1
|
Long T, Bhattacharyya T, Repele A, Naylor M, Nooti S, Krueger S, Manu. The contributions of DNA accessibility and transcription factor occupancy to enhancer activity during cellular differentiation. G3 (BETHESDA, MD.) 2024; 14:jkad269. [PMID: 38124496 PMCID: PMC11090500 DOI: 10.1093/g3journal/jkad269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/01/2023] [Indexed: 12/23/2023]
Abstract
During gene regulation, DNA accessibility is thought to limit the availability of transcription factor (TF) binding sites, while TFs can increase DNA accessibility to recruit additional factors that upregulate gene expression. Given this interplay, the causative regulatory events in the modulation of gene expression remain unknown for the vast majority of genes. We utilized deeply sequenced ATAC-Seq data and site-specific knock-in reporter genes to investigate the relationship between the binding-site resolution dynamics of DNA accessibility and the expression dynamics of the enhancers of Cebpa during macrophage-neutrophil differentiation. While the enhancers upregulate reporter expression during the earliest stages of differentiation, there is little corresponding increase in their total accessibility. Conversely, total accessibility peaks during the last stages of differentiation without any increase in enhancer activity. The accessibility of positions neighboring C/EBP-family TF binding sites, which indicates TF occupancy, does increase significantly during early differentiation, showing that the early upregulation of enhancer activity is driven by TF binding. These results imply that a generalized increase in DNA accessibility is not sufficient, and binding by enhancer-specific TFs is necessary, for the upregulation of gene expression. Additionally, high-coverage ATAC-Seq combined with time-series expression data can infer the sequence of regulatory events at binding-site resolution.
Collapse
Affiliation(s)
- Trevor Long
- Department of Biology, University of North Dakota, Grand Forks, ND 58202-9019, USA
| | - Tapas Bhattacharyya
- Department of Biology, University of North Dakota, Grand Forks, ND 58202-9019, USA
| | - Andrea Repele
- Department of Biology, University of North Dakota, Grand Forks, ND 58202-9019, USA
| | - Madison Naylor
- Department of Biology, University of North Dakota, Grand Forks, ND 58202-9019, USA
| | - Sunil Nooti
- Department of Biology, University of North Dakota, Grand Forks, ND 58202-9019, USA
| | - Shawn Krueger
- Department of Biology, University of North Dakota, Grand Forks, ND 58202-9019, USA
| | - Manu
- Department of Biology, University of North Dakota, Grand Forks, ND 58202-9019, USA
| |
Collapse
|
2
|
Long T, Bhattacharyya T, Repele A, Naylor M, Nooti S, Krueger S, Manu. The contributions of DNA accessibility and transcription factor occupancy to enhancer activity during cellular differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529579. [PMID: 37090616 PMCID: PMC10120690 DOI: 10.1101/2023.02.22.529579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The upregulation of gene expression by enhancers depends upon the interplay between the binding of sequence-specific transcription factors (TFs) and DNA accessibility. DNA accessibility is thought to limit the ability of TFs to bind to their sites, while TFs can increase accessibility to recruit additional factors that upregulate gene expression. Given this interplay, the causative regulatory events underlying the modulation of gene expression during cellular differentiation remain unknown for the vast majority of genes. We investigated the binding-site resolution dynamics of DNA accessibility and the expression dynamics of the enhancers of an important neutrophil gene, Cebpa, during macrophage-neutrophil differentiation. Reporter genes were integrated in a site-specific manner in PUER cells, which are progenitors that can be differentiated into neutrophils or macrophages in vitro by activating the pan-leukocyte TF PU.1. Time series data show that two enhancers upregulate reporter expression during the first 48 hours of neutrophil differentiation. Surprisingly, there is little or no increase in the total accessibility, measured by ATAC-Seq, of the enhancers during the same time period. Conversely, total accessibility peaks 96 hrs after PU.1 activation-consistent with its role as a pioneer-but the enhancers do not upregulate gene expression. Combining deeply sequenced ATAC-Seq data with a new bias-correction method allowed the profiling of accessibility at single-nucleotide resolution and revealed protected regions in the enhancers that match all previously characterized TF binding sites and ChIP-Seq data. Although the accessibility of most positions does not change during early differentiation, that of positions neighboring TF binding sites, an indicator of TF occupancy, did increase significantly. The localized accessibility changes are limited to nucleotides neighboring C/EBP-family TF binding sites, showing that the upregulation of enhancer activity during early differentiation is driven by C/EBP-family TF binding. These results show that increasing the total accessibility of enhancers is not sufficient for upregulating their activity and other events such as TF binding are necessary for upregulation. Also, TF binding can cause upregulation without a perceptible increase in total accessibility. Finally, this study demonstrates the feasibility of comprehensively mapping individual TF binding sites as footprints using high coverage ATAC-Seq and inferring the sequence of events in gene regulation by combining with time-series gene expression data.
Collapse
Affiliation(s)
- Trevor Long
- Department of Biology, University of North Dakota, Grand Forks, 58202-9019 ND, USA
| | - Tapas Bhattacharyya
- Department of Biology, University of North Dakota, Grand Forks, 58202-9019 ND, USA
| | - Andrea Repele
- Department of Biology, University of North Dakota, Grand Forks, 58202-9019 ND, USA
| | - Madison Naylor
- Department of Biology, University of North Dakota, Grand Forks, 58202-9019 ND, USA
| | - Sunil Nooti
- Department of Biology, University of North Dakota, Grand Forks, 58202-9019 ND, USA
| | - Shawn Krueger
- Department of Biology, University of North Dakota, Grand Forks, 58202-9019 ND, USA
| | - Manu
- Department of Biology, University of North Dakota, Grand Forks, 58202-9019 ND, USA
| |
Collapse
|
3
|
Vahid F, Zand H, Nosrat-Mirshekarlou E, Najafi R, Hekmatdoost A. The role dietary of bioactive compounds on the regulation of histone acetylases and deacetylases: a review. Gene 2015; 562:8-15. [PMID: 25701602 DOI: 10.1016/j.gene.2015.02.045] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 01/25/2015] [Accepted: 02/15/2015] [Indexed: 12/18/2022]
Abstract
Nutrigenomics is an area of epigenomics that explores and defines the rapidly evolving field of diet-genome interactions. Lifestyle and diet can significantly influence epigenetic mechanisms, which cause heritable changes in gene expression without changes in DNA sequence. Nutrient-dependent epigenetic variations can significantly affect genome stability, mRNA and protein expression, and metabolic changes, which in turn influence food absorption and the activity of its constituents. Dietary bioactive compounds can affect epigenetic alterations, which are accumulated over time and are shown to be involved in the pathogenesis of age-related diseases such as diabetes, cancer, and cardiovascular disease. Histone acetylation is an epigenetic modification mediated by histone acetyl transferases (HATs) and histone deacetylases (HDACs) critically involved in regulating affinity binding between the histones and DNA backbone. The HDAC-mediated increase in histone affinity to DNA causes DNA condensation, preventing transcription, whereas HAT-acetylated chromatin is transcriptionally active. HDAC and HAT activities are reported to be associated with signal transduction, cell growth and death, as well as with the pathogenesis of various diseases. The aim of this review was to evaluate the role of diet and dietary bioactive compounds on the regulation of HATs and HDACs in epigenetic diseases. Dietary bioactive compounds such as genistein, phenylisothiocyanate, curcumin, resveratrol, indole-3-carbinol, and epigallocatechin-3-gallate can regulate HDAC and HAT activities and acetylation of histones and non-histone chromatin proteins, and their health benefits are thought to be attributed to these epigenetic mechanisms. The intake of dietary compounds that regulate epigenetic modifications can provide significant health effects and may prevent various pathological processes involved in the development of cancer and other life-threatening diseases.
Collapse
Affiliation(s)
- F Vahid
- Department of Nutritional Sciences, Nutrition and Food Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Nutrition and Food Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - H Zand
- Department of Nutritional Sciences, Nutrition and Food Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Nutrition and Food Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Cell and Molecular Science and Nutrition, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - E Nosrat-Mirshekarlou
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| | - R Najafi
- Department of Nutritional Sciences, Nutrition and Food Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Nutrition and Food Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - A Hekmatdoost
- Department of Nutritional Sciences, Nutrition and Food Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Nutrition and Food Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Kadiyala V, Smith CL. Minireview: The versatile roles of lysine deacetylases in steroid receptor signaling. Mol Endocrinol 2014; 28:607-21. [PMID: 24645680 DOI: 10.1210/me.2014-1002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Lysine deacetylases have been known to regulate nuclear receptor function for many years. In the unliganded state, nuclear receptors that form heterodimers with retinoid X receptors, such as the retinoic acid and thyroid hormone receptors, associate with deacetylases to repress target genes. In the case of steroid receptors, binding of an antagonist ligand was initially reported to induce association of deacetylases to prevent activation of target genes. Since then, deacetylases have been shown to have diverse functions in steroid receptor signaling, from regulating interactions with molecular chaperones to facilitating their ability to activate transcription. The purpose of this review is to summarize recent studies on the role of deacetylases in steroid receptor signaling, which show deacetylases to be highly versatile regulators of steroid receptor function.
Collapse
Affiliation(s)
- Vineela Kadiyala
- Department of Pharmacology and Toxicology, College of Pharmacy (V.K., C.L.S.), Department of Chemistry and Biochemistry, College of Science (V.K.), University of Arizona, Tucson Arizona 85721
| | | |
Collapse
|
5
|
Wang S, Huang J, Lyu H, Lee CK, Tan J, Wang J, Liu B. Functional cooperation of miR-125a, miR-125b, and miR-205 in entinostat-induced downregulation of erbB2/erbB3 and apoptosis in breast cancer cells. Cell Death Dis 2013; 4:e556. [PMID: 23519125 PMCID: PMC3615747 DOI: 10.1038/cddis.2013.79] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We reported that the class I HDAC inhibitor entinostat induced apoptosis in erbB2-overexpressing breast cancer cells via downregulation of erbB2 and erbB3. Here, we study the molecular mechanism by which entinostat dual-targets erbB2/erbB3. Treatment with entinostat had no effect on erbB2/erbB3 mRNA, suggesting a transcription-independent mechanism. Entinostat decreased endogenous but not exogenous erbB2/erbB3, indicating it did not alter their protein stability. We hypothesized that entinostat might inhibit erbB2/erbB3 protein translation via specific miRNAs. Indeed, entinostat significantly upregulated miR-125a, miR-125b, and miR-205, that have been reported to target erbB2 and/or erbB3. Specific inhibitors were then used to determine whether these miRNAs had a causal role in entinostat-induced downregulation of erbB2/erbB3 and apoptosis. Transfection with a single inhibitor dramatically abrogated entinostat induction of miR-125a, miR-125b, or miR-205; however, none of the inhibitors blocked entinostat action on erbB2/erbB3. In contrast, co-transfection with two inhibitors not only reduced their corresponding miRNAs, but also significantly abrogated entinostat-mediated reduction of erbB2/erbB3. Moreover, simultaneous inhibition of two, but not one miRNA significantly attenuated entinostat-induced apoptosis. Interestingly, although the other HDAC inhibitors, such as SAHA and panobinostat, exhibited activity as potent as entinostat to induce growth inhibition and apoptosis in erbB2-overexpressing breast cancer cells, they had no significant effects on the three miRNAs. Instead, both SAHA- and panobinostat-decreased erbB2/erbB3 expression correlated with the reduction of their mRNA levels. Collectively, we demonstrate that entinostat specifically induces expression of miR-125a, miR-125b, and miR-205, which act in concert to downregulate erbB2/erbB3 in breast cancer cells. Our data suggest that epigenetic regulation via miRNA-dependent or -independent mechanisms may represent a novel approach to treat breast cancer patients with erbB2-overexpressing tumors.
Collapse
Affiliation(s)
- S Wang
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Vicent GP, Nacht AS, Font-Mateu J, Castellano G, Gaveglia L, Ballaré C, Beato M. Four enzymes cooperate to displace histone H1 during the first minute of hormonal gene activation. Genes Dev 2011; 25:845-62. [PMID: 21447625 DOI: 10.1101/gad.621811] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Gene regulation by external signals requires access of transcription factors to DNA sequences of target genes, which is limited by the compaction of DNA in chromatin. Although we have gained insight into how core histones and their modifications influence this process, the role of linker histones remains unclear. Here we show that, within the first minute of progesterone action, a complex cooperation between different enzymes acting on chromatin mediates histone H1 displacement as a requisite for gene induction and cell proliferation. First, activated progesterone receptor (PR) recruits the chromatin remodeling complexes NURF and ASCOM (ASC-2 [activating signal cointegrator-2] complex) to hormone target genes. The trimethylation of histone H3 at Lys 4 by the MLL2/MLL3 subunits of ASCOM, enhanced by the hormone-induced displacement of the H3K4 demethylase KDM5B, stabilizes NURF binding. NURF facilitates the PR-mediated recruitment of Cdk2/CyclinA, which is required for histone H1 displacement. Cooperation of ATP-dependent remodeling, histone methylation, and kinase activation, followed by H1 displacement, is a prerequisite for the subsequent displacement of histone H2A/H2B catalyzed by PCAF and BAF. Chromatin immunoprecipitation (ChIP) and sequencing (ChIP-seq) and expression arrays show that H1 displacement is required for hormone induction of most hormone target genes, some of which are involved in cell proliferation.
Collapse
Affiliation(s)
- Guillermo Pablo Vicent
- Centre de Regulació Genòmica (CRG), Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
7
|
McCormick JA, Ellison DH. The WNKs: atypical protein kinases with pleiotropic actions. Physiol Rev 2011; 91:177-219. [PMID: 21248166 DOI: 10.1152/physrev.00017.2010] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
WNKs are serine/threonine kinases that comprise a unique branch of the kinome. They are so-named owing to the unusual placement of an essential catalytic lysine. WNKs have now been identified in diverse organisms. In humans and other mammals, four genes encode WNKs. WNKs are widely expressed at the message level, although data on protein expression is more limited. Soon after the WNKs were identified, mutations in genes encoding WNK1 and -4 were determined to cause the human disease familial hyperkalemic hypertension (also known as pseudohypoaldosteronism II, or Gordon's Syndrome). For this reason, a major focus of investigation has been to dissect the role of WNK kinases in renal regulation of ion transport. More recently, a different mutation in WNK1 was identified as the cause of hereditary sensory and autonomic neuropathy type II, an early-onset autosomal disease of peripheral sensory nerves. Thus the WNKs represent an important family of potential targets for the treatment of human disease, and further elucidation of their physiological actions outside of the kidney and brain is necessary. In this review, we describe the gene structure and mechanisms regulating expression and activity of the WNKs. Subsequently, we outline substrates and targets of WNKs as well as effects of WNKs on cellular physiology, both in the kidney and elsewhere. Next, consequences of these effects on integrated physiological function are outlined. Finally, we discuss the known and putative pathophysiological relevance of the WNKs.
Collapse
Affiliation(s)
- James A McCormick
- Division of Nephrology and Hypertension, Oregon Health and Science University and Veterans Affairs Medical Center, Portland, Oregon 97239, USA.
| | | |
Collapse
|
8
|
HDAC activity is required for efficient core promoter function at the mouse mammary tumor virus promoter. J Biomed Biotechnol 2010; 2011:416905. [PMID: 21253530 PMCID: PMC3021843 DOI: 10.1155/2011/416905] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 11/01/2010] [Indexed: 11/26/2022] Open
Abstract
Histone deacetylases (HDACs) have been shown to be required for basal or inducible transcription at a variety of genes by poorly understood mechanisms. We demonstrated previously that HDAC inhibition rapidly repressed transcription from the mouse mammary tumor virus (MMTV) promoter by a mechanism that does not require the binding of upstream transcription factors. In the current study, we find that HDACs work through the core promoter sequences of MMTV as well as those of several cellular genes to facilitate transcriptional initiation through deacetylation of nonhistone proteins.
Collapse
|
9
|
Vicent GP, Nacht AS, Zaurín R, Ballaré C, Clausell J, Beato M. Minireview: role of kinases and chromatin remodeling in progesterone signaling to chromatin. Mol Endocrinol 2010; 24:2088-98. [PMID: 20484412 PMCID: PMC5417384 DOI: 10.1210/me.2010-0027] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 04/21/2010] [Indexed: 11/19/2022] Open
Abstract
Steroid hormones regulate gene expression by interaction of their receptors with hormone-responsive elements on DNA or with other transcription factors, but they can also activate cytoplasmic signaling cascades. Rapid activation of Erk by progestins via an interaction of the progesterone receptor (PR) with the estrogen receptor is critical for transcriptional activation of the mouse mammary tumor virus (MMTV) promoter and other progesterone target genes. Erk activation leads to the phosphorylation of PR, activation of mitogen- and stress-activated protein kinase 1, and the recruitment of a complex of the three activated proteins and of P300/CBP-associated factor (PCAF) to a single nucleosome, resulting in the phosphoacetylation of histone H3 and the displacement of heterochromatin protein 1γ. Hormone-dependent gene expression requires ATP-dependent chromatin remodeling complexes. Two switch/sucrose nonfermentable-like complexes, Brahma-related gene 1-associated factor (BAF) and polybromo-BAF are present in breast cancer cells, but only BAF is recruited to the MMTV promoter and cooperates with PCAF during activation of hormone-responsive promoters. PCAF acetylates histone H3 at K14, an epigenetic mark recognized by BAF subunits, thus anchoring the complex to chromatin. BAF catalyzes localized displacement of histones H2A and H2B, facilitating access of nuclear factor 1 and additional PR complexes to the hidden hormone-responsive elements on the MMTV promoter. The linker histone H1 is a structural component of chromatin generally regarded as a general repressor of transcription. However, it contributes to a better regulation of the MMTV promoter by favoring a more homogeneous nucleosome positioning, thus reducing basal transcription and actually enhancing hormone induced transcription. During transcriptional activation, H1 is phosphorylated and displaced from the promoter. The kinase cyclin-dependent kinase 2 is activated after progesterone treatment and could catalyze progesterone-induced phosphorylation of histone H1 by chromatin remodeling complexes. The initial steps of gene induction by progestins involve changes in the chromatin organization of target promoters that require the activation of several kinase signaling pathways initiated by membrane anchored PR. Because these pathways also respond to other external signals, they serve to integrate the hormonal response in the global context of the cellular environment.
Collapse
Affiliation(s)
- Guillermo P Vicent
- Centre de Regulació Genòmica, Universitat Pompeu Fabra, Parc de Recerca Biomèdica, Aiguader 88, E-08003 Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
10
|
Vicent GP, Zaurin R, Ballaré C, Nacht AS, Beato M. Erk signaling and chromatin remodeling in MMTV promoter activation by progestins. NUCLEAR RECEPTOR SIGNALING 2009; 7:e008. [PMID: 20087429 PMCID: PMC2807634 DOI: 10.1621/nrs.07008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 08/27/2009] [Indexed: 12/05/2022]
Abstract
Transcription from the mouse mammary tumor virus (MMTV) promoter can be induced by progestins. The progesterone receptor (PR) binds to a cluster of five hormone responsive elements (HREs) and activates the promoter by synergistic interactions with the ubiquitous transcription factor, nuclear factor 1 (NF1). Progesterone treatment of cells in culture leads to activation of the Src/Ras/Erk/Msk1 cascade. Selective inhibition of Erk, or its target kinase Msk1, interferes with chromatin remodeling and blocks MMTV activation. A complex of activated PR, Erk and Msk1 is recruited to promoter after 5 min of hormone treatment and phosphorylates histone H3 at serine 10. This modification promotes the displacement of HP1γ and subsequent chromatin remodeling. Progestin treatment leads to the recruitment of the BAF complex, which selectively displaces histones H2A and H2B from the nucleosome containing the HREs. The acetyltransferase PCAF is also required for induction of progesterone target genes and acetylates histone H3 at K14, an epigenetic mark, which interacts with Brg1 and Brm, anchoring the BAF complex to chromatin. In nucleosomes assembled on either MMTV or mouse rDNA promoter sequences, SWI/SNF displaces histones H2A and H2B from MMTV, but not from the rDNA nucleosome. Thus, the outcome of nucleosome remodeling by purified SWI/SNF depends on DNA sequence. The resultant H3/H4 tetramer particle is then the substrate for subsequent events in induction. Thus, initial activation of the MMTV promoter requires activation of several kinases and PCAF leading to phosphoacetylation of H3, and recruitment of BAF with subsequent removal of H2A/H2B.
Collapse
Affiliation(s)
- Guillermo P Vicent
- Centre de Regulació Genòmica (CRG), Universitat Pompeu Fabra, Parc de Recerca Biomèdica (PRBB), Barcelona, Spain
| | | | | | | | | |
Collapse
|
11
|
Vicent GP, Zaurin R, Nacht AS, Li A, Font-Mateu J, Le Dily F, Vermeulen M, Mann M, Beato M. Two chromatin remodeling activities cooperate during activation of hormone responsive promoters. PLoS Genet 2009; 5:e1000567. [PMID: 19609353 PMCID: PMC2704372 DOI: 10.1371/journal.pgen.1000567] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 06/18/2009] [Indexed: 12/22/2022] Open
Abstract
Steroid hormones regulate gene expression by interaction of their receptors with hormone responsive elements (HREs) and recruitment of kinases, chromatin remodeling complexes, and coregulators to their target promoters. Here we show that in breast cancer cells the BAF, but not the closely related PBAF complex, is required for progesterone induction of several target genes including MMTV, where it catalyzes localized displacement of histones H2A and H2B and subsequent NF1 binding. PCAF is also needed for induction of progesterone target genes and acetylates histone H3 at K14, an epigenetic mark that interacts with the BAF subunits by anchoring the complex to chromatin. In the absence of PCAF, full loading of target promoters with hormone receptors and BAF is precluded, and induction is compromised. Thus, activation of hormone-responsive promoters requires cooperation of at least two chromatin remodeling activities, BAF and PCAF. In order to adapt its gene expression program to the needs of the environment, the cell must access the information stored in the DNA sequence that is tightly packaged into chromatin in the cell nucleus. How the cell manages to do it in a selective maner is still unclear. Here we show that, in breast cancer cells treated with the ovarian hormone progesterone, the hormone receptor recruits to the regulated genes two chromatin remodeling complexes that cooperate in opening the chromatin structure. One of the complexes puts a mark in a chromatin protein that anchors the other complex, enabling full gene activation. The present discovery highlights the importance of the concerted order of events for access to genomic information during activation of gene expression and reveals the intricacies of hormonal gene regulation.
Collapse
Affiliation(s)
- Guillermo Pablo Vicent
- Centre de Regulació Genòmica (CRG), Universitat Pompeu Fabra, Parc de Recerca Biomèdica (PRBB), Barcelona, Spain
| | - Roser Zaurin
- Centre de Regulació Genòmica (CRG), Universitat Pompeu Fabra, Parc de Recerca Biomèdica (PRBB), Barcelona, Spain
| | - A. Silvina Nacht
- Centre de Regulació Genòmica (CRG), Universitat Pompeu Fabra, Parc de Recerca Biomèdica (PRBB), Barcelona, Spain
| | - Ang Li
- Centre de Regulació Genòmica (CRG), Universitat Pompeu Fabra, Parc de Recerca Biomèdica (PRBB), Barcelona, Spain
| | - Jofre Font-Mateu
- Centre de Regulació Genòmica (CRG), Universitat Pompeu Fabra, Parc de Recerca Biomèdica (PRBB), Barcelona, Spain
| | - Francois Le Dily
- Centre de Regulació Genòmica (CRG), Universitat Pompeu Fabra, Parc de Recerca Biomèdica (PRBB), Barcelona, Spain
| | - Michiel Vermeulen
- Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Martinsried, Germany
- Department of Physiological Chemistry and Cancer Genomics Centre, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Martinsried, Germany
| | - Miguel Beato
- Centre de Regulació Genòmica (CRG), Universitat Pompeu Fabra, Parc de Recerca Biomèdica (PRBB), Barcelona, Spain
- * E-mail:
| |
Collapse
|
12
|
Li M, Zhao Y, Li Y, Li C, Chen F, Mao J, Zhang Y. Upregulation of human with-no-lysine kinase-4 gene expression by GATA-1 acetylation. Int J Biochem Cell Biol 2008; 41:872-8. [PMID: 18793746 DOI: 10.1016/j.biocel.2008.08.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 08/18/2008] [Accepted: 08/22/2008] [Indexed: 10/21/2022]
Abstract
With-no-lysine kinase-4 (WNK4), a member of the serine-threonine protein kinase family, acts as a multifunctional regulator of diverse ion transporters. Therefore, it is interesting to investigate the mechanisms that control its expression. We have previously demonstrated that glucocorticoid downregulates human WNK4 (hWNK4) expression through the negative glucocorticoid responsive element. Here, using real-time PCR and Western blot assays, we show that trichostatin A (TSA), a histone deacetylase inhibitor, upregulated hWNK4 mRNA and protein expression in human embryo kidney 293 cells. Analysis of the transcriptional activity of a series of the truncated hWNK4 promoters by luciferase assay indicated that the region -484 to -337 of the hWNK4 promoter was sensitive to TSA, and a GATA-1 binding motif was identified at position -426 using TRANSFAC-TESS program. Moreover, using electrophoresis mobility shift assay and chromatin immunoprecipitation assay, the GATA-1 binding affinity to the hWNK4 promoter was shown to increase with TSA under in vitro and in vivo conditions. Immunoprecipitation and Western blot analyses showed that the levels of acetylated GATA-1 were increased with TSA, in agreement with changes in its DNA-binding affinity. These findings indicate that TSA induces hWNK4 expression, at least in part, by increasing GATA-1 acetylation, and thereby its binding to the GATA-1 responsive element, within the hWNK4 promoter.
Collapse
Affiliation(s)
- Miao Li
- Department of Medical Genetics, China Medical University, No92, Bei Er Road, Shenyang 110001, China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Transcriptional repression and silencing have been strongly associated with hypoacetylation of histones. Accordingly, histone deacetylases, which remove acetyl groups from histones, have been shown to participate in mechanisms of transcriptional repression. Therefore, current models of the role of acetylation in transcriptional regulation focus on the acetylation status of histones and designate histone acetyltransferases, which add acetyl groups to histones, as transcriptional coactivators and histone deacetylases as corepressors. In recent years, an accumulation of studies have shown that these enzymes also target non-histone proteins and that histone deacetylases have clear roles as coactivators at a variety of genes, some of which are key regulators of cell growth and survival. This review summarizes the evidence for histone deacetylases as coactivators and provides models of coactivation mechanisms, some of which integrate roles of acetylated histones and non-histone proteins in transcription.
Collapse
Affiliation(s)
- Catharine L Smith
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 E. Mabel St, Tucson, AZ 85721, USA.
| |
Collapse
|
14
|
Aoyagi S, Archer TK. Dynamic histone acetylation/deacetylation with progesterone receptor-mediated transcription. Mol Endocrinol 2007; 21:843-56. [PMID: 17227884 DOI: 10.1210/me.2006-0244] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Histone acetylation is a highly dynamic posttranslational modification that plays an important role in gene expression. Previous work showed that promoter histone deacetylation is accompanied by progesterone receptor (PR)-mediated activation of the mouse mammary tumor virus (MMTV) promoter. We investigated the role of this deacetylation and found that this histone deacetylation is not a singular event. In fact, histone acetylation at the MMTV promoter is highly dynamic, with an initial increase in acetylation followed by an eventual net deacetylation of histone H4. The timing of increase in acetylation of H4 coincides with the time at which PR, RNA polymerase II, and histone acetyltransferases cAMP response element-binding protein (CREB)-binding protein and p300 are recruited to the MMTV promoter. The timing in which histone H4 deacetylation occurs (after PR and RNA polymerase II recruitment) and the limited effect that trichostatin A and small interfering RNA knockdown of histone deacetylase (HDAC)3 have on MMTV transcription suggests that this deacetylation activity is not required for the initiation of PR-mediated transcription. Interestingly, two HDACs, HDAC1 and HDAC3, are already present at the MMTV before transcription activation. HDAC association at the MMTV promoter fluctuates during the hormone treatment. In particular, HDAC3 is temporarily undetected at the MMTV promoter within minutes after hormone treatment when the histone H4 acetylation increases but returns to the promoter near the time when histone acetylation levels start to decline. These results demonstrate the dynamic nature of coactivator/corepressor-promoter association and histone modifications such as acetylation during a transcription activation event.
Collapse
Affiliation(s)
- Sayura Aoyagi
- Chromatin and Gene Expression Section, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, 111 Alexander Drive, P.O. Box 12233 (MD D4-01), Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
15
|
Kato K, Miyaji-Yamaguchi M, Okuwaki M, Nagata K. Histone acetylation-independent transcription stimulation by a histone chaperone. Nucleic Acids Res 2006; 35:705-15. [PMID: 17179179 PMCID: PMC1807960 DOI: 10.1093/nar/gkl1077] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Histone chaperones are thought to be important for maintaining the physiological activity of histones; however, their exact roles are not fully understood. The physiological function of template activating factor (TAF)-I, one of the histone chaperones, also remains unclear; however, its biochemical properties have been well studied. By performing microarray analyses, we found that TAF-I stimulates the transcription of a sub-set of genes. The transcription of endogenous genes that was up-regulated by TAF-I was found to be additively stimulated by histone acetylation. On performing an experiment with a cell line containing a model gene integrated into the chromosome, TAF-I was found to stimulate the model gene transcription in a histone chaperone activity-dependent manner additively with histone acetylation. TAF-I bound to the core histones and remodeled the chromatin structure independent of the N-terminal histone tail and its acetylation level in vitro. These results suggest that TAF-I remodel the chromatin structure through its interaction with the core domain of the histones, including the histone fold, and this mechanism is independent of the histone acetylation status.
Collapse
Affiliation(s)
| | | | | | - Kyosuke Nagata
- To whom correspondence should be addressed. Tel: +81 29 853 3233; Fax: +81 29 853 3233;
| |
Collapse
|
16
|
Vicent GP, Ballaré C, Nacht AS, Clausell J, Subtil-Rodríguez A, Quiles I, Jordan A, Beato M. Induction of progesterone target genes requires activation of Erk and Msk kinases and phosphorylation of histone H3. Mol Cell 2006; 24:367-81. [PMID: 17081988 DOI: 10.1016/j.molcel.2006.10.011] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 09/05/2006] [Accepted: 10/05/2006] [Indexed: 01/13/2023]
Abstract
How genes are regulated in the context of chromatin is a central question of biology. Steroid hormones control gene expression via interaction of their receptors with target sequences on DNA but can also activate cytoplasmic signaling cascades. Here we report that rapid Erk activation by progestins participates in induction of target genes by preparing the chromatin for transcription. Five minutes after hormone treatment, Erk activation leads to phosphorylation of the progesterone receptor (PR), activation of Msk1, and recruitment of a complex of the three proteins to a nucleosome on the MMTV promoter. Msk1 phosphorylates histone H3, leading to displacement of HP1gamma and recruitment of Brg1 and RNA polymerase II. Cell-free experiments show a direct interaction between PR, Erk, and Msk1 and support the importance of H3 phosphorylation for nucleosome remodeling. Inhibition of Msk1 activation blocks recruitment of the kinase complex, H3 phosphorylation, and HP1gamma displacement, thus precluding remodeling and induction of the promoter.
Collapse
Affiliation(s)
- Guillermo P Vicent
- Centre de Regulació Genòmica, Universitat Pompeu Fabra, Parc de Recerca Biomèdica, Dr. Aiguader 88, E-08003 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Vicent GP, Ballaré C, Zaurin R, Saragüeta P, Beato M. Chromatin Remodeling and Control of Cell Proliferation by Progestins via Cross Talk of Progesterone Receptor with the Estrogen Receptors and Kinase Signaling Pathways. Ann N Y Acad Sci 2006; 1089:59-72. [PMID: 17261755 DOI: 10.1196/annals.1386.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Transcription from the mouse mammary tumor virus (MMTV) promoter can be induced by glucocorticoids or progestins. Progesterone treatment of cultured cells carrying an integrated single copy of an MMTV transgene leads to recruitment of progesterone receptor (PR), SWI/SNF, and SNF2h-related complexes to MMTV promoter. Recruitment is accompanied by selective displacement of histones H2A and H2B from the nucleosome B. In nucleosomes assembled on promoter sequences, SWI/SNF displaces histones H2A and H2B from MMTV nucleosome B, but not from other MMTV nucleosomes or from an rDNA promoter nucleosome. Thus, the outcome of nucleosome remodeling by purified SWI/SNF depends on the DNA sequence. On the other hand, 5 min after hormone treatment, the cytoplasmic signaling cascade Src/Ras/Erk is activated via an interaction of PR with the estrogen receptor, which activates Src. As a consequence of Erk activation PR is phosphorylated, Msk1 is activated, and a ternary complex PR-Erk-Msk1 is recruited to MMTV nucleosome B. Msk1 phosphorylates H3 at serine 10, which is followed by acetylation at lysine 14, displacement of HP1gamma, and recruitment of Brg1, PCAF, and RNA polymerase II. Blocking Erk activation or Msk1 activity prevents induction of the MMTV transgene. Thus, the rapid nongenomic effects of progestins are essential for their transcriptional effects on certain progestin target genes. In rat endometrial stromal cells, picomolar concentrations of progestins trigger the cross talk of PR with ERbeta that activates the Erk and Akt kinase pathways leading to cell proliferation in the absence of direct transcriptional effects of the ligand-activated PR. Thus, depending on the cellular context rapid kinase activation and transcriptional effect play different roles in the physiological response to progestins.
Collapse
Affiliation(s)
- Guillermo P Vicent
- Centre de Regulació Genómica (CRG), Universitat Pompeu Fabra (UPF), PRBB, Dr Aiguader 88, 08003 Barcelona, Spain
| | | | | | | | | |
Collapse
|
18
|
Kim Y, Sun Y, Chow C, Pommier YG, Simons SS. Effects of acetylation, polymerase phosphorylation, and DNA unwinding in glucocorticoid receptor transactivation. J Steroid Biochem Mol Biol 2006; 100:3-17. [PMID: 16723222 DOI: 10.1016/j.jsbmb.2006.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Accepted: 03/02/2006] [Indexed: 11/29/2022]
Abstract
Varying the concentration of selected factors alters the induction properties of steroid receptors by changing the position of the dose-response curve (or the value for half-maximal induction=EC(50)) and the amount of partial agonist activity of antisteroids. We now describe a rudimentary mathematical model that predicts a simple Michaelis-Menten curve for the multi-step process of steroid-regulated gene induction. This model suggests that steps far downstream from receptor binding to steroid can influence the EC(50) of agonist-complexes and partial agonist activity of antagonist-complexes. We therefore asked whether inhibitors of three possible downstream steps can reverse the effects of increased concentrations of two factors: glucocorticoid receptors (GRs) and Ubc9. The downstream steps (with inhibitors in parentheses) are protein deacetylation (TSA and VPA), DNA unwinding (CPT), and CTD phosphorylation of RNA polymerase II (DRB and H8). None of the inhibitors mimic or prevent the effects of added GRs. However, inhibitors of DNA unwinding and CTD phosphorylation do reverse the effects of Ubc9 with high GR concentrations. These results support our earlier conclusion that different rate-limiting steps operate at low and high GR concentrations versus high GR with Ubc9. The present data also suggest that downstream steps can modulate the EC(50) of GR-mediated induction, thus both supporting the utility of our mathematical model and widening the field of biochemical processes that can modify the EC(50).
Collapse
Affiliation(s)
- Yuli Kim
- Steroid Hormones Section, NIDDK/CEB, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
19
|
Willemsen P, Scippo ML, Maghuin-Rogister G, Martial JA, Muller M. Enhancement of steroid receptor-mediated transcription for the development of highly responsive bioassays. Anal Bioanal Chem 2005; 382:894-905. [PMID: 15906006 DOI: 10.1007/s00216-005-3253-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 03/25/2005] [Accepted: 04/08/2005] [Indexed: 02/02/2023]
Abstract
We have previously generated several transformed human mammary cell lines for the detection of steroid receptor-mediated activities and used these cell lines to detect and characterize steroid hormone (ant)agonistic compounds. In this report, we describe the specific optimization procedures used to enhance receptor-mediated transcription through the human glucocorticoid, progesterone and androgen receptors, respectively. Sodium arsenite-induced chemical stress leads to a substantial and specific increase in the glucocorticoid receptor-mediated transcription, resulting in maximal stimulations of more than 2000-fold by the agonist dexamethasone. Similarly, a combined treatment with forskolin (an activator of adenylate cyclase) and trichostatin A (an inhibitor of histone deacetylases) leads to a synergistic enhancement of progesterone or androgen stimulation, resulting in a maximal induction of more than 200-fold or about 100-fold, respectively. The enhanced responses to specific steroids are mediated by the corresponding nuclear receptor. We show that by using these enhanced transcriptional stimulation protocols, it is possible to detect lower amounts of steroid hormones without substantially affecting the relative biological activities of various agonists. Finally, the application of these enhanced reporter cell assays to real biological samples from meat-producing animals is evaluated, and some validation parameters are presented.
Collapse
Affiliation(s)
- Philippe Willemsen
- Laboratoire de Biologie Molèculaire et de Génie Génétique, Université de Liège, Bâtiment de Chimie B-6, Sart Tilman, 4000 Liège, Belgium
| | | | | | | | | |
Collapse
|
20
|
Kumar RC, Thakur MK. Sex steroids reduce DNaseI accessibility of androgen receptor promoter in adult male mice brain. ACTA ACUST UNITED AC 2005; 131:1-7. [PMID: 15530646 DOI: 10.1016/j.molbrainres.2004.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2004] [Indexed: 11/30/2022]
Abstract
We have previously reported that androgen receptor (AR) expression is inversely correlated to its promoter methylation and is regulated by sex steroids. As chromatin structure plays an important role in transcriptional regulation, the effect of sex steroids on DNaseI accessibility of chromatin of AR promoter was examined in the brain cortex of adult and old mice of both sexes. Nuclei were digested with different concentrations of DNaseI and the extracted DNA was further cleaved by PstI and analyzed by Southern hybridization with DIG-labeled 695-bp AR promoter. With 50 U DNaseI, the intensity of PstI-specific 1.45-kb band was lower in intact female as compared to male groups, suggesting increased nuclease accessibility in female than male. Although gonadectomy increased DNaseI accessibility remarkably in male and female of both ages, testosterone decreased the accessibility in adult but increased in old male. Estradiol, on the other hand, decreased DNaseI accessibility in both adult male and old female but increased in old male and adult female. Thus, these findings suggest that the chromatin conformation of AR promoter varies with age and sex and its accessibility to DNaseI is reduced by testosterone and estradiol in the brain cortex of adult male mice.
Collapse
Affiliation(s)
- R C Kumar
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University Varanasi, Uttar Pradesh 221 005, India
| | | |
Collapse
|
21
|
Flavin M, Cappabianca L, Kress C, Thomassin H, Grange T. Nature of the accessible chromatin at a glucocorticoid-responsive enhancer. Mol Cell Biol 2004; 24:7891-901. [PMID: 15340052 PMCID: PMC515051 DOI: 10.1128/mcb.24.18.7891-7901.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To gain a better understanding of the nature of active chromatin in mammals, we have characterized in living cells the various chromatin modification events triggered by the glucocorticoid receptor (GR) at the rat tyrosine aminotransferase gene. GR promotes a local remodeling at a glucocorticoid-responsive unit (GRU) located 2.5 kb upstream of the transcription start site, creating nuclease hypersensitivity that encompasses 450 bp of DNA. Nucleosomes at the GRU occupy multiple frames that are remodeled without nucleosome repositioning, showing that nucleosome positioning is not the key determinant of chromatin accessibility at this locus. Remodeling affects nucleosomes and adjacent linker sequences, enhancing accessibility at both regions. This is associated with decreased interaction of both the linker histone H1 and the core histone H3 with DNA. Thus, our results indicate that nucleosome and linker histone removal rather than nucleosome repositioning is associated with GR-triggered accessibility. Interestingly, GR induces hyperacetylation of histones H3 and H4, but this is not sufficient either for remodeling or for transcriptional activation. Finally, our data favor the coexistence of several chromatin states within the population, which may account for the previously encountered difficulties in characterizing unambiguously the active chromatin structure in living cells.
Collapse
Affiliation(s)
- Michelle Flavin
- Institut Jacques Monod du CNRS, Universités Paris 6-7, Tour 43, 2 Place Jussieu, 75251 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
22
|
Kinyamu HK, Archer TK. Modifying chromatin to permit steroid hormone receptor-dependent transcription. ACTA ACUST UNITED AC 2004; 1677:30-45. [PMID: 15020043 DOI: 10.1016/j.bbaexp.2003.09.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Revised: 09/24/2003] [Accepted: 09/24/2003] [Indexed: 02/07/2023]
Abstract
Lipophilic hormones, including steroids, exert their physiological effects through binding to high-affinity superfamily of steroid hormone receptor (SR) proteins that function as ligand-dependent DNA binding transcription factors. To date, SR proteins are among a few transcription factors shown to directly interact with higher order chromatin structures to regulate gene expression. To perturb chromatin, SRs employ enzymatic multicomplexes that can either remodel or modify chromatin. Here we examine the current state of knowledge concerning multicomplex chromatin remodeling/modification machines and SR-dependent transcription. We will focus on the role of these protein-protein and chromatin-protein interactions in vivo with the MMTV promoter as a primary model. In addition, we discuss emerging evidence implicating chaperone proteins and proteasome degradation machinery in SR-mediated gene regulation within chromatin.
Collapse
Affiliation(s)
- H Karimi Kinyamu
- Chromatin and Gene Expression Section, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, 111 Alexander Drive, PO Box 12233 (MD E4-06), Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
23
|
Bhat RA, Borst JW, Riehl M, Thompson RD. Interaction of maize Opaque-2 and the transcriptional co-activators GCN5 and ADA2, in the modulation of transcriptional activity. PLANT MOLECULAR BIOLOGY 2004; 55:239-52. [PMID: 15604678 DOI: 10.1007/s11103-004-0553-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Maize Opaque-2 (ZmO2), a bZip class transcription factor has been shown to activate the transcription of a series of genes expressed in the maturation phase of endosperm development. Activation requires the presence of one or more enhancer binding sites, which confer the propensity for activation by ZmO2 on heterologous promoters and in heterologous plant cell types, such as tobacco mesophyll protoplasts. The region of ZmO2 required for conferring transcriptional activation has been localised to a stretch of acidic residues in the N-terminal portion of the ZmO2 sequence, which is conserved between O2-related bZip factor sequences. Previously we identified the maize homologues of yeast transcriptional co-activators GCN5 and ADA2 that are implicated in nucleosome modification and transcription. In the present study we have shown that transcriptional modulation by ZmO2 involves the intranuclear interaction of ZmO2 with ZmADA2 and ZmGCN5. Förster resonance energy transfer (FRET) based techniques have enabled us to estimate the intracellular site of these intermolecular interactions. As a functional readout of these intranuclear interactions, we used the ZmO2 responsive maize b-32 promoter to drive the beta-glucuronidase (GUS) in the presence and absence of ZmGCN5 and ZmADA2. Our results suggest that the likely recruitment of ZmADA2 and ZmGCN5 modulates the transactivation of b-32 promoter by ZmO2 and that there may be a competition between ZmGCN5 and ZmO2 for binding to the amino-terminal of ZmADA2. The results may be taken as a paradigm for other processes of transcriptional modulation in planta involving acidic activation domains.
Collapse
Affiliation(s)
- Riyaz A Bhat
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, Cologne, Germany
| | | | | | | |
Collapse
|
24
|
Stein GS, Lian JB, Montecino M, Stein JL, van Wijnen AJ, Javed A, Pratap J, Choi J, Zaidi SK, Gutierrez S, Harrington K, Shen J, Young D, Pockwinse S. Nuclear microenvironments support physiological control of gene expression. Chromosome Res 2004; 11:527-36. [PMID: 12971727 DOI: 10.1023/a:1024943214431] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There is growing recognition that the organization of nucleic acids and regulatory proteins is functionally linked to the assembly, localization and activity of gene regulatory machinery. Cellular, molecular, biochemical and in-vivo genetic evidence support an obligatory relationship between nuclear microenvironments where regulatory complexes reside and fidelity of transcriptional control. Perturbations in mechanisms governing the intranuclear trafficking of transcription factors and the temporal/spatial organization of regulatory proteins within the nucleus occur with compromised gene expression that abrogates skeletal development and mediates leukemogenesis.
Collapse
Affiliation(s)
- Gary S Stein
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Ave. North, Worcester, MA 01655, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Astrand C, Klenka T, Wrange O, Belikov S. Trichostatin A reduces hormone-induced transcription of theMMTVpromoter and has pleiotropic effects on its chromatin structure. ACTA ACUST UNITED AC 2004; 271:1153-62. [PMID: 15009194 DOI: 10.1111/j.1432-1033.2004.04019.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The deacetylase inhibitor trichostatin A (TSA) has long been used to study the relationship between gene transcription and the acetylation status of chromatin. We have used Xenopus laevis oocytes to study the effects of TSA on glucocorticoid receptor (GR)-dependent transcription and we have related these effects to changes in the chromatin structure of a reporter mouse mammary tumor virus (MMTV) promoter. We show that TSA induces a low level of constitutive transcription. This correlates with a change of acetylation pattern and a more open chromatin structure over the MMTV chromatin, and with specific acetylation and remodeling events in the promoter region. Specifically, a repositioning of initially randomly positioned nucleosomes along the distal MMTV long terminal repeat is seen. This nucleosome rearrangement is similar to the translational nucleosome positioning that occurs upon hormone activation. We also note a reduced hormone response in the presence of TSA. TSA effects have for a long time been associated with transcriptional activation and chromatin opening through inhibition of the deacetylation of histones. However, our results and those of others show that TSA-induced changes in expression and chromatin structure can be quite different in different promoter contexts and, thus, the effects of TSA are more complex than previously believed.
Collapse
Affiliation(s)
- Carolina Astrand
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
26
|
Moosmang S, Schulla V, Welling A, Feil R, Feil S, Wegener JW, Hofmann F, Klugbauer N. Dominant role of smooth muscle L-type calcium channel Cav1.2 for blood pressure regulation. EMBO J 2004; 22:6027-34. [PMID: 14609949 PMCID: PMC275441 DOI: 10.1093/emboj/cdg583] [Citation(s) in RCA: 239] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Blood pressure is regulated by a number of key molecules involving G-protein-coupled receptors, ion channels and monomeric small G-proteins. The relative contribution of these different signaling pathways to blood pressure regulation remains to be determined. Tamoxifen-induced, smooth muscle-specific inactivation of the L-type Cav1.2 Ca2+ channel gene in mice (SMAKO) reduced mean arterial blood pressure (MAP) in awake, freely moving animals from 120 +/- 4.5 to 87 +/- 8 mmHg. Phenylephrine (PE)- and angiotensin 2 (AT2)-induced MAP increases were blunted in SMAKO mice, whereas the Rho-kinase inhibitor Y-27632 reduced MAP to the same extent in control and SMAKO mice. Depolarization-induced contraction was abolished in tibialis arteries of SMAKO mice, and development of myogenic tone in response to intravascular pressure (Bayliss effect) was absent. Hind limb perfusion experiments suggested that 50% of the PE-induced resistance is due to calcium influx through the Cav1.2 channel. These results show that Cav1.2 calcium channels are key players in the hormonal regulation of blood pressure and development of myogenic tone.
Collapse
Affiliation(s)
- Sven Moosmang
- Institut für Pharmakologie und Toxikologie, TU München, Biedersteiner Strasse 29, D-80802 München, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Kim HS, Park JS, Hong SJ, Woo MS, Kim SY, Kim KS. Regulation of the tyrosine hydroxylase gene promoter by histone deacetylase inhibitors. Biochem Biophys Res Commun 2003; 312:950-7. [PMID: 14651963 DOI: 10.1016/j.bbrc.2003.11.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tyrosine hydroxylase (TH) catalyzes the conversion of L-tyrosine to 3,4-dihydroxy-L-phenylalanine, which is the first and rate-limiting step in catecholamine biosynthesis. In the present study, we report that treatment with the histone deacetylase (HDAC) inhibitors, trichostatin A (TSA) or sodium butyrate, prominently induces the TH promoter activity in both non-neuronal and neuronal cell lines. By analyzing a series of deletional reporter constructs, we also determined that the proximal 151bp region of the TH promoter is largely responsible for TSA-mediated activation. Finally, we found that mutation of the Sp1 or CRE site, residing in the proximal area, abolishes TSA-mediated activation, strongly suggesting that the Sp1 and CRE sites may mediate TH promoter activation by inhibition of HDAC. In summary, our results provide a novel regulatory frame in which modulation of chromatin structure by histone deacetylase may contribute to transcriptional regulation of the TH via the Sp1 and/or CRE site.
Collapse
Affiliation(s)
- Hee-Sun Kim
- Department of Neuroscience, Ewha Institute of Neuroscience, College of Medicine, Ewha Womans University, Seoul, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
28
|
Nakano M, Okamoto Y, Ohzeki JI, Masumoto H. Epigenetic assembly of centromeric chromatin at ectopic alpha-satellite sites on human chromosomes. J Cell Sci 2003; 116:4021-34. [PMID: 12953060 DOI: 10.1242/jcs.00697] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the mechanism of chromatin assembly at human centromeres, we isolated cultured human cell lines in which a transfected alpha-satellite (alphoid) YAC was integrated ectopically into the terminal region of host chromosome 16, where it was stably maintained. Centromere activity of the alphoid YAC was suppressed at ectopic locations on the host chromosome, as indicated by the absent or reduced assembly of CENP-A and -C. However, long-term culture in selective medium, or short-term treatment with the histone deacetylase inhibitor Trichostatin A (TSA), promoted the re-assembly of CENPA, -B and -C at the YAC site and the release of minichromosomes containing the YAC integration site. Chromatin immunoprecipitation analyses of the re-formed minichromosome and the alphoid YAC-based stable human artificial chromosome both indicated that CENP-A and CENP-B assembled only on the inserted alphoid array but not on the YAC arms. On the YAC arms at the alphoid YAC integration sites, TSA treatment increased both the acetylation level of histone H3 and the transcriptional level of a marker gene. An increase in the level of transcription was also observed after long-term culture in selective medium. These activities, which are associated with changes in chromatin structure, might reverse the suppressed chromatin state of the YAC at ectopic loci, and thus might be involved in the epigenetic change of silent centromeres on ectopic alphoid loci.
Collapse
Affiliation(s)
- Megumi Nakano
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | |
Collapse
|
29
|
Mulholland NM, Soeth E, Smith CL. Inhibition of MMTV transcription by HDAC inhibitors occurs independent of changes in chromatin remodeling and increased histone acetylation. Oncogene 2003; 22:4807-18. [PMID: 12894222 DOI: 10.1038/sj.onc.1206722] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Increased histone acetylation has been associated with activated gene transcription and decreased acetylation with repression. However, there is a growing number of genes known, which are downregulated by histone deacetylase (HDAC) inhibitors through unknown mechanisms. This study examines the mechanism by which the mouse mammary tumor virus (MMTV) promoter is repressed by the HDAC inhibitor, trichostatin A (TSA). We find that this repression is transcriptional in nature and that it occurs in the presence and absence of glucocorticoids. TSA decreases MMTV transcription at a rapid rate, reaching maximum in 30-60 min. In contrast with previous reports, the repression does not correlate with an inhibition of glucocorticoid-induced nuclease hypersensitivity or NF1-binding at the MMTV promoter. Surprisingly, TSA does not induce sizable increases in histone acetylation at the MMTV promoter nor does it inhibit histone deacetylation, which accompanies deactivation of the glucocorticoid-activated MMTV promoter. Repression of MMTV transcription by TSA does not depend on the chromatin organization of the promoter because a transiently transfected MMTV promoter construct with a disorganized nucleoprotein structure was also repressed by TSA treatment. Mutational analysis of the MMTV promoter indicates that repression by TSA is mediated through the TATA box region. These results suggest a novel mechanism that involves acetylation of nonhistone proteins necessary for basal transcription.
Collapse
Affiliation(s)
- Niveen M Mulholland
- Department of Genetics, George Washington University, Washington, DC 20052, USA
| | | | | |
Collapse
|
30
|
Lambert JR, Nordeen SK. CBP recruitment and histone acetylation in differential gene induction by glucocorticoids and progestins. Mol Endocrinol 2003; 17:1085-94. [PMID: 12637584 DOI: 10.1210/me.2001-0183] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We have analyzed histone acetylation at the steroid-responsive mouse mammary tumor virus (MMTV) promoter in five separate cell lines that express functional glucocorticoid and/or progesterone receptors. Chromatin immunoprecipitation assays reveal that glucocorticoid and progesterone receptors bind the MMTV promoter after hormone addition but that receptor binding is not associated with an increase in acetylation of histone H3 or H4. We have, however, found one exception to this rule. Previously we described a cell line [T47D(C&L)] that displayed a remarkable differential induction of MMTV by glucocorticoids and progestins. At one chromosomal locus (MMTV-luciferase), MMTV is preferentially induced by glucocorticoids, whereas at another locus within the same cell (MMTV-CAT), MMTV is activated by both glucocorticoids and progestins. Here we show that the glucocorticoid-mediated induction of MMTV-luciferase is accompanied by increased recruitment of CBP to the promoter and increased histone H3 and H4 acetylation, whereas the hormonal induction of MMTV-CAT in the same cell exhibits a more modest CBP recruitment without any increase in histone acetylation. These studies suggest that increased histone acetylation may serve a potentiating function for MMTV promoter activation at certain loci. However, increased histone acetylation is not requisite for steroid-mediated induction of transcription at all genes.
Collapse
Affiliation(s)
- James R Lambert
- Department of Pathology and Program in Molecular Biology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | |
Collapse
|
31
|
Hebbar PB, Archer TK. Chromatin remodeling by nuclear receptors. Chromosoma 2003; 111:495-504. [PMID: 12743713 DOI: 10.1007/s00412-003-0232-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2002] [Revised: 12/20/2002] [Accepted: 12/20/2002] [Indexed: 10/22/2022]
Abstract
The eukaryotic genome is structurally organized into nucleosomes to form chromatin, which regulates gene expression, in part, by controlling the accessibility of regulatory factors. When packaged as chromatin, many promoters are transcriptionally repressed, thus reducing the access of transcription factors to their binding sites. However, nuclear receptors (NRs) are a group of transcription factors that have the ability to access their binding sites in this repressive chromatin structure. Nuclear receptors are able to bind to their sites and recruit chromatin-remodeling proteins such as ATP-dependent chromatin-remodeling complexes and histone-modifying enzymes, resulting in transcriptional activation. In this review, we present the role of NRs in recruiting these chromatin-modifying enzymes by means of an extensively studied model system, the glucocorticoid receptor-mediated transactivation of the mouse mammary tumor virus (MMTV) promoter. We use these findings as a template to begin to understand the effect of chromatin changes on gene expression during spermatogenesis.
Collapse
Affiliation(s)
- Pratibha B Hebbar
- Chromatin and Gene Expression Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Science, 111 Alexander Drive, MD-E4-06, PO Box 12233, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
32
|
Chandler SP, Kansagra P, Hirst MC. Fragile X (CGG)n repeats induce a transcriptional repression in cis upon a linked promoter: evidence for a chromatin mediated effect. BMC Mol Biol 2003; 4:3. [PMID: 12659659 PMCID: PMC153536 DOI: 10.1186/1471-2199-4-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2003] [Accepted: 03/21/2003] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Expansion of an unstable (CGG)n repeat to over 200 triplets within the promoter region of the human FMR1 gene leads to extensive local methylation and transcription silencing, resulting in the loss of FMRP protein and the development of the clinical features of fragile X syndrome. The causative link between (CGG)n expansion, methylation and gene silencing is unknown, although gene silencing is associated with extensive changes to local chromatin architecture. RESULTS In order to determine the direct effects of increased repeat length on gene transcription in a chromatin context, we have examined the influence of FMR1 (CGG)n repeats upon transcription from the HSV thymidine kinase promoter in the Xenopus laevis oocyte. We observe a reduction in mRNA production directly associated with increasing repeat length, with a 90% reduction in mRNA production from arrays over 100 repeats in length. Using a kinetic approach, we show that this transcriptional repression is concomitant with chromatin maturation and, using in vitro transcription, we show that chromatin formation is a fundamental part of the repressive pathway mediated by (CGG)n repeats. Using Trichostatin A, a histone deacetylase inhibitor, we show reactivation of the silenced promoter. CONCLUSIONS Thus, isolated fragile X associated (CGG)n repeat arrays can exert a modifying and transcriptionally repressive influence over adjacent promoters and this repressive phenomenon is, in part, mediated by histone deacetylation.
Collapse
Affiliation(s)
- Simon P Chandler
- Sangamo BioSciences, 501 Canal Blvd. Ste A100, Point Richmond Tech Center II, Richmond, CA 94804, USA
- formerly at Lab. Epigenetics & Chromatin, Institute of Biomolecular & Biomedical Sciences, St. Michaels Bldg, University of Portsmouth, Southsea, Hampshire, PO1 2DT, UK
| | - Pushpa Kansagra
- Genome Instability Group, Department of Biological Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA UK
| | - Mark C Hirst
- Genome Instability Group, Department of Biological Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA UK
| |
Collapse
|
33
|
Stein GS, Lian JB, Stein JL, Wijnen AJV, Montecino M, Javed A, Pratap J, Choi J, Zaidi SK, Gutierrez S, Harrington K, Shen J, Young D. Intranuclear trafficking of transcription factors: Requirements for vitamin D-mediated biological control of gene expression. J Cell Biochem 2003; 88:340-55. [PMID: 12520536 DOI: 10.1002/jcb.10364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The architecturally associated subnuclear organization of nucleic acids and cognate regulatory factors suggest functional interrelationships between nuclear structure and gene expression. Mechanisms that contribute to the spatial distribution of transcription factors within the three-dimensional context of nuclear architecture control the sorting of regulatory information as well as the assembly and activities of sites within the nucleus that support gene expression. Vitamin D control of gene expression serves as a paradigm for experimentally addressing mechanisms that govern the intranuclear targeting of regulatory factors to nuclear domains where transcription of developmental and tissue-specific genes occur. We will present an overview of molecular, cellular, genetic, and biochemical approaches that provide insight into the trafficking of regulatory factors that mediate vitamin D control of gene expression to transcriptionally active subnuclear sites. Examples will be presented that suggest modifications in the intranuclear targeting of transcription factors abrogate competency for vitamin D control of skeletal gene expression during development and fidelity of gene expression in tumor cells.
Collapse
Affiliation(s)
- Gary S Stein
- Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Ave. North, Worcester, Massachusetts 01655, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Thomas RM, Haleem K, Siddique AB, Simmons WJ, Sen N, Zhang DJ, Tsiagbe VK. Regulation of mouse mammary tumor virus env transcriptional activator initiated mammary tumor virus superantigen transcripts in lymphomas of SJL/J mice: role of Ikaros, demethylation, and chromatin structural change in the transcriptional activation of mammary tumor virus superantigen. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:218-27. [PMID: 12496403 DOI: 10.4049/jimmunol.170.1.218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mammary tumor virus (Mtv29)-encoded superantigen expressed by SJL/J mouse B cell lymphomas stimulates CD4+V16+ T cells and thereby acquires T cell help necessary for lymphoma growth. Mtv29 mouse mammary tumor virus env transcriptional activator (META) env-controlled Mtv29 superantigen (vSAg29) mRNA transcripts (1.8 kb) are not expressed in normal B or other somatic cells. Real-time PCR-based assays with DNA from normal SJL liver and vSAg29- lymphoma (cNJ101), digested with methylation-sensitive enzymes, showed hypermethylation at AvaI, FspI, HpaII, ThaI, and the distal HgaI sites of the META env, but vSAg29+ lymphoma cells showed significant demethylation at AvaI, HpaII, and the distal HgaI sites. The distal HgaI site that is adjacent to an Ikaros binding site is significantly demethylated in the META env DNA from primary lymphomas. Gel shift assays showed binding of Ikaros to a sequence representing this region in the META env. SJL lymphomas expressed the Ikaros isoform Ik6 that was absent in normal B cells. vSAg29+ cells exhibited increased DNaseI accessibility to chromatin at the vSAg29 initiation site. Treatment of cNJ101 cells with a demethylating agent, 5-azacytidine, and a histone deacetylase inhibitor, trichostatin A, caused hypomethylation at AvaI, HpaII, and distal HgaI sites and led to chromatin structural change at the vSAg29 initiation site, accompanied by the expression of vSAg29 transcripts. This enabled cNJ101 cells to stimulate SJL lymphoma-responsive CD4+V16+ T hybridoma cells. Thus, demethylation at the distal HgaI site of the Mtv29 META env permits vSAg29 expression, which may have an impact on the development of germinal center-derived B cell lymphomas of SJL/J mice.
Collapse
MESH Headings
- Animals
- Azacitidine/pharmacology
- Chromatin/chemistry
- Chromatin/enzymology
- Chromatin/metabolism
- DNA Methylation
- DNA-Binding Proteins
- Deoxyribonuclease I/metabolism
- Female
- Genes, env/physiology
- Hydroxamic Acids/pharmacology
- Ikaros Transcription Factor
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/virology
- Mammary Tumor Virus, Mouse/genetics
- Mammary Tumor Virus, Mouse/immunology
- Mice
- Promoter Regions, Genetic/immunology
- RNA, Messenger/biosynthesis
- Retroviridae Infections/genetics
- Retroviridae Infections/immunology
- Superantigens/genetics
- Superantigens/metabolism
- Trans-Activators/metabolism
- Trans-Activators/physiology
- Transcription Factors/physiology
- Transcription, Genetic/immunology
- Transcriptional Activation/immunology
- Tumor Cells, Cultured
- Tumor Virus Infections/genetics
- Tumor Virus Infections/immunology
Collapse
Affiliation(s)
- Rajan M Thomas
- Department of Pathology and Comprehensive Kaplan Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Li Q, Su A, Chen J, Lefebvre YA, Haché RJG. Attenuation of glucocorticoid signaling through targeted degradation of p300 via the 26S proteasome pathway. Mol Endocrinol 2002; 16:2819-27. [PMID: 12456802 DOI: 10.1210/me.2002-0154] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The effects of acetylation on gene expression are complex, with changes in chromatin accessibility intermingled with direct effects on transcriptional regulators. For the nuclear receptors, both positive and negative effects of acetylation on specific gene transcription have been observed. We report that p300 and steroid receptor coactivator 1 interact transiently with the glucocorticoid receptor and that the acetyltransferase activity of p300 makes an important contribution to glucocorticoid receptor-mediated transcription. Treatment of cells with the deacetylase inhibitor, sodium butyrate, inhibited steroid-induced transcription and altered the transient association of glucocorticoid receptor with p300 and steroid receptor coactivator 1. Additionally, sustained sodium butyrate treatment induced the degradation of p300 through the 26S proteasome pathway. Treatment with the proteasome inhibitor MG132 restored both the level of p300 protein and the transcriptional response to steroid over 20 h of treatment. These results reveal new levels for the regulatory control of gene expression by acetylation and suggest feedback control on p300 activity.
Collapse
Affiliation(s)
- Qiao Li
- Department of Medicine, University of Ottawa, and the Ottawa Health Research Institute, 725 Parkdale Avenue, Ottawa, Ontario, Canada K1Y 4E9
| | | | | | | | | |
Collapse
|
36
|
Ricci AR, Genereaux J, Brandl CJ. Components of the SAGA histone acetyltransferase complex are required for repressed transcription of ARG1 in rich medium. Mol Cell Biol 2002; 22:4033-42. [PMID: 12024017 PMCID: PMC133849 DOI: 10.1128/mcb.22.12.4033-4042.2002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Transcriptional regulation of the Saccharomyces cerevisiae ARG1 gene is controlled by positive and negative elements. The transactivator Gcn4p is required for activation in minimal medium, while arginine repression requires the ArgR/Mcm1 regulatory complex, which binds to two upstream arginine control elements. We have found that the coordinated regulation of ARG1 requires components of the SAGA chromatin-remodeling complex. Using gcn5 deletion strains and a Gcn5 protein carrying the E173Q mutation in the histone acetyltransferase (HAT) region, we show that the HAT activity of Gcn5p is required for repression of ARG1 in rich medium. Similar increases in expression were seen upon deletion of other SAGA components but not upon deletion of the ADA-specific component, Ahc1p. Chromatin immunoprecipitations using antibodies to acetylated H3 confirmed that a decrease in the level of acetylated histones at the ARG1 promoter correlated with increased ARG1 expression. Up-regulation of ARG1 in the absence of Gcn5p also correlated with increased binding of TATA-binding protein to the promoter. The analysis of promoter deletions showed that Gcn5/Ada repression of ARG1 was mediated through the action of the ArgR/Mcm1 regulatory complex. In addition, studies with minimal medium demonstrated a requirement for the Ada proteins in activation of ARG1. This suggests that SAGA has a dual role at ARG1, acting to repress transcription in rich medium and activate transcription in minimal medium.
Collapse
Affiliation(s)
- Andrea R Ricci
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | |
Collapse
|
37
|
Wilson MA, Ricci AR, Deroo BJ, Archer TK. The histone deacetylase inhibitor trichostatin A blocks progesterone receptor-mediated transactivation of the mouse mammary tumor virus promoter in vivo. J Biol Chem 2002; 277:15171-81. [PMID: 11821430 DOI: 10.1074/jbc.m200349200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Post-translational modifications of histones play an important role in modulating gene transcription within chromatin. We used the mouse mammary tumor virus (MMTV) promoter, which adopts an ordered nucleosomal structure, to investigate the impact of a specific inhibitor of histone deacetylase, trichostatin A (TSA), on progesterone receptor-activated transcription. TSA induced global histone hyperacetylation, and this effect occurred independently of the presence of hormone. Interestingly, chromatin immunoprecipitation analysis revealed no significant change in the level of acetylated histones associated with the MMTV promoter following high TSA treatment. In human breast cancer cells, in which the MMTV promoter adopts a constitutively "open" chromatin structure, treatment with TSA converted the MMTV promoter into a closed structure. Addition of hormone did not overcome this TSA-induced closure of the promoter chromatin. Furthermore, TSA treatment resulted in the eviction of the transcription factor nuclear factor-1 from the promoter and reduced progesterone receptor-induced transcription. Kinetic experiments revealed that a loss of chromatin-remodeling proteins was coincident with the decrease in MMTV transcriptional activity and the imposition of repressed chromatin architecture at the promoter. These results demonstrate that deacetylase inhibitor treatment at levels that induce global histone acetylation may leave specific regulatory regions relatively unaffected and that this treatment may lead to transcriptional inhibition by mechanisms that modify chromatin-remodeling proteins rather than by influencing histone acetylation of the local promoter chromatin structure.
Collapse
Affiliation(s)
- Melissa A Wilson
- Laboratory of Reproductive and Developmental Toxicology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
38
|
Lefebvre B, Brand C, Lefebvre P, Ozato K. Chromosomal integration of retinoic acid response elements prevents cooperative transcriptional activation by retinoic acid receptor and retinoid X receptor. Mol Cell Biol 2002; 22:1446-59. [PMID: 11839811 PMCID: PMC134698 DOI: 10.1128/mcb.22.5.1446-1459.2002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All-trans-retinoic acid receptors (RAR) and 9-cis-retinoic acid receptors (RXR) are nuclear receptors known to cooperatively activate transcription from retinoid-regulated promoters. By comparing the transactivating properties of RAR and RXR in P19 cells using either plasmid or chromosomal reporter genes containing the mRAR beta 2 gene promoter, we found contrasting patterns of transcriptional regulation in each setting. Cooperativity between RXR and RAR occurred at all times with transiently introduced promoters, but was restricted to a very early stage (<3 h) for chromosomal promoters. This time-dependent loss of cooperativity was specific for chromosomal templates containing two copies of a retinoid-responsive element (RARE) and was not influenced by the spacing between the two RAREs. This loss of cooperativity suggested a delayed acquisition of RAR full transcriptional competence because (i) cooperativity was maintained at RAR ligand subsaturating concentrations, (ii) overexpression of SRC-1 led to loss of cooperativity and even to strong repression of chromosomal templates activity, and (iii) loss of cooperativity was observed when additional cis-acting response elements were activated. Surprisingly, histone deacetylase inhibitors counteracted this loss of cooperativity by repressing partially RAR-mediated activation of chromosomal promoters. Loss of cooperativity was not correlated to local histone hyperacetylation or to alteration of constitutive RNA polymerase II (RNAP) loading at the promoter region. Unexpectedly, RNAP binding to transcribed regions was correlated to the RAR activation state as well as to acetylation levels of histones H3 and H4, suggesting that RAR acts at the mRAR beta promoter by triggering the switch from an RNA elongation-incompetent RNAP form towards an RNA elongation-competent RNAP.
Collapse
Affiliation(s)
- Bruno Lefebvre
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
39
|
Park SH, Lee SR, Kim BC, Cho EA, Patel SP, Kang HB, Sausville EA, Nakanishi O, Trepel JB, Lee BI, Kim SJ. Transcriptional regulation of the transforming growth factor beta type II receptor gene by histone acetyltransferase and deacetylase is mediated by NF-Y in human breast cancer cells. J Biol Chem 2002; 277:5168-74. [PMID: 11744689 DOI: 10.1074/jbc.m106451200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcriptional repression of the transforming growth factor-beta (TGF-beta) type II receptor (TbetaRII) gene is one of several mechanisms leading to TGF-beta resistance. Previously, we have shown that MS-275, a synthetic inhibitor of histone deacetylase (HDAC), specifically induces the expression of the TbetaRII gene and restores the TGF-beta signaling in human breast cancer cell lines. However, little is known about the mechanism by which inhibition of HDAC activates TbetaRII expression. MS-275 treatment of cells expressing a wild-type TbetaRII promoter/luciferase construct resulted in a 10-fold induction of the promoter activity. DNA transfection and an electrophoretic mobility shift assay showed that the induction of the TbetaRII promoter by MS-275 requires the inverted CCAAT box and its cognate binding protein, NF-Y. In addition, a DNA affinity pull-down assay indicated that the PCAF protein, a transcriptional coactivator with intrinsic histone acetyltransferase (HAT) activity, is specifically recruited to the NF-Y complex in the presence of either MS-275 or trichostatin A. Based on these results, we suggest that treatment with the HDAC inhibitor induces TbetaRII promoter activity by the recruitment of the PCAF protein to the NF-Y complex, interacting with the inverted CCAAT box in the TbetaRII promoter.
Collapse
Affiliation(s)
- Seok Hee Park
- Laboratory of Cell Regulation and Carcinogenesis, the Developmental Therapeutics Program, and the Medicine Branch, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kruhlak MJ, Hendzel MJ, Fischle W, Bertos NR, Hameed S, Yang XJ, Verdin E, Bazett-Jones DP. Regulation of global acetylation in mitosis through loss of histone acetyltransferases and deacetylases from chromatin. J Biol Chem 2001; 276:38307-19. [PMID: 11479283 DOI: 10.1074/jbc.m100290200] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone acetylation, a reversible modification of the core histones, is widely accepted to be involved in remodeling chromatin organization for genetic reprogramming. Histone acetylation is a dynamic process that is regulated by two classes of enzymes, the histone acetyltransferases (HATs) and histone deacetylases (HDACs). Although promoter-specific acetylation and deacetylation has received most of the recent attention, it is superimposed upon a broader acting and dynamic acetylation that profoundly affects many nuclear processes. In this study, we monitored this broader histone acetylation as cells enter and exit mitosis. In contrast to the hypothesis that HATs and HDACs remain bound to mitotic chromosomes to provide an epigenetic imprint for postmitotic reactivation of the genome, we observed that HATs and HDACs are spatially reorganized and displaced from condensing chromosomes as cells progress through mitosis. During mitosis, HATs and HDACs are unable to acetylate or deacetylate chromatin in situ despite remaining fully catalytically active when isolated from mitotic cells and assayed in vitro. Our results demonstrate that HATs and HDACs do not stably bind to the genome to function as an epigenetic mechanism of selective postmitotic gene activation. Our results, however, do support a role for spatial organization of these enzymes within the cell nucleus and their relationship to euchromatin and heterochromatin postmitotically in the reactivation of the genome.
Collapse
Affiliation(s)
- M J Kruhlak
- Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The nuclear hormone receptor superfamily includes receptors for thyroid and steroid hormones, retinoids and vitamin D, as well as different "orphan" receptors of unknown ligand. Ligands for some of these receptors have been recently identified, showing that products of lipid metabolism such as fatty acids, prostaglandins, or cholesterol derivatives can regulate gene expression by binding to nuclear receptors. Nuclear receptors act as ligand-inducible transcription factors by directly interacting as monomers, homodimers, or heterodimers with the retinoid X receptor with DNA response elements of target genes, as well as by "cross-talking" to other signaling pathways. The effects of nuclear receptors on transcription are mediated through recruitment of coregulators. A subset of receptors binds corepressor factors and actively represses target gene expression in the absence of ligand. Corepressors are found within multicomponent complexes that contain histone deacetylase activity. Deacetylation leads to chromatin compactation and transcriptional repression. Upon ligand binding, the receptors undergo a conformational change that allows the recruitment of multiple coactivator complexes. Some of these proteins are chromatin remodeling factors or possess histone acetylase activity, whereas others may interact directly with the basic transcriptional machinery. Recruitment of coactivator complexes to the target promoter causes chromatin decompactation and transcriptional activation. The characterization of corepressor and coactivator complexes, in concert with the identification of the specific interaction motifs in the receptors, has demonstrated the existence of a general molecular mechanism by which different receptors elicit their transcriptional responses in target genes.
Collapse
Affiliation(s)
- A Aranda
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain.
| | | |
Collapse
|
42
|
Urnov FD, Wolffe AP. Chromatin remodeling and transcriptional activation: the cast (in order of appearance). Oncogene 2001; 20:2991-3006. [PMID: 11420714 DOI: 10.1038/sj.onc.1204323] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The number of chromatin modifying and remodeling complexes implicated in genome control is growing faster than our understanding of the functional roles they play. We discuss recent in vitro experiments with biochemically defined chromatin templates that illuminate new aspects of action by histone acetyltransferases and ATP-dependent chromatin remodeling engines in facilitating transcription. We review a number of studies that present an 'ordered recruitment' view of transcriptional activation, according to which various complexes enter and exit their target promoter in a set sequence, and at specific times, such that action by one complex sets the stage for the arrival of the next one. A consensus emerging from all these experiments is that the joint action by several types of chromatin remodeling machines can lead to a more profound alteration of the infrastructure of chromatin over a target promoter than could be obtained by these enzymes acting independently. In addition, it appears that in specific cases one type of chromatin structure alteration (e.g., histone hyperacetylation) is contingent upon prior alterations of a different sort (i.e., ATP-dependent remodeling of histone-DNA contacts). The striking differences between the precise sequence of action by various cofactors observed in these studies may be - at least in part - due to differences between the specific promoters studied, and distinct requirements exhibited by specific loci for chromatin remodeling based on their pre-existing nucleoprotein architecture.
Collapse
Affiliation(s)
- F D Urnov
- Sangamo Biosciences, Pt. Richmond Tech. Center, 501 Canal Blvd., Suite A100, Richmond, California 94804, USA.
| | | |
Collapse
|
43
|
Abstract
The compaction of DNA into chromatin provides an additional level of gene regulation in eukaryotes that may not be available to prokaryotes. When packaged as chromatin, most promoters are transcriptionally repressed, and transcription factors have reduced access to their binding sites. The glucocorticoid receptor (GR) is a ligand-activated transcription factor that regulates the activity of genes involved in many physiological processes. To regulate eukaryotic genes, the GR binds to target sites within promoter regions of genes assembled as chromatin. This interaction alters the nucleosomal architecture to allow binding of other transcription factors, and formation of the preinitiation complex. The mouse mammary tumor virus (MMTV) promoter has been used extensively as a model to explore the processes by which the GR remodels chromatin and activates transcription. Significant progress has been made in our understanding of the mechanisms used by the GR to modify chromatin structure, and the limits placed on the GR by post-translational modifications of histones. We will describe recent developments in the processes used by the GR to activate transcription in vivo via chromatin remodeling complexes, histone H1 phosphorylation, and recruitment of diverse coactivators.
Collapse
Affiliation(s)
- B J Deroo
- Chromatin and Gene Expression Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, NC 27709, USA
| | | |
Collapse
|
44
|
Urnov FD, Wolffe AP. A necessary good: nuclear hormone receptors and their chromatin templates. Mol Endocrinol 2001; 15:1-16. [PMID: 11145735 DOI: 10.1210/mend.15.1.0589] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- F D Urnov
- Sangamo Biosciences Point Richmond Technical Center Richmond, California 94804, USA
| | | |
Collapse
|
45
|
Pujuguet P, Radisky D, Levy D, Lacza C, Bissell MJ. Trichostatin A inhibits beta-casein expression in mammary epithelial cells. J Cell Biochem 2001; 83:660-70. [PMID: 11746508 PMCID: PMC2949289 DOI: 10.1002/jcb.1260] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Many aspects of cellular behavior are defined by the content of information provided by association of the extracellular matrix (ECM) and with cell membrane receptors. When cultured in the presence of laminin-containing ECM and prolactin (Prl), normal mammary epithelial cells express the milk protein beta-casein. We have previously found that the minimal ECM- and Prl-responsive enhancer element BCE-1 was only active when stably integrated into chromatin, and that trichostatin A (TSA), a reagent that leads to alterations in chromatin structure, was able to activate the integrated enhancer element. We now show that endogenous beta-casein gene, which is controlled by a genetic assembly that is highly similar to that of BCE-1 and which is also activated by incubation in ECM and Prl, is instead inhibited by TSA. We provide evidence that the differing response of beta-casein and BCE-1 to TSA is neither due to an unusual effect of TSA on mammary epithelial cells, nor to secondary consequences from the expression of a separate gene, nor to a particular property of the BCE-1 construct. As a component of this investigation, we also showed that ECM mediated rapid histone deacetylation in mammary epithelial cells. These results are discussed in combination with previous work showing that TSA mediates the differentiation of many types of cancer cells but inhibits differentiation of some nonmalignant cell types.
Collapse
Affiliation(s)
| | | | | | | | - Mina J. Bissell
- Correspondence to: Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 83-101, Berkeley, CA 94720.
| |
Collapse
|
46
|
Abstract
We utilized Y1 adrenocortical carcinoma cell line as a model system to dissect the events regulating epigenomic gene silencing in tumor cells. We show here that the chromatin structure of c21 gene is inactive in Y1 cells and that it could be reconfigured to an active form by either expressing antisense mRNA to DNA methyltransferase 1 (dnmt1) or an attenuator of Ras protooncogenic signaling hGAP. Surprisingly however, the known inducer of active chromatin structure the histone deacetylase inhibitor trichostatin A TSA fails to induce expression of c21. These results suggest that the primary cause of c21 gene silencing is independent of histone deacetylation. We present a model to explain the possible roles of the different components of the epigenome and the DNA methylation and demethylation machineries in silencing c21 gene expression.
Collapse
Affiliation(s)
- M Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.
| | | |
Collapse
|
47
|
Lorincz MC, Schübeler D, Goeke SC, Walters M, Groudine M, Martin DI. Dynamic analysis of proviral induction and De Novo methylation: implications for a histone deacetylase-independent, methylation density-dependent mechanism of transcriptional repression. Mol Cell Biol 2000; 20:842-50. [PMID: 10629041 PMCID: PMC85201 DOI: 10.1128/mcb.20.3.842-850.2000] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methylation of cytosines in the CpG dinucleotide is generally associated with transcriptional repression in mammalian cells, and recent findings implicate histone deacetylation in methylation-mediated repression. Analyses of histone acetylation in in vitro-methylated transfected plasmids support this model; however, little is known about the relationships among de novo DNA methylation, transcriptional repression, and histone acetylation state. To examine these relationships in vivo, we have developed a novel approach that permits the isolation and expansion of cells harboring expressing or silent retroviruses. MEL cells were infected with a Moloney murine leukemia virus encoding the green fluorescent protein (GFP), and single-copy, silent proviral clones were treated weekly with the histone deacetylase inhibitor trichostatin A or the DNA methylation inhibitor 5-azacytidine. Expression was monitored concurrently by flow cytometry, allowing for repeated phenotypic analysis over time, and proviral methylation was determined by Southern blotting and bisulfite methylation mapping. Shortly after infection, proviral expression was inducible and the reporter gene and proviral enhancer showed a low density of methylation. Over time, the efficacy of drug induction diminished, coincident with the accumulation of methyl-CpGs across the provirus. Bisulfite analysis of cells in which 5-azacytidine treatment induced GFP expression revealed measurable but incomplete demethylation of the provirus. Repression could be overcome in late-passage clones only by pretreatment with 5-azacytidine followed by trichostatin A, suggesting that partial demethylation reestablishes the trichostatin-inducible state. These experiments reveal the presence of a silencing mechanism which acts on densely methylated DNA and appears to function independently of histone deacetylase activity.
Collapse
Affiliation(s)
- M C Lorincz
- Fred Hutchinson Cancer Research Center, University of Washington School of Medicine, Seattle, Washington, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Chien PY, Ito M, Park Y, Tagami T, Gehm BD, Jameson JL. A fusion protein of the estrogen receptor (ER) and nuclear receptor corepressor (NCoR) strongly inhibits estrogen-dependent responses in breast cancer cells. Mol Endocrinol 1999; 13:2122-36. [PMID: 10598586 DOI: 10.1210/mend.13.12.0394] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Nuclear receptor corepressor (NCoR) mediates repression (silencing) of basal gene transcription by nuclear receptors for thyroid hormone and retinoic acid. The goal of this study was to create novel estrogen receptor (ER) mutants by fusing transferable repressor domains from the N-terminal region of NCoR to a functional ER fragment. Three chimeric NCoR-ER proteins were created and shown to lack transcriptional activity. These fusion proteins silenced basal transcription of the ERE2-tk-Luc reporter gene and inhibited the activity of co-transfected wild-type ER (wtER), indicating that they possess dominant negative activity. One of the fusion proteins (CDE-RD1), containing the ER DNA-binding and ligand-binding domains linked to the NCoR repressor domain (RD1), was selected for detailed examination. Its hormone affinity, intracellular localization, and level of expression in transfected cells were similar to wtER, and it bound to the estrogen response element (ERE) DNA in gel shift assays. Glutathione-S-transferase pull-down assays showed that CDE-RD1 retains the ability to bind to steroid receptor coactivator-1. Introduction of a DNA-binding domain mutation into the CDE-RD1 fusion protein eliminated silencing and dominant negative activity. Thus, the RD1 repressor domain prevents transcriptional activation despite the apparent ability of CDE-RD1 to bind DNA, ligand, and coactivators. Transcriptional silencing was incompletely reversed by trichostatin A, suggesting a histone deacetylase-independent mechanism for repression. CDE-RD1 inhibited ER-mediated transcription in T47D and MDA-MB-231 breast cancer cells and repressed the growth of T47D cells when delivered to the cells by a retroviral vector. These ER-NCoR fusion proteins provide a novel means for inhibiting ER-mediated cellular responses, and analogous strategies could be used to create dominant negative mutants of other transcription factors.
Collapse
Affiliation(s)
- P Y Chien
- Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
49
|
List HJ, Smith CL, Rodriguez O, Danielsen M, Riegel AT. Inhibition of histone deacetylation augments dihydrotestosterone induction of androgen receptor levels: an explanation for trichostatin A effects on androgen-induced chromatin remodeling and transcription of the mouse mammary tumor virus promoter. Exp Cell Res 1999; 252:471-8. [PMID: 10527637 DOI: 10.1006/excr.1999.4638] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The integrated mouse mammary tumor virus (MMTV) promoter has provided an excellent model system with which to study the impact of steroid hormones on transcriptional activation in the context of a defined chromatin structure. The hormone response element (HRE) of this promoter is positioned on a phased nucleosome which becomes remodeled in response to steroids. One possible mechanism of chromatin remodeling by steroid receptors could involve recruitment of coactivators which alter the histone acetylation status of the HRE nucleosome. To examine how the androgen receptor (AR) influences transcription and chromatin remodeling and to assess whether changes in histone acetylation are involved in these effects, we determined whether the specific histone deacetylase inhibitor trichostatin A (TSA) influenced basal- and androgen-mediated transcriptional activation of the integrated MMTV promoter in the mouse L-cell fibroblast cell line 29+. These cells harbor the MMTV promoter integrated in the genome and express only one steroid hormone receptor subtype, i.e., the AR. Surprisingly, we found that treatment of the cells with TSA alone had virtually no effect on transcription and chromatin remodeling of the MMTV promoter nor on AR levels. However, pretreatment with TSA augmented the DHT effects on all three parameters. These results suggest that histone acetylation changes at the MMTV B nucleosome per se are not alone sufficient to induce chromatin remodeling and subsequent induction of MMTV transcription. Rather, the histone deacetylase inhibitor TSA exerts a portion of its effect on MMTV chromatin remodeling and transcriptional activation indirectly through increases in AR levels.
Collapse
Affiliation(s)
- H J List
- Vincent T. Lombardi Cancer Center, Georgetown University, Washington, DC, 20007, USA
| | | | | | | | | |
Collapse
|
50
|
Cherry SR, Baltimore D. Chromatin remodeling directly activates V(D)J recombination. Proc Natl Acad Sci U S A 1999; 96:10788-93. [PMID: 10485904 PMCID: PMC17961 DOI: 10.1073/pnas.96.19.10788] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
V(D)J recombination substrate choice is regulated to ensure that the appropriate gene segments are rearranged during lymphocyte development. It has been proposed that regulation of substrate usage is determined by changes in accessibility of the DNA targets. We show that Rag-mediated recombination of an episomal substrate in cells is affected by its packaging into chromatin. Chromatinized substrates were inefficiently rearranged, and methylation further reduced recombination. Disruption of nucleosomes by using butyrate on methylated substrates was sufficient to activate recombination, and dexamethasone could activate recombination in the absence of detectable transcription. Therefore, chromatin structure, and its manipulation by altering nucleosome positioning, can directly affect recombination efficiencies.
Collapse
Affiliation(s)
- S R Cherry
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|