1
|
Bechtel A, Lu J, Mummy D, Bier E, Leewiwatwong S, Mugler J, Kabir S, Church A, Driehuys B. Establishing a hemoglobin adjustment for 129 Xe gas exchange MRI and MRS. Magn Reson Med 2023; 90:1555-1568. [PMID: 37246900 PMCID: PMC10524939 DOI: 10.1002/mrm.29712] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/10/2023] [Accepted: 05/02/2023] [Indexed: 05/30/2023]
Abstract
PURPOSE 129 Xe MRI and MRS signals from airspaces, membrane tissues (M), and red blood cells (RBCs) provide measurements of pulmonary gas exchange. However, 129 Xe MRI/MRS studies have yet to account for hemoglobin concentration (Hb), which is expected to affect the uptake of 129 Xe in the membrane and RBC compartments. We propose a framework to adjust the membrane and RBC signals for Hb and use this to assess sex-specific differences in RBC/M and establish a Hb-adjusted healthy reference range for the RBC/M ratio. METHODS We combined the 1D model of xenon gas exchange (MOXE) with the principle of TR-flip angle equivalence to establish scaling factors that normalize the dissolved-phase signals with respect to a standardH b 0 $$ H{b}^0 $$ (14 g/dL). 129 Xe MRI/MRS data from a healthy, young cohort (n = 18, age = 25.0± $$ \pm $$ 3.4 years) were used to validate this model and assess the impact of Hb adjustment on M/gas and RBC/gas images and RBC/M. RESULTS Adjusting for Hb caused RBC/M to change by up to 20% in healthy individuals with normal Hb and had marked impacts on M/gas and RBC/gas distributions in 3D gas-exchange maps. RBC/M was higher in males than females both before and after Hb adjustment (p < 0.001). After Hb adjustment, the healthy reference value for RBC/M for a consortium-recommended acquisition of TR = 15 ms and flip = 20° was 0.589± $$ \pm $$ 0.083 (mean± $$ \pm $$ SD). CONCLUSION MOXE provides a useful framework for evaluating the Hb dependence of the membrane and RBC signals. This work indicates that adjusting for Hb is essential for accurately assessing 129 Xe gas-exchange MRI/MRS metrics.
Collapse
Affiliation(s)
- Aryil Bechtel
- Radiology, Duke University Medical Center, Durham, North Carolina, United States
| | - Junlan Lu
- Medical Physics Graduate Program, Duke University, Durham, North Carolina
| | - David Mummy
- Radiology, Duke University Medical Center, Durham, North Carolina, United States
| | - Elianna Bier
- Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | | | - John Mugler
- Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia
| | - Sakib Kabir
- Radiology, Duke University Medical Center, Durham, North Carolina, United States
| | - Alex Church
- Radiology, Duke University Medical Center, Durham, North Carolina, United States
| | - Bastiaan Driehuys
- Radiology, Duke University Medical Center, Durham, North Carolina, United States
- Medical Physics Graduate Program, Duke University, Durham, North Carolina
- Biomedical Engineering, Duke University, Durham, North Carolina, United States
| |
Collapse
|
2
|
Bryden N, McHugh CT, Kelley M, Branca RT. Longitudinal nuclear spin relaxation of 129 Xe in solution and in hollow fiber membranes at low and high magnetic field strengths. Magn Reson Med 2022; 88:2005-2013. [PMID: 35726363 PMCID: PMC9420755 DOI: 10.1002/mrm.29362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/04/2022] [Accepted: 05/26/2022] [Indexed: 11/12/2022]
Abstract
PURPOSE To measure dissolved-phase 129 Xe T1 values at high and low magnetic fields and the field dependence of 129 Xe depolarization by hollow fiber membranes used to infuse hyperpolarized xenon in solution. METHODS Dissolved-phase T1 measurements were made at 11.7T and 2.1 mT by bubbling xenon in solution and by using a variable delay to allow spins to partially relax back to thermal equilibrium before probing their magnetization. At high field, relaxation values were compared to those obtained by using the small flip angle method. For depolarization studies, we probed the magnetization of the polarized gas diffusing through an exchange membrane module placed at different field strengths. RESULTS Total loss of polarization was observed for xenon diffusing through hollow fiber membranes at low field, while significant polarization loss (>20%) was observed at magnetic fields up to 2T. Dissolved-phase 129 Xe T1 values were found consistently shorter at 2.1 mT compared to 11.7T. In addition, both O2 and Xe gas concentrations in solution were found to significantly affect dissolved-phase 129 Xe T1 values. CONCLUSION Dissolved-phase 129 Xe measurements are feasible at low field, but to assess the feasibility of in vivo dissolved-phase imaging and spectroscopy the T1 of xenon in blood will need to be measured. Both O2 and Xe concentrations in solution are found to greatly affect dissolved-phase 129 Xe T1 values and may explain, along with RF miscalibration, the large discrepancy in previously reported results.
Collapse
Affiliation(s)
- Nicholas Bryden
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Christian T McHugh
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michele Kelley
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rosa T Branca
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Buntkowsky G, Theiss F, Lins J, Miloslavina YA, Wienands L, Kiryutin A, Yurkovskaya A. Recent advances in the application of parahydrogen in catalysis and biochemistry. RSC Adv 2022; 12:12477-12506. [PMID: 35480380 PMCID: PMC9039419 DOI: 10.1039/d2ra01346k] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/23/2022] [Indexed: 12/15/2022] Open
Abstract
Nuclear Magnetic Resonance (NMR) spectroscopy and Magnetic Resonance Imaging (MRI) are analytical and diagnostic tools that are essential for a very broad field of applications, ranging from chemical analytics, to non-destructive testing of materials and the investigation of molecular dynamics, to in vivo medical diagnostics and drug research. One of the major challenges in their application to many problems is the inherent low sensitivity of magnetic resonance, which results from the small energy-differences of the nuclear spin-states. At thermal equilibrium at room temperature the normalized population difference of the spin-states, called the Boltzmann polarization, is only on the order of 10-5. Parahydrogen induced polarization (PHIP) is an efficient and cost-effective hyperpolarization method, which has widespread applications in Chemistry, Physics, Biochemistry, Biophysics, and Medical Imaging. PHIP creates its signal-enhancements by means of a reversible (SABRE) or irreversible (classic PHIP) chemical reaction between the parahydrogen, a catalyst, and a substrate. Here, we first give a short overview about parahydrogen-based hyperpolarization techniques and then review the current literature on method developments and applications of various flavors of the PHIP experiment.
Collapse
Affiliation(s)
- Gerd Buntkowsky
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Alarich-Weiss-Str. 8 D-64287 Darmstadt Germany
| | - Franziska Theiss
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Alarich-Weiss-Str. 8 D-64287 Darmstadt Germany
| | - Jonas Lins
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Alarich-Weiss-Str. 8 D-64287 Darmstadt Germany
| | - Yuliya A Miloslavina
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Alarich-Weiss-Str. 8 D-64287 Darmstadt Germany
| | - Laura Wienands
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Alarich-Weiss-Str. 8 D-64287 Darmstadt Germany
| | - Alexey Kiryutin
- International Tomography Center, Siberian Branch of the Russian Academy of Science Novosibirsk 630090 Russia
| | - Alexandra Yurkovskaya
- International Tomography Center, Siberian Branch of the Russian Academy of Science Novosibirsk 630090 Russia
| |
Collapse
|
4
|
MacCulloch K, Tomhon P, Browning A, Akeroyd E, Lehmkuhl S, Chekmenev EY, Theis T. Hyperpolarization of common antifungal agents with SABRE. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:1225-1235. [PMID: 34121211 PMCID: PMC8595556 DOI: 10.1002/mrc.5187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 05/09/2023]
Abstract
Signal amplification by reversible exchange (SABRE) is a robust and inexpensive hyperpolarization (HP) technique to enhance nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) signals using parahydrogen (pH2 ). The substrate scope of SABRE is continually expanding. Here, we present the polarization of three antifungal drugs (voriconazole, clotrimazole, and fluconazole) and elicit the detailed HP mechanisms for 1 H and 15 N nuclei. In this exploratory work, 15 N polarization values of ~1% were achieved using 50% pH2 in solution of 3-mM catalyst and 60-mM substrate in perdeuterated methanol. All hyperpolarized 15 N sites exhibited long T1 in excess of 1 min at a clinically relevant field of 1 T. Hyperpolarizing common drugs is of interest due to their potential biomedical applications as MRI contrast agents or to enable studies on protein dynamics at physiological concentrations. We optimize the polarization with respect to temperature and the polarization transfer field (PTF) for 1 H nuclei in the millitesla regime and for 15 N nuclei in the microtesla regime, which provides detailed insights into exchange kinetics and spin evolution. This work broadens the SABRE substrate scope and provides mechanistic and kinetic insights into the HP process.
Collapse
Affiliation(s)
- Keilian MacCulloch
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Patrick Tomhon
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Austin Browning
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Evan Akeroyd
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Sören Lehmkuhl
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI, USA
- Chemistry, Russian Academy of Sciences, Moscow, Moscow Region, Russia
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC and North Carolina State University, Raleigh, NC, USA
- Department of Physics, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
5
|
Abstract
The use of magnetic resonance imaging (MRI) and spectroscopy (MRS) in the clinical setting enables the acquisition of valuable anatomical information in a rapid, non-invasive fashion. However, MRI applications for identifying disease-related biomarkers are limited due to low sensitivity at clinical magnetic field strengths. The development of hyperpolarized (hp) 129Xe MRI/MRS techniques as complements to traditional 1H-based imaging has been a burgeoning area of research over the past two decades. Pioneering experiments have shown that hp 129Xe can be encapsulated within host molecules to generate ultrasensitive biosensors. In particular, xenon has high affinity for cryptophanes, which are small organic cages that can be functionalized with affinity tags, fluorophores, solubilizing groups, and other moieties to identify biomedically relevant analytes. Cryptophane sensors designed for proteins, metal ions, nucleic acids, pH, and temperature have achieved nanomolar-to-femtomolar limits of detection via a combination of 129Xe hyperpolarization and chemical exchange saturation transfer (CEST) techniques. This review aims to summarize the development of cryptophane biosensors for 129Xe MRI applications, while highlighting innovative biosensor designs and the consequent enhancements in detection sensitivity, which will be invaluable in expanding the scope of 129Xe MRI. This review aims to summarize the development of cryptophane biosensors for 129Xe MRI applications, while highlighting innovative biosensor designs and the consequent enhancements in detection sensitivity, which will be invaluable in expanding the scope of 129Xe MRI.![]()
Collapse
Affiliation(s)
- Serge D Zemerov
- Department of Chemistry, University of Pennsylvania, 231 South 34 St., Philadelphia, PA 19104-6323, USA
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 South 34 St., Philadelphia, PA 19104-6323, USA
| |
Collapse
|
6
|
Khan AS, Harvey RL, Birchall JR, Irwin RK, Nikolaou P, Schrank G, Emami K, Dummer A, Barlow MJ, Goodson BM, Chekmenev EY. Enabling Clinical Technologies for Hyperpolarized 129 Xenon Magnetic Resonance Imaging and Spectroscopy. Angew Chem Int Ed Engl 2021; 60:22126-22147. [PMID: 34018297 PMCID: PMC8478785 DOI: 10.1002/anie.202015200] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 11/06/2022]
Abstract
Hyperpolarization is a technique that can increase nuclear spin polarization with the corresponding gains in nuclear magnetic resonance (NMR) signals by 4-8 orders of magnitude. When this process is applied to biologically relevant samples, the hyperpolarized molecules can be used as exogenous magnetic resonance imaging (MRI) contrast agents. A technique called spin-exchange optical pumping (SEOP) can be applied to hyperpolarize noble gases such as 129 Xe. Techniques based on hyperpolarized 129 Xe are poised to revolutionize clinical lung imaging, offering a non-ionizing, high-contrast alternative to computed tomography (CT) imaging and conventional proton MRI. Moreover, CT and conventional proton MRI report on lung tissue structure but provide little functional information. On the other hand, when a subject breathes hyperpolarized 129 Xe gas, functional lung images reporting on lung ventilation, perfusion and diffusion with 3D readout can be obtained in seconds. In this Review, the physics of SEOP is discussed and the different production modalities are explained in the context of their clinical application. We also briefly compare SEOP to other hyperpolarization methods and conclude this paper with the outlook for biomedical applications of hyperpolarized 129 Xe to lung imaging and beyond.
Collapse
Affiliation(s)
- Alixander S Khan
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Rebecca L Harvey
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Jonathan R Birchall
- Intergrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Robert K Irwin
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, NG7 2RD, UK
| | | | - Geoffry Schrank
- Northrup Grumman Space Systems, 45101 Warp Drive, Sterling, VA, 20166, USA
| | | | | | - Michael J Barlow
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Boyd M Goodson
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, IL, 62901, USA
- Materials Technology Center, Southern Illinois University, 1245 Lincoln Drive, Carbondale, IL, 62901, USA
| | - Eduard Y Chekmenev
- Intergrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), 5101 Cass Avenue, Detroit, MI, 48202, USA
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow, 119991, Russia
| |
Collapse
|
7
|
Khan AS, Harvey RL, Birchall JR, Irwin RK, Nikolaou P, Schrank G, Emami K, Dummer A, Barlow MJ, Goodson BM, Chekmenev EY. Enabling Clinical Technologies for Hyperpolarized
129
Xenon Magnetic Resonance Imaging and Spectroscopy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Alixander S. Khan
- Sir Peter Mansfield Imaging Centre University of Nottingham Nottingham NG7 2RD UK
| | - Rebecca L. Harvey
- Sir Peter Mansfield Imaging Centre University of Nottingham Nottingham NG7 2RD UK
| | - Jonathan R. Birchall
- Intergrative Biosciences (Ibio) Wayne State University, Karmanos Cancer Institute (KCI) 5101 Cass Avenue Detroit MI 48202 USA
| | - Robert K. Irwin
- Sir Peter Mansfield Imaging Centre University of Nottingham Nottingham NG7 2RD UK
| | | | - Geoffry Schrank
- Northrup Grumman Space Systems 45101 Warp Drive Sterling VA 20166 USA
| | | | | | - Michael J. Barlow
- Sir Peter Mansfield Imaging Centre University of Nottingham Nottingham NG7 2RD UK
| | - Boyd M. Goodson
- Department of Chemistry and Biochemistry Southern Illinois University 1245 Lincoln Drive Carbondale IL 62901 USA
- Materials Technology Center Southern Illinois University 1245 Lincoln Drive Carbondale IL 62901 USA
| | - Eduard Y. Chekmenev
- Intergrative Biosciences (Ibio) Wayne State University, Karmanos Cancer Institute (KCI) 5101 Cass Avenue Detroit MI 48202 USA
- Russian Academy of Sciences Leninskiy Prospekt 14 Moscow 119991 Russia
| |
Collapse
|
8
|
Marshall H, Stewart NJ, Chan HF, Rao M, Norquay G, Wild JM. In vivo methods and applications of xenon-129 magnetic resonance. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 122:42-62. [PMID: 33632417 PMCID: PMC7933823 DOI: 10.1016/j.pnmrs.2020.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 05/28/2023]
Abstract
Hyperpolarised gas lung MRI using xenon-129 can provide detailed 3D images of the ventilated lung airspaces, and can be applied to quantify lung microstructure and detailed aspects of lung function such as gas exchange. It is sensitive to functional and structural changes in early lung disease and can be used in longitudinal studies of disease progression and therapy response. The ability of 129Xe to dissolve into the blood stream and its chemical shift sensitivity to its local environment allow monitoring of gas exchange in the lungs, perfusion of the brain and kidneys, and blood oxygenation. This article reviews the methods and applications of in vivo129Xe MR in humans, with a focus on the physics of polarisation by optical pumping, radiofrequency coil and pulse sequence design, and the in vivo applications of 129Xe MRI and MRS to examine lung ventilation, microstructure and gas exchange, blood oxygenation, and perfusion of the brain and kidneys.
Collapse
Affiliation(s)
- Helen Marshall
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Neil J Stewart
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Ho-Fung Chan
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Madhwesha Rao
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Graham Norquay
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Jim M Wild
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
9
|
Amzajerdian F, Ruppert K, Hamedani H, Baron R, Xin Y, Loza L, Achekzai T, Duncan IF, Qian Y, Pourfathi M, Kadlecek S, Rizi RR. Measuring pulmonary gas exchange using compartment-selective xenon-polarization transfer contrast (XTC) MRI. Magn Reson Med 2020; 85:2709-2722. [PMID: 33283943 DOI: 10.1002/mrm.28626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE To demonstrate the feasibility of generating red blood cell (RBC) and tissue/plasma (TP)-specific gas-phase (GP) depolarization maps using xenon-polarization transfer contrast (XTC) MR imaging. METHODS Imaging was performed in three healthy subjects, an asymptomatic smoker, and a chronic obstructive pulmonary disease (COPD) patient. Single-breath XTC data were acquired through a series of three GP images using a 2D multi-slice GRE during a 12 s breath-hold. A series of 8 ms Gaussian inversion pulses spaced 30 ms apart were applied in-between the images to quantify the exchange between the GP and dissolved-phase (DP) compartments. Inversion pulses were either centered on-resonance to generate contrast, or off-resonance to correct for other sources of signal loss. For an alternative scheme, inversions of both RBC and TP resonances were inserted in lieu of off-resonance pulses. Finally, this technique was extended to a multi-breath protocol consistent with tidal breathing, involving 30 consecutive acquisitions. RESULTS Inversion pulses shifted off-resonance by 20 ppm to mimic the distance between the RBC and TP resonances demonstrated selectivity, and initial GP depolarization maps illustrated stark magnitude and distribution differences between healthy and diseased subjects that were consistent with traditional approaches. CONCLUSION The proposed DP-compartment selective XTC MRI technique provides information on gas exchange between all three detectable states of xenon in the lungs and is sufficiently sensitive to indicate differences in lung function between the study subjects. Investigated extensions of this approach to imaging schemes that either minimize breath-hold duration or the overall number of breath-holds open avenues for future research to improve measurement accuracy and patient comfort.
Collapse
Affiliation(s)
- Faraz Amzajerdian
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kai Ruppert
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hooman Hamedani
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ryan Baron
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yi Xin
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Luis Loza
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tahmina Achekzai
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ian F Duncan
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yiwen Qian
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mehrdad Pourfathi
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephen Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rahim R Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Jayapaul J, Schröder L. Molecular Sensing with Host Systems for Hyperpolarized 129Xe. Molecules 2020; 25:E4627. [PMID: 33050669 PMCID: PMC7587211 DOI: 10.3390/molecules25204627] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Hyperpolarized noble gases have been used early on in applications for sensitivity enhanced NMR. 129Xe has been explored for various applications because it can be used beyond the gas-driven examination of void spaces. Its solubility in aqueous solutions and its affinity for hydrophobic binding pockets allows "functionalization" through combination with host structures that bind one or multiple gas atoms. Moreover, the transient nature of gas binding in such hosts allows the combination with another signal enhancement technique, namely chemical exchange saturation transfer (CEST). Different systems have been investigated for implementing various types of so-called Xe biosensors where the gas binds to a targeted host to address molecular markers or to sense biophysical parameters. This review summarizes developments in biosensor design and synthesis for achieving molecular sensing with NMR at unprecedented sensitivity. Aspects regarding Xe exchange kinetics and chemical engineering of various classes of hosts for an efficient build-up of the CEST effect will also be discussed as well as the cavity design of host molecules to identify a pool of bound Xe. The concept is presented in the broader context of reporter design with insights from other modalities that are helpful for advancing the field of Xe biosensors.
Collapse
Affiliation(s)
| | - Leif Schröder
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany;
| |
Collapse
|
11
|
Du K, Zemerov SD, Hurtado Parra S, Kikkawa JM, Dmochowski IJ. Paramagnetic Organocobalt Capsule Revealing Xenon Host-Guest Chemistry. Inorg Chem 2020; 59:13831-13844. [PMID: 32207611 PMCID: PMC7672707 DOI: 10.1021/acs.inorgchem.9b03634] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We investigated Xe binding in a previously reported paramagnetic metal-organic tetrahedral capsule, [Co4L6]4-, where L2- = 4,4'-bis[(2-pyridinylmethylene)amino][1,1'-biphenyl]-2,2'-disulfonate. The Xe-inclusion complex, [XeCo4L6]4-, was confirmed by 1H NMR spectroscopy to be the dominant species in aqueous solution saturated with Xe gas. The measured Xe dissociation rate in [XeCo4L6]4-, koff = 4.45(5) × 102 s-1, was at least 40 times greater than that in the analogous [XeFe4L6]4- complex, highlighting the capability of metal-ligand interactions to tune the capsule size and guest permeability. The rapid exchange of 129Xe nuclei in [XeCo4L6]4- produced significant hyperpolarized 129Xe chemical exchange saturation transfer (hyper-CEST) NMR signal at 298 K, detected at a concentration of [XeCo4L6]4- as low as 100 pM, with presaturation at -89 ppm, which was referenced to solvated 129Xe in H2O. The saturation offset was highly temperature-dependent with a slope of -0.41(3) ppm/K, which is attributed to hyperfine interactions between the encapsulated 129Xe nucleus and electron spins on the four CoII centers. As such, [XeCo4L6]4- represents the first example of a paramagnetic hyper-CEST (paraHYPERCEST) sensor. Remarkably, the hyper-CEST 129Xe NMR resonance for [XeCo4L6]4- (δ = -89 ppm) was shifted 105 ppm upfield from the diamagnetic analogue [XeFe4L6]4- (δ = +16 ppm). The Xe inclusion complex was further characterized in the crystal structure of (C(NH2)3)4[Xe0.7Co4L6]·75 H2O (1). Hydrogen bonding between capsule-linker sulfonate groups and exogenous guanidinium cations, (C(NH2)3)+, stabilized capsule-capsule interactions in the solid state and also assisted in trapping a Xe atom (∼42 Å3) in the large (135 Å3) cavity of 1. Magnetic susceptibility measurements confirmed the presence of four noninteracting, magnetically anisotropic high-spin CoII centers in 1. Furthermore, [Co4L6]4- was found to be stable toward aggregation and oxidation, and the CEST performance of [XeCo4L6]4- was unaffected by biological macromolecules in H2O. These results recommend metal-organic capsules for fundamental investigations of Xe host-guest chemistry as well as applications with highly sensitive 129Xe-based sensors.
Collapse
|
12
|
Zhao Z, Roose BW, Zemerov SD, Stringer MA, Dmochowski IJ. Detecting protein-protein interactions by Xe-129 NMR. Chem Commun (Camb) 2020; 56:11122-11125. [PMID: 32814938 PMCID: PMC7511426 DOI: 10.1039/d0cc02988b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Detection of protein-protein interactions (PPIs) is limited by current bioanalytical methods. A protein complementation assay (PCA), split TEM-1 β-lactamase, interacts with xenon at the interface of the TEM-1 fragments. Reconstitution of TEM-1-promoted here by cFos/cJun leucine zipper interaction-gives rise to sensitive 129Xe NMR signal in bacterial cells.
Collapse
Affiliation(s)
- Zhuangyu Zhao
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | - Benjamin W Roose
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | - Serge D Zemerov
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | - Madison A Stringer
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
13
|
Castiglione F, Saielli G, Mauri M, Simonutti R, Mele A. Xenon Dynamics in Ionic Liquids: A Combined NMR and MD Simulation Study. J Phys Chem B 2020; 124:6617-6627. [PMID: 32613834 PMCID: PMC8009510 DOI: 10.1021/acs.jpcb.0c03357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
translational dynamics of xenon gas dissolved in room-temperature
ionic liquids (RTILs) is revealed by 129Xe NMR and molecular
dynamics (MD) simulations. The dynamic behavior of xenon gas loaded
in 1-alkyl-3-methylimidazolium chloride, [CnC1im]Cl (n = 6, 8, 10), and hexafluorophosphate,
[CnC1im][PF6] (n = 4, 6, 8, 10) has been determined by measuring the 129Xe diffusion coefficients and NMR relaxation times. The
analysis of the experimental NMR data demonstrates that, in these
representative classes of ionic liquids, xenon motion is influenced
by the length of the cation alkyl chain and anion type. 129Xe spin–lattice relaxation times are well described with a
monoexponential function, indicating that xenon gas in ILs effectively
experiences a single average environment. These experimental results
can be rationalized based on the analysis of classical MD trajectories.
The mechanism described here can be particularly useful in understanding
the separation and adsorption properties of RTILs.
Collapse
Affiliation(s)
- Franca Castiglione
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza L. Da Vinci, 32, 20133 Milano, Italy
| | - Giacomo Saielli
- CNR-Istituto per la Tecnologia delle Membrane, Unità di Padova, Via Marzolo, 1, 35131 Padova, Italy.,Department of Chemical Sciences, University of Padova, Via Marzolo, 1, 35131 Padova, Italy
| | - Michele Mauri
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, Via Roberto Cozzi, 53, 20125 Milano, Italy
| | - Roberto Simonutti
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, Via Roberto Cozzi, 53, 20125 Milano, Italy
| | - Andrea Mele
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza L. Da Vinci, 32, 20133 Milano, Italy.,CNR-SCITEC Istituto di Scienze e Tecnologie Chimiche, Via A. Corti 12, 20133 Milano, Italy
| |
Collapse
|
14
|
Lucero JM, Carreon MA. Separation of Light Gases from Xenon over Porous Organic Cage Membranes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32182-32188. [PMID: 32568506 DOI: 10.1021/acsami.0c08040] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, we demonstrate the successful synthesis and separation ability of CC3 porous organic cage membranes grown on tubular supports for light gases He, CO2, CH4, and Kr over xenon. CC3 membranes were synthesized using secondary seeded growth and displayed different separation performances depending on the crystal size, size distribution of the seeds, and membrane thickness. CC3 membranes as thin as ∼2.5 μm resulted in high single gas permeances of 2114, 1962, 1705, 773, and 162 GPU, for He, CH4, CO2, Kr, and Xe, respectively. The highest ideal selectivities for He/Xe, CH4/Xe, CO2/Xe, and Kr/Xe gas pairs were 13, 12, 10.5, and 4.8, respectively. Mechanistically, the membranes separated He, CO2, Kr, and CH4 from Xe mainly via gas diffusivity differences. Therefore, the separation was kinetically driven.
Collapse
Affiliation(s)
- Jolie M Lucero
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Moises A Carreon
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
15
|
Schnurr M, Volk I, Nikolenko H, Winkler L, Dathe M, Schröder L. Functionalized Lipopeptide Micelles as Highly Efficient NMR Depolarization Seed Points for Targeted Cell Labelling in Xenon MRI. ACTA ACUST UNITED AC 2020; 4:e1900251. [PMID: 32293139 DOI: 10.1002/adbi.201900251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/28/2019] [Indexed: 01/07/2023]
Abstract
Improving diagnostic imaging and therapy by targeted compound delivery to pathological areas and across biological barriers is of urgent need. A lipopeptide, P-CrA-A2, composed of a highly cationic peptide sequence (A2), an N-terminally attached palmitoyl chain (P) and cryptophane molecule (CrA) for preferred uptake into blood-brain barrier (BBB) capillary endothelial cells, was generated. CrA allows reversible binding of Xe for NMR detection with hyperpolarized nuclei. The lipopeptide forms size-optimized micelles with a diameter of about 11 nm at low micromolar concentration. Their high local CrA payload has a strong and switchable impact on the bulk magnetization through Hyper-CEST detection. Covalent fixation of CrA does not impede micelle formation and does not hamper its host functionality but simplifies Xe access to hosts for inducing saturation transfer. Xe Hyper-CEST magnetic resonance imaging (MRI) allows for distinguishing BBB endothelial cells from control aortic endothelial cells, and the small micelle volume with a sevenfold improved CrA-loading density compared to liposomal carriers allows preferred cell labelling with a minimally invasive volume (≈16 000-fold more efficient than 19 F cell labelling). Thus, these nanoscopic particles combine selectivity for human brain capillary endothelial cells with great sensitivity of Xe Hyper-CEST MRI and might be a potential MRI tool in brain diagnostics.
Collapse
Affiliation(s)
- Matthias Schnurr
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Ines Volk
- Peptide-Lipid Interaction / Peptide Transport, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Heike Nikolenko
- Peptide-Lipid Interaction / Peptide Transport, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Lars Winkler
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Margitta Dathe
- Peptide-Lipid Interaction / Peptide Transport, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Leif Schröder
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| |
Collapse
|
16
|
Topping GJ, Hundshammer C, Nagel L, Grashei M, Aigner M, Skinner JG, Schulte RF, Schilling F. Acquisition strategies for spatially resolved magnetic resonance detection of hyperpolarized nuclei. MAGMA (NEW YORK, N.Y.) 2020; 33:221-256. [PMID: 31811491 PMCID: PMC7109201 DOI: 10.1007/s10334-019-00807-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/08/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Hyperpolarization is an emerging method in magnetic resonance imaging that allows nuclear spin polarization of gases or liquids to be temporarily enhanced by up to five or six orders of magnitude at clinically relevant field strengths and administered at high concentration to a subject at the time of measurement. This transient gain in signal has enabled the non-invasive detection and imaging of gas ventilation and diffusion in the lungs, perfusion in blood vessels and tissues, and metabolic conversion in cells, animals, and patients. The rapid development of this method is based on advances in polarizer technology, the availability of suitable probe isotopes and molecules, improved MRI hardware and pulse sequence development. Acquisition strategies for hyperpolarized nuclei are not yet standardized and are set up individually at most sites depending on the specific requirements of the probe, the object of interest, and the MRI hardware. This review provides a detailed introduction to spatially resolved detection of hyperpolarized nuclei and summarizes novel and previously established acquisition strategies for different key areas of application.
Collapse
Affiliation(s)
- Geoffrey J Topping
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christian Hundshammer
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Luca Nagel
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Martin Grashei
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maximilian Aigner
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jason G Skinner
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Franz Schilling
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
17
|
Jayapaul J, Schröder L. Nanoparticle-Based Contrast Agents for 129Xe HyperCEST NMR and MRI Applications. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:9498173. [PMID: 31819739 PMCID: PMC6893250 DOI: 10.1155/2019/9498173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/15/2019] [Indexed: 02/06/2023]
Abstract
Spin hyperpolarization techniques have enabled important advancements in preclinical and clinical MRI applications to overcome the intrinsic low sensitivity of nuclear magnetic resonance. Functionalized xenon biosensors represent one of these approaches. They combine two amplification strategies, namely, spin exchange optical pumping (SEOP) and chemical exchange saturation transfer (CEST). The latter one requires host structures that reversibly bind the hyperpolarized noble gas. Different nanoparticle approaches have been implemented and have enabled molecular MRI with 129Xe at unprecedented sensitivity. This review gives an overview of the Xe biosensor concept, particularly how different nanoparticles address various critical aspects of gas binding and exchange, spectral dispersion for multiplexing, and targeted reporter delivery. As this concept is emerging into preclinical applications, comprehensive sensor design will be indispensable in translating the outstanding sensitivity potential into biomedical molecular imaging applications.
Collapse
Affiliation(s)
- Jabadurai Jayapaul
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Leif Schröder
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| |
Collapse
|
18
|
Abstract
GEST NMR provides dynamic information on host–guest systems. It allows signal amplification of low concentrated complexes, detection of intermolecular interactions and quantification of guest exchange rates.
Collapse
Affiliation(s)
- Liat Avram
- Faculty of Chemistry
- Weizmann Institute of Science
- 7610001 Rehovot
- Israel
| | - Amnon Bar-Shir
- Faculty of Chemistry
- Weizmann Institute of Science
- 7610001 Rehovot
- Israel
| |
Collapse
|
19
|
Kiryutin AS, Sauer G, Hadjiali S, Yurkovskaya AV, Breitzke H, Buntkowsky G. A highly versatile automatized setup for quantitative measurements of PHIP enhancements. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 285:26-36. [PMID: 29073504 DOI: 10.1016/j.jmr.2017.10.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/12/2017] [Accepted: 10/14/2017] [Indexed: 05/02/2023]
Abstract
The design and application of a versatile and inexpensive experimental extension to NMR spectrometers is described that allows to carry out highly reproducible PHIP experiments directly in the NMR sample tube, i.e. under PASADENA condition, followed by the detection of the NMR spectra of hyperpolarized products with high spectral resolution. Employing this high resolution it is feasible to study kinetic processes in the solution with high accuracy. As a practical example the dissolution of hydrogen gas in the liquid and the PHIP kinetics during the hydrogenation reaction of Fmoc-O-propargyl-l-tyrosine in acetone-d6 are monitored. The timing of the setup is fully controlled by the pulse-programmer of the NMR spectrometer. By flushing with an inert gas it is possible to efficiently quench the hydrogenation reaction in a controlled fashion and to detect the relaxation of hyperpolarization without a background reaction. The proposed design makes it possible to carry out PHIP experiments in an automatic mode and reliably determine the enhancement of polarized signals.
Collapse
Affiliation(s)
- Alexey S Kiryutin
- International Tomography Center, Institutskaya 3A, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Grit Sauer
- Technische Universität Darmstadt, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Alarich-Weiss-Straße 8, Darmstadt 64287, Germany
| | - Sara Hadjiali
- Technische Universität Darmstadt, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Alarich-Weiss-Straße 8, Darmstadt 64287, Germany
| | - Alexandra V Yurkovskaya
- International Tomography Center, Institutskaya 3A, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Hergen Breitzke
- Technische Universität Darmstadt, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Alarich-Weiss-Straße 8, Darmstadt 64287, Germany
| | - Gerd Buntkowsky
- Technische Universität Darmstadt, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Alarich-Weiss-Straße 8, Darmstadt 64287, Germany.
| |
Collapse
|
20
|
Barskiy DA, Coffey AM, Nikolaou P, Mikhaylov DM, Goodson BM, Branca RT, Lu GJ, Shapiro MG, Telkki VV, Zhivonitko VV, Koptyug IV, Salnikov OG, Kovtunov KV, Bukhtiyarov VI, Rosen MS, Barlow MJ, Safavi S, Hall IP, Schröder L, Chekmenev EY. NMR Hyperpolarization Techniques of Gases. Chemistry 2017; 23:725-751. [PMID: 27711999 PMCID: PMC5462469 DOI: 10.1002/chem.201603884] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Indexed: 01/09/2023]
Abstract
Nuclear spin polarization can be significantly increased through the process of hyperpolarization, leading to an increase in the sensitivity of nuclear magnetic resonance (NMR) experiments by 4-8 orders of magnitude. Hyperpolarized gases, unlike liquids and solids, can often be readily separated and purified from the compounds used to mediate the hyperpolarization processes. These pure hyperpolarized gases enabled many novel MRI applications including the visualization of void spaces, imaging of lung function, and remote detection. Additionally, hyperpolarized gases can be dissolved in liquids and can be used as sensitive molecular probes and reporters. This Minireview covers the fundamentals of the preparation of hyperpolarized gases and focuses on selected applications of interest to biomedicine and materials science.
Collapse
Affiliation(s)
- Danila A Barskiy
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
| | - Aaron M Coffey
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
| | - Panayiotis Nikolaou
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
| | | | - Boyd M Goodson
- Southern Illinois University, Department of Chemistry and Biochemistry, Materials Technology Center, Carbondale, IL, 62901, USA
| | - Rosa T Branca
- Department of Physics and Astronomy, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - George J Lu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | | | - Vladimir V Zhivonitko
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Igor V Koptyug
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Oleg G Salnikov
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Valerii I Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
| | - Matthew S Rosen
- MGH/A.A. Martinos Center for Biomedical Imaging, Boston, MA, 02129, USA
| | - Michael J Barlow
- Respiratory Medicine Department, Queen's Medical Centre, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Shahideh Safavi
- Respiratory Medicine Department, Queen's Medical Centre, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Ian P Hall
- Respiratory Medicine Department, Queen's Medical Centre, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Leif Schröder
- Molecular Imaging, Department of Structural Biology, Leibniz-Institut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Eduard Y Chekmenev
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
- Russian Academy of Sciences, 119991, Moscow, Russia
| |
Collapse
|
21
|
Mari E, Berthault P. 129Xe NMR-based sensors: biological applications and recent methods. Analyst 2017; 142:3298-3308. [DOI: 10.1039/c7an01088e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Molecular systems that target analytes of interest and host spin-hyperpolarized xenon lead to powerful 129Xe NMR-based sensors.
Collapse
Affiliation(s)
- E. Mari
- NIMBE
- CEA
- CNRS
- Université de Paris Saclay
- CEA Saclay
| | - P. Berthault
- NIMBE
- CEA
- CNRS
- Université de Paris Saclay
- CEA Saclay
| |
Collapse
|
22
|
Robertson SH, Virgincar RS, Bier EA, He M, Schrank GM, Smigla RM, Rackley C, McAdams HP, Driehuys B. Uncovering a third dissolved-phase 129 Xe resonance in the human lung: Quantifying spectroscopic features in healthy subjects and patients with idiopathic pulmonary fibrosis. Magn Reson Med 2016; 78:1306-1315. [PMID: 28940334 DOI: 10.1002/mrm.26533] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/12/2016] [Accepted: 10/06/2016] [Indexed: 01/25/2023]
Abstract
PURPOSE The purpose of this work was to accurately characterize the spectral properties of hyperpolarized 129 Xe in patients with idiopathic pulmonary fibrosis (IPF) compared to healthy volunteers. METHODS Subjects underwent hyperpolarized 129 Xe breath-hold spectroscopy, during which 38 dissolved-phase free induction decays (FIDs) were acquired after reaching steady state (echo time/repetition time = 0.875/50 ms; bandwidth = 8.06 kHz; flip angle≈22 °). FIDs were averaged and then decomposed into multiple spectral components using time-domain curve fitting. The resulting amplitudes, frequencies, line widths, and starting phases of each component were compared among groups using a Mann-Whitney-Wilcoxon U test. RESULTS Three dissolved-phase resonances, consisting of red blood cells (RBCs) and two barrier compartments, were consistently identified in all subjects. In subjects with IPF relative to healthy volunteers, the RBC frequency was 0.70 parts per million (ppm) more negative (P = 0.05), the chemical shift of barrier 2 was 0.6 ppm more negative (P = 0.009), the line widths of both barrier peaks were ∼2 ppm narrower (P < 0.001), and the starting phase of barrier 1 was 20.3 ° higher (P = 0.01). Moreover, the ratio RBC:barriers was reduced by 52.9% in IPF (P < 0.001). CONCLUSIONS The accurate decomposition of 129 Xe spectra not only has merit for developing a global metric of pulmonary function, but also provides necessary insights to optimize phase-sensitive methods for imaging 129 Xe gas transfer. Magn Reson Med 78:1306-1315, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Scott H Robertson
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina, USA.,Medical Physics Graduate Program, Duke University, Durham, North Carolina, USA
| | - Rohan S Virgincar
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina, USA.,Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Elianna A Bier
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina, USA.,Medical Physics Graduate Program, Duke University, Durham, North Carolina, USA
| | - Mu He
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina, USA.,Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina, USA
| | - Geoffrey M Schrank
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina, USA
| | - Rose Marie Smigla
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Craig Rackley
- Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - H Page McAdams
- Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Bastiaan Driehuys
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina, USA.,Medical Physics Graduate Program, Duke University, Durham, North Carolina, USA.,Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.,Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
23
|
Abstract
![]()
Molecular imaging holds considerable promise for elucidating biological
processes in normal physiology as well as disease states, by determining
the location and relative concentration of specific molecules of interest.
Proton-based magnetic resonance imaging (1H MRI) is nonionizing
and provides good spatial resolution for clinical imaging but lacks
sensitivity for imaging low-abundance (i.e., submicromolar) molecular
markers of disease or environments with low proton densities. To address
these limitations, hyperpolarized (hp) 129Xe NMR spectroscopy
and MRI have emerged as attractive complementary methodologies. Hyperpolarized
xenon is nontoxic and can be readily delivered to patients via inhalation
or injection, and improved xenon hyperpolarization technology makes
it feasible to image the lungs and brain for clinical applications. In order to target hp 129Xe to biomolecular targets
of interest, the concept of “xenon biosensing” was first
proposed by a Berkeley team in 2001. The development of xenon biosensors
has since focused on modifying organic host molecules (e.g., cryptophanes)
via diverse conjugation chemistries and has brought about numerous
sensing applications including the detection of peptides, proteins,
oligonucleotides, metal ions, chemical modifications, and enzyme activity.
Moreover, the large (∼300 ppm) chemical shift window for hp 129Xe bound to host molecules in water makes possible the simultaneous
identification of multiple species in solution, that is, multiplexing.
Beyond hyperpolarization, a 106-fold signal enhancement
can be achieved through a technique known as hyperpolarized 129Xe chemical exchange saturation transfer (hyper-CEST), which shows
great potential to meet the sensitivity requirement in many applications. This Account highlights an expanded palette of hyper-CEST biosensors,
which now includes cryptophane and cucurbit[6]uril (CB[6]) small-molecule
hosts, as well as genetically encoded gas vesicles and single proteins.
In 2015, we reported picomolar detection of commercially available
CB[6] via hyper-CEST. Inspired by the versatile host–guest
chemistry of CB[6], our lab and others developed “turn-on”
strategies for CB[6]-hyper-CEST biosensing, demonstrating detection
of protein analytes in complex media and specific chemical events.
CB[6] is starting to be employed for in vivo imaging
applications. We also recently determined that TEM-1 β-lactamase
can function as a single-protein reporter for hyper-CEST and observed
useful saturation contrast for β-lactamase expressed in bacterial
and mammalian cells. These newly developed small-molecule and genetically
encoded xenon biosensors offer significant potential to extend the
scope of hp 129Xe toward molecular MRI.
Collapse
Affiliation(s)
- Yanfei Wang
- Department of Chemistry, University of Pennsylvania, 231 South
34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Ivan J. Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 South
34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
24
|
Wang Y, Roose BW, Palovcak EJ, Carnevale V, Dmochowski IJ. A Genetically Encoded β-Lactamase Reporter for Ultrasensitive (129) Xe NMR in Mammalian Cells. Angew Chem Int Ed Engl 2016; 55:8984-7. [PMID: 27305488 DOI: 10.1002/anie.201604055] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/20/2016] [Indexed: 01/27/2023]
Abstract
Molecular imaging holds considerable promise for elucidating biological processes in normal physiology as well as disease states, but requires noninvasive methods for identifying analytes at sub-micromolar concentrations. Particularly useful are genetically encoded, single-protein reporters that harness the power of molecular biology to visualize specific molecular processes, but such reporters have been conspicuously lacking for in vivo magnetic resonance imaging (MRI). Herein, we report TEM-1 β-lactamase (bla) as a single-protein reporter for hyperpolarized (HP) (129) Xe NMR, with significant saturation contrast at 0.1 μm. Xenon chemical exchange saturation transfer (CEST) interactions with the primary allosteric site in bla give rise to a unique saturation peak at 255 ppm, well removed (≈60 ppm downfield) from the (129) Xe-H2 O peak. Useful saturation contrast was also observed for bla expressed in bacterial cells and mammalian cells.
Collapse
Affiliation(s)
- Yanfei Wang
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104-6323, USA
| | - Benjamin W Roose
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104-6323, USA
| | - Eugene J Palovcak
- Institute for Computational Molecular Science, College of Science and Technology, Temple University, 1925 N. 12th Street, Philadelphia, PA, 19122, USA
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, College of Science and Technology, Temple University, 1925 N. 12th Street, Philadelphia, PA, 19122, USA
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104-6323, USA.
| |
Collapse
|
25
|
Wang Y, Roose BW, Palovcak EJ, Carnevale V, Dmochowski IJ. A Genetically Encoded β-Lactamase Reporter for Ultrasensitive129Xe NMR in Mammalian Cells. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yanfei Wang
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street Philadelphia PA 19104-6323 USA
| | - Benjamin W. Roose
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street Philadelphia PA 19104-6323 USA
| | - Eugene J. Palovcak
- Institute for Computational Molecular Science, College of Science and Technology; Temple University; 1925 N. 12th Street Philadelphia PA 19122 USA
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, College of Science and Technology; Temple University; 1925 N. 12th Street Philadelphia PA 19122 USA
| | - Ivan J. Dmochowski
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street Philadelphia PA 19104-6323 USA
| |
Collapse
|
26
|
Rao M, Stewart NJ, Norquay G, Griffiths PD, Wild JM. High resolution spectroscopy and chemical shift imaging of hyperpolarized (129) Xe dissolved in the human brain in vivo at 1.5 tesla. Magn Reson Med 2016; 75:2227-34. [PMID: 27080441 PMCID: PMC4950000 DOI: 10.1002/mrm.26241] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/15/2016] [Accepted: 03/21/2016] [Indexed: 12/01/2022]
Abstract
Purpose Upon inhalation, xenon diffuses into the bloodstream and is transported to the brain, where it dissolves in various compartments of the brain. Although up to five chemically distinct peaks have been previously observed in 129Xe rat head spectra, to date only three peaks have been reported in the human head. This study demonstrates high resolution spectroscopy and chemical shift imaging (CSI) of 129Xe dissolved in the human head at 1.5 Tesla. Methods A 129Xe radiofrequency coil was built in‐house and 129Xe gas was polarized using spin‐exchange optical pumping. Following the inhalation of 129Xe gas, NMR spectroscopy was performed with spectral resolution of 0.033 ppm. Two‐dimensional CSI in all three anatomical planes was performed with spectral resolution of 2.1 ppm and voxel size 20 mm × 20 mm. Results Spectra of hyperpolarized 129Xe dissolved in the human head showed five distinct peaks at 188 ppm, 192 ppm, 196 ppm, 200 ppm, and 217 ppm. Assignment of these peaks was consistent with earlier studies. Conclusion High resolution spectroscopy and CSI of hyperpolarized 129Xe dissolved in the human head has been demonstrated. For the first time, five distinct NMR peaks have been observed in 129Xe spectra from the human head in vivo. Magn Reson Med 75:2227–2234, 2016. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Madhwesha Rao
- Academic Unit of Radiology, University of Sheffield, Sheffield, United Kingdom
| | - Neil J Stewart
- Academic Unit of Radiology, University of Sheffield, Sheffield, United Kingdom
| | - Graham Norquay
- Academic Unit of Radiology, University of Sheffield, Sheffield, United Kingdom
| | - Paul D Griffiths
- Academic Unit of Radiology, University of Sheffield, Sheffield, United Kingdom
| | - Jim M Wild
- Academic Unit of Radiology, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
27
|
Hane FT, Smylie PS, Li T, Ruberto J, Dowhos K, Ball I, Tomanek B, DeBoef B, Albert MS. HyperCEST detection of cucurbit[6]uril in whole blood using an ultrashort saturation Pre-pulse train. CONTRAST MEDIA & MOLECULAR IMAGING 2016; 11:285-90. [DOI: 10.1002/cmmi.1690] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/02/2016] [Accepted: 02/14/2016] [Indexed: 01/23/2023]
Affiliation(s)
- Francis T. Hane
- Lakehead University; Department of Chemistry; 955 Oliver Rd Thunder Bay ON P7B 5E1 Canada
- Thunder Bay Regional Research Institute; 980 Oliver Rd Thunder Bay ON P7B 5E1 Canada
| | - Peter S. Smylie
- Lakehead University; Department of Chemistry; 955 Oliver Rd Thunder Bay ON P7B 5E1 Canada
| | - Tao Li
- Thunder Bay Regional Research Institute; 980 Oliver Rd Thunder Bay ON P7B 5E1 Canada
| | - Julia Ruberto
- Lakehead University; Department of Chemistry; 955 Oliver Rd Thunder Bay ON P7B 5E1 Canada
| | - Krista Dowhos
- Lakehead University; Department of Chemistry; 955 Oliver Rd Thunder Bay ON P7B 5E1 Canada
| | - Iain Ball
- Thunder Bay Regional Research Institute; 980 Oliver Rd Thunder Bay ON P7B 5E1 Canada
- Philips Healthcare; 65 Epping Road North Ryde NSW 2113 Australia
| | - Boguslaw Tomanek
- Thunder Bay Regional Research Institute; 980 Oliver Rd Thunder Bay ON P7B 5E1 Canada
- University of Alberta; Department of Oncology; 11560 University Avenue Edmonton Alberta T6G 1Z2 Canada
| | - Brenton DeBoef
- University of Rhode Island; Department of Chemistry; 51 Lower College Rd Kingston RI 02881 USA
| | - Mitchell S. Albert
- Lakehead University; Department of Chemistry; 955 Oliver Rd Thunder Bay ON P7B 5E1 Canada
- Thunder Bay Regional Research Institute; 980 Oliver Rd Thunder Bay ON P7B 5E1 Canada
| |
Collapse
|
28
|
Virgincar RS, Robertson SH, Nouls J, Degan S, Schrank GM, He M, Driehuys B. Establishing an accurate gas phase reference frequency to quantify 129 Xe chemical shifts in vivo. Magn Reson Med 2016; 77:1438-1445. [PMID: 27059646 DOI: 10.1002/mrm.26229] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 12/25/2022]
Abstract
PURPOSE 129 Xe interacts with biological media to exhibit chemical shifts exceeding 200 ppm that report on physiology and pathology. Extracting this functional information requires shifts to be measured precisely. Historically, shifts have been reported relative to the gas-phase resonance originating from pulmonary airspaces. However, this frequency is not fixed-it is affected by bulk magnetic susceptibility, as well as Xe-N2 , Xe-Xe, and Xe-O2 interactions. In this study, we addressed this by introducing a robust method to determine the 0 ppm 129 Xe reference from in vivo data. METHODS Respiratory-gated hyperpolarized 129 Xe spectra from the gas- and dissolved-phases were acquired in four mice at 2T from multiple axial slices within the thoracic cavity. Complex spectra were then fitted in the time domain to identify peaks. RESULTS Gas-phase 129 Xe exhibited two distinct resonances corresponding to 129 Xe in conducting airways (varying from -0.6 ± 0.2 to 1.3 ± 0.3 ppm) and alveoli (relatively stable, at -2.2 ± 0.1 ppm). Dissolved-phase 129 Xe exhibited five reproducible resonances in the thorax at 198.4 ± 0.4, 195.5 ± 0.4, 193.9 ± 0.2, 191.3 ± 0.2, and 190.7 ± 0.3 ppm. CONCLUSION The alveolar 129 Xe resonance exhibits a stable frequency across all mice. Therefore, it can provide a reliable in vivo reference frequency by which to characterize other spectroscopic shifts. Magn Reson Med 77:1438-1445, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Rohan S Virgincar
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina, USA.,Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Scott H Robertson
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina, USA.,Medical Physics Graduate Program, Duke University, Durham, North Carolina, USA
| | - John Nouls
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina, USA.,Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Simone Degan
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina, USA.,Center for Molecular and Biomolecular Imaging, Duke University Medical Center, Durham, North Carolina, USA
| | - Geoffry M Schrank
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina, USA.,Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Mu He
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina, USA.,Electrical and Computer Engineering, Duke University, Durham North Carolina, USA
| | - Bastiaan Driehuys
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina, USA.,Biomedical Engineering, Duke University, Durham, North Carolina, USA.,Medical Physics Graduate Program, Duke University, Durham, North Carolina, USA.,Radiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
29
|
Stewart NJ, Wild JM. MRI methods for structural and functional assessment of the lungs: proton and multinuclear. IMAGING 2016. [DOI: 10.1183/2312508x.10002115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
30
|
Causier A, Carret G, Boutin C, Berthelot T, Berthault P. 3D-printed system optimizing dissolution of hyperpolarized gaseous species for micro-sized NMR. LAB ON A CHIP 2015; 15:2049-2054. [PMID: 25805248 DOI: 10.1039/c5lc00193e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Dissolution of hyperpolarized species in liquids of interest for NMR is often hampered by the presence of bubbles that degrade the field homogeneity. Here a device composed of a bubble pump and a miniaturized NMR cell both fitted inside the narrow bore of an NMR magnet is built by 3D printing. (129)Xe NMR experiments performed with hyperpolarized xenon reveal high and homogeneous dissolution of the gas in water.
Collapse
Affiliation(s)
- A Causier
- Laboratoire d'Innovation en Chimie des Surfaces et Nanosciences, CEA Saclay, IRAMIS, NIMBE, UMR CEA/CNRS 3685, 91191 Gif sur Yvette, France
| | | | | | | | | |
Collapse
|
31
|
Mauri M, Farina M, Patriarca G, Simonutti R, Klasson KT, Cheng HN. 129Xe NMR Studies of Pecan Shell-Based Biochar and Structure-Process Correlations. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2015. [DOI: 10.1080/1023666x.2015.979038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Cleveland ZI, Virgincar RS, Qi Y, Robertson SH, Degan S, Driehuys B. 3D MRI of impaired hyperpolarized 129Xe uptake in a rat model of pulmonary fibrosis. NMR IN BIOMEDICINE 2014; 27:1502-14. [PMID: 24816478 PMCID: PMC4229493 DOI: 10.1002/nbm.3127] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/17/2014] [Accepted: 03/31/2014] [Indexed: 05/24/2023]
Abstract
A variety of pulmonary pathologies, in particular interstitial lung diseases, are characterized by thickening of the pulmonary blood-gas barrier, and this thickening results in reduced gas exchange. Such diffusive impairment is challenging to quantify spatially, because the distributions of the metabolically relevant gases (CO2 and O2) cannot be detected directly within the lungs. Hyperpolarized (HP) (129)Xe is a promising surrogate for these metabolic gases, because MR spectroscopy and imaging allow gaseous alveolar (129)Xe to be detected separately from (129)Xe dissolved in the red blood cells (RBCs) and the adjacent tissues, which comprise blood plasma and lung interstitium. Because (129)Xe reaches the RBCs by diffusing across the same barrier tissues (blood plasma and interstitium) as O2, barrier thickening will delay (129)Xe transit and, thus, reduce RBC-specific (129)Xe MR signal. Here we have exploited these properties to generate 3D, MR images of (129)Xe uptake by the RBCs in two groups of rats. In the experimental group, unilateral fibrotic injury was generated prior to imaging by instilling bleomycin into one lung. In the control group, a unilateral sham instillation of saline was performed. Uptake of (129)Xe by the RBCs, quantified as the fraction of RBC signal relative to total dissolved (129)Xe signal, was significantly reduced (P = 0.03) in the injured lungs of bleomycin-treated animals. In contrast, no significant difference (P = 0.56) was observed between the saline-treated and untreated lungs of control animals. Together, these results indicate that 3D MRI of HP (129)Xe dissolved in the pulmonary tissues can provide useful biomarkers of impaired diffusive gas exchange resulting from fibrotic thickening.
Collapse
Affiliation(s)
- Zackary I. Cleveland
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC
| | - Rohan, S. Virgincar
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC
- Department of Biomedical Engineering, Duke University, Durham, NC
| | - Yi Qi
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC
| | - Scott H. Robertson
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC
- Graduate Program in Medical Physics; Duke University Medical Center, Durham, NC
| | - Simone Degan
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC
- Center for Molecular and Biomolecular Imaging, Duke University, Durham, NC
| | - Bastiaan Driehuys
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC
- Department of Biomedical Engineering, Duke University, Durham, NC
- Graduate Program in Medical Physics; Duke University Medical Center, Durham, NC
| |
Collapse
|
33
|
Ruppert K. Biomedical imaging with hyperpolarized noble gases. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2014; 77:116701. [PMID: 25360484 DOI: 10.1088/0034-4885/77/11/116701] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Hyperpolarized noble gases (HNGs), polarized to approximately 50% or higher, have led to major advances in magnetic resonance (MR) imaging of porous structures and air-filled cavities in human subjects, particularly the lung. By boosting the available signal to a level about 100 000 times higher than that at thermal equilibrium, air spaces that would otherwise appear as signal voids in an MR image can be revealed for structural and functional assessments. This review discusses how HNG MR imaging differs from conventional proton MR imaging, how MR pulse sequence design is affected and how the properties of gas imaging can be exploited to obtain hitherto inaccessible information in humans and animals. Current and possible future imaging techniques, and their application in the assessment of normal lung function as well as certain lung diseases, are described.
Collapse
|
34
|
Norquay G, Leung G, Stewart NJ, Tozer GM, Wolber J, Wild JM. Relaxation and exchange dynamics of hyperpolarized129Xe in human blood. Magn Reson Med 2014; 74:303-11. [DOI: 10.1002/mrm.25417] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 07/25/2014] [Accepted: 07/29/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Graham Norquay
- Unit of Academic Radiology, Department of Cardiovascular Science; University of Sheffield; Sheffield South Yorkshire UK
| | - General Leung
- Unit of Academic Radiology, Department of Cardiovascular Science; University of Sheffield; Sheffield South Yorkshire UK
| | - Neil J. Stewart
- Unit of Academic Radiology, Department of Cardiovascular Science; University of Sheffield; Sheffield South Yorkshire UK
| | - Gillian M. Tozer
- Department of Oncology; University of Sheffield; Sheffield South Yorkshire UK
| | - Jan Wolber
- Unit of Academic Radiology, Department of Cardiovascular Science; University of Sheffield; Sheffield South Yorkshire UK
- GE Healthcare; Amersham Buckinghamshire UK
| | - Jim M. Wild
- Unit of Academic Radiology, Department of Cardiovascular Science; University of Sheffield; Sheffield South Yorkshire UK
| |
Collapse
|
35
|
Kaushik SS, Freeman MS, Yoon SW, Liljeroth MG, Stiles JV, Roos JE, Foster WM, Rackley CR, McAdams HP, Driehuys B. Measuring diffusion limitation with a perfusion-limited gas--hyperpolarized 129Xe gas-transfer spectroscopy in patients with idiopathic pulmonary fibrosis. J Appl Physiol (1985) 2014; 117:577-85. [PMID: 25038105 DOI: 10.1152/japplphysiol.00326.2014] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although xenon is classically taught to be a "perfusion-limited" gas, (129)Xe in its hyperpolarized (HP) form, when detected by magnetic resonance (MR), can probe diffusion limitation. Inhaled HP (129)Xe diffuses across the pulmonary blood-gas barrier, and, depending on its tissue environment, shifts its resonant frequency relative to the gas-phase reference (0 ppm) by 198 ppm in tissue/plasma barrier and 217 ppm in red blood cells (RBCs). In this work, we hypothesized that in patients with idiopathic pulmonary fibrosis (IPF), the ratio of (129)Xe spectroscopic signal in the RBCs vs. barrier would diminish as diffusion-limitation delayed replenishment of (129)Xe magnetization in RBCs. To test this hypothesis, (129)Xe spectra were acquired in 6 IPF subjects as well as 11 healthy volunteers to establish a normal range. The RBC:barrier ratio was 0.55 ± 0.13 in healthy volunteers but was 3.3-fold lower in IPF subjects (0.16 ± 0.03, P = 0.0002). This was caused by a 52% reduction in the RBC signal (P = 0.02) and a 58% increase in the barrier signal (P = 0.01). Furthermore, the RBC:barrier ratio strongly correlated with lung diffusing capacity for carbon monoxide (DLCO) (r = 0.89, P < 0.0001). It exhibited a moderate interscan variability (8.25%), and in healthy volunteers it decreased with greater lung inflation (r = -0.78, P = 0.005). This spectroscopic technique provides a noninvasive, global probe of diffusion limitation and gas-transfer impairment and forms the basis for developing 3D MR imaging of gas exchange.
Collapse
Affiliation(s)
- S Sivaram Kaushik
- Department of Biomedical Engineering, Duke University, Durham, North Carolina; Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina;
| | - Matthew S Freeman
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina; Medical Physics Graduate Program, Duke University, Durham, North Carolina
| | - Suk W Yoon
- Medical Physics Graduate Program, Duke University, Durham, North Carolina
| | | | - Jane V Stiles
- Department of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, North Carolina; and
| | - Justus E Roos
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - W Michael Foster
- Department of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, North Carolina; and
| | - Craig R Rackley
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - H P McAdams
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - Bastiaan Driehuys
- Department of Biomedical Engineering, Duke University, Durham, North Carolina; Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina; Medical Physics Graduate Program, Duke University, Durham, North Carolina; Department of Radiology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
36
|
Nikolaou P, Coffey AM, Walkup LL, Gust BM, Whiting N, Newton H, Muradyan I, Dabaghyan M, Ranta K, Moroz GD, Rosen MS, Patz S, Barlow MJ, Chekmenev EY, Goodson BM. XeNA: an automated 'open-source' (129)Xe hyperpolarizer for clinical use. Magn Reson Imaging 2014; 32:541-50. [PMID: 24631715 DOI: 10.1016/j.mri.2014.02.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/30/2014] [Accepted: 02/02/2014] [Indexed: 11/28/2022]
Abstract
Here we provide a full report on the construction, components, and capabilities of our consortium's "open-source" large-scale (~1L/h) (129)Xe hyperpolarizer for clinical, pre-clinical, and materials NMR/MRI (Nikolaou et al., Proc. Natl. Acad. Sci. USA, 110, 14150 (2013)). The 'hyperpolarizer' is automated and built mostly of off-the-shelf components; moreover, it is designed to be cost-effective and installed in both research laboratories and clinical settings with materials costing less than $125,000. The device runs in the xenon-rich regime (up to 1800Torr Xe in 0.5L) in either stopped-flow or single-batch mode-making cryo-collection of the hyperpolarized gas unnecessary for many applications. In-cell (129)Xe nuclear spin polarization values of ~30%-90% have been measured for Xe loadings of ~300-1600Torr. Typical (129)Xe polarization build-up and T1 relaxation time constants were ~8.5min and ~1.9h respectively under our spin-exchange optical pumping conditions; such ratios, combined with near-unity Rb electron spin polarizations enabled by the high resonant laser power (up to ~200W), permit such high PXe values to be achieved despite the high in-cell Xe densities. Importantly, most of the polarization is maintained during efficient HP gas transfer to other containers, and ultra-long (129)Xe relaxation times (up to nearly 6h) were observed in Tedlar bags following transport to a clinical 3T scanner for MR spectroscopy and imaging as a prelude to in vivo experiments. The device has received FDA IND approval for a clinical study of chronic obstructive pulmonary disease subjects. The primary focus of this paper is on the technical/engineering development of the polarizer, with the explicit goals of facilitating the adaptation of design features and operative modes into other laboratories, and of spurring the further advancement of HP-gas MR applications in biomedicine.
Collapse
Affiliation(s)
- Panayiotis Nikolaou
- Department of Radiology, Vanderbilt University Institute of Imaging Science (VUIIS), Nashville, TN, 37232, United States; Department of Chemistry & Biochemistry, Southern Illinois University, Carbondale, IL.
| | - Aaron M Coffey
- Department of Radiology, Vanderbilt University Institute of Imaging Science (VUIIS), Nashville, TN, 37232, United States; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, United States
| | - Laura L Walkup
- Department of Chemistry & Biochemistry, Southern Illinois University, Carbondale, IL
| | - Brogan M Gust
- Department of Chemistry & Biochemistry, Southern Illinois University, Carbondale, IL
| | - Nicholas Whiting
- Sir Peter Mansfield Magnetic Resonance Centre, University of Nottingham, NG7 2RD, Nottingham, UK
| | - Hayley Newton
- Sir Peter Mansfield Magnetic Resonance Centre, University of Nottingham, NG7 2RD, Nottingham, UK
| | - Iga Muradyan
- Department of Radiology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA
| | - Mikayel Dabaghyan
- Department of Radiology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA
| | - Kaili Ranta
- Department of Physics, Southern Illinois University, Carbondale, IL
| | - Gregory D Moroz
- Graduate School Central Research Shop, Southern Illinois University, Carbondale, IL
| | - Matthew S Rosen
- MGH/A.A. Martinos Center for Biomedical Imaging, Boston, MA; Department of Physics, Harvard University, Cambridge, MA
| | - Samuel Patz
- Department of Radiology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA
| | - Michael J Barlow
- Sir Peter Mansfield Magnetic Resonance Centre, University of Nottingham, NG7 2RD, Nottingham, UK
| | - Eduard Y Chekmenev
- Department of Radiology, Vanderbilt University Institute of Imaging Science (VUIIS), Nashville, TN, 37232, United States; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, United States; Department of Biochemistry, Vanderbilt University, Nashville, TN, 37205, United States
| | - Boyd M Goodson
- Department of Chemistry & Biochemistry, Southern Illinois University, Carbondale, IL.
| |
Collapse
|
37
|
Bai Y, Wang Y, Goulian M, Driks A, Dmochowski IJ. Bacterial spore detection and analysis using hyperpolarized 129Xe chemical exchange saturation transfer (Hyper-CEST) NMR. Chem Sci 2014; 5:3197-3203. [PMID: 25089181 DOI: 10.1039/c4sc01190b] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Previously, we reported hyperpolarized 129Xe chemical exchange saturation transfer (Hyper-CEST) NMR techniques for the ultrasensitive (i.e., 1 picomolar) detection of xenon host molecules known as cryptophane. Here, we demonstrate a more general role for Hyper-CEST NMR as a spectroscopic method for probing nanoporous structures, without the requirement for cryptophane or engineered xenon-binding sites. Hyper-CEST 129Xe NMR spectroscopy was employed to detect Bacillus anthracis and Bacillus subtilis spores in solution, and interrogate the layers that comprise their structures. 129Xe-spore samples were selectively irradiated with radiofrequency pulses; the depolarized 129Xe returned to aqueous solution and depleted the 129Xe-water signal, providing measurable contrast. Removal of the outermost spore layers in B. anthracis and B. subtilis (the exosporium and coat, respectively) enhanced 129Xe exchange with the spore interior. Notably, the spores were invisible to hyperpolarized 129Xe NMR direct detection methods, highlighting the lack of high-affinity xenon-binding sites, and the potential for extending Hyper-CEST NMR structural analysis to other biological and synthetic nanoporous structures.
Collapse
Affiliation(s)
- Yubin Bai
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yanfei Wang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mark Goulian
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Adam Driks
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois 60153, USA
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
38
|
Near-unity nuclear polarization with an open-source 129Xe hyperpolarizer for NMR and MRI. Proc Natl Acad Sci U S A 2013; 110:14150-5. [PMID: 23946420 DOI: 10.1073/pnas.1306586110] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The exquisite NMR spectral sensitivity and negligible reactivity of hyperpolarized xenon-129 (HP(129)Xe) make it attractive for a number of magnetic resonance applications; moreover, HP(129)Xe embodies an alternative to rare and nonrenewable (3)He. However, the ability to reliably and inexpensively produce large quantities of HP(129)Xe with sufficiently high (129)Xe nuclear spin polarization (P(Xe)) remains a significant challenge--particularly at high Xe densities. We present results from our "open-source" large-scale (∼1 L/h) (129)Xe polarizer for clinical, preclinical, and materials NMR and MRI research. Automated and composed mostly of off-the-shelf components, this "hyperpolarizer" is designed to be readily implementable in other laboratories. The device runs with high resonant photon flux (up to 200 W at the Rb D1 line) in the xenon-rich regime (up to 1,800 torr Xe in 500 cc) in either single-batch or stopped-flow mode, negating in part the usual requirement of Xe cryocollection. Excellent agreement is observed among four independent methods used to measure spin polarization. In-cell P(Xe) values of ∼90%, ∼57%, ∼50%, and ∼30% have been measured for Xe loadings of ∼300, ∼500, ∼760, and ∼1,570 torr, respectively. P(Xe) values of ∼41% and ∼28% (with ∼760 and ∼1,545 torr Xe loadings) have been measured after transfer to Tedlar bags and transport to a clinical 3 T scanner for MR imaging, including demonstration of lung MRI with a healthy human subject. Long "in-bag" (129)Xe polarization decay times have been measured (T1 ∼38 min and ∼5.9 h at ∼1.5 mT and 3 T, respectively)--more than sufficient for a variety of applications.
Collapse
|
39
|
Witte C, Schröder L. NMR of hyperpolarised probes. NMR IN BIOMEDICINE 2013; 26:788-802. [PMID: 23033215 DOI: 10.1002/nbm.2873] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 07/23/2012] [Accepted: 08/29/2012] [Indexed: 06/01/2023]
Abstract
Increasing the sensitivity of NMR experiments is an ongoing field of research to help realise the exquisite molecular specificity of this technique. Hyperpolarisation of various nuclei is a powerful approach that enables the use of NMR for molecular and cellular imaging. Substantial progress has been achieved over recent years in terms of both tracer preparation and detection schemes. This review summarises recent developments in probe design and optimised signal encoding, and promising results in sensitive disease detection and efficient therapeutic monitoring. The different methods have great potential to provide molecular specificity not available by other diagnostic modalities.
Collapse
Affiliation(s)
- Christopher Witte
- ERC Project BiosensorImaging, Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | | |
Collapse
|
40
|
Castiglione F, Simonutti R, Mauri M, Mele A. Cage-Like Local Structure of Ionic Liquids Revealed by a (129)Xe Chemical Shift. J Phys Chem Lett 2013; 4:1608-1612. [PMID: 26282967 DOI: 10.1021/jz400617v] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The chemical shift of xenon (at natural abundance) dissolved in a variety of 1-butyl-3-methylimidazolium-based ionic liquids (ILs) has been measured with (129)Xe NMR spectroscopy. The large chemical shift differences observed are mainly related to the type of anion; the strongest deshielding effect is observed ILs with I(-), Br(-), and Cl(-) anions, and the strongest shielding is found for the bis(trifluoromethanesulfonyl)imide ([Tf2N](-))-based IL. The measured (129)Xe chemical shift variations correlate well with the IL structure organization imposed by the anions and with the size of the empty voids due to charge alternation patterns. Descriptors taken from literature data on X-ray and neutron scattering, as well as single-crystal structures where available, support this interpretation. The proposed methodology adds a new investigating tool to the elucidation of the short-range order in ILs. The observed chemical shift trend provides information about how these solvents are organized.
Collapse
Affiliation(s)
- Franca Castiglione
- †Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano, Italy
| | - Roberto Simonutti
- ‡Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, Via Roberto Cozzi 53, 20125 Milano, Italy
| | - Michele Mauri
- ‡Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, Via Roberto Cozzi 53, 20125 Milano, Italy
| | - Andrea Mele
- †Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano, Italy
- §CNR - Istituto di Chimica del Riconoscimento Molecolare, Via L. Mancinelli 7, 20131 Milano, Italy
| |
Collapse
|
41
|
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is one of the most commonly used spectroscopic techniques to obtain information on the structure and dynamics of biological and chemical materials. A variety of samples can be studied including solutions, crystalline solids, powders and hydrated protein extracts. However, biological NMR spectroscopy is limited to concentrated samples, typically in the millimolar range, due to its intrinsic low sensitivity compared to other techniques such as fluorescence or electron paramagnetic resonance (EPR) spectroscopy.Dynamic nuclear polarization (DNP) is a method that increases the sensitivity of NMR by several orders of magnitude. It exploits a polarization transfer from unpaired electrons to neighboring nuclei which leads to an absolute increase of the signal-to-noise ratio (S/N). Consequently, biological samples with much lower concentrations can now be studied in hours or days compared to several weeks.This chapter will explain the different types of DNP enhanced NMR experiments, focusing primarily on solid-state magic angle spinning (MAS) DNP, its applications, and possible means of improvement.
Collapse
|
42
|
Acosta RH, Blümler P, Münnemann K, Spiess HW. Mixture and dissolution of laser polarized noble gases: spectroscopic and imaging applications. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2012; 66:40-69. [PMID: 22980033 DOI: 10.1016/j.pnmrs.2012.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 03/20/2012] [Indexed: 06/01/2023]
Affiliation(s)
- Rodolfo H Acosta
- FAMAF, Universidad Nacional de Córdoba, IFEG - CONICET, Córdoba, Argentina
| | | | | | | |
Collapse
|
43
|
Boutin C, Desvaux H, Carrière M, Leteurtre F, Jamin N, Boulard Y, Berthault P. Hyperpolarized 129Xe NMR signature of living biological cells. NMR IN BIOMEDICINE 2011; 24:1264-9. [PMID: 22223364 DOI: 10.1002/nbm.1686] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 01/06/2011] [Accepted: 01/10/2011] [Indexed: 05/20/2023]
Abstract
We show that the differentiation between internal and external compartments of various biological cells in suspension can be made via simple NMR spectra of hyperpolarized (129) Xe. The spectral separation between the signals of (129) Xe in these two compartments is already known for red blood cells, because of the strong interaction of the noble gas with hemoglobin. The observation of two separate peaks in the 200-ppm region can be seen with both eukaryotic and prokaryotic cells, some of which are not known to contain paramagnetic proteins in large quantities. Using different experiments in which the cells are lysed, swell or are blocked in G2 phase, we demonstrate that the low-field-shifted peak observed corresponds to xenon in the aqueous pool inside the cells and not in the membranes. The presence of this additional peak is a clear indication of cell integrity, and its integration allows the quantification of the total cell volume. The relaxation time of intracellular xenon is sufficiently long to open up promising perspectives for cell characterization. The exchange time between the inner and outer cell compartments (on the order of 30 ms) renders possible the targeting of intracellular receptors, whereas the observation of chemical shift variations represents a method of revealing the presence of toxic species in the cells.
Collapse
Affiliation(s)
- Céline Boutin
- CEA, IRAMIS, SIS2M, Laboratoire Structure et Dynamique par Résonance Magnétique, Gif-sur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|
44
|
Amor N, Hamilton K, Küppers M, Steinseifer U, Appelt S, Blümich B, Schmitz-Rode T. NMR and MRI of blood-dissolved hyperpolarized Xe-129 in different hollow-fiber membranes. Chemphyschem 2011; 12:2941-7. [PMID: 21994161 DOI: 10.1002/cphc.201100446] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Indexed: 11/08/2022]
Abstract
Magnetic resonance of hyperpolarized (129)Xe has found a wide field of applications in the analysis of biologically relevant fluids. Recently, it has been shown that the dissolution of hyperpolarized gas into the fluid via hollow-fiber membranes leads to bubble-free (129)Xe augmentation, and thus to an enhanced signal. In addition, hollow-fiber membranes permit a continuous operation mode. Herein, a quantitative magnetic resonance imaging and spectroscopy analysis of a customized hollow-fiber membrane module is presented. Different commercial hollow-fiber membrane types are compared with regard to their (129)Xe dissolution efficiency into porcine blood, its constituents, and other fluids. The presented study gives new insight into the suitability of these hollow-fiber membrane types for hyperpolarized gas dissolution setups.
Collapse
Affiliation(s)
- Nadia Amor
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany.
| | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Renault M, Cukkemane A, Baldus M. Festkörper-NMR-Spektroskopie an komplexen Biomolekülen. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201002823] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Renault M, Cukkemane A, Baldus M. Solid-State NMR Spectroscopy on Complex Biomolecules. Angew Chem Int Ed Engl 2010; 49:8346-57. [DOI: 10.1002/anie.201002823] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
48
|
Schilling F, Schröder L, Palaniappan KK, Zapf S, Wemmer DE, Pines A. MRI Thermometry Based on Encapsulated Hyperpolarized Xenon. Chemphyschem 2010; 11:3529-33. [DOI: 10.1002/cphc.201000507] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
49
|
Taratula O, Dmochowski IJ. Functionalized 129Xe contrast agents for magnetic resonance imaging. Curr Opin Chem Biol 2009; 14:97-104. [PMID: 19914122 DOI: 10.1016/j.cbpa.2009.10.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 10/02/2009] [Accepted: 10/08/2009] [Indexed: 10/20/2022]
Abstract
The concept of 'xenon biosensor' for magnetic resonance imaging (MRI) was first proposed by a Berkeley team in 2001, with evidence that hyperpolarized 129Xe bound to a biotin-labeled cryptophane can detect streptavidin at much lower concentrations (nM-microM) than is typical for contrast-enhanced MRI experiments. 129Xe biosensors have undergone many recent developments to address challenges in molecular imaging. For example, cryptophanes that exhibit 10-fold higher xenon affinity with distinct 129Xe magnetic resonance spectra have been synthesized. Also relevant are dendrimeric cryptophane assemblies and inorganic zeolites that localize many 129Xe atoms to rare targets. Finally, this article considers biosensors that produce measurable changes in 129Xe chemical shift based upon the activity of oligonucleotides, proteins, or enzymes, and includes the first cell studies.
Collapse
Affiliation(s)
- Olena Taratula
- Department of Chemistry, University of Pennsylvania, 231 South 34th St., Philadelphia, PA 19104-6323, USA
| | | |
Collapse
|
50
|
Amor N, Zänker PP, Blümler P, Meise FM, Schreiber LM, Scholz A, Schmiedeskamp J, Spiess HW, Münnemann K. Magnetic resonance imaging of dissolved hyperpolarized 129Xe using a membrane-based continuous flow system. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2009; 201:93-99. [PMID: 19729327 DOI: 10.1016/j.jmr.2009.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 08/11/2009] [Accepted: 08/11/2009] [Indexed: 05/28/2023]
Abstract
A technique for continuous production of solutions containing hyperpolarized (129)Xe is explored for MRI applications. The method is based on hollow fiber membranes which inhibit the formation of foams and bubbles. A systematic analysis of various carrier agents for hyperpolarized (129)Xe has been carried out, which are applicable as contrast agents for in vivo MRI. The image quality of different hyperpolarized Xe solutions is compared and MRI results obtained in a clinical as well as in a nonclinical MRI setting are provided. Moreover, we demonstrate the application of (129)Xe contrast agents produced with our dissolution method for lung MRI by imaging hyperpolarized (129)Xe that has been both dissolved in and outgassed from a carrier liquid in a lung phantom, illustrating its potential for the measurement of lung perfusion and ventilation.
Collapse
Affiliation(s)
- N Amor
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|