1
|
Lee DJ, Cao Y, Juvekar V, Sauraj, Noh CK, Shin SJ, Liu Z, Kim HM. Development of a small molecule-based two-photon photosensitizer for targeting cancer cells. J Mater Chem B 2024. [PMID: 39469993 DOI: 10.1039/d4tb01706d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Photodynamic therapy (PDT) employing two-photon (TP) excitation is increasingly recognized to induce cell damage selectively in targeted areas, underscoring the importance of developing TP photosensitizers (TP-PSs). In this study, we developed BSe-B, a novel PS that combines a selenium containing dye with biotin, a cancer-selective ligand, and is optimized for TP excitation. BSe-B demonstrated enhanced cancer selectivity, efficient generation of type-I based reactive oxygen species (ROS), low dark toxicity, and excellent cell-staining capability. Evaluation across diverse cell lines (HeLa, A549, OVCAR-3, WI-38, and L-929) demonstrated that BSe-B differentiated and targeted cancer cells while sparing normal cells. BSe-B displayed excellent in vivo biocompatibility. In cancer models such as three-dimensional spheroids and actual colon cancer tissues, BSe-B selectively induced ROS production and cell death under TP irradiation, demonstrating precise spatial control. These findings highlight the potential of BSe-B for imaging-guided PDT and its capability for micro treatment within tissues. Thus, BSe-B demonstrates robust TP-PDT capabilities, making it a promising dual-purpose tool for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Dong Joon Lee
- Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 16499, Korea.
| | - Yu Cao
- College of Health Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Vinayak Juvekar
- Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 16499, Korea.
| | - Sauraj
- Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 16499, Korea.
| | - Choong-Kyun Noh
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, Korea.
| | - Sung Jae Shin
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, Korea.
| | - Zhihong Liu
- College of Health Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Hwan Myung Kim
- Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 16499, Korea.
| |
Collapse
|
2
|
Elayan IA, Brown A. Non-Degenerate Two-Photon Absorption of Fluorescent Protein Chromophores. J Phys Chem A 2024; 128:7511-7523. [PMID: 39192559 DOI: 10.1021/acs.jpca.3c08402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Two-photon absorption (2PA), where a pair of photons are absorbed simultaneously, is recognized as a potent bioimaging technique, which depends on the quantified 2PA probability, defined as cross-section (σ2PA). The absorbed photons either have equivalent (ω1 = ω2) or different frequencies (ω1 ≠ ω2), where the former is degenerate 2PA (D-2PA) and the latter is nondegenerate 2PA (ND-2PA). ND-2PA is of particular interest since it is a promising imaging technology with flexibility of photon frequencies and enhanced cross sections, however, it remains a relatively unexplored area compared to D-2PA. This work utilizes time-dependent density functional theory (TD-DFT) and second-order approximate coupled-cluster with the resolution-of-identity approximation (RI-CC2), for the excitation from S0 to S1, to investigate σD-2PA and σND-2PA of FP chromophore models. Interestingly, comparing CAM-B3LYP with the RI-CC2 computations shows qualitative and, in fact, near quantitative agreement in the computed improvements of σND-2PA for comparable (relative) frequency detunings, despite the known underestimations of 2PA cross sections, for TD-DFT results relative to RI-CC2 values. As expected from the 2-state model, the computed values of σND-2PA are quantitatively larger than σD-2PA, where chromophores with the largest values of σD-2PA show greater potential for σND-2PA improvement. Anionic chromophores demonstrated improvements up to 14%, while substantial enhancements were observed in neutral chromophores with some achieving a 30% increase. This work investigates the ND-2PA photophysical characteristics of FP chromophores and identifies qualitative patterns in the computed properties of ND-2PA relative to D-2PA.
Collapse
Affiliation(s)
- Ismael A Elayan
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Alex Brown
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| |
Collapse
|
3
|
Renteria CA, Park J, Zhang C, Sorrells JE, Iyer RR, Tehrani KF, De la Cadena A, Boppart SA. Large field-of-view metabolic profiling of murine brain tissue following morphine incubation using label-free multiphoton microscopy. J Neurosci Methods 2024; 408:110171. [PMID: 38777156 DOI: 10.1016/j.jneumeth.2024.110171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/15/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Although the effects on neural activation and glucose consumption caused by opiates such as morphine are known, the metabolic machinery underlying opioid use and misuse is not fully explored. Multiphoton microscopy (MPM) techniques have been developed for optical imaging at high spatial resolution. Despite the increased use of MPM for neural imaging, the use of intrinsic optical contrast has seen minimal use in neuroscience. NEW METHOD We present a label-free, multimodal microscopy technique for metabolic profiling of murine brain tissue following incubation with morphine sulfate (MSO4). We evaluate two- and three-photon excited autofluorescence, and second and third harmonic generation to determine meaningful intrinsic contrast mechanisms in brain tissue using simultaneous label-free, autofluorescence multi-harmonic (SLAM) microscopy. RESULTS Regional differences quantified in the cortex, caudate, and thalamus of the brain demonstrate region-specific changes to metabolic profiles measured from FAD intensity, along with brain-wide quantification. While the overall intensity of FAD signal significantly decreased after morphine incubation, this metabolic molecule accumulated near the nucleus accumbens. COMPARISON WITH EXISTING METHODS Histopathology requires tissue fixation and staining to determine cell type and morphology, lacking information about cellular metabolism. Tools such as fMRI or PET imaging have been widely used, but lack cellular resolution. SLAM microscopy obviates the need for tissue preparation, permitting immediate use and imaging of tissue with subcellular resolution in its native environment. CONCLUSIONS This study demonstrates the utility of SLAM microscopy for label-free investigations of neural metabolism, especially the intensity changes in FAD autofluorescence and structural morphology from third-harmonic generation.
Collapse
Affiliation(s)
- Carlos A Renteria
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jaena Park
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Chi Zhang
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Janet E Sorrells
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Rishyashring R Iyer
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Kayvan F Tehrani
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Alejandro De la Cadena
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Stephen A Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA; Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA; NIH/NIBIB P41 Center for Label-free Imaging and Multiscale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
4
|
Komar K. Two-photon vision - Seeing colors in infrared. Vision Res 2024; 220:108404. [PMID: 38608547 DOI: 10.1016/j.visres.2024.108404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024]
Abstract
This review discusses the current state of knowledge regarding the phenomenon called two-photon vision. It involves the visual perception of pulsed infrared beams in the range of 850-1200 nm as having colors corresponding to one-half of the IR wavelengths. It is caused by two-photon absorption (TPA), which occurs when the visual photopigment interacts simultaneously with two infrared photons. The physical mechanism of TPA is described, and implications about the efficiency of the process are considered. The spectral range of two-photon vision is defined, along with a detailed discussion of the known differences in color perception between normal and two-photon vision. The quadratic dependence of the luminance of two-photon stimuli on the power of the stimulating beam is also explained. Examples of recording two-photon vision in the retinas of mice and monkeys are provided from the literature. Finally, applications of two-photon vision are discussed, particularly two-photon microperimetry, which has been under development for several years; and the potential advantages of two-photon retinal displays are explained.
Collapse
Affiliation(s)
- Katarzyna Komar
- International Centre for Translational Eye Research, Skierniewicka 10a, 01-230 Warsaw, Poland; Department of Physical Chemistry of Biological Systems, Institute of Physical Chemistry, Polish Academy of Sciences, M. Kasprzaka 44/52, 01-224 Warsaw, Poland; Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziądzka 5, 87-100 Toruń, Poland.
| |
Collapse
|
5
|
LaViolette AK, Rebec MR, Xu C. Measurement of third order coherence by in situ autocorrelation for determining three-photon cross-sections. BIOMEDICAL OPTICS EXPRESS 2024; 15:3555-3562. [PMID: 38867794 PMCID: PMC11166442 DOI: 10.1364/boe.521529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/20/2024] [Accepted: 04/21/2024] [Indexed: 06/14/2024]
Abstract
We show theoretically that the third order coherence at zero delay can be obtained by measuring the second and third order autocorrelation traces of a pulsed laser. Our theory enables the measurement of a fluorophore's three-photon cross-section without prior knowledge of the temporal profile of the excitation pulse by using the same fluorescent medium for both the measurement of the third order coherence at zero delay as well as the cross-section. Such an in situ measurement needs no assumptions about the pulse shape nor group delay dispersion of the optical system. To verify the theory experimentally, we measure the three-photon action cross-section of Alexa Fluor 350 and show that the measured value of the three-photon cross-section remains approximately constant despite varied amounts of chirp on the excitation pulses.
Collapse
Affiliation(s)
- Aaron K. LaViolette
- School of Applied and Engineering Physics. Cornell University, Ithaca, New York 14853, USA
| | | | - Chris Xu
- School of Applied and Engineering Physics. Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
6
|
Suthya AR, Wong CHY, Bourne JH. Diving head-first into brain intravital microscopy. Front Immunol 2024; 15:1372996. [PMID: 38817606 PMCID: PMC11137164 DOI: 10.3389/fimmu.2024.1372996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Tissue microenvironments during physiology and pathology are highly complex, meaning dynamic cellular activities and their interactions cannot be accurately modelled ex vivo or in vitro. In particular, tissue-specific resident cells which may function and behave differently after isolation and the heterogenous vascular beds in various organs highlight the importance of observing such processes in real-time in vivo. This challenge gave rise to intravital microscopy (IVM), which was discovered over two centuries ago. From the very early techniques of low-optical resolution brightfield microscopy, limited to transparent tissues, IVM techniques have significantly evolved in recent years. Combined with improved animal surgical preparations, modern IVM technologies have achieved significantly higher speed of image acquisition and enhanced image resolution which allow for the visualisation of biological activities within a wider variety of tissue beds. These advancements have dramatically expanded our understanding in cell migration and function, especially in organs which are not easily accessible, such as the brain. In this review, we will discuss the application of rodent IVM in neurobiology in health and disease. In particular, we will outline the capability and limitations of emerging technologies, including photoacoustic, two- and three-photon imaging for brain IVM. In addition, we will discuss the use of these technologies in the context of neuroinflammation.
Collapse
|
7
|
Elayan IA, Rib L, A Mendes R, Brown A. Beyond Explored Functionals: A Computational Journey of Two-Photon Absorption. J Chem Theory Comput 2024; 20:3879-3893. [PMID: 38648613 DOI: 10.1021/acs.jctc.4c00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
We present a thorough investigation into the efficacy of 19 density functional theory (DFT) functionals, relative to RI-CC2 results, for computing two-photon absorption (2PA) cross sections (σ2PA) and key dipole moments (|μ00|, |μ11|, |Δμ|, |μ01|) for a series of coumarin dyes in the gas-phase. The functionals include different categories, including local density approximation (LDA), generalized gradient approximation (GGA), hybrid-GGA (H-GGA), range-separated hybrid-GGA (RSH-GGA), meta-GGA (M-GGA), and hybrid M-GGA (HM-GGA), with 14 of them being subjected to analysis for the first time with respect to predicting σ2PA values. Analysis reveals that functionals integrating both short-range (SR) and long-range (LR) corrections, particularly those within the RSH-GGA and HM-GGA classes, outperform the others. Furthermore, the range-separation approach was found more impactful compared to the varying percentages of Hartree-Fock exchange (HF Ex) within different functionals. The functionals traditionally recommended for 2PA do not appear among the top 9 in our study, which is particularly interesting, as these top-performing functionals have not been previously investigated in this context. This list is dominated by M11, QTP variants, ωB97X, ωB97X-V, and M06-2X, surpassing the performance of other functionals, including the commonly used CAM-B3LYP.
Collapse
Affiliation(s)
- Ismael A Elayan
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Laura Rib
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Rodrigo A Mendes
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- Departamento de Química, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso 78060-900, Brazil
| | - Alex Brown
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
8
|
He C, Yuan Y, Gong C, Wang X, Lyu G. Applications of Tissue Clearing in Central and Peripheral Nerves. Neuroscience 2024; 546:104-117. [PMID: 38570062 DOI: 10.1016/j.neuroscience.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
The techniques of tissue clearing have been proposed and applied in anatomical and biomedical research since the 19th century. As we all know, the original study of the nervous system relied on serial ultrathin sections and stereoscopic techniques. The 3D visualization of the nervous system was established by software splicing and reconstruction. With the development of science and technology, microscope equipment had constantly been upgraded. Despite the great progress that has been made in this field, the workload is too complex, and it needs high technical requirements. Abundant mistakes due to manual sections were inescapable and structural integrity remained questionable. According to the classification of tissue transparency methods, we introduced the latest application of transparency methods in central and peripheral nerve research from optical imaging, molecular markers and data analysis. This review summarizes the application of transparent technology in neural pathways. We hope to provide some inspiration for the continuous optimization of tissue clearing methods.
Collapse
Affiliation(s)
- Cheng He
- Department of Anatomy, Medical School of Nantong University, Nantong, China
| | - Ye Yuan
- Department of Anatomy, Medical School of Nantong University, Nantong, China
| | - Chuanhui Gong
- Department of Anatomy, Medical School of Nantong University, Nantong, China
| | - Xueying Wang
- Medical School of Nantong University, Nantong, China
| | - Guangming Lyu
- Department of Anatomy, Medical School of Nantong University, Nantong, China; Department of Anatomy, Institute of Neurobiology, Jiangsu Key Laboratory of Neuroregeneration, Medical School of Nantong University, Nantong, China.
| |
Collapse
|
9
|
Gilinsky SD, Jung DN, Futia GL, Zohrabi M, Welton TA, Supekar OD, Gibson EA, Restrepo D, Bright VM, Gopinath JT. Tunable liquid lens for three-photon excitation microscopy. BIOMEDICAL OPTICS EXPRESS 2024; 15:3285-3300. [PMID: 38855666 PMCID: PMC11161341 DOI: 10.1364/boe.516956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/28/2024] [Accepted: 04/06/2024] [Indexed: 06/11/2024]
Abstract
We demonstrate a novel electrowetting liquid combination using a room temperature ionic liquid (RTIL) and a nonpolar liquid, 1-phenyl-1-cyclohexene (PCH) suitable for focus-tunable 3-photon microscopy. We show that both liquids have over 90% transmission at 1300 nm over a 1.1 mm pathlength and an index of refraction contrast of 0.123. A lens using these liquids can be tuned from a contact angle of 133 to 48° with applied voltages of 0 and 60 V, respectively. Finally, a three-photon imaging system including an RTIL electrowetting lens was used to image a mouse brain slice. Axial scans taken with an electrowetting lens show excellent agreement with images acquired using a mechanically scanned objective.
Collapse
Affiliation(s)
- Samuel D. Gilinsky
- Department of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Diane N. Jung
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Greg L. Futia
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Mo Zohrabi
- Department of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Tarah A. Welton
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Omkar D. Supekar
- Department of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Emily A. Gibson
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Diego Restrepo
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Victor M. Bright
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Juliet T. Gopinath
- Department of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
- Department of Physics, University of Colorado Boulder, Boulder, Colorado 80309, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, USA
| |
Collapse
|
10
|
Wu Y, Xu Z, Liang S, Wang L, Wang M, Jia H, Chen X, Zhao Z, Liao X. NeuroSeg-III: efficient neuron segmentation in two-photon Ca 2+ imaging data using self-supervised learning. BIOMEDICAL OPTICS EXPRESS 2024; 15:2910-2925. [PMID: 38855703 PMCID: PMC11161377 DOI: 10.1364/boe.521478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 06/11/2024]
Abstract
Two-photon Ca2+ imaging technology increasingly plays an essential role in neuroscience research. However, the requirement for extensive professional annotation poses a significant challenge to improving the performance of neuron segmentation models. Here, we present NeuroSeg-III, an innovative self-supervised learning approach specifically designed to achieve fast and precise segmentation of neurons in imaging data. This approach consists of two modules: a self-supervised pre-training network and a segmentation network. After pre-training the encoder of the segmentation network via a self-supervised learning method without any annotated data, we only need to fine-tune the segmentation network with a small amount of annotated data. The segmentation network is designed with YOLOv8s, FasterNet, efficient multi-scale attention mechanism (EMA), and bi-directional feature pyramid network (BiFPN), which enhanced the model's segmentation accuracy while reducing the computational cost and parameters. The generalization of our approach was validated across different Ca2+ indicators and scales of imaging data. Significantly, the proposed neuron segmentation approach exhibits exceptional speed and accuracy, surpassing the current state-of-the-art benchmarks when evaluated using a publicly available dataset. The results underscore the effectiveness of NeuroSeg-III, with employing an efficient training strategy tailored for two-photon Ca2+ imaging data and delivering remarkable precision in neuron segmentation.
Collapse
Affiliation(s)
- Yukun Wu
- Guangxi Key Laboratory of Special Biomedicine and Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning 530004, China
| | - Zhehao Xu
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Shanshan Liang
- Brain Research Center, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing 400038, China
| | - Lukang Wang
- Brain Research Center, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing 400038, China
| | - Meng Wang
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Hongbo Jia
- Guangxi Key Laboratory of Special Biomedicine and Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning 530004, China
- Brain Research Instrument Innovation Center, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, Jiangsu, China
| | - Xiaowei Chen
- Guangxi Key Laboratory of Special Biomedicine and Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning 530004, China
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China
| | - Zhikai Zhao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Xiang Liao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400030, China
| |
Collapse
|
11
|
Luo CH, Vyas S, Huang KY, Chu SW, Luo Y. Multiplane differential saturated excitation microscopy using varifocal lenses. BIOMEDICAL OPTICS EXPRESS 2024; 15:953-964. [PMID: 38404334 PMCID: PMC10890851 DOI: 10.1364/boe.504807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 02/27/2024]
Abstract
Saturated excitation microscopy, which collects nonlinear fluorescence signals generated by saturation, has been proposed to improve three-dimensional spatial resolution. Differential saturated excitation (dSAX) microscopy can further improve the detection efficiency of a nonlinear fluorescence signal. By comparing signals obtained at different saturation levels, high spatial resolution can be achieved in a simple and efficient manner. High-resolution multiplane microscopy is perquisite for volumetric imaging of thick samples. To the best of our knowledge, no reports of multiplane dSAX have been made. Our aim is to obtain multiplane high-resolution optically sectioned images by adapting differential saturated excitation in confocal laser scanning fluorescence microscopy. To perform multiplane dSAX microscopy, a variable focus lens is employed in a telecentric design to achieve focus tunability with constant magnification and contrast throughout the axial scanning range. Multiplane fluorescence imaging of two different types of pollen grains shows improved resolution and contrast. Our system's imaging performance is evaluated using standard targets, and the results are compared with standard confocal microscopy. Using a simple and efficient method, we demonstrate multiplane high-resolution fluorescence imaging. We anticipate that high-spatial resolution combined with high-speed focus tunability with invariant contrast and magnification will be useful in performing 3D imaging of thick biological samples.
Collapse
Affiliation(s)
- Chi-Hao Luo
- Institute of Mechanical Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Institute of Medical Device and Imaging, National Taiwan University, Taipei, 10617, Taiwan
| | - Sunil Vyas
- Institute of Medical Device and Imaging, National Taiwan University, Taipei, 10617, Taiwan
| | - Kuang-Yuh Huang
- Institute of Mechanical Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Institute of Medical Device and Imaging, National Taiwan University, Taipei, 10617, Taiwan
| | - Shi-Wei Chu
- Department of Physics, National Taiwan University, 10051, Taiwan
| | - Yuan Luo
- Institute of Medical Device and Imaging, National Taiwan University, Taipei, 10617, Taiwan
- Department of Biomedical Engineering, National Taiwan University, 10051, Taiwan
- YongLin Institute of Health, National Taiwan University, Taipei, 10087, Taiwan
| |
Collapse
|
12
|
Hong M, Chong SZ, Goh YY, Tong L. Two-Photon and Multiphoton Microscopy in Anterior Segment Diseases of the Eye. Int J Mol Sci 2024; 25:1670. [PMID: 38338948 PMCID: PMC10855705 DOI: 10.3390/ijms25031670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Two-photon excitation microscopy (TPM) and multiphoton fluorescence microscopy (MPM) are advanced forms of intravital high-resolution functional microscopy techniques that allow for the imaging of dynamic molecular processes and resolve features of the biological tissues of interest. Due to the cornea's optical properties and the uniquely accessible position of the globe, it is possible to image cells and tissues longitudinally to investigate ocular surface physiology and disease. MPM can also be used for the in vitro investigation of biological processes and drug kinetics in ocular tissues. In corneal immunology, performed via the use of TPM, cells thought to be intraepithelial dendritic cells are found to resemble tissue-resident memory T cells, and reporter mice with labeled plasmacytoid dendritic cells are imaged to understand the protective antiviral defenses of the eye. In mice with limbal progenitor cells labeled by reporters, the kinetics and localization of corneal epithelial replenishment are evaluated to advance stem cell biology. In studies of the conjunctiva and sclera, the use of such imaging together with second harmonic generation allows for the delineation of matrix wound healing, especially following glaucoma surgery. In conclusion, these imaging models play a pivotal role in the progress of ocular surface science and translational research.
Collapse
Affiliation(s)
- Merrelynn Hong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore;
- Training and Education Department, Singapore National Eye Centre, Singapore 168751, Singapore
| | - Shu Zhen Chong
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Singapore 138632, Singapore;
| | - Yun Yao Goh
- Lee Kong Chian School of Medicine, National Technical University, Singapore 639798, Singapore;
| | - Louis Tong
- Corneal and External Diseases Department, Singapore National Eye Centre, Singapore 168751, Singapore
- Ocular Surface Group, Singapore Eye Research Institute, Singapore 169856, Singapore
- Eye Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
13
|
Chen R, Qiu K, Leong DCY, Kundu BK, Zhang C, Srivastava P, White KE, Li G, Han G, Guo Z, Elles CG, Diao J, Sun Y. A general design of pyridinium-based fluorescent probes for enhancing two-photon microscopy. Biosens Bioelectron 2023; 239:115604. [PMID: 37607448 PMCID: PMC10529004 DOI: 10.1016/j.bios.2023.115604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023]
Abstract
Two-photon absorbing fluorescent probes have emerged as powerful imaging tools for subcellular-level monitoring of biological substances and processes, offering advantages such as deep light penetration, minimal photodamage, low autofluorescence, and high spatial resolution. However, existing two-photon absorbing probes still face several limitations, such as small two-photon absorption cross-section, poor water solubility, low membrane permeability, and potentially high toxicity. Herein, we report three small-molecule probes, namely MSP-1arm, Lyso-2arm, and Mito-3arm, composed of a pyridinium center (electron-acceptor) and various methoxystyrene "arms" (electron-donor). These probes exhibit excellent fluorescence quantum yield and decent aqueous solubility. Leveraging the inherent intramolecular charge transfer and excitonic coupling effect, these complexes demonstrate excellent two-photon absorption in the near-infrared region. Notably, Lyso-2arm and Mito-3arm exhibit distinct targeting abilities for lysosomes and mitochondria, respectively. In two-photon microscopy experiments, Mito-3arm outperforms a commercial two-photon absorbing dye in 2D monolayer HeLa cells, delivering enhanced resolution, broader NIR light excitation window, and higher signal-to-noise ratio. Moreover, the two-photon bioimaging of 3D human forebrain organoids confirms the successful deep tissue imaging capabilities of both Lyso-2arm and Mito-3arm. Overall, this work presents a rational design strategy in developing competent two-photon-absorbing probes by varying the number of conjugated "arms" for bioimaging applications.
Collapse
Affiliation(s)
- Rui Chen
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Kangqiang Qiu
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Daniel C Y Leong
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Bidyut Kumar Kundu
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Chengying Zhang
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | | | - Katie E White
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Guodong Li
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Guanqun Han
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Ziyuan Guo
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | - Jiajie Diao
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA.
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA.
| |
Collapse
|
14
|
Klioutchnikov A, Kerr JND. Chasing cortical behavior: designing multiphoton microscopes for imaging neuronal populations in freely moving rodents. NEUROPHOTONICS 2023; 10:044411. [PMID: 37886044 PMCID: PMC10599648 DOI: 10.1117/1.nph.10.4.044411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023]
Abstract
Imaging in the freely moving animal gives unparalleled access to circuit activity as the animal interacts with its environment in a self-guided way. Over the past few years, new imaging technologies have enabled the interrogation of neuronal populations located at any depth of the cortex in freely moving mice while preserving the animal's behavioral repertoire. This commentary gives an updated overview of the recent advances that have enabled the link between behavior and the underlying neuronal activity to be explored.
Collapse
Affiliation(s)
- Alexandr Klioutchnikov
- Max Planck Institute for Neurobiology of Behavior, Department of Behavior and Brain Organization, Bonn, Germany
| | - Jason N. D. Kerr
- Max Planck Institute for Neurobiology of Behavior, Department of Behavior and Brain Organization, Bonn, Germany
| |
Collapse
|
15
|
Le T, Chiang Y, Hui Y, Le T, Tzeng Y, Sharma N, Chiang W, Hsiao W. In vitroBioimaging of Fluorescent Nanodiamonds. NANODIAMONDS IN ANALYTICAL AND BIOLOGICAL SCIENCES 2023:95-127. [DOI: 10.1002/9781394202164.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
|
16
|
Warerkar OD, Mudliar NH, Ahuja T, Shahane SD, Singh PK. A highly sensitive hemicyanine-based near-infrared fluorescence sensor for detecting toxic amyloid aggregates in human serum. Int J Biol Macromol 2023; 247:125621. [PMID: 37392920 DOI: 10.1016/j.ijbiomac.2023.125621] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
The development of an accurate and sensitive sensor for detecting amyloid plaques, which are responsible for many protein disorders like Alzheimer's disease, is crucial for early diagnosis. Recently, there has been a notable increase in the development of fluorescence probes that exhibit emission in the red region (>600 nm), aiming to effectively tackle the challenges encountered when working with complex biological matrices. In the current investigation, a hemicyanine-based probe, called LDS730, has been used for the sensing of amyloid fibrils, which belong to the Near-Infrared Fluorescence (NIRF) family of dyes. NIRF probes provide higher precision in detection, prevent photo-damage, and minimize the autofluorescence of biological specimens. The LDS730 sensor emits in the near-infrared region and shows a 110-fold increase in fluorescence turn-on emission when bound to insulin fibrils, making it a highly sensitive sensor. The sensor has an emission maximum of ~710 nm in a fibril-bound state, which shows a significant red shift along with a Stokes' shift of ~50 nm. The LDS730 sensor also displays excellent performance in the complicated human serum matrix, with a limit of detection (LOD) of 103 nM. Molecular docking calculations suggest that the most likely binding location of LDS730 in the fibrillar structure is the inner channels of amyloid fibrils along its long axis, and the sensor engages in several types of hydrophobic interactions with neighboring amino acid residues of the fibrillar structure. Overall, this new amyloid sensor has great potential for the early detection of amyloid plaques and for improving diagnostic accuracy.
Collapse
Affiliation(s)
- Oshin D Warerkar
- SVKM's Shri C. B. Patel Research Centre, Vile Parle, Mumbai, Maharashtra 400056, India
| | - Niyati H Mudliar
- SVKM's Shri C. B. Patel Research Centre, Vile Parle, Mumbai, Maharashtra 400056, India
| | - Tanya Ahuja
- SVKM's Shri C. B. Patel Research Centre, Vile Parle, Mumbai, Maharashtra 400056, India
| | - Sailee D Shahane
- SVKM's Shri C. B. Patel Research Centre, Vile Parle, Mumbai, Maharashtra 400056, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
17
|
Huaroto JJ, Capuano L, Kaya M, Hlukhau I, Assayag F, Mohanty S, Römer GW, Misra S. Two-photon microscopy for microrobotics: Visualization of micro-agents below fixed tissue. PLoS One 2023; 18:e0289725. [PMID: 37561749 PMCID: PMC10414647 DOI: 10.1371/journal.pone.0289725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Optical microscopy is frequently used to visualize microrobotic agents (i.e., micro-agents) and physical surroundings with a relatively high spatio-temporal resolution. However, the limited penetration depth of optical microscopy techniques used in microrobotics (in the order of 100 μm) reduces the capability of visualizing micro-agents below biological tissue. Two-photon microscopy is a technique that exploits the principle of two-photon absorption, permitting live tissue imaging with sub-micron resolution and optical penetration depths (over 500 μm). The two-photon absorption principle has been widely applied to fabricate sub-millimeter scale components via direct laser writing (DLW). Yet, its use as an imaging tool for microrobotics remains unexplored in the state-of-the-art. This study introduces and reports on two-photon microscopy as an alternative technique for visualizing micro-agents below biological tissue. In order to validate two-photon image acquisition for microrobotics, two-type micro-agents are fabricated and employed: (1) electrospun fibers stained with an exogenous fluorophore and (2) bio-inspired structure printed with autofluorescent resin via DLW. The experiments are devised and conducted to obtain three-dimensional reconstructions of both micro-agents, perform a qualitative study of laser-tissue interaction, and visualize micro-agents along with tissue using second-harmonic generation. We experimentally demonstrate two-photon microscopy of micro-agents below formalin-fixed tissue with a maximum penetration depth of 800 μm and continuous imaging of magnetic electrospun fibers with one frame per second acquisition rate (in a field of view of 135 × 135 μm2). Our results show that two-photon microscopy can be an alternative imaging technique for microrobotics by enabling visualization of micro-agents under in vitro and ex ovo conditions. Furthermore, bridging the gap between two-photon microscopy and the microrobotics field has the potential to facilitate in vivo visualization of micro-agents.
Collapse
Affiliation(s)
- Juan J. Huaroto
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Luigi Capuano
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Mert Kaya
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
- Surgical Robotics Laboratory, Department of Biomedical Engineering, University Medical Centre Groningen and University of Groningen, Groningen, The Netherlands
| | - Ihar Hlukhau
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Franck Assayag
- Animal Facility, Technical Medical Centre (TechMed Centre) Infrastructure, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Sumit Mohanty
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
- Autonomous Matter Department, AMOLF, Amsterdam, The Netherlands
| | - Gert-willem Römer
- Chair of Laser Processing, Department of Mechanics of Solids, Surfaces & Systems (MS3), Faculty of Engineering Technology, University of Twente, Enschede, The Netherlands
| | - Sarthak Misra
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
- Surgical Robotics Laboratory, Department of Biomedical Engineering, University Medical Centre Groningen and University of Groningen, Groningen, The Netherlands
| |
Collapse
|
18
|
LaViolette AK, Ouzounov DG, Xu C. Measurement of three-photon excitation cross-sections of fluorescein from 1154 nm to 1500 nm. BIOMEDICAL OPTICS EXPRESS 2023; 14:4369-4382. [PMID: 37799679 PMCID: PMC10549759 DOI: 10.1364/boe.498214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 10/07/2023]
Abstract
Measurements of three-photon action cross-sections for fluorescein (dissolved in water, pH ∼11.5) are presented in the excitation wavelength range from 1154 to 1500 nm in ∼50 nm steps. The excitation source is a femtosecond wavelength tunable non-collinear optical parametric amplifier, which has been spectrally filtered with 50 nm full width at half maximum band pass filters. Cube-law power dependance is confirmed at the measurement wavelengths. The three-photon excitation spectrum is found to differ from both the one- and two-photon excitation spectra. The three-photon action cross-section at 1154 nm is more than an order of magnitude larger than those at 1450 and 1500 nm (approximately three times the wavelength of the one-photon excitation peak), which possibly indicates the presence of resonance enhancement.
Collapse
Affiliation(s)
- Aaron K. LaViolette
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Dimitre G. Ouzounov
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Chris Xu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
19
|
Aslopovsky VR, Scherbinin AV, Kleshchina NN, Bochenkova AV. Impact of the Protein Environment on Two-Photon Absorption Cross-Sections of the GFP Chromophore Anion Resolved at the XMCQDPT2 Level of Theory. Int J Mol Sci 2023; 24:11266. [PMID: 37511026 PMCID: PMC10379633 DOI: 10.3390/ijms241411266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
The search for fluorescent proteins with large two-photon absorption (TPA) cross-sections and improved brightness is required for their efficient use in bioimaging. Here, we explored the impact of a single-point mutation close to the anionic form of the GFP chromophore on its TPA activity. We considered the lowest-energy transition of EGFP and its modification EGFP T203I. We focused on a methodology for obtaining reliable TPA cross-sections for mutated proteins, based on conformational sampling using molecular dynamics simulations and a high-level XMCQDPT2-based QM/MM approach. We also studied the numerical convergence of the sum-over-states formalism and provide direct evidence for the applicability of the two-level model for calculating TPA cross-sections in EGFP. The calculated values were found to be very sensitive to changes in the permanent dipole moments between the ground and excited states and highly tunable by internal electric field of the protein environment. In the case of the GFP chromophore anion, even a single hydrogen bond was shown to be capable of drastically increasing the TPA cross-section. Such high tunability of the nonlinear photophysical properties of the chromophore anions can be used for the rational design of brighter fluorescent proteins for bioimaging using two-photon laser scanning microscopy.
Collapse
Affiliation(s)
- Vladislav R Aslopovsky
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Andrei V Scherbinin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Nadezhda N Kleshchina
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Anastasia V Bochenkova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| |
Collapse
|
20
|
Elayan IA, Brown A. Degenerate and non-degenerate two-photon absorption of coumarin dyes. Phys Chem Chem Phys 2023. [PMID: 37318284 DOI: 10.1039/d3cp00723e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two-photon absorption (2PA) spectroscopy is a robust bioimaging tool that depends on the determined cross-sections (σ2PA). The absorption of both photons occurs simultaneously with equivalent (degenerate) or different (non-degenerate) photon energies, D-2PA and ND-2PA, respectively. The former has been investigated experimentally and computationally for many systems, while the latter remains relatively unexplored computationally and limited experimentally. In this study, response theory using time-dependent density functional theory (TD-DFT) and the 2-state model (2SM) have been utilized to investigate σD-2PA and σND-2PA for the excitation to the lowest energy singlet state (S1) of coumarin, coumarin 6, coumarin 120, coumarin 307, and coumarin 343. Solvents involved were methanol (MeOH), chloroform (ClForm), and dimethylsulfoxide (DMSO), where the latter leads to the largest σ2PA. Values of σ2PA are largest for coumarin 6 and lowest for coumarin, which illustrates the effect of substituents. The 2SM clarifies how the largest cross-sections correspond to molecules with the largest transition dipole moments, μ01. In general, σD-2SM computations agree with σD-2PA. Moreover, σND-2SM are in qualitative agreement with σND-2PA with comparable enhancement relative to σD-2PA. Overall, σND-2PA are larger than σD-2PA where the increase is in the range of 22% to 49%, depending on the coumarin as well as the relative energies of the two photons. This work aids in future investigations into various fluorophores to understand their photophysical properties for ND-2PA.
Collapse
Affiliation(s)
- Ismael A Elayan
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2.
| | - Alex Brown
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2.
| |
Collapse
|
21
|
Cheng Y, Zhou H, Xu J, Zhao Y, Chen X, Antoine R, Ding M, Zhang K, Zhang S. Photoluminescent gold nanoclusters as two-photon excited ratiometric pH sensor and photoactivated peroxidase. Mikrochim Acta 2023; 190:225. [PMID: 37195510 DOI: 10.1007/s00604-023-05803-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/16/2023] [Indexed: 05/18/2023]
Abstract
A two-photon excited ratiometric fluorescent pH sensor is reported by combining L-cysteine-protected AuNCs (Cys@AuNCs) with fluorescein isothiocyanate (FITC). Cys@AuNCs were synthesized through a one-step self-reduction route and showed pH-responsive photoluminescence at 650 nm. Benefiting from the opposite pH response of Cys@AuNCs and FITC, the fluorescence ratio (F515 nm/F650 nm) of FITC&Cys@AuNCs provided a large dynamic range of 200-fold for pH measurement in the response interval of pH 5.0-8.0. Based on the excellent two-photon absorption coefficient of Cys@AuNCs, the sensor was expected to achieve sensitive quantitation of pH in living cells under two-photon excitation. In addition, colorimetric biosensing based on enzyme-like metal nanoclusters has attracted wide attention due to their low-cost, simplicity, and practicality. It is crucial to develop high catalytic activity nanozyme from the viewpoint of practical application. The synthesized Cys@AuNCs exhibited excellent photoactivated peroxidase-like activity with high substrate affinity and catalytic reaction rate, promising for rapid colorimetric biosensing of field analysis and the control of catalytic reactions by photostimulation.
Collapse
Affiliation(s)
- Yuchi Cheng
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Road, Shanghai, 200241, China
| | - Huangmei Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Road, Shanghai, 200241, China
| | - Jinming Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Road, Shanghai, 200241, China
| | - Yu Zhao
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Road, Shanghai, 200241, China
| | - Xihang Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Road, Shanghai, 200241, China
| | - Rodolphe Antoine
- Institut Lumière Matière UMR 5306, Université Claude Bernard Lyon 1, CNRS, Univ Lyon, F69100, Villeurbanne, France.
| | - Meng Ding
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, No.3663, North Zhongshan Road, Shanghai, 200062, China
| | - Kun Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, No.3663, North Zhongshan Road, Shanghai, 200062, China.
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Road, Shanghai, 200241, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, Shanxi, China.
| |
Collapse
|
22
|
Zhang K, Chen FR, Wang L, Hu J. Second Near-Infrared (NIR-II) Window for Imaging-Navigated Modulation of Brain Structure and Function. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206044. [PMID: 36670072 DOI: 10.1002/smll.202206044] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/28/2022] [Indexed: 06/17/2023]
Abstract
For a long time, optical imaging of the deep brain with high resolution has been a challenge. Recently, with the advance in second near-infrared (NIR-II) bioimaging techniques and imaging contrast agents, NIR-II window bioimaging has attracted great attention to monitoring deeper biological or pathophysiological processes with high signal-to-noise ratio (SNR) and spatiotemporal resolution. Assisted with NIR-II bioimaging, the modulation of structure and function of brain is promising to be noninvasive and more precise. Herein, in this review, first the advantage of NIR-II light in brain imaging from the interaction between NIR-II and tissue is elaborated. Then, several specific NIR-II bioimaging technologies are introduced, including NIR-II fluorescence imaging, multiphoton fluorescence imaging, and photoacoustic imaging. Furthermore, the corresponding contrast agents are summarized. Next, the application of various NIR-II bioimaging technologies in visualizing the characteristics of cerebrovascular network and monitoring the changes of the pathology signals will be presented. After that, the modulation of brain structure and function based on NIR-II bioimaging will be discussed, including treatment of glioblastoma, guidance of cell transplantation, and neuromodulation. In the end, future perspectives that would help improve the clinical translation of NIR-II light are proposed.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Fu-Rong Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
23
|
Zhang Q, Hu Q, Berlage C, Kner P, Judkewitz B, Booth M, Ji N. Adaptive optics for optical microscopy [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:1732-1756. [PMID: 37078027 PMCID: PMC10110298 DOI: 10.1364/boe.479886] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 05/03/2023]
Abstract
Optical microscopy is widely used to visualize fine structures. When applied to bioimaging, its performance is often degraded by sample-induced aberrations. In recent years, adaptive optics (AO), originally developed to correct for atmosphere-associated aberrations, has been applied to a wide range of microscopy modalities, enabling high- or super-resolution imaging of biological structure and function in complex tissues. Here, we review classic and recently developed AO techniques and their applications in optical microscopy.
Collapse
Affiliation(s)
- Qinrong Zhang
- Department of Physics, Department of Molecular & Cellular Biology, University of California, Berkeley, CA 94720, USA
| | - Qi Hu
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
| | - Caroline Berlage
- Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences, NeuroCure Cluster of Excellence, 10117 Berlin, Germany
- Humboldt-Universität zu Berlin, Institute for Biology, 10099 Berlin, Germany
| | - Peter Kner
- School of Electrical and Computer Engineering, University of Georgia, Athens, GA 30602, USA
| | - Benjamin Judkewitz
- Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences, NeuroCure Cluster of Excellence, 10117 Berlin, Germany
| | - Martin Booth
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
| | - Na Ji
- Department of Physics, Department of Molecular & Cellular Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
24
|
Qi W, Zhou J, Cao X, Cheng Z, Li S, Jiang H, Cui S, Feng Y. Generation of 1.3 µm femtosecond pulses by cascaded nonlinear optical gain modulation in phosphosilicate fiber. OPTICS LETTERS 2023; 48:1698-1701. [PMID: 37221744 DOI: 10.1364/ol.484175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/18/2023] [Indexed: 05/25/2023]
Abstract
Nonlinear optical gain modulation (NOGM) is a simple and effective approach to generate highly coherent ultrafast pulses with a flexible wavelength. In this work, we demonstrate 34 nJ, 170 fs pulse generation at 1319 nm through a piece of phosphorus-doped fiber by two-stage cascaded NOGM with a 1064 nm pulsed pump. Beyond the experiment, numerical results show that 668 nJ, 391 fs pulses at 1.3 µm can be produced with up to 67% conversion efficiency by increasing the pump pulse energy and optimizing the pump pulse duration. This would offer an efficient method to obtain high-energy sub-picosecond laser sources for applications such as multiphoton microscopy.
Collapse
|
25
|
Sirimatayanant S, Andruniów T. Benchmarking two-photon absorption strengths of rhodopsin chromophore models with CC3 and CCSD methodologies: An assessment of popular density functional approximations. J Chem Phys 2023; 158:094106. [PMID: 36889953 DOI: 10.1063/5.0135594] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
This work presents the investigations of the impact of an increasing electron correlation in the hierarchy of coupled-cluster methods, i.e., CC2, CCSD, and CC3, on two-photon absorption (2PA) strengths for the lowest excited state of the minimal rhodopsin's chromophore model-cis-penta-2,4-dieniminium cation (PSB3). For a larger chromophore's model [4-cis-hepta-2,4,6-trieniminium cation (PSB4)], CC2 and CCSD calculations of 2PA strengths were performed. Additionally, 2PA strengths predicted by some popular density functional theory (DFT) functionals differing in HF exchange contribution were assessed against the reference CC3/CCSD data. For PSB3, the accuracy of 2PA strengths increases in the following order: CC2 < CCSD < CC3, with the CC2 deviation from both higher-level methods exceeding 10% at 6-31+G* basis sets and 2% at aug-cc-pVDZ basis set. However, for PSB4, this trend is reversed and CC2-based 2PA strength is larger than the corresponding CCSD value. Among the DFT functionals investigated, CAM-B3LYP and BHandHLYP provide 2PA strengths in best compliance with reference data, however, with the error approaching an order of magnitude.
Collapse
Affiliation(s)
- Saruti Sirimatayanant
- Institute of Advanced Materials, Department of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Tadeusz Andruniów
- Institute of Advanced Materials, Department of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
26
|
Xiao Y, Deng P, Zhao Y, Yang S, Li B. Three-photon excited fluorescence imaging in neuroscience: From principles to applications. Front Neurosci 2023; 17:1085682. [PMID: 36891460 PMCID: PMC9986337 DOI: 10.3389/fnins.2023.1085682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/02/2023] [Indexed: 02/22/2023] Open
Abstract
The development of three-photon microscopy (3PM) has greatly expanded the capability of imaging deep within biological tissues, enabling neuroscientists to visualize the structure and activity of neuronal populations with greater depth than two-photon imaging. In this review, we outline the history and physical principles of 3PM technology. We cover the current techniques for improving the performance of 3PM. Furthermore, we summarize the imaging applications of 3PM for various brain regions and species. Finally, we discuss the future of 3PM applications for neuroscience.
Collapse
Affiliation(s)
| | | | | | | | - Bo Li
- State Key Laboratory of Medical Neurobiology, Department of Neurology, Ministry of Education (MOE), Frontiers Center for Brain Science, Institute for Translational Brain Research, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Plotczyk M, Jiménez F, Limbu S, Boyle CJ, Ovia J, Almquist BD, Higgins CA. Anagen hair follicles transplanted into mature human scars remodel fibrotic tissue. NPJ Regen Med 2023; 8:1. [PMID: 36609660 PMCID: PMC9822907 DOI: 10.1038/s41536-022-00270-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/30/2022] [Indexed: 01/07/2023] Open
Abstract
Despite the substantial impact of skin scarring on patients and the healthcare system, there is a lack of strategies to prevent scar formation, let alone methods to remodel mature scars. Here, we took a unique approach inspired by how healthy hairbearing skin undergoes physiological remodelling during the regular cycling of hair follicles. In this pilot clinical study, we tested if hair follicles transplanted into human scars can facilitate tissue regeneration and actively remodel fibrotic tissue, similar to how they remodel the healthy skin. We collected full-thickness skin biopsies and compared the morphology and transcriptional signature of fibrotic tissue before and after transplantation. We found that hair follicle tranplantation induced an increase in the epidermal thickness, interdigitation of the epidermal-dermal junction, dermal cell density, and blood vessel density. Remodelling of collagen type I fibres reduced the total collagen fraction, the proportion of thick fibres, and their alignment. Consistent with these morphological changes, we found a shift in the cytokine milieu of scars with a long-lasting inhibition of pro-fibrotic factors TGFβ1, IL13, and IL-6. Our results show that anagen hair follicles can attenuate the fibrotic phenotype, providing new insights for developing regenerative approaches to remodel mature scars.
Collapse
Affiliation(s)
- Magdalena Plotczyk
- grid.7445.20000 0001 2113 8111Department of Bioengineering, Imperial College London, London, UK
| | - Francisco Jiménez
- grid.512367.4Mediteknia Skin and Hair Laboratory, Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Summik Limbu
- grid.7445.20000 0001 2113 8111Department of Bioengineering, Imperial College London, London, UK
| | - Colin J. Boyle
- grid.7445.20000 0001 2113 8111Department of Bioengineering, Imperial College London, London, UK
| | - Jesse Ovia
- grid.7445.20000 0001 2113 8111Department of Bioengineering, Imperial College London, London, UK
| | - Benjamin D. Almquist
- grid.7445.20000 0001 2113 8111Department of Bioengineering, Imperial College London, London, UK
| | - Claire A. Higgins
- grid.7445.20000 0001 2113 8111Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
28
|
Rani Kumar N, Agrawal AR. Advances in the Chemistry of 2,4,6-Tri(thiophen-2-yl)-1,3,5-triazine. ChemistryOpen 2023; 12:e202200203. [PMID: 36599693 PMCID: PMC9812756 DOI: 10.1002/open.202200203] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/30/2022] [Indexed: 01/06/2023] Open
Abstract
Heterocyclic systems are now considered to be an integral part of material chemistry. Thiophene, selenophene, furan, pyrrole, carbazole, triazine and others are some such examples worth mentioning. 2,4,6-Tri(thiophen-2-yl)-1,3,5-triazine is a C3h -symmetric system with thiophene as the donor unit and s-triazine as the acceptor unit. This review gives an insight into the advances made in the thienyl-triazine chemistry over the past two to three decades. The synthetic pathways for arriving at this system and all its important derivatives are provided. The major focus is on the materials synthesized using the thienyl-triazine system, including star molecules, linear and hyperbranched polymers, porous materials and their diverse applications. This review will play a catalytic role for new dimensions to be explored in thienyl-triazine chemistry.
Collapse
Affiliation(s)
- Neha Rani Kumar
- Department of Chemistry Dhemaji CollegeDhemaji787057, AssamIndia
| | - Abhijeet R. Agrawal
- Institute of ChemistryThe Hebrew University of Jerusalem Edmond J. Safra CampusJerusalem91904Israel
| |
Collapse
|
29
|
Abstract
In this series of papers on light microscopy imaging, we have covered the fundamentals of microscopy, super-resolution microscopy, and lightsheet microscopy. This last review covers multi-photon microscopy with a brief reference to intravital imaging and Brainbow labeling. Multi-photon microscopy is often referred to as two-photon microscopy. Indeed, using two-photon microscopy is by far the most common way of imaging thick tissues; however, it is theoretically possible to use a higher number of photons, and three-photon microscopy is possible. Therefore, this review is titled "multi-photon microscopy." Another term for describing multi-photon microscopy is "non-linear" microscopy because fluorescence intensity at the focal spot depends upon the average squared intensity rather than the squared average intensity; hence, non-linear optics (NLO) is an alternative name for multi-photon microscopy. It is this non-linear relationship (or third exponential power in the case of three-photon excitation) that determines the axial optical sectioning capability of multi-photon imaging. In this paper, the necessity for two-photon or multi-photon imaging is explained, and the method of optical sectioning by multi-photon microscopy is described. Advice is also given on what fluorescent markers to use and other practical aspects of imaging thick tissues. The technique of Brainbow imaging is discussed. The review concludes with a description of intravital imaging of the mouse. © 2023 Wiley Periodicals LLC.
Collapse
|
30
|
Dye-labeled aromatic azides for multi-photon grafting. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-03022-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AbstractThe synthesis of two dye-labeled azides via de-symmetrization of 2,6-bis(4-azidobenzylidene)-4-methylcyclohexanone (BAC-M) with a copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) using fluorescent dyes is reported. An alkyne functionalized dansyl derivative and an alkyne functionalized perylene diimide derivative were used as the dyes. The photo-physical properties of these dye dyads are described, and their performance in multi-photon grafting onto polyethylene glycol-based hydrogels is investigated. While the dansyl-conjugated BAC derivate is well suited for multi-photon grafting with lasers operating at 800 nm, the perylene diimide-bearing dye does not give the desired result.
Graphical abstract
Collapse
|
31
|
Ma C, Xing Z, Gou X, Jiang LP, Zhu JJ. A temperature-tuned electrochemiluminescence layer for reversibly imaging cell topography. Chem Sci 2022; 13:13938-13947. [PMID: 36544730 PMCID: PMC9710227 DOI: 10.1039/d2sc04944a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/05/2022] [Indexed: 11/12/2022] Open
Abstract
Investigating electrochemiluminescence (ECL) scenarios under different temperatures is important to expand its imaging scope near an electrode surface. Here, we develop a temperature-tuned ECL layer by recording the evolution of shadow regions of adherent cells. Finite element simulation and experimental results demonstrate that the thickness of the ECL layer (TEL) is reversibly regulated by electrode temperature (T e), so that single cell topography at different heights is imaged. The TEL in two ECL routes shows different regulation ranges with elevated T e, thus providing a flexible approach to adjust the imaging scope within specific heights. In addition, a heated electrode significantly improves the image quality of cell adhesion in heterogeneous electrochemical rate-determined situations. Thus, the contrast in cell regions shows a reversible response to T e. This work provides a new approach to regulate the TEL and is promising for monitoring transient heat generation from biological entities.
Collapse
Affiliation(s)
- Cheng Ma
- School of Chemistry and Chemical Engineering, Yangzhou UniversityYangzhou 225002P. R. China,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing UniversityNanjing 210023P. R. China
| | - Zejing Xing
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing UniversityNanjing 210023P. R. China
| | - Xiaodan Gou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing UniversityNanjing 210023P. R. China
| | - Li-Ping Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing UniversityNanjing 210023P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing UniversityNanjing 210023P. R. China
| |
Collapse
|
32
|
Clark MG, Gonzalez GA, Zhang C. Pulse-Picking Multimodal Nonlinear Optical Microscopy. Anal Chem 2022; 94:15405-15414. [DOI: 10.1021/acs.analchem.2c03284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matthew G. Clark
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana47907, United States
| | - Gil A. Gonzalez
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana47907, United States
| | - Chi Zhang
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana47907, United States
- Purdue Center for Cancer Research, 201 S University Street, West Lafayette, Indiana47907, United States
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, 207 S Martin Jischke Drive, West Lafayette, Indiana47907, United States
| |
Collapse
|
33
|
Intravital microscopy for real-time monitoring of drug delivery and nanobiological processes. Adv Drug Deliv Rev 2022; 189:114528. [PMID: 36067968 DOI: 10.1016/j.addr.2022.114528] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/10/2022] [Accepted: 08/30/2022] [Indexed: 01/24/2023]
Abstract
Intravital microscopy (IVM) expands our understanding of cellular and molecular processes, with applications ranging from fundamental biology to (patho)physiology and immunology, as well as from drug delivery to drug processing and drug efficacy testing. In this review, we highlight modalities, methods and model organisms that make up today's IVM landscape, and we present how IVM - via its high spatiotemporal resolution - enables analysis of metabolites, small molecules, nanoparticles, immune cells, and the (tumor) tissue microenvironment. We furthermore present examples of how IVM facilitates the elucidation of nanomedicine kinetics and targeting mechanisms, as well as of biological processes such as immune cell death, host-pathogen interactions, metabolic states, and disease progression. We conclude by discussing the prospects of IVM clinical translation and examining the integration of machine learning in future IVM practice.
Collapse
|
34
|
Lin ZW, Chen JX, Li TJ, Zhan ZY, Liu M, Li C, Luo AP, Zhou P, Xu WC, Luo ZC. 1.7 µm figure-9 Tm-doped ultrafast fiber laser. OPTICS EXPRESS 2022; 30:32347-32354. [PMID: 36242298 DOI: 10.1364/oe.468769] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/31/2022] [Indexed: 06/16/2023]
Abstract
The evolution of multiphoton microscopy is critically dependent on the development of ultrafast laser technologies. The ultrashort pulse laser source at 1.7 µm waveband is attractive for in-depth three-photon imaging owing to the reduced scattering and absorption effects in biological tissues. Herein, we report on a 1.7 µm passively mode-locked figure-9 Tm-doped fiber laser. The nonreciprocal phase shifter that consists of two quarter-wave plates and a Faraday rotator introduces phase bias between the counter-propagating beams in the nonlinear amplifying loop mirror. The cavity dispersion is compensated to be slightly positive, enabling the proposed 1.7 µm ultrafast fiber laser to deliver the dissipative soliton with a 3-dB bandwidth of 20 nm. Moreover, the mode-locked spectral bandwidth could be flexibly tuned with different phase biases by rotating the wave plates. The demonstration of figure-9 Tm-doped ultrafast fiber laser would pave the way to develop the robust 1.7 µm ultrashort pulse laser sources, which could find important application for three-photon deep-tissue imaging.
Collapse
|
35
|
Almagro-Ruiz A, Torres-Peiró S, Muñoz-Marco H, Cunquero M, Castro-Olvera G, Dauliat R, Jamier R, Shulika OV, Romero R, Guerreiro PT, Miranda M, Crespo H, Roy P, Loza-Álvarez P, Pérez-Millán P. Few-cycle all-fiber supercontinuum laser for ultrabroadband multimodal nonlinear microscopy. OPTICS EXPRESS 2022; 30:29044-29062. [PMID: 36299089 DOI: 10.1364/oe.454726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/15/2022] [Indexed: 06/16/2023]
Abstract
Temporally coherent supercontinuum sources constitute an attractive alternative to bulk crystal-based sources of few-cycle light pulses. We present a monolithic fiber-optic configuration for generating transform-limited temporally coherent supercontinuum pulses with central wavelength at 1.06 µm and duration as short as 13.0 fs (3.7 optical cycles). The supercontinuum is generated by the action of self-phase modulation and optical wave breaking when pumping an all-normal dispersion photonic crystal fiber with pulses of hundreds of fs duration produced by all-fiber chirped pulsed amplification. Avoidance of free-space propagation between stages confers unequalled robustness, efficiency and cost-effectiveness to this novel configuration. Collectively, the features of all-fiber few-cycle pulsed sources make them powerful tools for applications benefitting from the ultrabroadband spectra and ultrashort pulse durations. Here we exploit these features and the deep penetration of light in biological tissues at the spectral region of 1 µm, to demonstrate their successful performance in ultrabroadband multispectral and multimodal nonlinear microscopy.
Collapse
|
36
|
Intrinsically Fluorescent Anti-Cancer Drugs. BIOLOGY 2022; 11:biology11081135. [PMID: 36009762 PMCID: PMC9405238 DOI: 10.3390/biology11081135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022]
Abstract
At present, about one-third of the total protein targets in the pharmaceutical research sector are kinase-based. While kinases have been attractive targets to combat many diseases, including cancer, selective kinase inhibition has been challenging, because of the high degree of structural homology in the active site where many kinase inhibitors bind. Despite efficacy as cancer drugs, kinase inhibitors can exhibit limited target specificity and rationalizing their target profiles in the context of precise molecular mechanisms or rearrangements is a major challenge for the field. Spectroscopic approaches such as infrared, Raman, NMR and fluorescence have the potential to provide significant insights into drug-target and drug-non-target interactions because of sensitivity to molecular environment. This review places a spotlight on the significance of fluorescence for extracting information related to structural properties, discovery of hidden conformers in solution and in target-bound state, binding properties (e.g., location of binding sites, hydrogen-bonding, hydrophobicity), kinetics as well as dynamics of kinase inhibitors. It is concluded that the information gleaned from an understanding of the intrinsic fluorescence from these classes of drugs may aid in the development of future drugs with improved side-effects and less disease resistance.
Collapse
|
37
|
Septier D, Mytskaniuk V, Habert R, Labat D, Baudelle K, Cassez A, Brévalle-Wasilewski G, Conforti M, Bouwmans G, Rigneault H, Kudlinski A. Label-free highly multimodal nonlinear endoscope. OPTICS EXPRESS 2022; 30:25020-25033. [PMID: 36237042 PMCID: PMC9363033 DOI: 10.1364/oe.462361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 06/16/2023]
Abstract
We demonstrate a 2 mm diameter highly multimodal nonlinear micro-endoscope allowing label-free imaging of biological tissues. The endoscope performs multiphoton fluorescence (3-photon, 2-photon), harmonic generation (second-SHG and third-THG) and coherent anti-Stokes Raman scattering (CARS) imaging over a field of view of 200 µm. The micro-endoscope is based on a double-clad antiresonant hollow core fiber featuring a high transmission window (850 nm to 1800 nm) that is functionalized with a short piece of graded-index (GRIN) fiber. When combined with a GRIN micro-objective, the micro-endoscope achieves a 1.1 µm point spread function (PSF). We demonstrate 3-photon, 2-photon, THG, SHG, and CARS high resolution images of unlabelled biological tissues.
Collapse
Affiliation(s)
- D. Septier
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | | | - R. Habert
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - D. Labat
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - K. Baudelle
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - A. Cassez
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | | | - M. Conforti
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - G. Bouwmans
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - H. Rigneault
- Lightcore Technologies, Cannes, France
- Aix Marseille Univ., CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - A. Kudlinski
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| |
Collapse
|
38
|
Thornton MA, Futia GL, Stockton ME, Ozbay BN, Kilborn K, Restrepo D, Gibson EA, Hughes EG. Characterization of red fluorescent reporters for dual-color in vivo three-photon microscopy. NEUROPHOTONICS 2022; 9:031912. [PMID: 35496497 PMCID: PMC9047442 DOI: 10.1117/1.nph.9.3.031912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Significance: Three-photon (3P) microscopy significantly increases the depth and resolution of in vivo imaging due to decreased scattering and nonlinear optical sectioning. Simultaneous excitation of multiple fluorescent proteins is essential to studying multicellular interactions and dynamics in the intact brain. Aim: We characterized the excitation laser pulses at a range of wavelengths for 3P microscopy, and then explored the application of tdTomato or mScarlet and EGFP for dual-color single-excitation structural 3P imaging deep in the living mouse brain. Approach: We used frequency-resolved optical gating to measure the spectral intensity, phase, and retrieved pulse widths at a range of wavelengths. Then, we performed in vivo single wavelength-excitation 3P imaging in the 1225- to 1360-nm range deep in the mouse cerebral cortex to evaluate the performance of tdTomato or mScarlet in combination with EGFP. Results: We find that tdTomato and mScarlet, expressed in oligodendrocytes and neurons respectively, have a high signal-to-background ratio in the 1300- to 1360-nm range, consistent with enhanced 3P cross-sections. Conclusions: These results suggest that a single excitation wavelength source is advantageous for multiple applications of dual-color brain imaging and highlight the importance of empirical characterization of individual fluorophores for 3P microscopy.
Collapse
Affiliation(s)
- Michael A. Thornton
- University of Colorado Anschutz Medical Campus, Department of Cell and Developmental Biology, Aurora, Colorado, United States
- University of Colorado Anschutz Medical Campus, Neuroscience Program, Aurora, Colorado, United States
| | - Gregory L. Futia
- University of Colorado Anschutz Medical Campus, Department of Bioengineering, Aurora, Colorado, United States
| | - Michael E. Stockton
- University of Colorado Anschutz Medical Campus, Department of Cell and Developmental Biology, Aurora, Colorado, United States
- University of Colorado Anschutz Medical Campus, Neuroscience Program, Aurora, Colorado, United States
| | - Baris N. Ozbay
- Intelligent Imaging Innovations (3i), Denver, Colorado, United States
| | - Karl Kilborn
- Intelligent Imaging Innovations (3i), Denver, Colorado, United States
| | - Diego Restrepo
- University of Colorado Anschutz Medical Campus, Department of Cell and Developmental Biology, Aurora, Colorado, United States
- University of Colorado Anschutz Medical Campus, Neuroscience Program, Aurora, Colorado, United States
| | - Emily A. Gibson
- University of Colorado Anschutz Medical Campus, Neuroscience Program, Aurora, Colorado, United States
- University of Colorado Anschutz Medical Campus, Department of Bioengineering, Aurora, Colorado, United States
| | - Ethan G. Hughes
- University of Colorado Anschutz Medical Campus, Department of Cell and Developmental Biology, Aurora, Colorado, United States
- University of Colorado Anschutz Medical Campus, Neuroscience Program, Aurora, Colorado, United States
| |
Collapse
|
39
|
Hsiao WW, Le T, Chang H. Applications of Fluorescent Nanodiamond in Biology. ENCYCLOPEDIA OF ANALYTICAL CHEMISTRY 2022:1-43. [DOI: 10.1002/9780470027318.a9776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Abstract
Fluorescent nanodiamond (FND) has emerged as a promising material in several multidisciplinary areas, including biology, chemistry, physics, and materials science. Composed of sp
3
‐carbon atoms, FND offers superior biocompatibility, chemical inertness, a large surface area, tunable surface structure, and excellent mechanical characteristics. The nanoparticle is unique in that it comprises a high‐density ensemble of negatively charged nitrogen‐vacancy (NV
−
) centers that act as built‐in fluorophores and exhibit a number of remarkable optical and magnetic properties. These properties make FND particularly well suited for a wide range of applications, including cell labeling, long‐term cell tracking, super‐resolution imaging, nanoscale sensing, and drug delivery. This article discusses recent applications of FND‐enabled developments in biology.
Collapse
|
40
|
Giovannelli A, Mattana S, Emiliani G, Anichini M, Traversi ML, Pavone FS, Cicchi R. Localized stem heating from the rest to growth phase induces latewood-like cell formation and slower stem radial growth in Norway spruce saplings. TREE PHYSIOLOGY 2022; 42:1149-1163. [PMID: 34918169 DOI: 10.1093/treephys/tpab166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Recent climate projections predict a more rapid increase of winter temperature than summer and global temperature averages in temperate and cold environments. As there is relatively little experimental knowledge on the effect of winter warming on cambium phenology and stem growth in species growing in cold environments, the setting of manipulative experiments is considered of primary importance, and they can help to decipher the effect of reduced winter chilling and increased forcing temperatures on cambium reactivation, growth and xylem traits. In this study, localized stem heating was applied to investigate the effect of warming from the rest to the growth phase on cambium phenology, intra-annual stem growth dynamics and ring wood features in Picea abies (L.) H.Karst. We hypothesized that reduced winter chilling induces a postponed cambium dormancy release and decrease of stem growth, while high temperature during cell wall lignification determines an enrichment of latewood-like cells. The heating device was designed to maintain a +5 °C temperature delta with respect to air temperature, thus allowing an authentic scenario of warming. Continuous stem heating from the rest (November) to the growing phase determined, at the beginning of radial growth, a reduction of the number of cell layers in the cambium, higher number of cell layers in the wall thickening phase and an asynchronous stem radial growth when comparing heated and ambient saplings. Nevertheless, heating did not induce changes in the number of produced cell layers at the end of the growing season. The analyses of two-photon fluorescence images showed that woody rings formed during heating were enriched with latewood-like cells. Our results showed that an increase of 5 °C of temperature applied to the stem from the rest to growth might not influence, as generally reported, onset of cambial activity, but it could affect xylem morphology of Norway spruce in mountain environments.
Collapse
Affiliation(s)
- Alessio Giovannelli
- Istituto di Ricerca sugli Ecosistemi Terrestri (IRET), Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, Sesto Fiorentino I-50019, Italy
| | - Sara Mattana
- Istituto Nazionale di Ottica (INO), Consiglio Nazionale delle Ricerche, Largo Fermi 6, Firenze 50125, Italy
| | - Giovanni Emiliani
- Istituto Protezione Sostenibile delle Piante (IPSP), Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, Sesto Fiorentino I-50019, Italy
| | - Monica Anichini
- Istituto per la Bioeconomia (IBE), Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, Sesto Fiorentino I-50019, Italy
| | - Maria Laura Traversi
- Istituto di Ricerca sugli Ecosistemi Terrestri (IRET), Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, Sesto Fiorentino I-50019, Italy
| | - Francesco Saverio Pavone
- Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Via G. Sansone 1, Sesto Fiorentino 50019, Italy
| | - Riccardo Cicchi
- Istituto Nazionale di Ottica (INO), Consiglio Nazionale delle Ricerche, Largo Fermi 6, Firenze 50125, Italy
- Laboratorio Europeo di Spettroscopie Non-lineari (LENS), Via N. Carrara 1, Sesto Fiorentino 50019, Italy
| |
Collapse
|
41
|
Sinefeld D, Xia F, Wang M, Wang T, Wu C, Yang X, Paudel HP, Ouzounov DG, Bifano TG, Xu C. Three-Photon Adaptive Optics for Mouse Brain Imaging. Front Neurosci 2022; 16:880859. [PMID: 35692424 PMCID: PMC9185169 DOI: 10.3389/fnins.2022.880859] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022] Open
Abstract
Three-photon microscopy (3PM) was shown to allow deeper imaging than two-photon microscopy (2PM) in scattering biological tissues, such as the mouse brain, since the longer excitation wavelength reduces tissue scattering and the higher-order non-linear excitation suppresses out-of-focus background fluorescence. Imaging depth and resolution can further be improved by aberration correction using adaptive optics (AO) techniques where a spatial light modulator (SLM) is used to correct wavefront aberrations. Here, we present and analyze a 3PM AO system for in vivo mouse brain imaging. We use a femtosecond source at 1300 nm to generate three-photon (3P) fluorescence in yellow fluorescent protein (YFP) labeled mouse brain and a microelectromechanical (MEMS) SLM to apply different Zernike phase patterns. The 3P fluorescence signal is used as feedback to calculate the amount of phase correction without direct phase measurement. We show signal improvement in the cortex and the hippocampus at greater than 1 mm depth and demonstrate close to diffraction-limited imaging in the cortical layers of the brain, including imaging of dendritic spines. In addition, we characterize the effective volume for AO correction within brain tissues, and discuss the limitations of AO correction in 3PM of mouse brain.
Collapse
Affiliation(s)
- David Sinefeld
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States
- Department of Applied Physics, Electro-Optics Engineering Faculty, Jerusalem College of Technology, Jerusalem, Israel
- *Correspondence: David Sinefeld,
| | - Fei Xia
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Mengran Wang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States
| | - Tianyu Wang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States
| | - Chunyan Wu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States
| | - Xusan Yang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States
| | - Hari P. Paudel
- Photonics Center, Boston University, Boston, MA, United States
| | - Dimitre G. Ouzounov
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States
| | | | - Chris Xu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States
| |
Collapse
|
42
|
High-Efficiency Continuous-Wave Ti:Sapphire Laser with High-Intensity Pumping Using a Commercially Available Crystal. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12104815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite the importance of improving the efficiency of lasers in order to expand their utility range, the improvement of the efficiency of Ti:sapphire lasers has not progressed due to their high crystal losses. Therefore, we improved the efficiency of CW Ti:sapphire lasers by high-intensity pumping, which is one of the most effective methods of suppressing the efficiency reduction due to losses. Using a easily commercially available 0.25 wt.%, figure of merit (FOM) 200 Ti:sapphire crystal, optics and a pump source, we achieved an optical-to-optical conversion efficiency of 32.4% with a slope efficiency of 42.5% at an incident pump power of 5.0 W which corresponds the maximum pumping intensity of 860 kW/cm2. Furthermore, we ensured the reliability of our theoretical analysis by reproducing the experimental results. From this reliable theory, double-pass pumping and increasing the pump power to 25 W resulted in the highest optical-to-optical conversion and slope efficiencies for the incident pump power of 55.9% and 59.6%, respectively, at a high intrinsic residual loss of 4.0%. Even if losses doubled or deviated from the optimum condition for the highest efficiency, the efficiency reduction due to these factors was only a few percent. These results show that with high-intensity pumping, lasers with efficiencies well exceeding half of the quantum limit can be achieved even if all components, including Ti:sapphire crystals, are easily commercially available.
Collapse
|
43
|
Xu Z, Zhang Z, Deng X, Li J, Jiang Y, Law WC, Yang C, Zhang W, Chen X, Wang K, Wang D, Xu G. Deep-Brain Three-Photon Imaging Enabled by Aggregation-Induced Emission Luminogens with Near-Infrared-III Excitation. ACS NANO 2022; 16:6712-6724. [PMID: 35293713 DOI: 10.1021/acsnano.2c01349] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Understanding the morphology and hemodynamics of cerebral vasculature at large penetration depths and microscale resolution is fundamentally important to decipher brain diseases. Among the various imaging technologies, three-photon (3P) microscopy is of significance by virtue of its deep-penetrating capability and submicron resolution, which especially benefits in vivo vascular imaging. Aggregation-induced emission luminogens (AIEgens) have been recognized to be extraordinarily powerful as 3P probes. However, systematic studies on the structure-performance relationship of 3P AIEgens have been seldom reported. Herein, a series of AIEgens has been designed and synthesized. By intentionally introducing benzene rings onto electron donors (D) and acceptors (A), the molecular distortion, conjugation strength, and the D-A relationship can be facilely manipulated. Upon encapsulation with DSPE-PEG2000, the optimized AIEgens are successfully applied for 3P microscopy with emission in the far-red/near-infrared-I (NIR-I, 700-950 nm) region under the near-infrared-III (NIR-III, 1600-1870 nm) excitation. Impressively, using mice with an opened skull, vasculature within 1700 μm and a microvessel with a diameter of 2.2 μm in deep mouse brain were clearly visualized. In addition, the hemodynamics of blood vessels were well-characterized. Thus, this work not only proposes a molecular design strategy of 3P AIEgens but also promotes the performance of 3P imaging in cerebral vasculature.
Collapse
Affiliation(s)
- Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Zhijun Zhang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiangquan Deng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jiangao Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yihang Jiang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Wanjian Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaolin Chen
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ke Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
44
|
Zheng Z, Zhang H, Cao H, Gong J, He M, Gou X, Yang T, Wei P, Qian J, Xi W, Tang BZ. Intra- and Intermolecular Synergistic Engineering of Aggregation-Induced Emission Luminogens to Boost Three-Photon Absorption for Through-Skull Brain Imaging. ACS NANO 2022; 16:6444-6454. [PMID: 35357126 DOI: 10.1021/acsnano.2c00672] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Three-photon fluorescence microscopic (3PFM) bioimaging is a promising imaging technique for visualizing the brain in its native environment thanks to its advantages of high spatial resolution and large imaging depth. However, developing fluorophores with strong three-photon absorption (3PA) and bright emission that meets the requirements for efficient three-photon fluorescence microscopic (3PFM) bioimaging is still challenging. Herein, four bright fluorophores with aggregation-induced emission features are facilely synthesized, and their powders exhibit high quantum yields of up to 56.4%. The intramolecular engineering of luminogens endows (E)-2-(benzo[d]thiazol-2-yl)-3-(7-(diphenylamino)-9-ethyl-9H-carbazol-2-yl)acrylonitrile (DCBT) molecules with bright near-infrared emission and large 3PA cross sections of up to 1.57 × 10-78 cm6 s2 photon-2 at 1550 nm, which is boosted by 3.6-fold to 5.61 × 10-78 cm6 s2 photon-2 in DCBT dots benefiting from the extensive intermolecular interactions in molecular stacking. DCBT dots are successfully applied for 3PFM imaging of brain vasculature on mice with a removed or intact skull, providing images with high spatial resolution, and even small capillaries can be recognized below the skull. This study will inspire more insights for developing advanced multiphoton absorbing materials for biomedical applications.
Collapse
Affiliation(s)
- Zheng Zheng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hequn Zhang
- Zhejiang University Interdisciplinary Institute of Neuroscience and Technology (ZIINT), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310029, China
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Hui Cao
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Junyi Gong
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Mubin He
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xuexin Gou
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Tianyu Yang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Peifa Wei
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Wang Xi
- Zhejiang University Interdisciplinary Institute of Neuroscience and Technology (ZIINT), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
45
|
Zamora-Perez P, Xiao C, Sanles-Sobrido M, Rovira-Esteva M, Conesa JJ, Mulens-Arias V, Jaque D, Rivera-Gil P. Multiphoton imaging of melanoma 3D models with plasmonic nanocapsules. Acta Biomater 2022; 142:308-319. [PMID: 35104657 DOI: 10.1016/j.actbio.2022.01.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/04/2022] [Accepted: 01/25/2022] [Indexed: 12/11/2022]
Abstract
We report the synthesis of plasmonic nanocapsules and the cellular responses they induce in 3D melanoma models for their perspective use as a photothermal therapeutic agent. The wall of the nanocapsules is composed of polyelectrolytes. The inner part is functionalized with discrete gold nanoislands. The cavity of the nanocapsules contains a fluorescent payload to show their ability for loading a cargo. The nanocapsules exhibit simultaneous two-photon luminescent, fluorescent properties and X-ray contrasting ability. The average fluorescence lifetime (τ) of the nanocapsules measured with FLIM (0.3 ns) is maintained regardless of the intracellular environment, thus proving their abilities for bioimaging of models such as 3D spheroids with a complex architecture. Their multimodal imaging properties are exploited for the first time to study tumorspheres cellular responses exposed to the nanocapsules. Specifically, we studied cellular uptake, toxicity, intracellular fate, generation of reactive oxygen species, and effect on the levels of hypoxia by using multi-photon and confocal laser scanning microscopy. Because of the high X-ray attenuation and atomic number of the gold nanostructure, we imaged the nanocapsule-cell interactions without processing the sample. We confirmed maintenance of the nanocapsules' geometry in the intracellular milieu with no impairment of the cellular ultrastructure. Furthermore, we observed the lack of cellular toxicity and no alteration in oxygen or reactive oxygen species levels. These results in 3D melanoma models contribute to the development of these nanocapsules for their exploitation in future applications as agents for imaging-guided photothermal therapy. STATEMENT OF SIGNIFICANCE: The novelty of the work is that our plasmonic nanocapsules are multimodal. They are responsive to X-ray and to multiphoton and single-photon excitation. This allowed us to study their interaction with 2D and 3D cellular structures and specifically to obtain information on tumor cell parameters such as hypoxia, reactive oxygen species, and toxicity. These nanocapsules will be further validated as imaging-guided photothermal probes.
Collapse
|
46
|
Rosendale M, Daniel J, Castet F, Pagano P, Verlhac JB, Blanchard-Desce M. Stealth Luminescent Organic Nanoparticles Made from Quadrupolar Dyes for Two-Photon Bioimaging: Effect of End-Groups and Core. Molecules 2022; 27:molecules27072230. [PMID: 35408628 PMCID: PMC9000497 DOI: 10.3390/molecules27072230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
Molecular-based Fluorescent Organic Nanoparticles (FONs) are versatile light-emitting nano-tools whose properties can be rationally addressed by bottom-up molecular engineering. A challenging property to gain control over is the interaction of the FONs’ surface with biological systems. Indeed, most types of nanoparticles tend to interact with biological membranes. To address this limitation, we recently reported on two-photon (2P) absorbing, red to near infrared (NIR) emitting quadrupolar extended dyes built from a benzothiadiazole core and diphenylamino endgroups that yield spontaneously stealth FONs. In this paper, we expand our understanding of the structure-property relationship between the dye structure and the FONs 2P absorption response, fluorescence and stealthiness by characterizing a dye-related series of FONs. We observe that increasing the strength of the donor end-groups or of the core acceptor in the quadrupolar (D-π-A-π-D) dye structure allows for the tuning of optical properties, notably red-shifting both the emission (from red to NIR) and 2P absorption spectra while inducing a decrease in their fluorescence quantum yield. Thanks to their strong 1P and 2P absorption, all FONs whose median size varies between 11 and 28 nm exhibit giant 1P (106 M−1.cm−1) and 2P (104 GM) brightness values. Interestingly, all FONs were found to be non-toxic, exhibit stealth behaviour, and show vanishing non-specific interactions with cell membranes. We postulate that the strong hydrophobic character and the rigidity of the FONs building blocks are crucial to controlling the stealth nano-bio interface.
Collapse
|
47
|
Xiao Y, Zhang J, Fang B, Zhao X, Hao N. Acoustics-Actuated Microrobots. MICROMACHINES 2022; 13:481. [PMID: 35334771 PMCID: PMC8949854 DOI: 10.3390/mi13030481] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/13/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023]
Abstract
Microrobots can operate in tiny areas that traditional bulk robots cannot reach. The combination of acoustic actuation with microrobots extensively expands the application areas of microrobots due to their desirable miniaturization, flexibility, and biocompatibility features. Herein, an overview of the research and development of acoustics-actuated microrobots is provided. We first introduce the currently established manufacturing methods (3D printing and photolithography). Then, according to their different working principles, we divide acoustics-actuated microrobots into three categories including bubble propulsion, sharp-edge propulsion, and in-situ microrotor. Next, we summarize their established applications from targeted drug delivery to microfluidics operation to microsurgery. Finally, we illustrate current challenges and future perspectives to guide research in this field. This work not only gives a comprehensive overview of the latest technology of acoustics-actuated microrobots, but also provides an in-depth understanding of acoustic actuation for inspiring the next generation of advanced robotic devices.
Collapse
Affiliation(s)
- Yaxuan Xiao
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an 710049, China; (Y.X.); (B.F.)
- Laboratory of Microscale Green Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an 710049, China;
| | - Jinhua Zhang
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an 710049, China; (Y.X.); (B.F.)
| | - Bin Fang
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an 710049, China; (Y.X.); (B.F.)
| | - Xiong Zhao
- Laboratory of Microscale Green Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an 710049, China;
| | - Nanjing Hao
- Laboratory of Microscale Green Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an 710049, China;
| |
Collapse
|
48
|
Bai S, Hu A, Hu Y, Ma Y, Obata K, Sugioka K. Plasmonic Superstructure Arrays Fabricated by Laser Near-Field Reduction for Wide-Range SERS Analysis of Fluorescent Materials. NANOMATERIALS 2022; 12:nano12060970. [PMID: 35335783 PMCID: PMC8950659 DOI: 10.3390/nano12060970] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/09/2022] [Accepted: 03/13/2022] [Indexed: 12/12/2022]
Abstract
Surface-enhanced Raman scattering (SERS) enables trace-detection for biosensing and environmental monitoring. Optimized enhancement of SERS can be achieved when the energy of the localized surface plasmon resonance (LSPR) is close to the energy of the Raman excitation wavelength. The LSPR can be tuned using a plasmonic superstructure array with controlled periods. In this paper, we develop a new technique based on laser near-field reduction to fabricate a superstructure array, which provides distinct features in the formation of periodic structures with hollow nanoclusters and flexible control of the LSPR in fewer steps than current techniques. Fabrication involves irradiation of a continuous wave laser or femtosecond laser onto a monolayer of self-assembled silica microspheres to grow silver nanoparticles along the silica microsphere surfaces by laser near-field reduction. The LSPR of superstructure array can be flexibly tuned to match the Raman excitation wavelengths from the visible to the infrared regions using different diameters of silica microspheres. The unique nanostructure formed can contribute to an increase in the sensitivity of SERS sensing. The fabricated superstructure array thus offers superior characteristics for the quantitative analysis of fluorescent perfluorooctanoic acid with a wide detection range from 11 ppb to 400 ppm.
Collapse
Affiliation(s)
- Shi Bai
- Advanced Laser Processing Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (S.B.); (K.O.)
| | - Anming Hu
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee Knoxville, 1512 Middle Drive, Knoxville, TN 37996, USA;
| | - Youjin Hu
- Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, 100 Pingle Yuan, Beijing 100124, China;
| | - Ying Ma
- School of Mechanical Engineering & Automation, Beihang University, 37 Xueyuan Road, Haidian District, Beijing 100191, China;
| | - Kotaro Obata
- Advanced Laser Processing Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (S.B.); (K.O.)
| | - Koji Sugioka
- Advanced Laser Processing Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (S.B.); (K.O.)
- Correspondence:
| |
Collapse
|
49
|
Bakker GJ, Weischer S, Ferrer Ortas J, Heidelin J, Andresen V, Beutler M, Beaurepaire E, Friedl P. Intravital deep-tumor single-beam 3-photon, 4-photon, and harmonic microscopy. eLife 2022; 11:e63776. [PMID: 35166669 PMCID: PMC8849342 DOI: 10.7554/elife.63776] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/06/2022] [Indexed: 01/28/2023] Open
Abstract
Three-photon excitation has recently been demonstrated as an effective method to perform intravital microscopy in deep, previously inaccessible regions of the mouse brain. The applicability of 3-photon excitation for deep imaging of other, more heterogeneous tissue types has been much less explored. In this work, we analyze the benefit of high-pulse-energy 1 MHz pulse-repetition-rate infrared excitation near 1300 and 1700 nm for in-depth imaging of tumorous and bone tissue. We show that this excitation regime provides a more than 2-fold increased imaging depth in tumor and bone tissue compared to the illumination conditions commonly used in 2-photon excitation, due to improved excitation confinement and reduced scattering. We also show that simultaneous 3- and 4-photon processes can be effectively induced with a single laser line, enabling the combined detection of blue to far-red fluorescence together with second and third harmonic generation without chromatic aberration, at excitation intensities compatible with live tissue imaging. Finally, we analyze photoperturbation thresholds in this excitation regime and derive setpoints for safe cell imaging. Together, these results indicate that infrared high-pulse-energy low-repetition-rate excitation opens novel perspectives for intravital deep-tissue microscopy of multiple parameters in strongly scattering tissues and organs.
Collapse
Affiliation(s)
- Gert-Jan Bakker
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical CentreNijmegenNetherlands
| | - Sarah Weischer
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical CentreNijmegenNetherlands
| | - Júlia Ferrer Ortas
- Laboratory for Optics & Biosciences École Polytechnique, CNRS, INSERMParisFrance
| | - Judith Heidelin
- LaVision BioTec GmbH, a Miltenyi Biotec companyBielefeldGermany
| | - Volker Andresen
- LaVision BioTec GmbH, a Miltenyi Biotec companyBielefeldGermany
| | | | - Emmanuel Beaurepaire
- Laboratory for Optics & Biosciences École Polytechnique, CNRS, INSERMParisFrance
| | - Peter Friedl
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical CentreNijmegenNetherlands
- Cancer Genomics CentreUtrechtNetherlands
- David H. Koch Center for Applied Genitourinary Cancers, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| |
Collapse
|
50
|
Grabarek D, Andruniów T. The role of hydrogen bonds and electrostatic interactions in enhancing two-photon absorption in green and yellow fluorescent proteins. Chemphyschem 2022; 23:e202200003. [PMID: 35130370 DOI: 10.1002/cphc.202200003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/03/2022] [Indexed: 11/07/2022]
Abstract
The spectral properties of fluorescent proteins (FPs) depend on the protein environment of the chromophore (CRO). A deeper understanding of the CRO - environment interactions in terms of FPs spectral characteristics will allow for a rational design of novel markers with desired properties. Here, we are taking a step towards achieving this important goal. With the time-dependent density functional theory (TDDFT), we calculate one- and two-photon absorption (OPA and TPA) spectra for 5 green FPs (GFPs) and 3 yellow FPs (YFPs) differing in amino acid sequence. The goal is to reveal a role of: (i) electrostatic interactions, (ii) hydrogen-bonds (h-bonds), and (iii) h-bonds together with distant electrostatic field in absorption spectra tuning. Our results point to design hypothesis towards FPs optimised for TPA-based applications. Both h-bonds and electrostatic interactions co-operate in enhancing TPA cross-section (σ TPA ) for the S 0 ->S 1 transition in GFPs. Furthermore, it seems that details of h-bonds network in the CRO's vicinity influences σ TPA response to CRO - environment electrostatic interactions in YFPs. We postulate that engineering FPs with more hydrophilic CRO's environment can lead to greater σ TPA . We also find that removing h-bonds formed with the CRO's phenolate leads to TPA enhancement for transition to higher excited states than S 1 . Particularly Y145 and T203 residues are important in this regard.
Collapse
Affiliation(s)
- Dawid Grabarek
- Department of Chemistry, Advanced Materials Engineering and Modelling Group, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Tadeusz Andruniów
- Department of Chemistry, Advanced Materials Engineering and Modelling Group, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| |
Collapse
|