcineurin. In the human Jurkat T-cell line, clausmarin A exhibited a dose-dependent inhibition of IL-2 production and IL-2 gene transcription, as well as an inhibition of NFAT dephosphorylation. The effects of clausmarin A observed in both yeast and Jurkat cells are basically similar to those of FK506. Our study revealed that clausmarin A is an inhibitor of the calcineurin pathway, and that this is probably mediated via inhibition of calcineurin phosphatase activity. As such, clausmarin A is a potential immunosuppressant.
Collapse
Affiliation(s)
- Pitipreya Suauam
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Boon-ek Yingyongnarongkul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Ramkhamhaeng Road, Hua Mark, Bangkapi, Bangkok, 10240, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Tokichi Miyakawa
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, 739–8530, Japan
| | - Chulee Yompakdee
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
- * E-mail:
| |
Collapse
|
16
|
Miller PG, Bonn MB, McKarns SC. Transmembrane TNF-TNFR2 Impairs Th17 Differentiation by Promoting Il2 Expression. THE JOURNAL OF IMMUNOLOGY 2015; 195:2633-47. [PMID: 26268655 DOI: 10.4049/jimmunol.1500286] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 07/14/2015] [Indexed: 01/02/2023]
Abstract
The double-edged sword nature by which IL-2 regulates autoimmunity and the unpredictable outcomes of anti-TNF therapy in autoimmunity highlight the importance for understanding how TNF regulates IL-2. Transmembrane TNF (tmTNF) preferentially binds TNFR2, whereas soluble TNF (sTNF) binds TNFR1. We previously showed reduced IL-2 production in TNFR1(-/-) TNFR2(-/-) CD4(+) T cells. In this study, we generated TNFR1(-/-), TNFR2(-/-), or TNFR1(-/-) TNFR2(-/-) 5C.C7 TCR Il2-GFP mice and report that CD4(+) T cell-intrinsic tmTNF/TNFR2 stimulates Il2 promoter activity and Il2 mRNA stability. We further used tmTNF Foxp3 gfp reporter mice and pharmacological TNF blockade in wild-type mice to report a tmTNF/TNFR2 interaction for Il2 expression. IL-17 is critical for host defense, but its overabundance promotes autoimmunity. IL-2 represses Th17 differentiation, but the role for TNFR2 in this process is not well understood. We report elevated expression of TNFR2 under Th17-polarization conditions. Genetic loss-of-function experimental models, as well as selective TNF blockade by etanercept and XPro1595 in wild-type mice, demonstrate that impaired tmTNF/TNFR2, but not sTNF/TNFR1, promotes Th17 differentiation in vivo and in vitro. Under Th17-polarizing conditions, elevated IL-17 production by TNFR2-knockout CD4(+) T cells was associated with increased STAT3 activity and decreased STAT5 activity. Increased IL-17 production in TNFR2-knockout T cells was prevented by adding exogenous IL-2. We conclude that CD4(+) T cell-intrinsic tmTNF/TNFR2 promotes IL-2 production that inhibits the generation of Th17 cells in a Foxp3-independent manner. Moreover, under Th17-polarizing conditions, selective blockade of CD4(+) T cell-intrinsic TNFR2 appears to be sufficient to promote Th17 differentiation.
Collapse
Affiliation(s)
- Patrick G Miller
- Laboratory of TGF-β Biology, Epigenetics, and Cytokine Regulation, Center for Cellular and Molecular Immunology, Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212; and
| | - Michael B Bonn
- Laboratory of TGF-β Biology, Epigenetics, and Cytokine Regulation, Center for Cellular and Molecular Immunology, Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212; and
| | - Susan C McKarns
- Laboratory of TGF-β Biology, Epigenetics, and Cytokine Regulation, Center for Cellular and Molecular Immunology, Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212; and Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212
| |
Collapse
|
17
|
Laky K, Evans S, Perez-Diez A, Fowlkes BJ. Notch signaling regulates antigen sensitivity of naive CD4+ T cells by tuning co-stimulation. Immunity 2015; 42:80-94. [PMID: 25607460 PMCID: PMC4314725 DOI: 10.1016/j.immuni.2014.12.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/24/2014] [Indexed: 10/24/2022]
Abstract
Adaptive immune responses begin when naive CD4(+) T cells engage peptide+major histocompatibility complex class II and co-stimulatory molecules on antigen-presenting cells (APCs). Notch signaling can influence effector functions in differentiated CD4(+) T helper and T regulatory cells. Whether and how ligand-induced Notch signaling influences the initial priming of CD4(+) T cells has not been addressed. We have found that Delta Like Ligand 4 (DLL4)-induced Notch signaling potentiates phosphatidylinositol 3-OH kinase (PI3K)-dependent signaling downstream of the T cell receptor+CD28, allowing naive CD4(+) T cells to respond to lower doses of antigen. In vitro, DLL4-deficient APCs were less efficient stimulators of CD4(+) T cell activation, metabolism, proliferation, and cytokine secretion. With deletion of DLL4 from CD11c(+) APCs in vivo, these deficits translated to an impaired ability to mount an effective CD4(+)-dependent anti-tumor response. These data implicate Notch signaling as an important regulator of adaptive immune responses.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- CD28 Antigens/metabolism
- CD4-Positive T-Lymphocytes/immunology
- Carcinoma/immunology
- Cell Proliferation
- Cells, Cultured
- Cytokines/metabolism
- Female
- Intracellular Signaling Peptides and Proteins/metabolism
- Lymphocyte Activation/genetics
- Male
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Neoplasm Transplantation
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Receptor Cross-Talk
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Notch/genetics
- Receptors, Notch/immunology
- Receptors, Notch/metabolism
- Signal Transduction/genetics
- Tumor Burden/genetics
Collapse
Affiliation(s)
- Karen Laky
- T Cell Development Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Sharron Evans
- T Cell Development Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Ainhoa Perez-Diez
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - B J Fowlkes
- T Cell Development Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Rothenberg EV. Immune Cell Identity: Perspective from a Palimpsest. PERSPECTIVES IN BIOLOGY AND MEDICINE 2015; 58:205-28. [PMID: 26750603 PMCID: PMC4747652 DOI: 10.1353/pbm.2015.0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The immune system in mammals is composed of multiple different immune cell types that migrate through the body and are made continuously throughout life. Lymphocytes and myeloid cells interact with each other and depend upon each other, but each are highly diverse and specialized for different roles. Lymphocytes uniquely require developmentally programmed mutational changes in the genome itself for their maturation. Despite profound differences between their mechanisms of threat recognition and threat response, however, the developmental origins of lymphocytes and myeloid cells are interlinked, and important aspects of their response mechanisms remain shared. It is notable that the chain of logic toward our current understanding of the immune defense system over the past 50 years has been driven by strongly posited models that have led to crucial discoveries, even though these models ended up being partly wrong. The predictive strength of these models and their success as guides to incisive experimental research have illuminated the limits of each model's explanatory scope, beyond which another model needed to assume the lead. This brief review describes how a succession of distinct paradigms has helped to clarify a sophisticated picture of immune cell generation and control.
Collapse
|
19
|
Decreased c-rel activation contributes to aberrant interleukin-2 expression in CD4+T cells of aged rats. Mol Immunol 2014; 61:1-6. [DOI: 10.1016/j.molimm.2014.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 04/14/2014] [Accepted: 04/24/2014] [Indexed: 01/08/2023]
|
20
|
Anthony K, More A, Zhang X. Activation of silenced cytokine gene promoters by the synergistic effect of TBP-TALE and VP64-TALE activators. PLoS One 2014; 9:e95790. [PMID: 24755922 PMCID: PMC3995891 DOI: 10.1371/journal.pone.0095790] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 03/29/2014] [Indexed: 11/19/2022] Open
Abstract
Recent work has shown that the combinatorial use of multiple TALE activators can selectively activate certain cellular genes in inaccessible chromatin regions. In this study, we aimed to interrogate the activation potential of TALEs upon transcriptionally silenced immune genes in the context of non-immune cells. We designed a unique strategy, in which a single TALE fused to the TATA-box binding protein (TBP-TALE) is coupled with multiple VP64-TALE activators. We found that our strategy is significantly more potent than multiple TALE activators alone in activating expression of IL-2 and GM-CSF in diverse cell origins in which both genes are otherwise completely silenced. Chromatin analysis revealed that the gene activation was due in part to displacement of a distinctly positioned nucleosome. These studies provide a novel epigenetic mechanism for artificial gene induction and have important implications for targeted cancer immunotherapy, DNA vaccine development, as well as rational design of TALE activators.
Collapse
Affiliation(s)
- Kim Anthony
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, United States of America
| | - Abhijit More
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Xiaoliu Zhang
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
21
|
Rothenberg EV. Epigenetic mechanisms and developmental choice hierarchies in T-lymphocyte development. Brief Funct Genomics 2013; 12:512-24. [PMID: 23922132 DOI: 10.1093/bfgp/elt027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Three interlocking problems in gene regulation are: how to explain genome-wide targeting of transcription factors in different cell types, how prior transcription factor action can establish an 'epigenetic state' that changes the options for future transcription factor action, and how directly a sequence of developmental decisions can be memorialized in a hierarchy of repression structures applied to key genes of the 'paths not taken'. This review uses the finely staged process of T-cell lineage commitment as a test case in which to examine how changes in developmental status are reflected in changes in transcription factor expression, transcription factor binding distribution across genomic sites, and chromatin modification. These are evaluated in a framework of reciprocal effects of previous chromatin structure features on transcription factor access and of transcription factor binding on other factors and on future chromatin structure.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA. Tel.: +1 626 395 4992; Fax: +1 626 449 0756;
| |
Collapse
|
22
|
Vieira L, Vaz A, Matos P, Ambrósio AP, Nogueira M, Marques B, Pereira AM, Jordan P, da Silva MG. Three-way translocation (X;20;16)(p11;q13;q23) in essential thrombocythemia implicates NFATC2 in dysregulation of CSF2 expression and megakaryocyte proliferation. Genes Chromosomes Cancer 2012; 51:1093-108. [PMID: 22911897 DOI: 10.1002/gcc.21994] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 07/17/2012] [Indexed: 12/19/2022] Open
Abstract
Essential thrombocythemia (ET) is a myeloproliferative neoplasm essentially characterized by excessive production of platelets. Molecular pathogenesis of ET is linked in approximately half of the patients to intracellular cytokine signaling dysregulation as a result of thrombopoietin receptor or Janus kinase 2 (JAK2) mutations. However, genetic defects underlying cytokine transcription have not been associated with ET. Using molecular cytogenetics and whole-genome array analyses, we uncovered a submicroscopic deletion at 20q13.2 in a JAK2V617F-positive ET patient with an acquired complex chromosome translocation. The deletion encompassed the nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 2 (NFATC2) gene that encodes a transcription factor involved in the regulation of hematopoietic cytokines. RNA interference-mediated suppression of NFATC2 mRNA or pharmacological inhibition of NFATC2 protein with 11R-VIVIT in cultured JAK2V617F-positive SET-2 megakaryocytes increased colony stimulating factor 2 (granulocyte-macrophage) (CSF2) mRNA and promoted cell proliferation. Moreover, impairment of NFATC2-calcineurin interaction with 11R-VIVIT further reduced the transcription of the NFATC2 gene. Antibody-mediated neutralization of CSF2 cytokine in inhibitor-treated cells prevented 11R-VIVIT-induced cell proliferation, indicating that impairment of NFATC2-calcineurin interaction promotes megakaryocyte proliferation through up-regulation of CSF2 transcription. Our results suggest a model in which haplo-insufficiency of NFATC2 cooperates with activation of the JAK-STAT signaling pathway in the pathogenesis of JAK2V617F-positive ET with del(20q). These results further indicate that pathogenesis of ET may be linked to genetic defects of other transcription factor genes involved in the regulation of cytokine expression.
Collapse
Affiliation(s)
- Luís Vieira
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bendfeldt H, Benary M, Scheel T, Frischbutter S, Abajyan A, Radbruch A, Herzel H, Baumgrass R. Stable IL-2 decision making by endogenous c-Fos amounts in peripheral memory T-helper cells. J Biol Chem 2012; 287:18386-97. [PMID: 22474330 DOI: 10.1074/jbc.m112.358853] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The cytokine IL-2 performs opposite functions supporting efficient immune responses and playing a key role in peripheral tolerance. Therefore, precise fine-tuning of IL-2 expression is crucial for adjusting the immune response. Combining transcription factor analysis at the single cell and the single nucleus level using flow cytometry with statistical analysis, we showed that physiological differences in the expression levels of c-Fos and NFATc2, but not of c-Jun and NF-κBp65, are limiting for the decision whether IL-2 is expressed in a strongly activated human memory T-helper (Th) cell. Variation in the expression of c-Fos leads to substantial diversity of IL-2 expression in ∼40% of the memory Th cells. The remaining cells exhibit an equally high c-Fos expression level, thereby ensuring robustness in IL-2 response within the population. These findings reveal how memory Th cells benefit from regulated variation in transcription factor expression to achieve a certain stability and variability of cytokine expression in a controlled manner.
Collapse
Affiliation(s)
- Hanna Bendfeldt
- Deutsches Rheuma-Forschungszentrum Berlin, A. Leibniz Institute, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Lee MJ, Woo MY, Chwae YJ, Kwon MH, Kim K, Park S. Down-regulation of interleukin-2 production by CD4(+) T cells expressing TIM-3 through suppression of NFAT dephosphorylation and AP-1 transcription. Immunobiology 2012; 217:986-95. [PMID: 22445722 DOI: 10.1016/j.imbio.2012.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/10/2012] [Accepted: 01/10/2012] [Indexed: 01/22/2023]
Abstract
TIM-3 is expressed by TH1 cells and negatively regulates cytokine production by these cells. The aim of the present study was to explore the mechanisms by which IL-2 production is suppressed in TIM-3-expressing T cells. First, the activity of two transcription factors that bind to the IL-2 promoter was examined in Jurkat T cells expressing TIM-3. Both AP-1 and NFAT activity were reduced in TIM-3-expressing cells stimulated with a phorbol ester and a calcium ionophore. At the same time, expression of the AP-1 components, c-Fos and c-Jun, was induced to a lesser extent in stimulated human primary CD4(+) T cells expressing high levels of TIM-3 than in those expressing low levels of TIM-3. Furthermore, TIM-3-expression inhibited the stimulation-induced dephosphorylation and nuclear translocation of NFAT in Jurkat T cells and primary CD4(+) T cells. Finally, the cytoplasmic tail of TIM-3 was required for the suppression of IL-2 production and for AP-1 and NFAT activation. Taken together, these results suggest that IL-2 production by T cells may be downregulated by TIM-3-mediated signals, leading to suppression of NFAT dephosphorylation and AP-1 transcription.
Collapse
Affiliation(s)
- Mi Jin Lee
- Department of Microbiology, Ajou University School of Medicine, Youngtongku Wonchondong San 5, Suwon 442-749, Republic of Korea
| | | | | | | | | | | |
Collapse
|
25
|
Molano A, Meydani SN. Vitamin E, signalosomes and gene expression in T cells. Mol Aspects Med 2011; 33:55-62. [PMID: 22138304 DOI: 10.1016/j.mam.2011.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/14/2011] [Accepted: 11/15/2011] [Indexed: 12/11/2022]
Abstract
CD4+T cells from aged humans or mice show significant reductions in IL-2 production upon activation. The resulting decreased proliferation is linked to higher risks of infection in the elderly. Several lines of evidence indicate that intrinsic defects preferentially affecting the naïve subset of CD4+T cells contribute to this reduced IL-2 production. Comparison of the biochemical pathways that transduce activation signals from the T cell receptor to the IL-2 promoter in young and old CD4+T cells has demonstrated age-related impairments at initial molecular events, in particular the phosphorylation of kinases and adapter proteins involved in the formation of signalosomes - complex multiprotein assemblies that provide the framework for effective signal transduction. Confocal microscopy has demonstrated a series of age-related impairments in effective immune synapse formation. Vitamin E can reverse many of these CD4+T cell age-associated defects, including reduced levels of phosphorylation of critical signaling/adapter proteins as well as defective immune synapse formation. Vitamin E also enhances IL-2 production, expression of several cell cycle control proteins, and proliferation. Although the precise mechanisms underlying this effect are not understood, it is possible that this antioxidant lipophilic vitamin can prevent the propagation of polyunsaturated fatty acid peroxidation in the cell membrane, influence the biochemical characteristics of specific lipid bilayer microdomains involved in signal transduction, modulate the activity of kinases/phosphatases, or interact with intracellular receptors.
Collapse
Affiliation(s)
- Alberto Molano
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA.
| | | |
Collapse
|
26
|
Yang J, Wang L, Huang M, Wang L, Gai Y, Qiu L, Zhang H, Song L. An interleukin-2 enhancer binding factor 2 homolog involved in immune response from Chinese mitten crab Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2011; 30:1303-1309. [PMID: 21439385 DOI: 10.1016/j.fsi.2011.03.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 03/12/2011] [Accepted: 03/15/2011] [Indexed: 05/30/2023]
Abstract
As a transcription factor, Interleukin-2 enhancer binding factor 2 (ILF2) regulates IL-2 gene at level of transcription, splicing and translation in vertebrates and plays significant roles in immune system. In this study, an ILF2 homolog was identified from Chinese mitten crab Eriocheir sinensis (designated as EsILF) by expressed sequence tag (EST) analysis. The full-length cDNA of EsILF was of 2159bp, containing a 5' untranslated region (UTR) of 90bp, a 3' UTR of 866bp with a poly (A) tail, and an open reading frame (ORF) of 1203bp encoding a polypeptide of 400 amino acids with the predicted molecular weight of 44.3kDa, which shared 59.6-64.5% identities with vertebrate ILF2. There were a conserved N-terminal RGG-rich single-stranded RNA-binding domain and a DZF zinc-finger nucleic acid binding domain in the primary structure, strongly suggesting that EsILF was a homolog of vertebrate ILF2. The mRNA of EsILF was constitutively expressed in all tested tissues of untreated crabs, including hepatopancreas, gill, gonad, muscle, heart and hemocytes, with highest expression in muscle and relative lower levels in hemocytes and gonad. The mRNA expression of EsILF in hemocytes was regulated differently after the crabs were stimulated by bacteria Listonella anguillarum and fungi Pichia pastoris GS115. The expression level was significantly (P<0.05) down-regulated to 0.35- and 0.29-fold compared with blank group at 6h and 12h after the stimulation of L. anguillarum, while P. pastoris significantly (P<0.05) up-regulated the expression level to 3.2-fold compared with the blank group at 6h post treatment. The results indicated that EsILF was involved in the immune response of crab toward both L. anguillarum and P. pastoris.
Collapse
Affiliation(s)
- Jialong Yang
- Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
T-cell development endows cells with a flexible range of effector differentiation options, superimposed on a stable core of lineage-specific gene expression that is maintained while access to alternative hematopoietic lineages is permanently renounced. This combination of features could be explained by environmentally responsive transcription factor mobilization overlaying an epigenetically stabilized base gene expression state. For example, "poising" of promoters could offer preferential access to T-cell genes, while repressive histone modifications and DNA methylation of non-T regulatory genes could be responsible for keeping non-T developmental options closed. Here, we critically review the evidence for the actual deployment of epigenetic marking to support the stable aspects of T-cell identity. Much of epigenetic marking is dynamically maintained or subject to rapid modification by local action of transcription factors. Repressive histone marks are used in gene-specific ways that do not fit a simple, developmental lineage-exclusion hierarchy. We argue that epigenetic analysis may achieve its greatest impact for illuminating regulatory biology when it is used to locate cis-regulatory elements by catching them in the act of mediating regulatory change.
Collapse
|
28
|
Xu H, Yao Y, Smith LP, Nair V. MicroRNA-26a-mediated regulation of interleukin-2 expression in transformed avian lymphocyte lines. Cancer Cell Int 2010; 10:15. [PMID: 20441582 PMCID: PMC2873332 DOI: 10.1186/1475-2867-10-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 05/04/2010] [Indexed: 12/15/2022] Open
Abstract
Background Micro(mi)RNAs are a class of small non-coding RNAs that play critical roles in the induction of various cancers, including lymphomas induced by oncogenic viruses. While some of the miRNAs are oncogenic, miRNAs such as miR-26a are consistently downregulated in a number of cancers, demonstrating their potential tumor suppressor functions. Global miRNA expression profiles of a number of virus-transformed avian lymphoma cell lines have shown downregulation of gga-miR-26a expression, irrespective of molecular mechanisms of transformation or the viral aetiology. The neoplastic transformation of lymphocytes by many viruses accompanies high levels of proliferative responses, mostly mediated through cytokines such as IL-2. Chicken IL-2 can modulate T-cell proliferation and cytotoxicity in vitro and in vivo and dysregulation of IL-2 expression is observed in diseases such as leukaemia. Results The expression levels of gga-miR-26a in chicken lymphoma cells transformed by 3 distinct avian oncogenic viruses, viz Marek's disease virus (MDV), avian leukosis virus (ALV) and Reticuloendotheliosis virus (REV) were consistently downregulated compared to the levels in the normal lymphocytes. This downregulation of miR-26a regardless of the viral etiology and molecular mechanisms of transformation was consistent with the tumor suppressor role of this miRNA. Notwithstanding this well-established role in cancer, we demonstrate the additional role of this miRNA in directly targeting chicken IL-2 through reporter and biochemical assays. The downregulation of miR-26a can relieve the suppressive effect of this miRNA on IL-2 expression. Conclusions We show that miR-26a is globally downregulated in a number of avian lymphoma cells irrespective of the mechanisms of transformation, reiterating the highly conserved tumor suppressor function of this miRNA. However, with the potential for directly targeting chicken IL-2, the downregulation of miR-26a in these tumor cells could relieve the inhibitory effect on IL-2 expression assisting in the proliferative features of the transformed lymphocyte lines.
Collapse
Affiliation(s)
- Hongtao Xu
- Avian Oncogenic Virus Group, Avian Infectious Diseases Programme, Institute for Animal Health, Compton, Berkshire, UK RG20 7NN.
| | | | | | | |
Collapse
|
29
|
Tomala J, Chmelova H, Mrkvan T, Rihova B, Kovar M. In Vivo Expansion of Activated Naive CD8+ T Cells and NK Cells Driven by Complexes of IL-2 and Anti-IL-2 Monoclonal Antibody As Novel Approach of Cancer Immunotherapy. THE JOURNAL OF IMMUNOLOGY 2009; 183:4904-12. [DOI: 10.4049/jimmunol.0900284] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Blomberg KEM, Boucheron N, Lindvall JM, Yu L, Raberger J, Berglöf A, Ellmeier W, Smith CE. Transcriptional signatures of Itk-deficient CD3+, CD4+ and CD8+ T-cells. BMC Genomics 2009; 10:233. [PMID: 19450280 PMCID: PMC2689280 DOI: 10.1186/1471-2164-10-233] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 05/18/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Tec-family kinase Itk plays an important role during T-cell activation and function, and controls also conventional versus innate-like T-cell development. We have characterized the transcriptome of Itk-deficient CD3+ T-cells, including CD4+ and CD8+ subsets, using Affymetrix microarrays. RESULTS The largest difference between Itk-/- and Wt CD3+ T-cells was found in unstimulated cells, e.g. for killer cell lectin-like receptors. Compared to anti-CD3-stimulation, anti-CD3/CD28 significantly decreased the number of transcripts suggesting that the CD28 co-stimulatory pathway is mainly independent of Itk. The signatures of CD4+ and CD8+ T-cell subsets identified a greater differential expression than in total CD3+ cells. Cyclosporin A (CsA)-treatment had a stronger effect on transcriptional regulation than Itk-deficiency, suggesting that only a fraction of TCR-mediated calcineurin/NFAT-activation is dependent on Itk. Bioinformatic analysis of NFAT-sites of the group of transcripts similarly regulated by Itk-deficiency and CsA-treatment, followed by chromatin-immunoprecipitation, revealed NFATc1-binding to the Bub1, IL7R, Ctla2a, Ctla2b, and Schlafen1 genes. Finally, to identify transcripts that are regulated by Tec-family kinases in general, we compared the expression profile of Itk-deficient T-cells with that of Btk-deficient B-cells and a common set of transcripts was found. CONCLUSION Taken together, our study provides a general overview about the global transcriptional changes in the absence of Itk.
Collapse
Affiliation(s)
- K Emelie M Blomberg
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-14186 Huddinge, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Sunahori K, Juang YT, Tsokos GC. Methylation status of CpG islands flanking a cAMP response element motif on the protein phosphatase 2Ac alpha promoter determines CREB binding and activity. THE JOURNAL OF IMMUNOLOGY 2009; 182:1500-8. [PMID: 19155497 DOI: 10.4049/jimmunol.182.3.1500] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Protein phosphatase 2A (PP2A) is a major serine/threonine protein phosphatase in eukaryotic cells and is involved in many essential aspects of cell function. The catalytic subunit of the enzyme (PP2Ac), a part of the core enzyme, has two isoforms, alpha (PP2Ac alpha) and beta (PP2Ac beta), of which PP2Ac alpha is the major form expressed in vivo. Deregulation of PP2A expression has been linked to several diseases, but the mechanisms that control the expression of this enzyme are still unclear. We conducted experiments to decipher molecular mechanisms involved in the regulation of the PP2Ac alpha promoter in human primary T cells. After preparing serially truncated PP2Ac alpha promoter luciferase constructs, we found that the region stretching around 240 bases upstream from the translation initiation site was of functional significance and included a cAMP response element motif flanked by three GC boxes. Shift assays revealed that CREB/phosphorylated CREB and stable protein 1 could bind to the region. Furthermore, we demonstrated that methylation of deoxycytosine in the CpG islands limited binding of phosphorylated CREB and the activity of the PP2Ac alpha promoter. In contrast, the binding of stable protein 1 to a GC box within the core promoter region was not affected by DNA methylation. Primary T cells treated with 5-azacitidine, a DNA methyltransferase inhibitor, showed increased expression of PP2Ac alpha mRNA. We propose that conditions associated with hypomethylation of CpG islands, such as drug-induced lupus, permit increased PP2Ac expression.
Collapse
Affiliation(s)
- Katsue Sunahori
- Division of Rheumatology in Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
32
|
Wang J, Lee S, Teh CEY, Bunting K, Ma L, Shannon MF. The transcription repressor, ZEB1, cooperates with CtBP2 and HDAC1 to suppress IL-2 gene activation in T cells. Int Immunol 2009; 21:227-35. [PMID: 19181930 DOI: 10.1093/intimm/dxn143] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Activation of T cells leads to the induction of many cytokine genes that are required for appropriate immune responses, including IL-2, a key cytokine for T cell proliferation and homeostasis. The activating transcription factors such as nuclear factor of activated T cells, nuclear factor kappaB/Rel and activated protein-1 family members that regulate inducible IL-2 gene expression have been well documented. However, negative regulation of the IL-2 gene is less studied. Here we examine the role of zinc finger E-box-binding protein (ZEB) 1, a homeodomain/Zn finger transcription factor, as a repressor of IL-2 gene transcription. We show here that ZEB1 is expressed in non-stimulated and stimulated T cells and using chromatin immunoprecipitation assays we show that ZEB1 binds to the IL-2 promoter. Over-expression of ZEB1 can repress IL-2 promoter activity, as well as endogenous IL-2 mRNA production in EL-4 T cells, and this repression is dependent on the ZEB-binding site at -100. ZEB1 cooperates with the co-repressor C-terminal-binding protein (CtBP) 2 and with histone deacetylase 1 to repress the IL-2 promoter and this cooperation depends on the ZEB-binding site in the promoter as well as the Pro-X-Asp-Leu-Ser protein-protein interaction domain in CtBP2. Thus, ZEB1 may function to recruit a repressor complex to the IL-2 promoter.
Collapse
Affiliation(s)
- Jun Wang
- Division of Molecular Bioscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601 Australia
| | | | | | | | | | | |
Collapse
|
33
|
Choi JM, Kim HJ, Lee KY, Choi HJ, Lee IS, Kang BY. Increased IL-2 production in T cells by xanthohumol through enhanced NF-AT and AP-1 activity. Int Immunopharmacol 2009; 9:103-7. [DOI: 10.1016/j.intimp.2008.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 10/15/2008] [Accepted: 10/15/2008] [Indexed: 10/21/2022]
|
34
|
Relationship between high-mobility group box 1 protein release and T-cell suppression in rats after thermal injury. Shock 2008; 30:449-55. [PMID: 18277947 DOI: 10.1097/shk.0b013e3181672495] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To study whether high-mobility group box 1 protein (HMGB1) has an effect on T-cell-mediated immunity secondary to burn injury, 96 male Wistar rats weighing 250 to 300 g were randomly divided into three groups as follows:sham burn group, burn group, and burn with ethyl pyruvate treatment group, and they were killed on postburn days (PBDs)1, 3, 5, and 7, respectively, with 8 animals at each time point. Columns of nylon wool were used to isolate splenic T cells. T-Cell proliferation was analyzed with thiazolyl blue and expression of IL-2 receptor alpha (IL-2Ralpha) on the surface of T cell with flow cytometry. Levels of HMGB1 were determined using Western blot analysis. IL-2, soluble IL-2R, IL-4, and interferon-gamma were determined with enzyme-linked immunosorbent assay kits. Gene expressions of HMGB1, IL-2, and IL-2R were assessed using reverse-transcription polymerase chain reaction, and activation of nuclear factor of activated T cell was determined with gel mobility shift assay. The levels of HMGB1 in plasma were significantly elevated on PBDs 1 to 5. Significant proliferation of splenic T cells and IL-2, as well as IL-2Ralpha expression on T cells, were simultaneously suppressed to a certain extent on PBDs 1 to 7. Nuclear factor of activated T-cell activity of splenic T cells was markedly down-regulated on PBDs 1 to 3. Administration of ethyl pyruvate to inhibit HMGB1 can significantly restore proliferative activity, nuclear factor of activated T-cell activity, and expression levels of IL-2 and IL-2Ralpha on T cells. High-mobility group box 1 protein released after major burns might be associated with the pathogenesis of immunosuppression in splenic T lymphocytes in rats.
Collapse
|
35
|
Ertesvag A, Austenaa LMI, Carlsen H, Blomhoff R, Blomhoff HK. Retinoic acid inhibits in vivo interleukin-2 gene expression and T-cell activation in mice. Immunology 2008; 126:514-22. [PMID: 18778286 DOI: 10.1111/j.1365-2567.2008.02913.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Interleukin-2 (IL-2) is an essential cytokine for T-lymphocyte homeostasis. We have previously reported that all-trans retinoic acid (atRA) enhances the secretion of IL-2 from human peripheral blood T cells in vitro, followed by increased proliferation and inhibition of spontaneous cell death. In this study we used a transgenic IL-2 gene luciferase reporter model to examine the effects of atRA in vivo. In contrast to the observations in human T cells, we found an overall reduction in luciferase-reported IL-2 gene expression in mice treated with atRA. Whole-body luminescence of anti-CD3-treated and non-treated mice was reduced in mice receiving atRA. Accordingly, after 7 hr, IL-2 gene expression was on average 55% lower in the atRA-treated mice compared with the control mice. Furthermore, mice fed a vitamin A-deficient diet had a significantly higher basal level of luciferase activity compared with control mice, demonstrating that vitamin A modulates IL-2 gene expression in vivo. Importantly, the atRA-mediated inhibition of IL-2 gene expression was accompanied by decreased DNA synthesis in murine T cells, suggesting a physiological relevance of the reduced IL-2 gene expression observed in transgenic reporter mice.
Collapse
Affiliation(s)
- Aase Ertesvag
- Department of Biochemistry, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | | | | |
Collapse
|
36
|
McKarns SC, Schwartz RH. Biphasic regulation of Il2 transcription in CD4+ T cells: roles for TNF-alpha receptor signaling and chromatin structure. THE JOURNAL OF IMMUNOLOGY 2008; 181:1272-81. [PMID: 18606681 DOI: 10.4049/jimmunol.181.2.1272] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We describe a novel biphasic regulation of Il2 transcription in naive CD4(+) T cells. Few ( approximately 5%) CD4(+) T cells transcribe Il2 within 6 h of anti-TCR-beta plus anti-CD28 stimulation (early phase). Most naive CD4(+) T cells do not initiate Il2 transcription until after an additional approximately 12 h of T cell stimulation (late phase). In comparison, essentially all previously activated (Pre-Ac) CD4(+) T cells that transcribe Il2 do so with an early-phase response. Late-phase Il2 expression mostly requires c-Rel, CD28, and TNFR signaling. In contrast, early-phase transcription is only partly c-Rel and CD28 dependent and TNFR independent. There was also increased stable DNA accessibility at the Il2 locus and elevated c-Rel expression in resting Pre-Ac CD4(+) cells. Upon T cell activation, a faster and greater increase in DNA accessibility as well as c-Rel nuclear expression were observed in Pre-Ac CD4(+) cells relative to naive CD4(+) T cells. In addition, both acetylated histone H3 and total H3 decreased at the Il2 locus upon rechallenge of Pre-Ac CD4(+) T cells, whereas increased acetylated histone H3 with no change in total H3 was observed following activation of naive CD4(+) T cells. We propose a model in which nucleosome disassembly facilitates rapid initiation of Il2 transcription in CD4(+) T cells, and suggest that a threshold level of c-Rel must be reached for Il2 promoter activity in both naive and Pre-Ac CD4(+) T cells. This is provided, at least partially, by TNFR signaling during priming, but not during recall.
Collapse
Affiliation(s)
- Susan C McKarns
- Laboratory of Cellular and Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
37
|
Negative feedback regulation of T cells via interleukin-2 and FOXP3 reciprocity. PLoS One 2008; 3:e1581. [PMID: 18324310 PMCID: PMC2265256 DOI: 10.1371/journal.pone.0001581] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 01/14/2008] [Indexed: 11/19/2022] Open
Abstract
As interleukin-2 (IL2) is central to the clonal expansion of antigen-selected T cells, we investigated the relationship between IL2 and the negative regulatory transcription factor FOXP3. We found IL2 to be responsible for T cell antigen receptor (TCR)-activated FOXP3 expression by both CD4+ and CD8+ human T cells, and as anticipated, FOXP3 expression restricted TCR-stimulated IL2 expression. However, no evidence could be found that FOXP3+ cells actively suppress IL2 expression by FOXP3- cells. These data are consistent with an IL2/FOXP3-dependent negative feedback loop that normally regulates the T cell immune response. It follows that a defect in this negative feedback loop as a result of a deficiency of either IL2 or FOXP3 will lead to a hyperproliferative autoimmune syndrome, without the necessity of invoking an active suppressive function for FOXP3+ T cells.
Collapse
|
38
|
Thomas RM, Chunder N, Chen C, Umetsu SE, Winandy S, Wells AD. Ikaros enforces the costimulatory requirement for IL2 gene expression and is required for anergy induction in CD4+ T lymphocytes. THE JOURNAL OF IMMUNOLOGY 2008; 179:7305-15. [PMID: 18025173 DOI: 10.4049/jimmunol.179.11.7305] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cell activation results in dynamic remodeling of the chromatin at the IL2 promoter and induction of IL2 gene transcription. These processes are each dependent upon CD28 costimulation, but the molecular basis for this requirement is not clear. The IL2 promoter contains consensus-binding elements for Ikaros, a lymphocyte-specific zinc-finger DNA-binding protein that can regulate gene expression by recruiting chromatin-remodeling complexes. We find that native Ikaros in CD4(+) T cells exhibits sequence-specific binding to these elements in vitro, and interacts with the endogenous IL2 promoter in vivo, in a manner dependent upon its DNA-binding domain. This binding has important consequences on the regulation of the IL2 gene, because CD4(+) T cells with reduced Ikaros DNA-binding activity no longer require signals from the TCR or CD28 for histone acetylation at the endogenous IL2 promoter, and no longer require CD28 costimulation for expression of the IL2 gene. Furthermore, CD4(+) T cells with reduced Ikaros activity are resistant to clonal anergy induced by TCR ligation in the absence of either CD28 or IL-2R signals. These results establish Ikaros as a transcriptional repressor of the IL2 gene that functions through modulation of chromatin structure and has an obligate role in the induction of anergy.
Collapse
Affiliation(s)
- Rajan M Thomas
- Joseph Stokes, Jr Research Institute, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
39
|
Crispín JC, Kyttaris V, Juang YT, Tsokos GC. Systemic lupus erythematosus: new molecular targets. Ann Rheum Dis 2007; 66 Suppl 3:iii65-9. [PMID: 17934100 DOI: 10.1136/ard.2007.078493] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
T cells from patients with systemic lupus erythematosus exhibit a notable array of defects that probably contribute to the origin and development of the disease. Such abnormalities include an abnormal response to stimulation, aberrant expression of molecules that play key roles in intracellular signalling pathways, altered transcription factor activation and binding, and skewed gene expression. The combination of these alterations leads the cell to the expression of a particular phenotype that intense research has gradually uncovered over the last years. The aim of this article is to review the findings that have allowed us to better understand the behaviour of the lupus T cell and highlight the molecules that represent potential therapeutic targets.
Collapse
Affiliation(s)
- José C Crispín
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, 4 Blackfan Circle, HIM-244, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
40
|
Morgan XC, Ni S, Miranker DP, Iyer VR. Predicting combinatorial binding of transcription factors to regulatory elements in the human genome by association rule mining. BMC Bioinformatics 2007; 8:445. [PMID: 18005433 PMCID: PMC2211755 DOI: 10.1186/1471-2105-8-445] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 11/15/2007] [Indexed: 12/20/2022] Open
Abstract
Background Cis-acting transcriptional regulatory elements in mammalian genomes typically contain specific combinations of binding sites for various transcription factors. Although some cis-regulatory elements have been well studied, the combinations of transcription factors that regulate normal expression levels for the vast majority of the 20,000 genes in the human genome are unknown. We hypothesized that it should be possible to discover transcription factor combinations that regulate gene expression in concert by identifying over-represented combinations of sequence motifs that occur together in the genome. In order to detect combinations of transcription factor binding motifs, we developed a data mining approach based on the use of association rules, which are typically used in market basket analysis. We scored each segment of the genome for the presence or absence of each of 83 transcription factor binding motifs, then used association rule mining algorithms to mine this dataset, thus identifying frequently occurring pairs of distinct motifs within a segment. Results Support for most pairs of transcription factor binding motifs was highly correlated across different chromosomes although pair significance varied. Known true positive motif pairs showed higher association rule support, confidence, and significance than background. Our subsets of high-confidence, high-significance mined pairs of transcription factors showed enrichment for co-citation in PubMed abstracts relative to all pairs, and the predicted associations were often readily verifiable in the literature. Conclusion Functional elements in the genome where transcription factors bind to regulate expression in a combinatorial manner are more likely to be predicted by identifying statistically and biologically significant combinations of transcription factor binding motifs than by simply scanning the genome for the occurrence of binding sites for a single transcription factor.
Collapse
Affiliation(s)
- Xochitl C Morgan
- Institute for Cellular and Molecular Biology and Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712-0159, USA.
| | | | | | | |
Collapse
|
41
|
Podtschaske M, Benary U, Zwinger S, Höfer T, Radbruch A, Baumgrass R. Digital NFATc2 activation per cell transforms graded T cell receptor activation into an all-or-none IL-2 expression. PLoS One 2007; 2:e935. [PMID: 17895976 PMCID: PMC1978524 DOI: 10.1371/journal.pone.0000935] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 08/30/2007] [Indexed: 11/19/2022] Open
Abstract
The expression of interleukin-2 (IL-2) is a key event in T helper (Th) lymphocyte activation, controlling both, the expansion and differentiation of effector Th cells as well as the activation of regulatory T cells. We demonstrate that the strength of TCR stimulation is translated into the frequency of memory Th cells expressing IL-2 but not into the amount of IL-2 per cell. This molecular switch decision for IL-2 expression per cell is located downstream of the cytosolic Ca2+ level. Here we show that in a single activated Th cell, NFATc2 activation is digital but NF-κB activation is graded after graded T cell receptor (TCR) signaling. Subsequently, NFATc2 translocates into the nucleus in an all-or-none fashion per cell, transforming the strength of TCR-stimulation into the number of nuclei positive for NFATc2 and IL-2 transcription. Thus, the described NFATc2 switch regulates the number of Th cells actively participating in an immune response.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/drug effects
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/metabolism
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/metabolism
- Calcineurin/pharmacology
- Calcium/metabolism
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Cells, Cultured
- Flow Cytometry
- Humans
- Interferon-gamma/metabolism
- Interleukin-2/genetics
- Interleukin-2/metabolism
- Ionomycin/pharmacology
- Lectins, C-Type
- Lymphocyte Activation/drug effects
- Models, Theoretical
- NF-kappa B/metabolism
- NFATC Transcription Factors/genetics
- NFATC Transcription Factors/metabolism
- Phosphorylation
- Receptors, Antigen, T-Cell/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- T-Lymphocytes, Helper-Inducer/drug effects
- T-Lymphocytes, Helper-Inducer/metabolism
Collapse
Affiliation(s)
| | - Uwe Benary
- German Rheumatism Research Centre, Berlin, Germany
| | - Sandra Zwinger
- Institute of Medical Immunology, Charité, Humboldt-University Berlin, Berlin, Germany
| | - Thomas Höfer
- Department of Theoretical Biophysics, Humboldt-University Berlin, Berlin, Germany
| | | | - Ria Baumgrass
- German Rheumatism Research Centre, Berlin, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
42
|
Sieber M, Karanik M, Brandt C, Blex C, Podtschaske M, Erdmann F, Rost R, Serfling E, Liebscher J, Pätzel M, Radbruch A, Fischer G, Baumgrass R. Inhibition of calcineurin-NFAT signaling by the pyrazolopyrimidine compound NCI3. Eur J Immunol 2007; 37:2617-26. [PMID: 17694572 DOI: 10.1002/eji.200737087] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dephosphorylation of NFAT by the Ca(2+)-calmodulin-dependent Ser/Thr protein phosphatase calcineurin is a bottleneck of T cell receptor-dependent activation of T cells. In dimeric complexes with immunophilins, the immunosuppressants cyclosporine A (CsA) and tacrolimus (FK506) block this process by inhibition of the enzymatic activity of calcineurin. We have identified the pyrazolopyrimidine compound NCI3 as a novel inhibitor of calcineurin-NFAT signaling. Similar to CsA and FK506, NCI3 inhibits dephosphorylation and nuclear translocation of NFAT, IL-2 production and proliferation of stimulated human primary T cells with IC(50) values from 2 to 4.5 microM. However, contrary to CsA and FK506, NCI3 neither blocks calcineurin;s phosphatase activity nor requires immunophilins for inhibiting NFAT activation. Our data suggest that NCI3 binds to calcineurin and causes an allosteric change interfering with NFAT dephosphorylation in vivo but not in vitro. NCI3 acts not only on the endogenous calcineurin but also on a C-terminally truncated, constitutively active version of calcineurin. The novel inhibitor described herein will be useful in better defining the cellular regulation of calcineurin activation and may serve as a lead for the development of a new type of immunosuppressants acting not by direct inhibition of the calcineurin phosphatase activity.
Collapse
|
43
|
Inhibition of Interleukin-2 Production by Myricetin in Mouse EL-4 T Cells. Arch Pharm Res 2007; 30:1075-9. [DOI: 10.1007/bf02980240] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Hu H, Djuretic I, Sundrud MS, Rao A. Transcriptional partners in regulatory T cells: Foxp3, Runx and NFAT. Trends Immunol 2007; 28:329-32. [PMID: 17618833 DOI: 10.1016/j.it.2007.06.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 05/29/2007] [Accepted: 06/20/2007] [Indexed: 01/03/2023]
Abstract
A general theme in gene regulation is that transcription factors never function alone. Recent studies have emphasized this concept for regulatory T cells, a unique lineage of CD4+ T cells that exert active immune suppression and are essential to maintaining self-tolerance.
Collapse
Affiliation(s)
- Hui Hu
- The CBR Institute for Biomedical Research and the Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
45
|
Marko MG, Ahmed T, Bunnell SC, Wu D, Chung H, Huber BT, Meydani SN. Age-associated decline in effective immune synapse formation of CD4(+) T cells is reversed by vitamin E supplementation. THE JOURNAL OF IMMUNOLOGY 2007; 178:1443-9. [PMID: 17237392 DOI: 10.4049/jimmunol.178.3.1443] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aging is associated with reduced IL-2 production and T cell proliferation. Vitamin E supplementation, in aged animals and humans, increases cell division and IL-2 production by naive T cells. The immune synapse forms at the site of contact between a T cell and an APC and participates in T cell activation. We evaluated whether vitamin E affects the redistribution of signaling proteins to the immune synapse. Purified CD4(+) T cells, from the spleens of young and old mice, were treated with vitamin E before stimulation with a surrogate APC expressing anti-CD3. Using confocal fluorescent microscopy, we observed that CD4(+) T cells from old mice were significantly less likely to recruit signaling proteins to the immune synapse than cells from young mice. Vitamin E increased the percentage of old CD4(+) T cells capable of forming an effective immune synapse. Similar results were found following in vivo supplementation with vitamin E. When compared with memory cells, naive T cells from aged mice were more defective in immune synapse formation and were more responsive to vitamin E supplementation. These data show, for the first time, that vitamin E significantly improves age-related early T cell signaling events in naive CD4(+) T cells.
Collapse
Affiliation(s)
- Melissa G Marko
- Nutritional Immunology Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Shioda N, Han F, Moriguchi S, Fukunaga K. Constitutively active calcineurin mediates delayed neuronal death through Fas-ligand expression via activation of NFAT and FKHR transcriptional activities in mouse brain ischemia. J Neurochem 2007; 102:1506-1517. [PMID: 17662023 DOI: 10.1111/j.1471-4159.2007.04600.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We recently demonstrated that a constitutively active form of calcineurin (CaN) is generated by calpain-mediated limited proteolysis following brain ischemia. The calpain-induced CaN activation mediated delayed neuronal death through translocation of nuclear factor of activated T-cells (NFAT) into nuclei after brain ischemia. We also previously demonstrated that activation of forkhead in rhabdomyosarcoma (FKHR), a forkhead transcription factor and substrate of protein kinase-B (Akt), mediated ischemia-induced neuronal death through Fas-ligand expression in gerbil hippocampus. FKHR activation occurred through decreased Akt activity and concomitant dephosphorylation mediated by undefined phosphatases. In this study, we show that phosphorylated Ser-256 of FKHR is dephosphorylated by constitutively active CaN and that in turn FKHR forms a complex with CaN that is translocated into nuclei after brain ischemia. After nuclear translocation of NFAT and FKHR, both NFAT and FKHR stimulated expression of Fas-ligand by binding to its promoter region. Consistent with activation of the Fas-ligand promoter by FKHR dephosphorylation, Fas-ligand expression increased 2 days after ischemia/reperfusion, and treatment with the CaN inhibitor FK506 inhibited that expression. These results suggest that FKHR is a downstream target of CaN and that constitutively active CaN mediates delayed neuronal death through Fas-ligand expression via up-regulation of both NFAT and FKHR transcriptional activity in brain ischemia.
Collapse
Affiliation(s)
- Norifumi Shioda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, JapanTohoku University 21st Century COE Program "CRESCENDO," Sendai, Japan
| | - Feng Han
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, JapanTohoku University 21st Century COE Program "CRESCENDO," Sendai, Japan
| | - Shigeki Moriguchi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, JapanTohoku University 21st Century COE Program "CRESCENDO," Sendai, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, JapanTohoku University 21st Century COE Program "CRESCENDO," Sendai, Japan
| |
Collapse
|
47
|
Weaver JR, Good K, Walters RD, Kugel JF, Goodrich JA. Characterization of the sequence and architectural constraints of the regulatory and core regions of the human interleukin-2 promoter. Mol Immunol 2007; 44:2813-9. [PMID: 17337059 PMCID: PMC1924494 DOI: 10.1016/j.molimm.2007.01.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 01/19/2007] [Indexed: 11/21/2022]
Abstract
The cytokine interleukin-2 (IL-2) is produced by T cells when they recognize a foreign antigen. Transcription of the IL-2 gene is tightly controlled by the combined actions of multiple transcriptional activators. However, the contribution of sequences in the IL-2 core promoter and the architecture of the IL-2 regulatory region to setting levels of IL-2 transcription are not understood. We have probed these properties of the human IL-2 promoter to understand how the regulatory and core promoter regions cooperate in response to T cell stimulation, thereby setting high levels of inducible transcription. We found that the IL-2 core promoter contains a TATA box that is critical for inducible expression. Moreover, the spacing and orientation between the IL-2 regulatory and core promoter regions is important for setting the level of transcription. The regulatory region of the IL-2 promoter is capable of mediating high levels of expression even when the helical phasing between transcription factor binding sites is perturbed. Although long considered an enhancer, our studies indicate that the regulatory region in the IL-2 promoter is better considered as a proximal regulatory element, since it lacks multiple properties associated with enhancer elements.
Collapse
Affiliation(s)
| | | | | | - Jennifer F. Kugel
- *To whom correspondence should be addressed: JAG: Phone, 303-492-3273; FAX, 303-492-5894; Email, JFK: Phone, 303-492-3596; FAX, 303-492-5894; Email,
| | - James A. Goodrich
- *To whom correspondence should be addressed: JAG: Phone, 303-492-3273; FAX, 303-492-5894; Email, JFK: Phone, 303-492-3596; FAX, 303-492-5894; Email,
| |
Collapse
|
48
|
Wang J, Barke RA, Roy S. Transcriptional and Epigenetic Regulation of Interleukin-2 Gene in Activated T Cells by Morphine. J Biol Chem 2007; 282:7164-71. [PMID: 17227776 DOI: 10.1074/jbc.m604367200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chronic morphine inhibits interleukin-2 (IL-2) at both the transcriptional and protein synthesis levels. The molecular mechanisms by which morphine decreases IL-2 are not fully understood. The production of IL-2 is tightly regulated by several transcription factors that bind to the IL-2 promoter. Herein, we show that chronic morphine treatment results in an increase in cAMP levels with a concurrent up-regulation of the cAMP inducible repressor inducible cAMP early repressor (ICER)/cAMP response element modulator (CREM) and down-regulation of p-cAMP-response element-binding protein (CREB) in activated T cells. Furthermore, ICER competes for p-CREB binding to the cAMP-responsive elements (CREs) site. This leads to the uncoupling of CBP/p300 thereby abrogating IL-2 transcription. Overexpression of either antisense CREM or CREB plasmid rescued morphine-induced inhibition of IL-2 promoter activity and protein production. In addition, we also found that chronic morphine treatment inhibited the acetylation and trimethylation of histones and decreased both DNA demethylation and accessibility of the IL-2 promoter. These findings suggest that chronic morphine treatment may function through both transcriptional and epigenetic mechanisms to inhibit IL-2 production.
Collapse
Affiliation(s)
- Jinghua Wang
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
49
|
Smith KA, Andjelic S, Popmihajlov Z, Kelly-Rossini L, Sass A, Lesser M, Benkert S, Waters C, Ruitenberg J, Bellman P. Immunotherapy with canarypox vaccine and interleukin-2 for HIV-1 infection: termination of a randomized trial. PLOS CLINICAL TRIALS 2007; 2:e5. [PMID: 17260026 PMCID: PMC1783674 DOI: 10.1371/journal.pctr.0020005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Accepted: 11/29/2006] [Indexed: 11/19/2022]
Abstract
OBJECTIVES To determine whether immunotherapy of chronic HIV-1 infection can prevent or attenuate viremia upon antiviral discontinuation. DESIGN This was a Phase II randomized, partially double blinded, 2x2 factorial study of three steps of 12 wk/step. Step I involved four groups: (1) vaccine placebo, (2) vaccine (ALVAC, vCP1452), (3) placebo + interleukin 2 (IL-2), and (4) vaccine + IL-2. Step II involved a 12-wk diagnostic treatment interruption (DTI). Step III involved an extension of the DTI for an additional 12 wk. SETTING The Weill-Cornell General Clinical Research Center. PARTICIPANTS Chronically infected HIV-1 positive adults with undetectable HIV-1 levels and > 400 CD4+ T cells/microl. INTERVENTIONS An HIV canarypox vaccine (vCP1452) and vaccine placebo, administered every 4 wk for four doses, and low-dose IL-2 administered daily for 12-24 wk. OUTCOME MEASURES Primary endpoints: (1) Proportion of participants with undetectable plasma HIV RNA during trial Step II, (2) mean log10 HIV RNA copies/ml ([HIV]) from weeks 21-25, and (3) proportion of individuals eligible for trial Step III. RESULTS 44 participants were randomized, but 16 withdrew or were withdrawn before completing Step II. As all participants underwent viral relapse in Step II, the study was terminated after 28 participants completed Step II. Among the four groups, there was no difference in mean [HIV] or the proportion of individuals with < log10 4.48 HIV; no difference between the mean [HIV] of the two groups that received ALVAC (n = 17) versus placebo (n = 11); and no significant difference between the mean [HIV] of the two groups that received IL-2 (n = 11) versus placebo (n = 17). CONCLUSIONS Neither ALVAC (vCP1452) nor low-dose daily IL-2 nor their combination prevented the relapse of viremia upon discontinuation of antiviral therapy.
Collapse
Affiliation(s)
- Kendall A Smith
- The Division of Immunology, Department of Medicine, Weill Medical College of Cornell University, New York, New York, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lin HF, Shao JZ, Xiang LX, Wang HJ. Molecular cloning, characterization and expression analysis of grass carp (Ctenopharyngodon idellus) NF45 (ILF2) cDNA, a subunit of the nuclear factor of activated T-cells (NF-AT). FISH & SHELLFISH IMMUNOLOGY 2006; 21:385-92. [PMID: 16533607 DOI: 10.1016/j.fsi.2006.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 01/19/2006] [Accepted: 01/19/2006] [Indexed: 05/07/2023]
Abstract
NF45 (ILF2) and NF90 (ILF3) regulate the IL-2 gene transcription via interaction with the antigen receptor response element. Much work on NF45 has been done in human and mammals while little in fish. In the present study, we have cloned and characterized the full-length cDNA of NF45 in grass carp (Ctenopharyngodon idellus). The grass carp NF45 cDNA of 1563bp contains a short 5'UTR of 24bp, a 3'UTR of 375bp and an open reading frame of 1164bp coding for a protein of 387 aa with a predicted molecular mass of 42.8kDa. The encoded protein shares 86.3-96.7% identities to other homologues. RT-PCR was optimized to estimate the expression level of NF45 in grass carp. The results showed that NF45 is constitutively expressed in most selected tissues, including head kidney, spleen, heart, brain, liver, and gill, although low levels were observed in spleen, liver and gill. The ubiquitous expression of NF45 is consistent with a postulated role in gene regulation at the level of transcription. Stimulating the fish with PHA significantly up-regulated the expression of NF45 in most tissues examined, which potentially indicated that NF45 was involved in the immune responses triggered by PHA.
Collapse
Affiliation(s)
- Hui-Fang Lin
- College of Life Sciences, Zhejiang University, Hangzhou 310012, People's Republic of China
| | | | | | | |
Collapse
|