1
|
Hossain A, Gnanagobal H, Cao T, Chakraborty S, Chukwu-Osazuwa J, Soto-Dávila M, Vasquez I, Santander J. Role of cold shock proteins B and D in Aeromonas salmonicida subsp. salmonicida physiology and virulence in lumpfish ( Cyclopterus lumpus). Infect Immun 2024; 92:e0001124. [PMID: 38920386 PMCID: PMC11320987 DOI: 10.1128/iai.00011-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Cold shock proteins (Csp) are pivotal nucleic acid binding proteins known for their crucial roles in the physiology and virulence of various bacterial pathogens affecting plant, insect, and mammalian hosts. However, their significance in bacterial pathogens of teleost fish remains unexplored. Aeromonas salmonicida subsp. salmonicida (hereafter A. salmonicida) is a psychrotrophic pathogen and the causative agent of furunculosis in marine and freshwater fish. Four csp genes (cspB, cspD, cspA, and cspC) have been identified in the genome of A. salmonicida J223 (wild type). Here, we evaluated the role of DNA binding proteins, CspB and CspD, in A. salmonicida physiology and virulence in lumpfish (Cyclopterus lumpus). A. salmonicida ΔcspB, ΔcspD, and the double ΔcspBΔcspD mutants were constructed and characterized. A. salmonicida ΔcspB and ΔcspBΔcspD mutants showed a faster growth at 28°C, and reduced virulence in lumpfish. A. salmonicida ΔcspD showed a slower growth at 28°C, biofilm formation, lower survival in low temperatures and freezing conditions (-20°C, 0°C, and 4°C), deficient in lipopolysaccharide synthesis, and low virulence in lumpfish. Additionally, ΔcspBΔcspD mutants showed less survival in the presence of bile compared to the wild type. Transcriptome analysis revealed that 200, 37, and 921 genes were differentially expressed in ΔcspB, ΔcspD, and ΔcspBΔcspD, respectively. In ΔcspB and ΔcspBΔcspD virulence genes in the chromosome and virulence plasmid were downregulated. Our analysis indicates that CspB and CspD mostly act as a transcriptional activator, influencing cell division (e.g., treB), virulence factors (e.g., aexT), and ultimately virulence.
Collapse
Affiliation(s)
- Ahmed Hossain
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| | - Hajarooba Gnanagobal
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| | - Trung Cao
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| | - Setu Chakraborty
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| | - Joy Chukwu-Osazuwa
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| | - Manuel Soto-Dávila
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| | - Ignacio Vasquez
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| |
Collapse
|
2
|
Bacteria Broadly-Resistant to Last Resort Antibiotics Detected in Commercial Chicken Farms. Microorganisms 2021; 9:microorganisms9010141. [PMID: 33435450 PMCID: PMC7826917 DOI: 10.3390/microorganisms9010141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/27/2022] Open
Abstract
Resistance to last resort antibiotics in bacteria is an emerging threat to human and animal health. It is important to identify the source of these antimicrobial resistant (AMR) bacteria that are resistant to clinically important antibiotics and evaluate their potential transfer among bacteria. The objectives of this study were to (i) detect bacteria resistant to colistin, carbapenems, and β-lactams in commercial poultry farms, (ii) characterize phylogenetic and virulence markers of E. coli isolates to potentiate virulence risk, and (iii) assess potential transfer of AMR from these isolates via conjugation. Ceca contents from laying hens from conventional cage (CC) and cage-free (CF) farms at three maturity stages were randomly sampled and screened for extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae, carbapenem-resistant Acinetobacter (CRA), and colistin resistant Escherichia coli (CRE) using CHROMagar™ selective media. We found a wide-spread abundance of CRE in both CC and CF hens across all three maturity stages. Extraintestinal pathogenic Escherichia coli phylogenetic groups B2 and D, as well as plasmidic virulence markers iss and iutA, were widely associated with AMR E. coli isolates. ESBL-producing Enterobacteriaceae were uniquely detected in the early lay period of both CC and CF, while multidrug resistant (MDR) Acinetobacter were found in peak and late lay periods of both CC and CF. CRA was detected in CF hens only. blaCMY
was detected in ESBL-producing E. coli in CC and CF and MDR Acinetobacter spp. in CC. Finally, the blaCMY
was shown to be transferrable via an IncK/B plasmid in CC. The presence of MDR to the last-resort antibiotics that are transferable between bacteria in food-producing animals is alarming and warrants studies to develop strategies for their mitigation in the environment.
Collapse
|
3
|
Badet T, Croll D. The rise and fall of genes: origins and functions of plant pathogen pangenomes. CURRENT OPINION IN PLANT BIOLOGY 2020; 56:65-73. [PMID: 32480355 DOI: 10.1016/j.pbi.2020.04.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/14/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
Plant pathogens can rapidly overcome resistance of their hosts by mutating key pathogenicity genes encoding for effectors. Pathogen adaptation is fuelled by extensive genetic variability in populations and different strains may not share the same set of genes. Recently, such an intra-specific variation in gene content became formalized as pangenomes distinguishing core genes (i.e. shared) and accessory genes (i.e. lineage or strain-specific). Across pathogens species, key effectors tend to be part of the rapidly evolving accessory genome. Here, we show how the construction and analysis of pathogen pangenomes provide deep insights into the dynamic host adaptation process. We also discuss how pangenomes should ideally be built and how geography, niche and lifestyle likely determine pangenome sizes.
Collapse
Affiliation(s)
- Thomas Badet
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Switzerland.
| |
Collapse
|
4
|
Van Goor A, Stromberg ZR, Mellata M. A recombinant multi-antigen vaccine with broad protection potential against avian pathogenic Escherichia coli. PLoS One 2017; 12:e0183929. [PMID: 28837660 PMCID: PMC5570496 DOI: 10.1371/journal.pone.0183929] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/14/2017] [Indexed: 11/18/2022] Open
Abstract
Chickens are a major source of protein worldwide, yet infectious diseases continue to threaten the poultry industry. Avian pathogenic Escherichia coli (APEC), a subgroup of extraintestinal pathogenic E. coli (ExPEC), causes colibacillosis in chickens resulting in economic loss because of treatment, condemnation of products, and death. In this study, we evaluated a recombinant antigens (rAg) vaccine combining common ExPEC surface proteins EtsC, OmpA, OmpT, and TraT for broad protective potential against APEC infections in chickens. The specific objectives were to evaluate antibody (serum) and cytokines (lymphoid organs) responses to vaccination; in vitro bactericidal ability of serum and splenocytes against multiple APEC serotypes; and in vivo protection against APEC challenge in chickens. Groups of four-day old chickens (N = 10) were vaccinated twice (two-week interval) subcutaneously with rAgs alone or in combination and CpG adjuvant or PBS (control). IgY antibody in the serum and mRNA expression of IL-1β, IL-6, IL-18, IFN-γ, IL-4, IFN-β, and IL-8 in bursa, spleen, and thymus were measured using ELISA and RT-qPCR, respectively. Serum and splenocytes were tested for their bactericidal ability in vitro against multiple APEC isolates. Vaccinated and non-vaccinated chickens were challenged with 108 CFU of APEC-O2 via air sac at 31 days post first vaccination. Vaccine protection was determined by the decrease of bacterial loads in blood and organs (lung, heart, spleen, and liver), as well as gross colibacillosis lesion scores in air sac, heart, and liver. Vaccination significantly (P < 0.05) elicited IgY against specific antigens, induced immune related mRNA expression in the spleen and bursa, reduced in vitro growth of multiple APEC serotypes, and decreased bacterial loads in the heart and spleen, and gross lesion scores of the air sac, heart and liver in chickens. The vaccine reported may be used to provide broad protection against APEC strains, increasing animal welfare and food production.
Collapse
Affiliation(s)
- Angelica Van Goor
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, United States of America
| | - Zachary R. Stromberg
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, United States of America
| | - Melha Mellata
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
5
|
Gao Q, Ye Z, Wang X, Mu X, Gao S, Liu X. RstA is required for the virulence of an avian pathogenic Escherichia coli O2 strain E058. INFECTION GENETICS AND EVOLUTION 2014; 29:180-8. [PMID: 25461694 DOI: 10.1016/j.meegid.2014.11.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/21/2014] [Accepted: 11/22/2014] [Indexed: 11/25/2022]
Abstract
Certain strains of avian pathogenic Escherichia coli (APEC) cause severe extraintestinal infections in poultry, including acute fatal septicemia, subacute pericarditis, and airsacculitis. These bacteria contain an RstA/RstB regulatory system, a two-component system that may help APEC strains adapt to the extra-intestinal environment and survive under stressful conditions. Whether RstA correlates with APEC pathogenesis or acts as an APEC virulence factor has not been established. Here we provide the first evidence for an important role of rstA in APEC virulence. We generated an rstA-deficient mutant from the highly virulent APEC strain E058. Virulence of the mutant strain was evaluated in vivo and in vitro through bird infection assays, a cytotoxicity assay on chicken macrophage cell line HD-11, and a bactericidal assay to serum complement. Based on lethality assays in 1-day-old birds, rstA deletion from APEC E058 reduced the bacterial virulence in birds. The deletion also deeply impaired the capacity of APEC E058 to colonize deeper tissues of 5-week-old specific pathogen free chickens. No obvious gross or histopathological lesions were observed in the visceral organs of chickens challenged with the rstA-deficient strain. Also, rstA inactivation reduced the survival of APEC E058 within chicken macrophages. However, no significant differences were observed between the mutant and the wild-type strain in resistance to serum. Our data collectively show that the rstA gene functions in the pathogenesis of diseases caused by avian pathogenic E. coli.
Collapse
Affiliation(s)
- Qingqing Gao
- Animal Infectious Disease Laboratory, Ministry of Agriculture, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Zhengqin Ye
- Animal Infectious Disease Laboratory, Ministry of Agriculture, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Xiaobo Wang
- Animal Infectious Disease Laboratory, Ministry of Agriculture, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Xiaohui Mu
- Animal Infectious Disease Laboratory, Ministry of Agriculture, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Song Gao
- Animal Infectious Disease Laboratory, Ministry of Agriculture, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, Ministry of Agriculture, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| |
Collapse
|
6
|
Sadeyen JR, Kaiser P, Stevens MP, Dziva F. Analysis of immune responses induced by avian pathogenic Escherichia coli infection in turkeys and their association with resistance to homologous re-challenge. Vet Res 2014; 45:19. [PMID: 24524463 PMCID: PMC3937024 DOI: 10.1186/1297-9716-45-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 02/05/2014] [Indexed: 02/04/2023] Open
Abstract
Avian pathogenic Escherichia coli (APEC) cause severe respiratory and systemic disease in poultry yet the nature and consequences of host immune responses to infection are poorly understood. Here, we describe a turkey sub-acute respiratory challenge model and cytokine, cell-mediated and humoral responses associated with protection against homologous re-challenge. Intra-airsac inoculation of turkeys with 105 colony-forming units of APEC O78:H9 strain χ7122nalR induced transient and mild clinical signs of colibacillosis followed by clearance of the bacteria from the lungs and visceral organs. Upon re-challenge with 107 χ7122nalR, primed birds were solidly protected against clinical signs and exhibited negligible bacterial loads in visceral organs, whereas age-matched control birds exhibited high lesion scores and bacterial loads in the organs. Levels of mRNA for signature cytokines suggested induction of a Th1 response in the lung, whereas a distinct anti-inflammatory cytokine profile was detected in the liver. Proliferative responses of splenocytes to either Concanavalin A or soluble χ7122nalR antigens were negligible prior to clearance of bacteria, but APEC-specific responses were significantly elevated at later time intervals and at re-challenge relative to control birds. Primary infection also induced significantly elevated χ7122nalR-specific serum IgY and bile IgA responses which were bactericidal against χ7122nalR and an isogenic Δrfb mutant. Bactericidal activity was observed in the presence of immune, but not heat-inactivated immune serum, indicating that the antibodies can fix complement and are not directed solely at the lipopolysaccharide O-antigen. Such data inform the rational design of strategies to control a recalcitrant endemic disease of poultry.
Collapse
Affiliation(s)
| | | | | | - Francis Dziva
- The Pirbright Institute, Compton, Newbury, Berkshire RG20 7NN, UK.
| |
Collapse
|
7
|
Stacy AK, Mitchell NM, Maddux JT, De la Cruz MA, Durán L, Girón JA, 3rd RC, Mellata M. Evaluation of the prevalence and production of Escherichia coli common pilus among avian pathogenic E. coli and its role in virulence. PLoS One 2014; 9:e86565. [PMID: 24466152 PMCID: PMC3900561 DOI: 10.1371/journal.pone.0086565] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 12/11/2013] [Indexed: 01/15/2023] Open
Abstract
Avian pathogenic Escherichia coli (APEC) strains cause systemic and localized infections in poultry, jointly termed colibacillosis. Avian colibacillosis is responsible for significant economic losses to the poultry industry due to disease treatment, decrease in growth rate and egg production, and mortality. APEC are also considered a potential zoonotic risk for humans. Fully elucidating the virulence and zoonotic potential of APEC is key for designing successful strategies against their infections and their transmission. Herein, we investigated the prevalence of a newly discovered E. coli common pilus (ECP) for the subunit protein of the ECP pilus (ecpA) and ECP expression amongst APEC strains as well as the role of ECP in virulence. A PCR-based ecpA survey of a collection of 167 APEC strains has shown that 76% (127/167) were ecpA+. An immunofluorescence assay using anti-EcpA antibodies, revealed that among the ecpA+ strains, 37.8% (48/127) expressed ECP when grown in DMEM +0.5% Mannose in contact with HeLa cells at 37°C and/or in biofilm at 28°C; 35.4% (17/48) expressed ECP in both conditions and 64.6% (31/48) expressed ECP in biofilm only. We determined that the ecp operon in the APEC strain χ7122 (ecpA+, ECP-) was not truncated; the failure to detect ECP in some strains possessing non-truncated ecp genes might be attributed to differential regulatory mechanisms between strains that respond to specific environmental signals. To evaluate the role of ECP in the virulence of APEC, we generated ecpA and/or ecpD-deficient mutants from the strain χ7503 (ecpA+, ECP+). Deletion of ecpA and/or ecpD abolished ECP synthesis and expression, and reduced biofilm formation and motility in vitro and virulence in vivo. All together our data show that ecpA is highly prevalent among APEC isolates and its expression could be differentially regulated in these strains, and that ECP plays a role in the virulence of APEC.
Collapse
Affiliation(s)
- Alyssa K. Stacy
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Natalie M. Mitchell
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Jacob T. Maddux
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | | | - Laura Durán
- University of Florida, Gainesville, Florida, United States of America
| | - Jorge A. Girón
- University of Florida, Gainesville, Florida, United States of America
| | - Roy Curtiss 3rd
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Melha Mellata
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
8
|
A longitudinal study simultaneously exploring the carriage of APEC virulence associated genes and the molecular epidemiology of faecal and systemic E. coli in commercial broiler chickens. PLoS One 2013; 8:e67749. [PMID: 23825682 PMCID: PMC3692481 DOI: 10.1371/journal.pone.0067749] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 05/22/2013] [Indexed: 02/06/2023] Open
Abstract
Colibacillosis is an economically important syndromic disease of poultry caused by extra-intestinal avian pathogenic Escherichia coli (APEC) but the pathotype remains poorly defined. Combinations of virulence-associated genes (VAGs) have aided APEC identification. The intestinal microbiota is a potential APEC reservoir. Broiler chickens are selectively bred for fast, uniform growth. Here we simultaneously investigate intestinal E. coli VAG carriage in apparently healthy birds and characterise systemic E. coli from diseased broiler chickens from the same flocks. Four flocks were sampled longitudinally from chick placement until slaughter. Phylogrouping, macro-restriction pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST) were performed on an isolate subset from one flock to investigate the population structure of faecal and systemic E. coli. Early in production, VAG carriage among chick intestinal E. coli populations was diverse (average Simpson's D value = 0.73); 24.05% of intestinal E. coli (n = 160) from 1 day old chicks were carrying ≥5 VAGs. Generalised Linear models demonstrated VAG prevalence in potential APEC populations declined with age; 1% of E. coli carrying ≥5 VAGs at slaughter and demonstrated high strain diversity. A variety of VAG profiles and high strain diversity were observed among systemic E. coli. Thirty three new MLST sequence types were identified among 50 isolates and a new sequence type representing 22.2% (ST-2999) of the systemic population was found, differing from the pre-defined pathogenic ST-117 at a single locus. For the first time, this study takes a longitudinal approach to unravelling the APEC paradigm. Our findings, supported by other studies, highlight the difficulty in defining the APEC pathotype. Here we report a high genetic diversity among systemic E. coli between and within diseased broilers, harbouring diverse VAG profiles rather than single and/or highly related pathogenic clones suggesting host susceptibility in broilers plays an important role in APEC pathogenesis.
Collapse
|
9
|
Dziva F, Hauser H, Connor TR, van Diemen PM, Prescott G, Langridge GC, Eckert S, Chaudhuri RR, Ewers C, Mellata M, Mukhopadhyay S, Curtiss R, Dougan G, Wieler LH, Thomson NR, Pickard DJ, Stevens MP. Sequencing and functional annotation of avian pathogenic Escherichia coli serogroup O78 strains reveal the evolution of E. coli lineages pathogenic for poultry via distinct mechanisms. Infect Immun 2013; 81:838-49. [PMID: 23275093 PMCID: PMC3584874 DOI: 10.1128/iai.00585-12] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 12/19/2012] [Indexed: 11/20/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) causes respiratory and systemic disease in poultry. Sequencing of a multilocus sequence type 95 (ST95) serogroup O1 strain previously indicated that APEC resembles E. coli causing extraintestinal human diseases. We sequenced the genomes of two strains of another dominant APEC lineage (ST23 serogroup O78 strains χ7122 and IMT2125) and compared them to each other and to the reannotated APEC O1 sequence. For comparison, we also sequenced a human enterotoxigenic E. coli (ETEC) strain of the same ST23 serogroup O78 lineage. Phylogenetic analysis indicated that the APEC O78 strains were more closely related to human ST23 ETEC than to APEC O1, indicating that separation of pathotypes on the basis of their extraintestinal or diarrheagenic nature is not supported by their phylogeny. The accessory genome of APEC ST23 strains exhibited limited conservation of APEC O1 genomic islands and a distinct repertoire of virulence-associated loci. In light of this diversity, we surveyed the phenotype of 2,185 signature-tagged transposon mutants of χ7122 following intra-air sac inoculation of turkeys. This procedure identified novel APEC ST23 genes that play strain- and tissue-specific roles during infection. For example, genes mediating group 4 capsule synthesis were required for the virulence of χ7122 and were conserved in IMT2125 but absent from APEC O1. Our data reveal the genetic diversity of E. coli strains adapted to cause the same avian disease and indicate that the core genome of the ST23 lineage serves as a chassis for the evolution of E. coli strains adapted to cause avian or human disease via acquisition of distinct virulence genes.
Collapse
Affiliation(s)
- Francis Dziva
- Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire, United Kingdom
| | - Heidi Hauser
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Thomas R. Connor
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Pauline M. van Diemen
- Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire, United Kingdom
| | - Graham Prescott
- Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire, United Kingdom
| | - Gemma C. Langridge
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Sabine Eckert
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Roy R. Chaudhuri
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Christa Ewers
- Veterinary Faculty, Free University Berlin, Berlin, Germany
| | - Melha Mellata
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Suman Mukhopadhyay
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Roy Curtiss
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Gordon Dougan
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | | | - Nicholas R. Thomson
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Derek J. Pickard
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Mark P. Stevens
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| |
Collapse
|
10
|
Mellata M, Maddux JT, Nam T, Thomson N, Hauser H, Stevens MP, Mukhopadhyay S, Sarker S, Crabbé A, Nickerson CA, Santander J, Curtiss R. New insights into the bacterial fitness-associated mechanisms revealed by the characterization of large plasmids of an avian pathogenic E. coli. PLoS One 2012; 7:e29481. [PMID: 22238616 PMCID: PMC3251573 DOI: 10.1371/journal.pone.0029481] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 11/29/2011] [Indexed: 11/18/2022] Open
Abstract
Extra-intestinal pathogenic E. coli (ExPEC), including avian pathogenic E. coli (APEC), pose a considerable threat to both human and animal health, with illness causing substantial economic loss. APEC strain χ7122 (O78∶K80∶H9), containing three large plasmids [pChi7122-1 (IncFIB/FIIA-FIC), pChi7122-2 (IncFII), and pChi7122-3 (IncI(2))]; and a small plasmid pChi7122-4 (ColE2-like), has been used for many years as a model strain to study the molecular mechanisms of ExPEC pathogenicity and zoonotic potential. We previously sequenced and characterized the plasmid pChi7122-1 and determined its importance in systemic APEC infection; however the roles of the other pChi7122 plasmids were still ambiguous. Herein we present the sequence of the remaining pChi7122 plasmids, confirming that pChi7122-2 and pChi7122-3 encode an ABC iron transport system (eitABCD) and a putative type IV fimbriae respectively, whereas pChi7122-4 is a cryptic plasmid. New features were also identified, including a gene cluster on pChi7122-2 that is not present in other E. coli strains but is found in Salmonella serovars and is predicted to encode the sugars catabolic pathways. In vitro evaluation of the APEC χ7122 derivative strains with the three large plasmids, either individually or in combinations, provided new insights into the role of plasmids in biofilm formation, bile and acid tolerance, and the interaction of E. coli strains with 3-D cultures of intestinal epithelial cells. In this study, we show that the nature and combinations of plasmids, as well as the background of the host strains, have an effect on these phenomena. Our data reveal new insights into the role of extra-chromosomal sequences in fitness and diversity of ExPEC in their phenotypes.
Collapse
Affiliation(s)
- Melha Mellata
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Immune responses to recombinant pneumococcal PsaA antigen delivered by a live attenuated Salmonella vaccine. Infect Immun 2010; 78:3258-71. [PMID: 20479086 DOI: 10.1128/iai.00176-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae is a leading cause of morbidity and mortality among children worldwide and particularly in developing countries. In this study, we evaluated PsaA, a conserved antigen important for S. pneumoniae adhesion to and invasion into nasopharynx epithelia, for its ability to induce protective immunity against S. pneumoniae challenge when delivered by recombinant attenuated Salmonella vaccine (RASVs) strains. RASVs were engineered to synthesize PsaA peptides of various lengths. Vaccination with an RASV synthesizing full-length PsaA induced high titers of anti-PsaA antibodies in both systemic (IgG in serum) and mucosal (IgA in vaginal washes, nasal washes, and lung homogenates) sites. BALB/c (haplotype H2(d)) or C57BL/6 (haplotype H2(b)) mice vaccinated either orally or intranasally exhibited a significant reduction in colonization of nasopharyngeal tissues after intranasal challenge with S. pneumoniae strains compared to controls, although protection was not observed with all challenge strains. None of the vaccine constructs provided protection against intraperitoneal challenge with S. pneumoniae strain WU2 (serotype 3). Immunization with RASVs synthesizing truncated PsaA generated lower titers of IgA and IgG and did not provide significant protection. Our results showed that RASVs synthesizing full-length PsaA can provide protection against nasal colonization by some S. pneumoniae strains. PsaA may be a useful addition to a multivalent vaccine, providing protection against pneumonia, otitis media, and other diseases caused by S. pneumoniae.
Collapse
|
12
|
Characterization of the contribution to virulence of three large plasmids of avian pathogenic Escherichia coli chi7122 (O78:K80:H9). Infect Immun 2010; 78:1528-41. [PMID: 20086082 DOI: 10.1128/iai.00981-09] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Despite the fact that the presence of multiple large plasmids is a defining feature of extraintestinal pathogenic Escherichia coli (ExPEC), such as avian pathogenic E. coli (APEC), and despite the fact that these bacteria pose a considerable threat to both human and animal health, characterization of these plasmids is still limited. In this study, after successfully curing APEC of its plasmids, we were able to investigate, for the first time, the contribution to virulence of three plasmids, pAPEC-1 (103 kb), pAPEC-2 (90 kb), and pAPEC-3 (60 kb), from APEC strain chi7122 individually as well as in all combinations in the wild-type background. Characterization of the different strains revealed unique features of APEC virulence. In vivo assays showed that curing the three plasmids resulted in severe attenuation of virulence. The presence of different plasmids and combinations of plasmids resulted in strains with different pathotypes and levels of virulence, reflecting the diversity of APEC strains associated with colibacillosis in chickens. Unexpectedly, our results associated the decrease in growth of some strains in some media with the virulence of APEC, and the mechanism was associated with some combinations of plasmids that included pAPEC-1. This study provided new insights into the roles of large plasmids in the virulence, growth, and evolution of APEC by showing for the first time that both the nature of plasmids and combinations of plasmids have an effect on these phenomena. It also provided a plausible explanation for some of the conflicting results related to the virulence of ExPEC strains. This study should help us understand the virulence of other ExPEC strains and design more efficient infection control strategies.
Collapse
|
13
|
Full sequence and comparative analysis of the plasmid pAPEC-1 of avian pathogenic E. coli chi7122 (O78:K80:H9). PLoS One 2009; 4:e4232. [PMID: 19156210 PMCID: PMC2626276 DOI: 10.1371/journal.pone.0004232] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 12/06/2008] [Indexed: 12/04/2022] Open
Abstract
Background Extra-intestinal pathogenic E. coli (ExPEC), including Avian Pathogenic E. coli (APEC), are very diverse. They cause a complex of diseases in Human, animals, and birds. Even though large plasmids are often associated with the virulence of ExPEC, their characterization is still in its infancy. Methodology/Principal Findings We fully sequenced and analyzed the large plasmid pAPEC-1 (103,275-bp) associated with the APEC strain χ7122, from worldwide serogroup O78∶K80∶H9. A putative virulence region spanning an 80-kb region of pAPEC-1 possesses four iron acquisition systems (iutA iucABCD, sitABCD, iroBCDN, and temperature-sensitive hemagglutinin tsh), a colicin V operon, increasing serum sensitivity iss, ompT, hlyF, and etsABC. Thirty three ORFs in pAPEC-1 are identified as insertion sequences (ISs) that belong to nine families with diverse origins. The full length of the transfer region in pAPEC-1 (11 kb) is shorter compared to the tra region of other sequenced F plasmids; the absence of some tra genes in pAPEC-1 affects its self-transferability, and the conjugative function of the plasmid was effective only in the presence of other plasmids. Two-replicon systems, repFIIA-repFIC and repFIB, and two post-segregational systems, srnB and hok/sok, are also present in the sequence of pAPEC-1. The comparison of the pAPEC-1 sequence with the two available plasmid sequences reveals more gene loss and reorganization than previously appreciated. The presence of pAPEC-1-associated genes is assessed in human ExPEC by PCR. Many patterns of association between genes are found. Conclusions/Significance The pathotype typical of pAPEC-1 was present in some human strains, which indicates a horizontal transfer between strains and the zoonotic risk of APEC strains. ColV plasmids could have common virulence genes that could be acquired by transposition, without sharing genes of plasmid function.
Collapse
|
14
|
Antão EM, Glodde S, Li G, Sharifi R, Homeier T, Laturnus C, Diehl I, Bethe A, Philipp HC, Preisinger R, Wieler LH, Ewers C. The chicken as a natural model for extraintestinal infections caused by avian pathogenic Escherichia coli (APEC). Microb Pathog 2008; 45:361-9. [PMID: 18848980 DOI: 10.1016/j.micpath.2008.08.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 08/08/2008] [Accepted: 08/20/2008] [Indexed: 11/24/2022]
Abstract
E. coli infections in avian species have become an economic threat to the poultry industry worldwide. Several factors have been associated with the virulence of E. coli in avian hosts, but no specific virulence gene has been identified as being entirely responsible for the pathogenicity of avian pathogenic E. coli (APEC). Needless to say, the chicken would serve as the best model organism for unravelling the pathogenic mechanisms of APEC, an extraintestinal pathogen. Five-week-old white leghorn SPF chickens were infected intra-tracheally with a well characterized APEC field strain IMT5155 (O2:K1:H5) using different doses corresponding to the respective models of infection established, that is, the lung colonization model allowing re-isolation of bacteria only from the lung but not from other internal organs, and the systemic infection model. These two models represent the crucial steps in the pathogenesis of APEC infections, including the colonization of the lung epithelium and the spread of bacteria throughout the bloodstream. The read-out system includes a clinical score, pathomorphological changes and bacterial load determination. The lung colonization model has been established and described for the first time in this study, in addition to a comprehensive account of a systemic infection model which enables the study of severe extraintestinal pathogenic E. coli (ExPEC) infections. These in vivo models enable the application of various molecular approaches to study host-pathogen interactions more closely. The most important application of such genetic manipulation techniques is the identification of genes required for extraintestinal virulence, as well as host genes involved in immunity in vivo. The knowledge obtained from these studies serves the dual purpose of shedding light on the nature of virulence itself, as well as providing a route for rational attenuation of the pathogen for vaccine construction, a measure by which extraintestinal infections, including those caused by APEC, could eventually be controlled and prevented in the field.
Collapse
Affiliation(s)
- Esther-Maria Antão
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Philippstrasse 13, 10115 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Dziva F, Stevens MP. Colibacillosis in poultry: unravelling the molecular basis of virulence of avian pathogenicEscherichia coliin their natural hosts. Avian Pathol 2008; 37:355-66. [DOI: 10.1080/03079450802216652] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Specific roles of the iroBCDEN genes in virulence of an avian pathogenic Escherichia coli O78 strain and in production of salmochelins. Infect Immun 2008; 76:3539-49. [PMID: 18541653 DOI: 10.1128/iai.00455-08] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) strains are a subset of extraintestinal pathogenic E. coli (ExPEC) strains associated with respiratory infections and septicemia in poultry. The iroBCDEN genes encode the salmochelin siderophore system present in Salmonella enterica and some ExPEC strains. Roles of the iro genes for virulence in chickens and production of salmochelins were assessed by introducing plasmids carrying different combinations of iro genes into an attenuated salmochelin- and aerobactin-negative mutant of O78 strain chi7122. Complementation with the iroBCDEN genes resulted in a regaining of virulence, whereas the absence of iroC, iroDE, or iroN abrogated restoration of virulence. The iroE gene was not required for virulence, since introduction of iroBCDN restored the capacity to cause lesions and colonize extraintestinal tissues. Prevalence studies indicated that iro sequences were associated with virulent APEC strains. Liquid chromatography-mass spectrometry analysis of supernatants of APEC chi7122 and the complemented mutants indicated that (i) for chi7122, salmochelins comprised 14 to 27% of the siderophores present in iron-limited medium or infected tissues; (ii) complementation of the mutant with the iro locus increased levels of glucosylated dimers (S1 and S5) and monomer (SX) compared to APEC strain chi7122; (iii) the iroDE genes were important for generation of S1, S5, and SX; (iv) iroC was required for export of salmochelin trimers and dimers; and (v) iroB was required for generation of salmochelins. Overall, efficient glucosylation (IroB), transport (IroC and IroN), and processing (IroD and IroE) of salmochelins are required for APEC virulence, although IroE appears to serve an ancillary role.
Collapse
|
17
|
Mena J, Chen C. Identification of strain-specific DNA of Actinobacillus actinomycetemcomitans by representational difference analysis. ACTA ACUST UNITED AC 2007; 22:429-32. [PMID: 17949347 DOI: 10.1111/j.1399-302x.2007.00371.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A genomic subtraction method, the representational difference analysis (RDA), was tested for its use in identifying strain-specific DNA in Actinobacillus actinomycetemcomitans. Subtraction of strain D7S with strain HK1651 yielded D7S-specific 2.3-kilobase (kb) islet-A and 5.3-kb islet-B. Islet-A contains a 1.5-kb region that is homologous to a region found in the A. actinomycetemcomitans plasmid pVT745. Islet-B contains a 2.1-kb homolog of vgr, a component of a DNA repeat element rhs. The distribution of these islets among A. actinomycetemcomitans strains was further examined by polymerase chain reaction. Islet-A was found in nine serotype a and two serotype b strains but was missing from 34 strains. Islet-B was found in one serotype a strain, four serotype d strains and two serotype e strains, but was missing from 34 strains.
Collapse
Affiliation(s)
- J Mena
- Division of Primary Oral Health Care, School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA
| | | |
Collapse
|
18
|
Herren CD, Mitra A, Palaniyandi SK, Coleman A, Elankumaran S, Mukhopadhyay S. The BarA-UvrY two-component system regulates virulence in avian pathogenic Escherichia coli O78:K80:H9. Infect Immun 2006; 74:4900-9. [PMID: 16861679 PMCID: PMC1539585 DOI: 10.1128/iai.00412-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The BarA-UvrY two-component system (TCS) in Escherichia coli is known to regulate a number of phenotypic traits. Both in vitro and in vivo assays, including the chicken embryo lethality assay, showed that this TCS regulates virulence in avian pathogenic E. coli (APEC) serotype O78:K80:H9. A number of virulence determinants, such as the abilities to adhere, invade, persist within tissues, survive within macrophages, and resist bactericidal effects of serum complement, were compromised in mutants lacking either the barA or uvrY gene. The reduced virulence was attributed to down regulation of type 1 and Pap fimbriae, reduced exopolysaccharide production, and increased susceptibility to oxidative stress. Our results indicate that BarA-UvrY regulates virulence properties in APEC and that the chicken embryo lethality assay can be used as a surrogate model to determine virulence determinants and their regulation in APEC strains.
Collapse
Affiliation(s)
- Christopher D Herren
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland at College Park, 8075 Greenmead Drive, College Park, Maryland 20742-3711, USA
| | | | | | | | | | | |
Collapse
|
19
|
Sabri M, Léveillé S, Dozois CM. A SitABCD homologue from an avian pathogenic Escherichia coli strain mediates transport of iron and manganese and resistance to hydrogen peroxide. MICROBIOLOGY-SGM 2006; 152:745-758. [PMID: 16514154 DOI: 10.1099/mic.0.28682-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An operon encoding a member of the family of ATP-binding cassette (ABC) divalent metal ion transporters, homologous to Salmonella enterica SitABCD, has been identified in the avian pathogenic Escherichia coli (APEC) strain chi7122. The sitABCD genes were located on the virulence plasmid pAPEC-1, and were highly similar at the nucleotide level to the chromosomally encoded sitABCD genes present in Shigella spp. A cloned copy of sitABCD conferred increased growth upon a siderophore-deficient E. coli strain grown in nutrient broth supplemented with the chelator 2,2'-dipyridyl. Ion rescue demonstrated that Sit-mediated growth promotion of this strain was due to the transport of iron. SitABCD mediated increased transport of both iron and manganese as demonstrated by uptake of 55Fe, 59Fe or 54Mn in E. coli K-12 strains deficient for the transport of iron (aroB feoB) and manganese (mntH) respectively. Isotope uptake and transport inhibition studies showed that in the iron transport deficient strain, SitABCD demonstrated a greater affinity for iron than for manganese, and SitABCD-mediated transport was higher for ferrous iron, whereas in the manganese transport deficient strain, SitABCD demonstrated greater affinity for manganese than for iron. Introduction of the APEC sitABCD genes into an E. coli K-12 mntH mutant also conferred increased resistance to the bactericidal effects of hydrogen peroxide. APEC strain chi7122 derivatives lacking either a functional SitABCD or a functional MntH transport system were as resistant to hydrogen peroxide as the wild-type strain, whereas a Deltasit DeltamntH double mutant was more sensitive to hydrogen peroxide. Overall, the results demonstrate that in E. coli SitABCD represents a manganese and iron transporter that, in combination with other ion transport systems, may contribute to acquisition of iron and manganese, and resistance to oxidative stress.
Collapse
Affiliation(s)
- Mourad Sabri
- Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, 531 boul. des Prairies, Laval, Québec, Canada H7V 1B7
| | - Simon Léveillé
- Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, 531 boul. des Prairies, Laval, Québec, Canada H7V 1B7
| | - Charles M Dozois
- Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, 531 boul. des Prairies, Laval, Québec, Canada H7V 1B7
| |
Collapse
|
20
|
Chouikha I, Germon P, Brée A, Gilot P, Moulin-Schouleur M, Schouler C. A selC-associated genomic island of the extraintestinal avian pathogenic Escherichia coli strain BEN2908 is involved in carbohydrate uptake and virulence. J Bacteriol 2006; 188:977-87. [PMID: 16428402 PMCID: PMC1347334 DOI: 10.1128/jb.188.3.977-987.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete nucleotide sequence and genetic organization of a new genomic island (AGI-3) isolated from the extraintestinal avian pathogenic Escherichia coli strain BEN2908 is reported. This 49,600-bp island is inserted at the selC locus and contains putative mobile genetic elements such as a phage-related integrase gene, transposase genes, and direct repeats. AGI-3 shows a mosaic structure of five modules. Some of these modules are present in other E. coli strains and in other pathogenic bacterial species. The gene cluster aec-35 to aec-37 of module 1 encodes proteins associated with carbohydrates assimilation such as a major facilitator superfamily transporter (Aec-36), a glycosidase (Aec-37), and a putative transcriptional regulator of the LacI family (Aec-35). The aec-35 to aec-37 cluster was found in 11.6% of the tested pathogenic and nonpathogenic E. coli strains. When present, the aec-35 to aec-37 cluster is strongly associated with the selC locus (97%). Deletion of the aec-35-aec-37 region affects the assimilation of seven carbohydrates, decreases the growth rate of the strain in minimal medium containing galacturonate or trehalose, and attenuates the virulence of E. coli BEN2908 for chickens.
Collapse
Affiliation(s)
- Iman Chouikha
- Equipe de Pathologie Bactérienne, UR86, INRA, 37380 Nouzilly, France
| | | | | | | | | | | |
Collapse
|
21
|
Azhikina T, Gvozdevsky N, Botvinnik A, Fushan A, Shemyakin I, Stepanshina V, Lipin M, Barry C, Sverdlov E. A genome-wide sequence-independent comparative analysis of insertion-deletion polymorphisms in multiple Mycobacterium tuberculosis strains. Res Microbiol 2005; 157:282-90. [PMID: 16239096 DOI: 10.1016/j.resmic.2005.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 07/20/2005] [Accepted: 08/12/2005] [Indexed: 11/30/2022]
Abstract
We applied an enhanced version of subtractive hybridization for comparative analyses of indel differences between genomes of several Mycobacterium tuberculosis strains widespread in Russian regions, and the H37Rv reference strain. A number of differences were detected and partially analyzed, thus demonstrating the practicality of the approach. A majority of the insertions found were shared by all Russian strains, except for strain 1540 that revealed the highest virulence in animal tests. This strain possesses a number of genes absent from other clinical strains. Two of the differential genes were found to encode putative membrane proteins and are presumed to affect mycobacterial interaction with the host cell, thus enhancing virulent properties of the isolate. The method used is of general application, and enables the elaboration of a catalogue of indel polymorphic genomic differences between closely related strains.
Collapse
Affiliation(s)
- Tatyana Azhikina
- Laboratory of Structure and Functions of Human Genes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lamarche MG, Dozois CM, Daigle F, Caza M, Curtiss R, Dubreuil JD, Harel J. Inactivation of the pst system reduces the virulence of an avian pathogenic Escherichia coli O78 strain. Infect Immun 2005; 73:4138-45. [PMID: 15972503 PMCID: PMC1168596 DOI: 10.1128/iai.73.7.4138-4145.2005] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli O78 strains are frequently associated with extraintestinal diseases, such as airsacculitis and septicemia, in poultry, livestock, and humans. To understand the influence of the pst operon in the virulence of E. coli, we introduced mutations into the pst genes of the avian pathogenic E. coli (APEC) O78:K80 strain chi7122 by allelic exchange. The mutation of pst genes led to the constitutive expression of the Pho regulon. Furthermore, the virulence of APEC strain chi7122 in a chicken infection model was attenuated by inactivation of the Pst system. The pst mutant caused significantly fewer extraintestinal lesions in infected chickens, and bacterial numbers isolated from different tissues after infection were significantly lower for the mutant than for the wild-type strain. Moreover, resistance to the bactericidal effects of rabbit serum and acid shock was impaired in the pst mutant, in contrast to the wild-type strain. In addition, the MIC of polymyxin was twofold lower for the mutant than for the wild-type strain. Although the pst mutant demonstrated an increased susceptibility to rabbit serum, this strain was not killed by chicken serum, suggesting the presence of differences in host innate immune defenses and complement-mediated killing. In APEC O78 strain chi7122, a functional Pst system is required for full virulence and resistance to acid shock and polymyxin. Our results suggest that the mutation of pst genes induces a deregulation of phosphate sensing and changes in the cell surface composition that lead to decreased virulence, indicating the importance of the Pst system for the virulence of pathogenic E. coli strains from different hosts.
Collapse
Affiliation(s)
- Martin G Lamarche
- Groupe de Recherche sur les Maladies Infectieuses du Porc (GREMIP), Université de Montréal, Faculté de Médecine Vétérinaire, C.P. 5000, Saint-Hyacinthe, Québec, Canada J2S 7C6
| | | | | | | | | | | | | |
Collapse
|
23
|
Li G, Laturnus C, Ewers C, Wieler LH. Identification of genes required for avian Escherichia coli septicemia by signature-tagged mutagenesis. Infect Immun 2005; 73:2818-27. [PMID: 15845486 PMCID: PMC1087346 DOI: 10.1128/iai.73.5.2818-2827.2005] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infections with avian pathogenic Escherichia coli (APEC) cause colibacillosis, an acute and largely systemic disease resulting in significant economic losses in poultry industry worldwide. Although various virulence-associated genes have been identified in APEC, their actual role in pathogenesis is still not fully understood, and, furthermore, certain steps of the infection process have not been related to previously identified factors. Here we describe the application of a signature-tagged transposon mutagenesis (STM) approach to identify critical genes required for APEC infections in vivo. Twenty pools of about 1,800 IMT5155 (O2:H5) mutants were screened in an infection model using 5-week-old chickens, and potentially attenuated mutants were subjected to a secondary screen and in vivo competition assays to confirm their attenuation. A total of 28 genes required for E. coli septicemia in chickens were identified as candidates for further characterization. Among these disrupted genes, six encode proteins involved in biosynthesis of extracellular polysaccharides and lipopolysaccharides; two encode iron transporters that have not been previously characterized in APEC in in vivo studies, and four showed similarity to membrane or periplasmic proteins. In addition, several metabolic enzymes, putative proteins with unknown function, and open reading frames with no similarity to other database entries were identified. This genome-wide analysis has identified both novel and previously known factors potentially involved in pathogenesis of APEC infection.
Collapse
Affiliation(s)
- Ganwu Li
- Institute of Microbiology and Epizootics, Free University Berlin, P.O. Box 040225, Philippstrasse 13, D-10115 Berlin, Germany
| | | | | | | |
Collapse
|
24
|
Identification of genes required for avian Escherichia coli septicemia by signature-tagged mutagenesis. Infect Immun 2005. [PMID: 15845486 DOI: 10.1128/iai.73.5.2818–2827.2005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Infections with avian pathogenic Escherichia coli (APEC) cause colibacillosis, an acute and largely systemic disease resulting in significant economic losses in poultry industry worldwide. Although various virulence-associated genes have been identified in APEC, their actual role in pathogenesis is still not fully understood, and, furthermore, certain steps of the infection process have not been related to previously identified factors. Here we describe the application of a signature-tagged transposon mutagenesis (STM) approach to identify critical genes required for APEC infections in vivo. Twenty pools of about 1,800 IMT5155 (O2:H5) mutants were screened in an infection model using 5-week-old chickens, and potentially attenuated mutants were subjected to a secondary screen and in vivo competition assays to confirm their attenuation. A total of 28 genes required for E. coli septicemia in chickens were identified as candidates for further characterization. Among these disrupted genes, six encode proteins involved in biosynthesis of extracellular polysaccharides and lipopolysaccharides; two encode iron transporters that have not been previously characterized in APEC in in vivo studies, and four showed similarity to membrane or periplasmic proteins. In addition, several metabolic enzymes, putative proteins with unknown function, and open reading frames with no similarity to other database entries were identified. This genome-wide analysis has identified both novel and previously known factors potentially involved in pathogenesis of APEC infection.
Collapse
|
25
|
Kostakioti M, Stathopoulos C. Functional analysis of the Tsh autotransporter from an avian pathogenic Escherichia coli strain. Infect Immun 2004; 72:5548-54. [PMID: 15385451 PMCID: PMC517524 DOI: 10.1128/iai.72.10.5548-5554.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The temperature-sensitive hemagglutinin (Tsh) is an autotransporter protein secreted by avian-pathogenic Escherichia coli strains that colonize the respiratory tract and lead to airsacculitis, pericarditis, and colisepticemia. It is synthesized as a 140-kDa precursor protein, whose processing results in a 106-kDa passenger domain (Tshs) and a 33-kDa beta-domain (Tsh(beta)). The presence of a conserved 7-amino-acid serine protease motif within Tshs classifies the protein in a subfamily of autotransporters, known as serine protease autotransporters of the Enterobacteriaceae. In this study, we report that purified Tshs is capable of adhering to red blood cells, hemoglobin, and the extracellular matrix proteins fibronectin and collagen IV. We also demonstrate that Tshs exerts proteolytic activity against casein, and we provide experimental evidence demonstrating that serine 259 is essential for the protease function. However, this residue is not required for adherence to substrates, and its replacement by an alanine does not abolish binding activity. In summary, our results demonstrate that Tsh is a bifunctional protein with both adhesive and proteolytic properties.
Collapse
Affiliation(s)
- Maria Kostakioti
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| | | |
Collapse
|
26
|
Schouler C, Koffmann F, Amory C, Leroy-Sétrin S, Moulin-Schouleur M. Genomic subtraction for the identification of putative new virulence factors of an avian pathogenic Escherichia coli strain of O2 serogroup. Microbiology (Reading) 2004; 150:2973-2984. [PMID: 15347755 DOI: 10.1099/mic.0.27261-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To identify putative new virulence factors of avian pathogenicEscherichia coli(APEC) strains, a genomic subtraction was performed between the APEC strain MT512 and the non-pathogenicE. colistrain of avian origin EC79. Seventeen DNA fragments were cloned that were specific for the APEC strain. Among them, nine were identified that were more frequent among pathogenic than non-pathogenic isolates in a collection of 67 avianE. coli. Chromosome or plasmid location, and the nucleotide sequence of these nine fragments were characterized. Four fragments were plasmid-located. The nucleotide sequence of two of them exhibited identity with the sequence of the RepF1B replicon ofE. coliplasmids, and the amino-acid deduced sequences from the two other fragments exhibited similarity to the products of genessitAofSalmonellaTyphimurium andiroDofE. coli, which are involved in iron metabolism. Of the five chromosome-located fragments, three were predicted to encode parts of proteins that were significantly homologous to previously described proteins: TktA (transketolase) ofHaemophilus influenzae, a FruA (fructokinase) homologue ofListeria innocuaand Gp2 (large terminal subunit) of phage 21. The putative products of the two other chromosome-located fragments were homologous to proteins with unknown functions: Z0255 ofE. colistrain EDL933 (EHEC) and RatA ofSalmonellaTyphimurium strain LT2. Both these chromosomal fragments, whose presence is correlated with serogroups O1 and O2 and to the virulence of APEC strains belonging to these serogroups, are good candidates for being part of novel virulence determinants of APEC. Moreover, several fragments were shown to be located close to tRNAselC,asnTorthrW, which suggests they could be part of pathogenicity islands. Six fragments that were shown to be part of whole ORFs present in the APEC strain MT 512 were also present in extra-intestinal pathogenicE. coli(ExPEC) strains of human and animal origin. Thus, the putative novel virulence factors identified in this study could be shared by ExPEC strains of different origins.
Collapse
Affiliation(s)
- Catherine Schouler
- INRA-Centre de Tours, UR86, Pathologie bactérienne, 37380 Nouzilly, France
| | | | - Cécile Amory
- INRA-Centre de Tours, UR86, Pathologie bactérienne, 37380 Nouzilly, France
| | | | | |
Collapse
|
27
|
Abstract
We screened a Thermotoga sp. strain RQ2 lambda library for genes present in that strain but absent from the closely related completely sequenced relative Thermotoga maritima strain MSB8, by using probes generated in an earlier genomic subtraction study. Five lambda insert fragments were sequenced, containing, respectively, an archaeal type ATPase operon, rhamnose biosynthetic genes, ORFs with similarity to an arabinosidase, a Thermotoga sp. strain RQ2-specific alcohol dehydrogenase and a novel archaeal Mut-S homologue. All but one of these fragments contained additional Thermotoga sp. strain RQ2-specific sequences not screened for, suggesting that many such strain-specific genes will be found clustered in the genome. Moreover, phylogenetic analyses, phylogenetic distribution and/or G + C content suggests that all the Thermotoga sp. strain RQ2 specific sequences in the sequenced lambda clones have been acquired by lateral gene transfer. We suggest that the use of strain-specific small insert clones obtained by subtractive hybridization to target larger inserts for sequencing is an efficient, economical way to identify environmentally (or clinically) relevant interstrain differences and novel gene clusters, and will be invaluable in comparative genomics.
Collapse
MESH Headings
- Adenosine Triphosphatases/genetics
- Alcohol Dehydrogenase/genetics
- Bacterial Proteins/genetics
- Base Composition
- DNA, Archaeal/chemistry
- DNA, Archaeal/genetics
- DNA, Archaeal/isolation & purification
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/isolation & purification
- DNA-Binding Proteins/genetics
- Gene Library
- Gene Order
- Gene Transfer, Horizontal/genetics
- Genes, Archaeal
- Genes, Bacterial
- Genomic Library
- Glycoside Hydrolases/genetics
- Molecular Sequence Data
- MutS DNA Mismatch-Binding Protein
- Phylogeny
- Rhamnose/genetics
- Sequence Analysis, DNA
- Sequence Homology
- Thermotoga maritima/genetics
Collapse
Affiliation(s)
- Camilla L Nesbø
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada.
| | | |
Collapse
|
28
|
Harakava R, Gabriel DW. Genetic differences between two strains of Xylella fastidiosa revealed by suppression subtractive hybridization. Appl Environ Microbiol 2003; 69:1315-9. [PMID: 12571065 PMCID: PMC143624 DOI: 10.1128/aem.69.2.1315-1319.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Suppression subtractive hybridization was used to rapidly identify 18 gene differences between a citrus variegated chlorosis (CVC) strain and a Pierce's disease of grape (PD) strain of Xylella fastidiosa. The results were validated as being highly representative of actual differences by comparison of the completely sequenced genome of a CVC strain with that of a PD strain.
Collapse
Affiliation(s)
- Ricardo Harakava
- Department of Plant Pathology, University of Florida, Gainesville, Florida 32611, USA
| | | |
Collapse
|
29
|
Doolittle WF, Boucher Y, Nesbø CL, Douady CJ, Andersson JO, Roger AJ. How big is the iceberg of which organellar genes in nuclear genomes are but the tip? Philos Trans R Soc Lond B Biol Sci 2003; 358:39-57; discussion 57-8. [PMID: 12594917 PMCID: PMC1693099 DOI: 10.1098/rstb.2002.1185] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
As more and more complete bacterial and archaeal genome sequences become available, the role of lateral gene transfer (LGT) in shaping them becomes more and more clear. Over the long term, it may be the dominant force, affecting most genes in most prokaryotes. We review the history of LGT, suggesting reasons why its prevalence and impact were so long dismissed. We discuss various methods purporting to measure the extent of LGT, and evidence for and against the notion that there is a core of never-exchanged genes shared by all genomes, from which we can deduce the "true" organismal tree. We also consider evidence for, and implications of, LGT between prokaryotes and phagocytic eukaryotes.
Collapse
Affiliation(s)
- W F Doolittle
- Genome Atlantic, Dalhousie University, 5850 College Street, Halifax, Nova Scotia B3H 1X5, Canada.
| | | | | | | | | | | |
Collapse
|
30
|
Dozois CM, Daigle F, Curtiss R. Identification of pathogen-specific and conserved genes expressed in vivo by an avian pathogenic Escherichia coli strain. Proc Natl Acad Sci U S A 2003; 100:247-52. [PMID: 12506201 PMCID: PMC140941 DOI: 10.1073/pnas.232686799] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli is a diverse bacterial species that comprises commensal nonpathogenic strains such as E. coli K-12 and pathogenic strains that cause a variety of diseases in different host species. Avian pathogenic E. coli strain chi7122 (O78:K80:H9) was used in a chicken infection model to identify bacterial genes that are expressed in infected tissues. By using the cDNA selection method of selective capture of transcribed sequences and enrichment for the isolation of pathogen-specific (non-E. coli K-12) transcripts, pathogen-specific cDNAs were identified. Pathogen-specific transcripts corresponded to putative adhesins, lipopolysaccharide core synthesis, iron-responsive, plasmid- and phage-encoded genes, and genes of unknown function. Specific deletion of the aerobactin siderophore system and E. coli iro locus, which were identified by selective capture of transcribed sequences, demonstrated that these pathogen-specific systems contribute to the virulence of strain chi7122. Consecutive blocking to enrich for selection of pathogen-specific genes did not completely eliminate the presence of transcripts that corresponded to sequences also present in E. coli K-12. These E. coli conserved genes are likely to be highly expressed in vivo and contribute to growth or virulence. Overall, the approach we have used simultaneously provided a means to identify novel pathogen-specific genes expressed in vivo and insight regarding the global gene expression and physiology of a pathogenic E. coli strain in a natural animal host during the infectious process.
Collapse
Affiliation(s)
- Charles M Dozois
- Department of Biology, Washington University, Campus Box 1137, One Brookings Drive, St. Louis, MO 63130, USA
| | | | | |
Collapse
|
31
|
Mellata M, Dho-Moulin M, Dozois CM, Curtiss R, Lehoux B, Fairbrother JM. Role of avian pathogenic Escherichia coli virulence factors in bacterial interaction with chicken heterophils and macrophages. Infect Immun 2003; 71:494-503. [PMID: 12496200 PMCID: PMC143357 DOI: 10.1128/iai.71.1.494-503.2003] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) cause extraintestinal disease in avian species via respiratory tract infection. Virulence factors associated with APEC include type 1 and P fimbriae, curli, aerobactin, lipopolysaccharide (LPS), K1 capsular antigen, temperature-sensitive hemagglutinin (Tsh), and an uncharacterized pathogen-specific chromosomal region (the 0-min region). The role of these virulence factors in bacterial interaction with phagocytes was investigated by using mutants of three APEC strains, each belonging to one of the most predominant serogroups O1, O2, and O78. Bacterial cell interaction with avian phagocytes was tested with primary cultures of chicken heterophils and macrophages. The presence of type 1 fimbriae and, in contrast, the absence of P fimbriae, K1 capsule, O78 antigen, and the 0-min region promoted bacterial association with chicken heterophils and macrophages. The presence of type 1 and P fimbriae, O78 antigen, and the 0-min region seemed to protect bacteria against the bactericidal effect of phagocytes, especially heterophils. The tested virulence factors seemed to have a limited role in intracellular survival for up to 48 h in macrophages. Generally, opsonized and nonopsonized bacteria were eliminated to the same extent, but in some cases, unopsonized bacteria were eliminated to a greater extent than opsonized bacteria. These results confirm the important role of type 1 fimbriae in promotion of initial phagocytosis, but nevertheless indicate a role for type 1 fimbriae in the protection of bacteria from subsequent killing, at least in heterophils. The results also indicate a role for K1 capsule, O78 antigen, P fimbriae, and the 0-min region in initial avoidance of phagocytosis, but demonstrate an additional role for O78 antigen, P fimbriae, and the 0-min region in subsequent protection against the bactericidal effects of phagocytes after bacterial association has occurred.
Collapse
Affiliation(s)
- Melha Mellata
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, St. Hyacinthe, Québec J2S 7C6, Canada
| | | | | | | | | | | |
Collapse
|
32
|
Mellata M, Dho-Moulin M, Dozois CM, Curtiss R, Brown PK, Arné P, Brée A, Desautels C, Fairbrother JM. Role of virulence factors in resistance of avian pathogenic Escherichia coli to serum and in pathogenicity. Infect Immun 2003; 71:536-40. [PMID: 12496207 PMCID: PMC143143 DOI: 10.1128/iai.71.1.536-540.2003] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In chickens, colibacillosis is caused by avian pathogenic Escherichia coli (APEC) via respiratory tract infection. Many virulence factors, including type 1 (F1A) and P (F11) fimbriae, curli, aerobactin, K1 capsule, and temperature-sensitive hemagglutinin (Tsh) and plasmid DNA regions have been associated with APEC. A strong correlation between serum resistance and virulence has been demonstrated, but roles of virulence factors in serum resistance have not been well elucidated. By using mutants of APEC strains TK3, MT78, and chi7122, which belong to serogroups O1, O2, and O78, respectively, we investigated the role of virulence factors in resistance to serum and pathogenicity in chickens. Our results showed that serum resistance is one of the pathogenicity mechanisms of APEC strains. Virulence factors that increased bacterial resistance to serum and colonization of internal organs of infected chickens were O78 lipopolysaccharide of E. coli chi7122 and the K1 capsule of E. coli MT78. In contrast, curli, type 1, and P fimbriae did not appear to contribute to serum resistance. We also showed that the iss gene, which was previously demonstrated to increase resistance to serum in certain E. coli strains, is located on plasmid pAPEC-1 of E. coli chi7122 but does not play a major role in resistance to serum for strain chi7122.
Collapse
Affiliation(s)
- Melha Mellata
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, St. Hyacinthe, Québec J2S 7C6, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Stocki SL, Babiuk LA, Rawlyk NA, Potter AA, Allan BJ. Identification of genomic differences between Escherichia coli strains pathogenic for poultry and E. coli K-12 MG1655 using suppression subtractive hybridization analysis. Microb Pathog 2002; 33:289-98. [PMID: 12495675 DOI: 10.1006/mpat.2002.0536] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diseases of poultry caused by Escherichia coli result in significant economic loss every year. Specific virulence factors associated with E. coli strains pathogenic for poultry have been identified, but it is likely that others remain to be identified. To identify unique DNA fragments associated with avian strains we used suppression subtractive hybridization. The genome of E. coli K-12 strain MG1655 was subtracted from the genomes of two avian E. coli strains resulting in the identification of 62 fragments specific to the two avian strains. Sequence homology analysis was done and four types of fragments were identified: plasmid sequences, phage sequences, sequences with known function and sequences without any currently known function. Two E. coli collections, a reference collection of diverse strains (ECOR) and a collection of 41 avian isolates, were screened for the presence of 25 of the 62 fragments. We identified nine fragments present in significantly more of the avian strains than of the ECOR strains. Five fragments were in significantly more of the ECOR strains than the avian strains. These results suggested that the nine fragments could play a role in the pathogenesis of E. coli as it relates to diseases of poultry.
Collapse
Affiliation(s)
- Stacy L Stocki
- Veterinary Infectious Disease Organization, 120 Veterinary Road, Saskatoon, Saskatchewan, S7N 5E3, Canada
| | | | | | | | | |
Collapse
|
34
|
Nesbø CL, Nelson KE, Doolittle WF. Suppressive subtractive hybridization detects extensive genomic diversity in Thermotoga maritima. J Bacteriol 2002; 184:4475-88. [PMID: 12142418 PMCID: PMC135253 DOI: 10.1128/jb.184.16.4475-4488.2002] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Comparisons between genomes of closely related bacteria often show large variations in gene content, even between strains of the same species. Such studies have focused mainly on pathogens; here, we examined Thermotoga maritima, a free-living hyperthermophilic bacterium, by using suppressive subtractive hybridization. The genome sequence of T. maritima MSB8 is available, and DNA from this strain served as a reference to obtain strain-specific sequences from Thermotoga sp. strain RQ2, a very close relative (approximately 96% identity for orthologous protein-coding genes, 99.7% identity in the small-subunit rRNA sequence). Four hundred twenty-six RQ2 subtractive clones were sequenced. One hundred sixty-six had no DNA match in the MSB8 genome. These differential clones comprise, in sum, 48 kb of RQ2-specific DNA and match 72 genes in the GenBank database. From the number of identical clones, we estimated that RQ2 contains 350 to 400 genes not found in MSB8. Assuming a similar genome size, this corresponds to 20% of the RQ2 genome. A large proportion of the RQ2-specific genes were predicted to be involved in sugar transport and polysaccharide degradation, suggesting that polysaccharides are more important as nutrients for this strain than for MSB8. Several clones encode proteins involved in the production of surface polysaccharides. RQ2 encodes multiple subunits of a V-type ATPase, while MSB8 possesses only an F-type ATPase. Moreover, an RQ2-specific MutS homolog was found among the subtractive clones and appears to belong to a third novel archaeal type MutS lineage. Southern blot analyses showed that some of the RQ2 differential sequences are found in some other members of the order Thermotogales, but the distribution of these variable genes is patchy, suggesting frequent lateral gene transfer within the group.
Collapse
Affiliation(s)
- Camilla L Nesbø
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
35
|
Altekruse SF, Elvinger F, DebRoy C, Pierson FW, Eifert JD, Sriranganathan N. Pathogenic and Fecal Escherichia coli Strains from Turkeys in a Commercial Operation. Avian Dis 2002; 46:562-9. [PMID: 12243519 DOI: 10.1637/0005-2086(2002)046[0562:pafecs]2.0.co;2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The biochemical phenotypes and antimicrobial susceptibility patterns of 105 clinical Escherichia coli isolates from flocks with colibacillosis in a turkey operation were compared with 1104 fecal E. coli isolates from 20 flocks in that operation. Clinical isolates and 194 fecal isolates with biochemical phenotypes or minimum inhibitory concentrations for gentamicin and sulfamethoxazole similar to clinical isolates were tested for somatic antigens and the potential virulence genes hylE, iss, tsh, and K1. The predominant biochemical phenotype of clinical isolates contained 21 isolates including 14 isolates belonging to serogroup 078 with barely detectable beta-D-glucuronidase activity. Thirty-five fecal isolates had biochemical phenotypes matching common phenotypes of clinical isolates. Sixty-six (63%) clinical isolates exhibited intermediate susceptibility or resistance to gentamicin and sulfamethoxazole compared with 265 (24%) fecal isolates (P < 0.001). Seventy-seven clinical isolates reacted with O-antisera, of which 51 (66%) belonged to the following serogroups: O1, O2, O8, O25, O78, O114, and O119. In comparison, 8 of 35 (23%) fecal isolates subtyped on the basis of biochemical phenotype belonged to these serogroups and four of 167 (2%) fecal isolates subtyped on the basis of their antimicrobial resistance patterns belonged to these serogroups. Iss, K1, and tsh genes were detected more often among clinical isolates than these fecal isolates (P < 0.05). In summary, a small subgroup of E. coli strains caused most colibacillosis infections in this operation. These strains existed at low concentration in normal fecal flora of healthy turkeys in intensively raised flocks. The data suggest that colibacillosis in turkey operations may be due to endogenous infections caused by specialized pathogens.
Collapse
Affiliation(s)
- S F Altekruse
- Food and Drug Administration, Center for Veterinary Medicine, Rockville, MD 20895, USA
| | | | | | | | | | | |
Collapse
|
36
|
Pradel N, Leroy-Setrin S, Joly B, Livrelli V. Genomic subtraction to identify and characterize sequences of Shiga toxin-producing Escherichia coli O91:H21. Appl Environ Microbiol 2002; 68:2316-25. [PMID: 11976103 PMCID: PMC127536 DOI: 10.1128/aem.68.5.2316-2325.2002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To identify Shiga toxin-producing Escherichia coli genes associated with severe human disease, a genomic subtraction technique was used with hemolytic-uremic syndrome-associated O91:H21 strain CH014 and O6:H10 bovine strains. The method was adapted to the Shiga toxin-producing E. coli genome: three rounds of subtraction were used to isolate DNA fragments specific to strain CH014. The fragments were characterized by genetic support analysis, sequencing, and hybridization to the genome of a collection of Shiga toxin-producing E. coli strains. A total of 42 fragments were found, 19 of which correspond to previously identified unique DNA sequences in the enterohemorrhagic E. coli EDL933 reference strain, including 7 fragments corresponding to prophage sequences and others encoding candidate virulence factors, such a SepA homolog protein and a fimbrial usher protein. In addition, the subtraction procedure yielded plasmid-related sequences from Shigella flexneri and enteropathogenic and Shiga toxin-producing E. coli virulence plasmids. We found that lateral gene transfer is extensive in strain CH014, and we discuss the role of genomic mobile elements, especially bacteriophages, in the evolution and possible transfer of virulence determinants.
Collapse
Affiliation(s)
- Nathalie Pradel
- Groupe de Recherche Pathogénie Bactérienne Intestinale, Faculté de Pharmacie, Université d'Auvergne Clermont-1, Unité soutenue par l'INRA, Clermont-Ferrand, France
| | | | | | | |
Collapse
|
37
|
McGarvey JA, Bermudez LE. Phenotypic and genomic analyses of the Mycobacterium avium complex reveal differences in gastrointestinal invasion and genomic composition. Infect Immun 2001; 69:7242-9. [PMID: 11705893 PMCID: PMC98807 DOI: 10.1128/iai.69.12.7242-7249.2001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium avium and Mycobacterium intracellulare are closely related organisms and comprise the Mycobacterium avium complex. These organisms share many common characteristics, including the ability to cause life-threatening respiratory infections in people with underlying lung pathology or immunological defects and occasionally in those with no known predisposing conditions. However, the ability to invade the mucosa of the gastrointestinal tract and cause disseminated disease in AIDS patients has not been epidemiologically linked to M. intracellulare and appears to be unique to M. avium. We compared the abilities of M. avium and M. intracellulare to tolerate the acidic conditions of the stomach, to resist the membrane-disrupting activity of cationic peptides, and to invade intestinal epithelial cells in vitro and in vivo. We observed that M. avium and M. intracellulare were both tolerant to the acidic conditions encountered in the stomach and resistant to cationic peptides. However, when strains of M. avium and M. intracellulare were examined for their ability to enter cultured human intestinal cells or mouse intestinal mucosa, we observed that M. avium could invade more efficiently than M. intracellulare. To elucidate the basis of this pathogenic difference and identify genes involved in the invasion of the intestinal mucosa, we performed chromosomal DNA subtractive hybridization using M. avium and M. intracellulare chromosomal DNAs. In all, 21 genes that were present in M. avium but absent in M. intracellulare were identified, including some that may be associated with the ability of M. avium to invade the intestinal mucosa.
Collapse
Affiliation(s)
- J A McGarvey
- Kuzell Institute of Infectious Disease, California Pacific Medical Center Research Institute, San Francisco, California 94115, USA
| | | |
Collapse
|
38
|
Brown PK, Dozois CM, Nickerson CA, Zuppardo A, Terlonge J, Curtiss R. MlrA, a novel regulator of curli (AgF) and extracellular matrix synthesis by Escherichia coli and Salmonella enterica serovar Typhimurium. Mol Microbiol 2001; 41:349-63. [PMID: 11489123 DOI: 10.1046/j.1365-2958.2001.02529.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Production of curli (AgF) adhesins by Escherichia coli and Salmonella enterica serovar Typhimurium (S. typhimurium) is associated with extracellular matrix production and is optimal at low temperature during stationary phase. Curli and extracellular matrix synthesis involves a complex regulatory network that is dependent on the CsgD (AgfD) regulator. We have identified a novel regulator, termed MlrA, that is required for curli production and extracellular matrix formation. Two cosmids from a genomic library of avian pathogenic E. coli chi7122 conferred mannose-resistant haemagglutination (HA) and curli production to E. coli HB101, which is unable to produce curli owing to a defective regulatory pathway. The rpoS gene, encoding a known positive regulator of curli synthesis, and the E. coli open reading frame (ORF) of unknown function, yehV, identified on each of these cosmids, respectively, conferred curli production and HA to E. coli HB101. We have designated yehV as the mlrA gene for MerR-like regulator A because its product shares similarities with regulatory proteins of the MerR family. HA and curli production by strain chi7122 were abolished by disruption of rpoS, mlrA or csgA, the curli subunit gene. Both csgD and csgBA transcription, required for expression of curli, were inactive in an mlrA mutant grown under conditions that promote curli production. An mlrA homologue was identified in S. typhimurium. Analysis of mlrA-lac operon fusions demonstrated that mlrA was positively regulated by rpoS. mlrA mutants of wild-type S. typhimurium SL1344 or SR-11 no longer produced curli or rugose colony morphology, and exhibited enhanced aggregation and extracellular matrix formation when complemented with the mlrA gene from either S. typhimurium or E. coli present on a low-copy-number plasmid. However, inactivation of mlrA did not affect curli production and aggregative morphology in an upregulated curli producing S. typhimurium derivative containing a temperature- and RpoS-independent agfD promoter region. These results indicate that MlrA is a newly defined transcriptional regulator of csgD/agfD that acts as a positive regulator of RpoS-dependent curli and extracellular matrix production by E. coli and S. typhimurium.
Collapse
MESH Headings
- Adhesins, Bacterial/biosynthesis
- Adhesins, Bacterial/genetics
- Adhesins, Bacterial/metabolism
- Amino Acid Sequence
- Animals
- Bacterial Proteins/biosynthesis
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Chickens
- Cloning, Molecular
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Extracellular Matrix/metabolism
- Fimbriae, Bacterial/metabolism
- Gene Expression Regulation, Bacterial
- Genes, Bacterial/genetics
- Genes, Regulator/genetics
- Genes, Reporter/genetics
- Genetic Complementation Test
- Hemagglutination/genetics
- Molecular Sequence Data
- Open Reading Frames/genetics
- Salmonella typhimurium/genetics
- Salmonella typhimurium/growth & development
- Salmonella typhimurium/metabolism
- Salmonella typhimurium/ultrastructure
- Sigma Factor/metabolism
Collapse
Affiliation(s)
- P K Brown
- Department of Biology, Washington University, Saint Louis, MO 63130-2525, USA
| | | | | | | | | | | |
Collapse
|
39
|
Herd M, Kocks C. Gene fragments distinguishing an epidemic-associated strain from a virulent prototype strain of Listeria monocytogenes belong to a distinct functional subset of genes and partially cross-hybridize with other Listeria species. Infect Immun 2001; 69:3972-9. [PMID: 11349066 PMCID: PMC98459 DOI: 10.1128/iai.69.6.3972-3979.2001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most major food-borne outbreaks of listeriosis in Europe and in the United States have been caused by genetically closely related Listeria monocytogenes strains of serotype 4b. In order to assess whether genomic loci exist that could underlie this increased epidemic potential, we subtracted the genome of the virulent prototype L. monocytogenes strain EGD from a prototype epidemic strain. A total of 39 DNA fragments corresponding to 20% of an estimated total of 150 to 190 kb of differential genome material were isolated. For 21 of these fragments, no function on the basis of homology could be predicted. Of the remaining 18 fragments, 15 had homologies to bacterial surface proteins, some of which have been implicated in virulence mechanisms such as cell invasion, adhesion, or immune escape. Southern hybridization of arrays containing the epidemic-clone-specific DNA segments with genomic DNA of different L. monocytogenes strains was consistent with the current lineage division. Surprisingly, however, some of the fragments hybridized in a mosaic-like fashion to genomes of two other Listeria species, the animal pathogen L. ivanovii and the nonpathogen L. innocua. Taken together, our results provide a starting point for the identification of epidemic-trait-associated genes.
Collapse
Affiliation(s)
- M Herd
- Institute for Genetics, University of Cologne, D-50674 Cologne, Germany
| | | |
Collapse
|
40
|
Lan R, Reeves PR. Intraspecies variation in bacterial genomes: the need for a species genome concept. Trends Microbiol 2000; 8:396-401. [PMID: 10989306 DOI: 10.1016/s0966-842x(00)01791-1] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacterial populations are clonal. Their evolution involves not only divergence between orthologous genes but also gain of genes from other clones or species, which has only recently been widely appreciated through macrorestriction mapping, genomic subtraction and complete genome sequencing. Genes can also be lost in response to selection or by random mutation after becoming redundant. The bacterial genome is a dynamic structure and intraspecies variation needs to be included in genome analysis if we are to gain insight into the full species genome.
Collapse
Affiliation(s)
- R Lan
- Dept of Microbiology, Bldg G08, University of Sydney, NSW 2006, Sydney, Australia
| | | |
Collapse
|
41
|
Dozois CM, Dho-Moulin M, Brée A, Fairbrother JM, Desautels C, Curtiss R. Relationship between the Tsh autotransporter and pathogenicity of avian Escherichia coli and localization and analysis of the Tsh genetic region. Infect Immun 2000; 68:4145-54. [PMID: 10858231 PMCID: PMC101714 DOI: 10.1128/iai.68.7.4145-4154.2000] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The temperature-sensitive hemagglutinin Tsh is a member of the autotransporter group of proteins and was first identified in avian-pathogenic Escherichia coli (APEC) strain chi7122. The prevalence of tsh was investigated in 300 E. coli isolates of avian origin and characterized for virulence in a 1-day-old chick lethality test. Results indicate that among the tsh-positive APEC isolates, 90.6% belonged to the highest virulence class. Experimental inoculation of chickens with chi7122 and an isogenic tsh mutant demonstrated that Tsh may contribute to the development of lesions within the air sacs of birds but is not required for subsequent generalized infection manifesting as perihepatitis, pericarditis, and septicemia. Conjugation and hybridization experiments revealed that the tsh gene is located on a ColV-type plasmid in many of the APEC strains studied, including strain chi7122, near the colicin V genes in most of these strains. DNA sequences flanking the tsh gene of strain chi7122 include complete and partial insertion sequences and phage-related DNA sequences, some of which were also found on virulence plasmids and pathogenicity islands present in various E. coli pathotypes and other pathogenic members of the Enterobacteriaceae. These results demonstrate that the tsh gene is frequently located on the ColV virulence plasmid in APEC and suggest a possible role of Tsh in the pathogenicity of E. coli for chickens in the early stages of infection.
Collapse
Affiliation(s)
- C M Dozois
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | | | | | | | | | |
Collapse
|
42
|
Spears PA, Temple LM, Orndorff PE. A role for lipopolysaccharide in turkey tracheal colonization by Bordetella avium as demonstrated in vivo and in vitro. Mol Microbiol 2000; 36:1425-35. [PMID: 10931292 PMCID: PMC3121563 DOI: 10.1046/j.1365-2958.2000.01963.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We isolated two insertion mutants of Bordetella avium that exhibited a peculiar clumped-growth phenotype and found them to be attenuated in turkey tracheal colonization. The mutants contained transposon insertions in homologues of the wlbA and wlbL genes of Bordetella pertussis. The wlb genetic locus of B. pertussis has been previously described as containing 12 genes involved in lipopolysaccharide (LPS) biosynthesis. Polyacrylamide gel analysis of LPS from B. avium wlbA and wlbL insertion mutants confirmed an alteration in the LPS profile. Subsequent cloning and complementation of the wlbA and wlbL mutants in trans with a recombinant plasmid containing the homologous wlb locus from B. avium eliminated the clumped-growth phenotype and restored the LPS profile to that of wild-type B. avium. Also, a parental level of tracheal colonization was restored to both mutants by the recombinant plasmid. Interestingly, complementation of the wlbA and wlbL mutants with a recombinant plasmid containing the heterologous wlb locus from B. pertussis, B. bronchiseptica, or Bordetella parapertussis eliminated the clumped-growth phenotype and resulted in a change in the LPS profile, although not to that of wild-type B. avium. The mutants also acquired resistance to a newly identified B. avium-specific bacteriophage, Ba1. Complementation of both wlbA and wlbL mutants with the homologous wlb locus of B. avium, but not the heterologous B. pertussis locus, restored sensitivity to Ba1. Complementation of the wlbL mutant, but not the wlbA mutant, with the heterologous wlb locus of Bordetella bronchiseptica or B. parapertussis restored partial sensitivity to Ba1. Comparisons of the LPS profile and phage sensitivity of the mutants upon complementation by wlb loci from the heterologous species and by B. avium suggested that phage sensitivity required the presence of O-antigen. At the mechanistic level, both mutants showed a dramatic decrease in serum resistance and a decrease in binding to turkey tracheal rings in vitro. In the case of serum resistance, complementation of both mutants with the homologous wlb locus of B. avium restored serum resistance to wild-type levels. However, in the case of epithelial cell binding, only complementation of the wlbA mutant completely restored binding to wild-type levels (binding was only partially restored in the wlbL mutant). This is the first characterization of LPS mutants of B. avium at the genetic level and the first report of virulence changes by both in vivo and in vitro measurements.
Collapse
Affiliation(s)
- P A Spears
- Department of Microbiology, Pathology, and Parasitology, College of Veterinary Medicine, North Carolina State University, Raleigh 27606, USA.
| | | | | |
Collapse
|
43
|
Ginns CA, Benham ML, Adams LM, Whithear KG, Bettelheim KA, Crabb BS, Browning GF. Colonization of the respiratory tract by a virulent strain of avian Escherichia coli requires carriage of a conjugative plasmid. Infect Immun 2000; 68:1535-41. [PMID: 10678971 PMCID: PMC97312 DOI: 10.1128/iai.68.3.1535-1541.2000] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The E3 strain of E. coli was isolated in an outbreak of respiratory disease in broiler chickens, and experimental aerosol exposure of chickens to this strain induced disease similar to that seen in the field. In order to establish whether the virulent phenotype of this strain was associated with carriage of particular plasmids, four plasmid-cured derivatives, each lacking two or more of the plasmids carried by the wild-type strain, were assessed for virulence. Virulence was found to be associated with one large plasmid, pVM01. Plasmid pVM01 was marked by introduction of the transposon TnphoA, carrying kanamycin resistance, and was then cloned by transformation of E. coli strain DH5alpha. The cloned plasmid was then reintroduced by conjugation into an avirulent plasmid-cured derivative of strain E3 which lacked pVM01. The conjugant was shown to be as virulent as the wild-type strain E3, establishing that this plasmid is required for virulence following aerosol exposure. This virulence plasmid conferred expression of a hydroxamate siderophore, but not colicins, on both strain E3 and strain DH5alpha. Carriage of this plasmid was required for strain E3 to colonize the respiratory tracts of chickens but was not necessary for colonization of the gastrointestinal tract. However, the virulence plasmid did not confer virulence, or the capacity to colonize the respiratory tract, on strain DH5alpha. Thus, these studies have established that infection of chickens with E. coli strain E3 by the respiratory route is dependent on carriage of a conjugative virulence plasmid, which confers the capacity to colonize specifically the respiratory tract and which also carries genes for expression of a hydroxymate siderophore. These findings will facilitate identification of the specific genes required for virulence in these pathogens.
Collapse
Affiliation(s)
- C A Ginns
- Department of Veterinary Science, The University of Melbourne, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | |
Collapse
|
44
|
Morrow BJ, Graham JE, Curtiss R. Genomic subtractive hybridization and selective capture of transcribed sequences identify a novel Salmonella typhimurium fimbrial operon and putative transcriptional regulator that are absent from the Salmonella typhi genome. Infect Immun 1999; 67:5106-16. [PMID: 10496884 PMCID: PMC96859 DOI: 10.1128/iai.67.10.5106-5116.1999] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/1999] [Accepted: 07/29/1999] [Indexed: 11/20/2022] Open
Abstract
Salmonella typhi, the etiologic agent of typhoid fever, is adapted to the human host and unable to infect nonprimate species. The genetic basis for host specificity in S. typhi is unknown. The avirulence of S. typhi in animal hosts may result from a lack of genes present in the broad-host-range pathogen Salmonella typhimurium. Genomic subtractive hybridization was successfully employed to isolate S. typhimurium genomic sequences which are absent from the S. typhi genome. These genomic subtracted sequences mapped to 17 regions distributed throughout the S. typhimurium chromosome. A positive cDNA selection method was then used to identify subtracted sequences which were transcribed by S. typhimurium following macrophage phagocytosis. A novel putative transcriptional regulator of the LysR family was identified as transcribed by intramacrophage S. typhimurium. This putative transcriptional regulator was absent from the genomes of the human-adapted serovars S. typhi and Salmonella paratyphi A. Mutations within this gene did not alter the level of S. typhimurium survival within macrophages or virulence within mice. A subtracted genomic fragment derived from the ferrichrome operon also hybridized to the intramacrophage cDNA. Nucleotide sequence analysis of S. typhimurium and S. typhi chromosomal sequences flanking the ferrichrome operon identified a novel S. typhimurium fimbrial operon with a high level of similarity to sequences encoding Proteus mirabilis mannose-resistant fimbriae. The novel fimbrial operon was absent from the S. typhi genome. The absence of specific genes may have allowed S. typhi to evolve as a highly invasive, systemic human pathogen.
Collapse
Affiliation(s)
- B J Morrow
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | | | |
Collapse
|
45
|
Chiang SL, Mekalanos JJ. rfb mutations in Vibrio cholerae do not affect surface production of toxin-coregulated pili but still inhibit intestinal colonization. Infect Immun 1999; 67:976-80. [PMID: 9916119 PMCID: PMC96415 DOI: 10.1128/iai.67.2.976-980.1999] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The toxin-coregulated pilus (TCP) of Vibrio cholerae is essential for colonization. It was recently reported that rfb mutations in V. cholerae 569B cause the translocation arrest of the structural subunit of TCP, raising the possibility that the colonization defects of lipopolysaccharide mutants are due to effects on TCP biogenesis. However, an rfbB gene disruption in either V. cholerae O395 or 569B has no apparent effect on surface TCP production as assessed by immunoelectron microscopy and CTX phage transduction, and an rfbD::Tn5lac mutant of O395 also shows no defect in TCP expression. We conclude that the colonization defect associated with rfb mutations is unrelated to defects in TCP assembly.
Collapse
Affiliation(s)
- S L Chiang
- Department of Microbiology and Molecular Genetics and Shipley Institute of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
46
|
Stathopoulos C, Provence DL, Curtiss R. Characterization of the avian pathogenic Escherichia coli hemagglutinin Tsh, a member of the immunoglobulin A protease-type family of autotransporters. Infect Immun 1999; 67:772-81. [PMID: 9916089 PMCID: PMC96385 DOI: 10.1128/iai.67.2.772-781.1999] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We reported earlier that a single gene, tsh, isolated from a strain of avian pathogenic Escherichia coli (APEC) was sufficient to confer on E. coli K-12 a hemagglutinin-positive phenotype and that the deduced sequence of the Tsh protein shared homology to the serine-type immunoglobulin A (IgA) proteases of Neisseria gonorrhoeae and Haemophilus influenzae. In this report we show that E. coli K-12 containing the recombinant tsh gene produced two proteins, a 106-kDa extracellular protein and a 33-kDa outer membrane protein, and was also able to agglutinate chicken erythrocytes. N-terminal sequence data indicated that the 106-kDa protein, designated Tshs, was derived from the N-terminal end of Tsh after the removal of a 52-amino-acid N-terminal signal peptide, while the 33-kDa protein, designated Tshbeta, was derived from the C-terminal end of Tsh starting at residue N1101. The Tshs domain contains the 7-amino-acid serine protease motif that includes the active-site serine (S259), found also in the secreted domains of the IgA proteases. However, site-directed mutagenesis of S259 did not abolish the hemagglutinin activity or the extracellular secretion of Tshs indicating that host-directed proteolysis was mediating the release of Tshs. Studies with an E. coli K-12 ompT mutant strain showed that the surface protease OmpT was not needed for the secretion of Tshs. Tsh belongs to a subclass of the IgA protease family, which also includes EspC of enteropathogenic E. coli, EspP of enterohemorragic E. coli, and SepA and VirG of Shigella flexneri, which seem to involve a host endopeptidase to achieve extracellular release of their N-terminal domains. In proteolytic studies conducted in vitro, Tshs did not cleave the substrate of the IgA proteases, human IgA1 or chicken IgA, and did not show proteolytic activity in a casein-based assay. Correlation of Tsh expression and hemagglutination activity appears to be a very complex phenomenon, influenced by strain and environmental conditions. Nevertheless, for both APEC and recombinant E. coli K-12 strains containing the tsh gene, it was only the whole bacterial cells and not the cell-free supernatants that could confer hemagglutinin activity. Our results provide insights into the expression, secretion, and proteolytic features of the Tsh protein, which belongs to the growing family of gram-negative bacterial extracellular virulence factors, named autotransporters, which utilize a self-mediated mechanism to achieve export across the bacterial cell envelope.
Collapse
Affiliation(s)
- C Stathopoulos
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | | | |
Collapse
|
47
|
Akopyants NS, Fradkov A, Diatchenko L, Hill JE, Siebert PD, Lukyanov SA, Sverdlov ED, Berg DE. PCR-based subtractive hybridization and differences in gene content among strains of Helicobacter pylori. Proc Natl Acad Sci U S A 1998; 95:13108-13. [PMID: 9789049 PMCID: PMC23726 DOI: 10.1073/pnas.95.22.13108] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Genes that are characteristic of only certain strains of a bacterial species can be of great biologic interest. Here we describe a PCR-based subtractive hybridization method for efficiently detecting such DNAs and apply it to the gastric pathogen Helicobacter pylori. Eighteen DNAs specific to a monkey-colonizing strain (J166) were obtained by subtractive hybridization against an unrelated strain whose genome has been fully sequenced (26695). Seven J166-specific clones had no DNA sequence match to the 26695 genome, and 11 other clones were mixed, with adjacent patches that did and did not match any sequences in 26695. At the protein level, seven clones had homology to putative DNA restriction-modification enzymes, and two had homology to putative metabolic enzymes. Nine others had no database match with proteins of assigned function. PCR tests of 13 unrelated H. pylori strains by using primers specific for 12 subtracted clones and complementary Southern blot hybridizations indicated that these DNAs are highly polymorphic in the H. pylori population, with each strain yielding a different pattern of gene-specific PCR amplification. The search for polymorphic DNAs, as described here, should help identify previously unknown virulence genes in pathogens and provide new insights into microbial genetic diversity and evolution.
Collapse
Affiliation(s)
- N S Akopyants
- Departments of Molecular Microbiology and Genetics, Washington University Medical School, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Conner CP, Heithoff DM, Julio SM, Sinsheimer RL, Mahan MJ. Differential patterns of acquired virulence genes distinguish Salmonella strains. Proc Natl Acad Sci U S A 1998; 95:4641-5. [PMID: 9539791 PMCID: PMC22543 DOI: 10.1073/pnas.95.8.4641] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Analysis of several Salmonella typhimurium in vivo-induced genes located in regions of atypical base composition has uncovered acquired genetic elements that cumulatively engender pathogenicity. Many of these regions are associated with mobile elements, encode predicted adhesin and invasin-like functions, and are required for full virulence. Some of these regions distinguish broad host range from host-adapted Salmonella serovars and may contribute to inherent differences in host specificity, tissue tropism, and disease manifestation. Maintenance of this archipelago of acquired sequence by selection in specific hosts reveals a fossil record of the evolution of pathogenic species.
Collapse
Affiliation(s)
- C P Conner
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | | | | | | | | |
Collapse
|
49
|
Schmidt KD, Schmidt-Rose T, Römling U, Tümmler B. Differential genome analysis of bacteria by genomic subtractive hybridization and pulsed field gel electrophoresis. Electrophoresis 1998; 19:509-14. [PMID: 9588796 DOI: 10.1002/elps.1150190410] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A comprehensive analysis of the differences between the genomes of two closely related bacterial strains should give insight into the molecular basis of their individual phenotypic and genotypic characteristics. Here we present an integrative approach including two different strategies for the thorough investigation of genomic divergence. We have combined two techniques including genomic subtractive hybridization and comparative genome mapping by pulsed field gel electrophoresis (PFGE) techniques. The subtractive method for which a protocol is given herein results in the production of a library of specific DNA sequence tags present only in one strain, while the construction of macrorestriction maps of the bacterial chromosomes yields data about the overall genome organization and the arrangement and distance of gene loci. Comparison of the physical and genetic maps and determination of the map positions of the strain-specific DNA sequences reveals gross chromosomal modifications, insertions or deletions of additional genetic material, and transpositional events. The further investigation of the strain-specific regions yields information about the nature and origin of the acquired DNA and their influence on the evolution of the individual bacterial genome. The two methods were applied to differential genome analysis of clonal divergence in Pseudomonas aeruginosa choosing two clone C isolates from diverse habitats.
Collapse
Affiliation(s)
- K D Schmidt
- Klinische Forschergruppe, Zentrum Biochemie, Medizinische Hochschule Hannover, Germany
| | | | | | | |
Collapse
|
50
|
Römling U, Schmidt KD, Tümmler B. Large genome rearrangements discovered by the detailed analysis of 21 Pseudomonas aeruginosa clone C isolates found in environment and disease habitats. J Mol Biol 1997; 271:386-404. [PMID: 9268667 DOI: 10.1006/jmbi.1997.1186] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In order to determine primary genetic events which occur during the diversification of a Pseudomonas aeruginosa clone in natural habitats, comparative genome analysis of 21 isolates of a predominant clone, called clone C, derived mainly from patients with cystic fibrosis (CF) and the aquatic environment, was carried out. Physical chromosome maps were constructed for the restriction enzymes SpeI, PacI, SwaI and I-CeuI by one and two-dimensional pulsed-field gel electrophoresis and by comparison with the existing strain C map. The positioning of 26 genes generated the genetic maps. Chromosome size varied between 6345 and 6606 kilobase-pairs (kb). A plasmid of 95 kb was detected in the strains of non-CF origin and, in addition, was found to be integrated into the chromosome of all strains but one CF isolate. Four subgroups of clone C strains were discriminated by the acquisition and loss of large blocks of DNA that could cover more than 10% of the chromosome size. The exchange of DNA blocks which ranged in size from 1 kb to 214 kb occurred preferentially around the terminus of replication region which is poor in biosynthetic genes. Genetic material which was additionally introduced into strain C in comparison with strain PAO seems to be a target of mutational processes in clone C strains. Within and among subgroups CF isolates frequently exhibited large inversions affecting the whole chromosomal structure. We concluded that the exchange of DNA blocks by mechanisms of horizontal transfer and large chromosomal inversions are major factors leading to the divergence of a clone in the species P. aeruginosa.
Collapse
Affiliation(s)
- U Römling
- Klinische Forschergruppe Institut für Biophysikalische Chemie und Pädiatrische Pneumologie, Medizinische Hochschule Hannover, OE 4350, Hannover, D-30623, Germany
| | | | | |
Collapse
|