1
|
Journot G, Neier R, Gualandi A. Hydrogenation of Calix[4]pyrrole: From the Formation to the Synthesis of Calix[4]pyrrolidine. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Reinhard Neier
- Department of Chemistry University of Neuchâtel Avenue Bellevaux 51 2000 Neuchâtel Switzerland
| | - Andrea Gualandi
- Dipartimento di Chimica “G. Ciamician” Alma Mater Studiorum – Università di Bologna Via Selmi 2 I-40126 Bologna Italy
| |
Collapse
|
2
|
Senge MO, Sergeeva NN, Hale KJ. Classic highlights in porphyrin and porphyrinoid total synthesis and biosynthesis. Chem Soc Rev 2021; 50:4730-4789. [PMID: 33623938 DOI: 10.1039/c7cs00719a] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Porphyrins feature prominently in nature, be it as enzymatic cofactors, electron and exciton shuffles, as photoactive dyes, or as signaling substances. Their involvement in the generation, storage and use of oxygen is pivotal to life, while their photochemical properties are central to the biochemical functioning of plants. When complexed to metals, porphyrins can engage in a multitude of contemporary applications ranging from solar energy generation to serving as catalysts for important chemical reactions. They are also able to function as useful theranostic agents, and as novel materials for a wide range of applications. As such, they are widely considered to be highly valuable molecules, and it almost goes without saying that synthetic organic chemistry has dramatically underpinned all the key advances made, by providing reliable access to them. In fact, strategies for the synthesis of functionalized porphyrins have now reached a state of refinement where pretty well any desired porphyrin can successfully be synthesized with the approaches that are available, including a cornucopia of related macrocycle-modified porphyrinoids. In this review, we are going to illustrate the development of this exciting field by discussing a number of classic syntheses of porphyrins. Our coverage will encompass the natural protoporphyrins and chlorophylls, while also covering general strategies for the synthesis of unsymmetrical porphyrins and chlorins. Various industrial syntheses of porphyrins will also be discussed, as will other routes of great practical importance, and avenues to key porphyrinoids with modified macrocycles. A range of selected examples of contemporary functionalization reactions will be highlighted. The various key syntheses will be described and analyzed from a traditional mechanistic organic chemistry perspective to help student readers, and those who are new to this area. The aim will be to allow readers to mechanistically appreciate and understand how many of these fascinating ring-systems are built and further functionalized.
Collapse
Affiliation(s)
- Mathias O Senge
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | | | | |
Collapse
|
3
|
Moore SJ, Biedendieck R, Lawrence AD, Deery E, Howard MJ, Rigby SEJ, Warren MJ. Characterization of the enzyme CbiH60 involved in anaerobic ring contraction of the cobalamin (vitamin B12) biosynthetic pathway. J Biol Chem 2013; 288:297-305. [PMID: 23155054 PMCID: PMC3537027 DOI: 10.1074/jbc.m112.422535] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 11/12/2012] [Indexed: 11/06/2022] Open
Abstract
The anaerobic pathway for the biosynthesis of cobalamin (vitamin B(12)) has remained poorly characterized because of the sensitivity of the pathway intermediates to oxygen and the low activity of enzymes. One of the major bottlenecks in the anaerobic pathway is the ring contraction step, which has not been observed previously with a purified enzyme system. The Gram-positive aerobic bacterium Bacillus megaterium has a complete anaerobic pathway that contains an unusual ring contraction enzyme, CbiH(60), that harbors a C-terminal extension with sequence similarity to the nitrite/sulfite reductase family. To improve solubility, the enzyme was homologously produced in the host B. megaterium DSM319. CbiH(60) was characterized by electron paramagnetic resonance and shown to contain a [4Fe-4S] center. Assays with purified recombinant CbiH(60) demonstrate that the enzyme converts both cobalt-precorrin-3 and cobalt factor III into the ring-contracted product cobalt-precorrin-4 in high yields, with the latter transformation dependent upon DTT and an intact Fe-S center. Furthermore, the ring contraction process was shown not to involve a change in the oxidation state of the central cobalt ion of the macrocycle.
Collapse
Affiliation(s)
- Simon J. Moore
- From the School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| | - Rebekka Biedendieck
- From the School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
- the Institute of Microbiology, Technische Universität Braunschweig, Braunschweig D-38106, Germany, and
| | - Andrew D. Lawrence
- From the School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| | - Evelyne Deery
- From the School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| | - Mark J. Howard
- From the School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| | - Stephen E. J. Rigby
- the Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Martin J. Warren
- From the School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| |
Collapse
|
4
|
Abstract
Vitamin B12 (cobalamin) is a cobalt-containing modified tetrapyrrole that is an essential nutrient for higher animals. Its biosynthesis is restricted to certain bacteria and requires approximately 30 enzymatic steps for its complete de novo construction. Remarkably, two distinct biosynthetic pathways exist, which are termed the aerobic and anaerobic routes. The anaerobic pathway has yet to be fully characterized due to the inherent instability of its oxygen-sensitive intermediates. Bacillus megaterium, a bacterium previously used for the commercial production of cobalamin, has a complete anaerobic pathway and this organism is now being used to investigate the anaerobic B12 pathway through the application of recent advances in recombinant protein production. The present paper provides a summary of recent findings in the anaerobic pathway and future perspectives.
Collapse
|
5
|
Thirupathaiah Y, Swarupa Rani C, Sudhakara Reddy M, Venkateswar Rao L. Effect of chemical and microbial vitamin B₁₂ analogues on production of vitamin B₁₂. World J Microbiol Biotechnol 2012; 28:2267-71. [PMID: 22806050 DOI: 10.1007/s11274-012-1011-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Accepted: 01/28/2012] [Indexed: 10/14/2022]
Abstract
Strain improvement by genetic manipulation or optimization of fermentation conditions for overproduction of vitamin B(12) has a drawback due to feed back inhibition. To resist the feed back inhibition by analogues of vitamin B(12) in Propionibacterium freudenrechii subsps. shermanii (OLP-5), we have tested with microbially separated B(12) analogues from three different strains. Microbial analogues were differentiated from commercially available vitamin B(12) by high pressure liquid chromatography and spectrophotometric method. An analogue isolated from NRRL-B-4327 was shown to increase vitamin B(12) concentration from 18.53 ± 0.15 to 31.67 ± 0.58 mg/l in OLP-5 strain. The presence of chemical analogue (ICH(2) Co(DH)(2) (H(2)Py)(4)) increased vitamin B(12) production from 16.13 ± 0.15 to 18.53 ± 0.15 mg/l in OLP-5. These findings revealed that addition of B(12) analogues in fermentation media have developed strain resistance to feed back inhibition by vitamin B(12).
Collapse
Affiliation(s)
- Yeruva Thirupathaiah
- Department of Microbiology, Osmania University, Hyderabad 500007, Andhra Pradesh, India
| | | | | | | |
Collapse
|
6
|
Aravindu K, Krayer M, Kim HJ, Lindsey JS. Facile synthesis of a B,D-tetradehydrocorrin and rearrangement to bacteriochlorins. NEW J CHEM 2011. [DOI: 10.1039/c1nj20027e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Iida K, Ohtaka K, Kajiwara M. Mechanism of the ring contraction process in vitamin B12 biosynthesis by the anaerobe Propionibacterium shermanii under aerobic conditions. FEBS J 2007; 274:3475-81. [PMID: 17561959 DOI: 10.1111/j.1742-4658.2007.05880.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mechanism of the ring contraction process during vitamin B(12) biosynthesis by the anaerobe Propionibacterium shermanii was investigated under both aerobic and anaerobic conditions by means of feeding experiments with delta-amino[1-(13)C]levulinic acid (a biosynthetic intermediate of tetrapyrrole) and delta-amino[1-(13)C,1,1,4-(18)O(3)]levulinic acid in combination with (13)C-NMR spectroscopy. We showed that the characteristic mechanism of the ring contraction process (the generation of precorrin-3x from formation of the gamma-lactone from the ring A acetate group at C1 and hydroxylation at C20 by molecular oxygen catalyzed by CobG, and the migration of ring D by cleavage of the carbon-oxygen bond at C1 of precorrin-3x) in the aerobe Pseudomonas denitrificans was not seen in P. shermanii under aerobic conditions, and the mechanism of the ring contraction process in P. shermanii was the same irrespective of the presence or absence of oxygen.
Collapse
Affiliation(s)
- Katsumi Iida
- Department of Medicinal Chemistry, Meiji Pharmaceutical University, Kiyose-shi, Tokyo, Japan.
| | | | | |
Collapse
|
8
|
Wada K, Harada J, Yaeda Y, Tamiaki H, Oh-Oka H, Fukuyama K. Crystal structures of CbiL, a methyltransferase involved in anaerobic vitamin B12 biosynthesis, and CbiL in complex with S-adenosylhomocysteine − implications for the reaction mechanism. FEBS J 2006; 274:563-73. [PMID: 17229157 DOI: 10.1111/j.1742-4658.2006.05611.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
During anaerobic cobalamin (vitamin B12) biosynthesis, CbiL catalyzes methylation at the C-20 position of a cyclic tetrapyrrole ring using S-adenosylmethionine as a methyl group source. This methylation is a key modification for the ring contraction process, by which a porphyrin-type tetrapyrrole ring is converted to a corrin ring through elimination of the modified C-20 and direct bonding of C-1 to C-19. We have determined the crystal structures of Chlorobium tepidum CbiL and CbiL in complex with S-adenosylhomocysteine (the S-demethyl form of S-adenosylmethionine). CbiL forms a dimer in the crystal, and each subunit consists of N-terminal and C-terminal domains. S-Adenosylhomocysteine binds to a cleft between the two domains, where it is specifically recognized by extensive hydrogen bonding and van der Waals interactions. The orientation of the cobalt-factor II substrate was modeled by simulation, and the predicted model suggests that the hydroxy group of Tyr226 is located in close proximity to the C-20 atom as well as the C-1 and C-19 atoms of the tetrapyrrole ring. These configurations allow us to propose a catalytic mechanism: the conserved Tyr226 residue in CbiL catalyzes the direct transfer of a methyl group from S-adenosylmethionine to the substrate through an S(N)2-like mechanism. Furthermore, the structural model of CbiL binding to its substrate suggests the axial residue coordinated to the central cobalt of cobalt-factor II.
Collapse
Affiliation(s)
- Kei Wada
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan.
| | | | | | | | | | | |
Collapse
|
9
|
Frank S, Brindley AA, Deery E, Heathcote P, Lawrence AD, Leech HK, Pickersgill RW, Warren MJ. Anaerobic synthesis of vitamin B12: characterization of the early steps in the pathway. Biochem Soc Trans 2005; 33:811-4. [PMID: 16042604 DOI: 10.1042/bst0330811] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The anaerobic biosynthesis of vitamin B12 is slowly being unravelled. Recent work has shown that the first committed step along the anaerobic route involves the sirohydrochlorin (chelation of cobalt into factor II). The following enzyme in the pathway, CbiL, methylates cobalt-factor II to give cobalt-factor III. Recent progress on the molecular characterization of this enzyme has given a greater insight into its mode of action and specificity. Structural studies are being used to provide insights into how aspects of this highly complex biosynthetic pathway may have evolved. Between cobalt-factor III and cobyrinic acid, only one further intermediate has been identified. A combination of molecular genetics, recombinant DNA technology and bioorganic chemistry has led to some recent advances in assigning functions to the enzymes of the anaerobic pathway.
Collapse
Affiliation(s)
- S Frank
- School of Biological Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
The chronology of the discoveries along the pathway of vitamin B(12) biosynthesis is reviewed from a personal perspective, including discussion of the most recent finding that two pathways to B(12) exist-one aerobic and one anaerobic-which differ mainly in the ring contraction mechanisms that convert porphyrin to corrin.
Collapse
Affiliation(s)
- A Ian Scott
- Center for Biological NMR, Chemistry Department, Texas A&M University, 3255 TAMU, College Station, Texas 77843-3255, USA.
| |
Collapse
|
11
|
Raux E, Leech HK, Beck R, Schubert HL, Santander PJ, Roessner CA, Scott AI, Martens JH, Jahn D, Thermes C, Rambach A, Warren MJ. Identification and functional analysis of enzymes required for precorrin-2 dehydrogenation and metal ion insertion in the biosynthesis of sirohaem and cobalamin in Bacillus megaterium. Biochem J 2003; 370:505-16. [PMID: 12408752 PMCID: PMC1223173 DOI: 10.1042/bj20021443] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2002] [Revised: 10/21/2002] [Accepted: 10/31/2002] [Indexed: 11/17/2022]
Abstract
In Bacillus megaterium, the hemAXBCDL genes were isolated and were found to be highly similar to the genes from Bacillus subtilis that are required for the conversion of glutamyl-tRNA into uroporphyrinogen III. Overproduction and purification of HemC (porphobilinogen deaminase) and -D (uroporphyrinogen III synthase) allowed these enzymes to be used for the in vitro synthesis of uroporphyrinogen III from porphobilinogen. A second smaller cluster of three genes (termed sirABC) was also isolated and found to encode the enzymes that catalyse the transformation of uroporphyrinogen III into sirohaem on the basis of their ability to complement a defined Escherichia coli (cysG) mutant. The functions of SirC and -B were investigated by direct enzyme assay, where SirC was found to act as a precorrin-2 dehydrogenase, generating sirohydrochlorin, and SirB was found to act as a ferrochelatase responsible for the final step in sirohaem synthesis. CbiX, a protein found encoded within the main B. megaterium cobalamin biosynthetic operon, shares a high degree of similarity with SirB and acts as the cobaltochelatase associated with cobalamin biosynthesis by inserting cobalt into sirohydrochlorin. CbiX contains an unusual histidine-rich region in the C-terminal portion of the protein, which was not found to be essential in the chelation process. Sequence alignments suggest that SirB and CbiX share a similar active site to the cobaltochelatase, CbiK, from Salmonella enterica.
Collapse
Affiliation(s)
- Evelyne Raux
- School of Biological Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Roessner CA, Huang KX, Warren MJ, Raux E, Scott AI. Isolation and characterization of 14 additional genes specifying the anaerobic biosynthesis of cobalamin (vitamin B12) in Propionibacterium freudenreichii (P. shermanii). MICROBIOLOGY (READING, ENGLAND) 2002; 148:1845-1853. [PMID: 12055304 DOI: 10.1099/00221287-148-6-1845] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A search for genes encoding enzymes involved in cobalamin (vitamin B12) production in the commercially important organism Propionibacterium freudenreichii (P. shermanii) has resulted in the isolation of an additional 14 genes encoding enzymes responsible for 17 steps of the anaerobic B12 pathway in this organism. All of the genes believed to be necessary for the biosynthesis of adenosylcobinamide from uroporphyrinogen III have now been isolated except two (cbiA and an as yet unidentified gene encoding cobalt reductase). Most of the genes are contained in two divergent operons, one of which, in turn, is closely linked to the operon encoding the B12-dependent enzyme methylmalonyl-CoA mutase. The close linkage of the three genes encoding the subunits of transcarboxylase to the hemYHBXRL gene cluster is reported. The functions of the P. freudenreichii B12 pathway genes are discussed, and a mechanism for the regulation of cobalamin and propionic acid production by oxygen in this organism is proposed.
Collapse
Affiliation(s)
- Charles A Roessner
- Center for Biological NMR, Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA1
| | - Ke-Xue Huang
- Center for Biological NMR, Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA1
| | - Martin J Warren
- School of Biological Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK2
| | - Evelyne Raux
- School of Biological Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK2
| | - A Ian Scott
- Center for Biological NMR, Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA1
| |
Collapse
|
13
|
Abstract
The chronology of the discoveries along the pathway of vitamin B12 biosynthesis is reviewed from a personal perspective, including discussion of the most recent finding that two pathways to B12 exist--one aerobic and one anaerobic--which differ mainly in the ring contraction mechanisms which convert porphyrin to corrin.
Collapse
Affiliation(s)
- A I Scott
- Center for Biological NMR, Chemistry Department, Texas A&M University, College Station 77843-3255, USA.
| |
Collapse
|
14
|
Santander PJ, Stolowich NJ, Scott AI. Chemoenzymatic synthesis of an unnatural tetramethyl cobalt corphinoid. Bioorg Med Chem 1999; 7:789-94. [PMID: 10400331 DOI: 10.1016/s0968-0896(99)00014-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The chemoenzymatic synthesis and structural characterization by 13C NMR of a tetramethyl cobalt-corphinoid produced by methylation of cobalt-precorrin-3 using CbiF are described.
Collapse
Affiliation(s)
- P J Santander
- Department of Chemistry, Texas A&M University, College Station 77842-3012, USA
| | | | | |
Collapse
|
15
|
Raux E, Schubert HL, Roper JM, Wilson KS, Warren MJ. Vitamin B12: Insights into Biosynthesis's Mount Improbable. Bioorg Chem 1999. [DOI: 10.1006/bioo.1998.1125] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
|
17
|
Raux E, Lanois A, Rambach A, Warren MJ, Thermes C. Cobalamin (vitamin B12) biosynthesis: functional characterization of the Bacillus megaterium cbi genes required to convert uroporphyrinogen III into cobyrinic acid a,c-diamide. Biochem J 1998; 335 ( Pt 1):167-73. [PMID: 9742226 PMCID: PMC1219765 DOI: 10.1042/bj3350167] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The function of individual genes of the Bacillus megaterium cobI operon genes in cobalamin (vitamin B12) biosynthesis was investigated by their ability to complement defined Salmonella typhimurium cob mutants. This strategy confirmed the role of cbiA, -D, -F, -J, -L and cysGA. Furthermore the operon as a whole was used to restore corrin biosynthesis in Escherichia coli, which, although closely related to S. typhimurium, does not possess the CobI pathway. When the B. megaterium cob operon was cloned into a plasmid and transformed into an E. coli strain containing the S. typhimurium cbiP, it conferred upon the host strain the ability to make the cobyric acid de novo. However, cobyric acid synthesis was observed only when the strain was grown anaerobically. Derivatives of the corrin-producing E. coli strain were constructed in which genes of the B. megaterium cob operon had been inactivated. These strains were used to demonstrate that, whereas B. megaterium cbiD, -G and -X are essential for cobyric acid synthesis, the cbiW and -Y genes could be deleted without detriment to cobyric acid production in E. coli.
Collapse
Affiliation(s)
- E Raux
- Department of Molecular Genetics, Institute of Ophthalmology, UCL, 11-43 Bath Street, London EC1V 9EL, UK.
| | | | | | | | | |
Collapse
|
18
|
Raux E, Lanois A, Warren MJ, Rambach A, Thermes C. Cobalamin (vitamin B12) biosynthesis: identification and characterization of a Bacillus megaterium cobI operon. Biochem J 1998; 335 ( Pt 1):159-66. [PMID: 9742225 PMCID: PMC1219764 DOI: 10.1042/bj3350159] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A 16 kb DNA fragment has been isolated from a Bacillus megaterium genomic library and fully sequenced. The fragment contains 15 open reading frames, 14 of which are thought to constitute a B. megaterium cobalamin biosynthetic (cob) operon. Within the operon, 11 genes display similarity to previously identified Salmonella typhimurium cobalamin biosynthetic genes (cbiH60, -J, -C, -D, -ET, -L, -F, -G, -A, cysGA and btuR), whereas three do not (cbiW, -X and -Y). The genes of the B. megaterium cob operon were compared with the cobalamin biosynthetic genes of Pseudomonas denitrificans, Methanococcus jannaschii and Synechocystis sp. Taking into account the presence of cbiD and cbiG, the absence of a cobF, cobG and cobN, -S and -T, it was concluded that B. megaterium, M. jannaschii and Synechocystis sp., like S. typhimurium, synthesize cobalamin by an anaerobic pathway, in which cobalt is added at an early stage and molecular oxygen is not required.
Collapse
Affiliation(s)
- E Raux
- Department of Molecular Genetics, Institute of Ophthalmology, UCL, 11-43 Bath Street, London EC1V 9EL, UK.
| | | | | | | | | |
Collapse
|
19
|
Schubert HL, Wilson KS, Raux E, Woodcock SC, Warren MJ. The X-ray structure of a cobalamin biosynthetic enzyme, cobalt-precorrin-4 methyltransferase. NATURE STRUCTURAL BIOLOGY 1998; 5:585-92. [PMID: 9665173 DOI: 10.1038/846] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Biosynthesis of the corrin ring of vitamin B12 requires the action of six S-adenosyl-L-methionine (AdoMet) dependent transmethylases, closely related in sequence. The first X-ray structure of one of these, cobalt-precorrin-4 transmethylase, CbiF, from Bacillus megaterium has been determined to a resolution of 2.4 A. CbiF contains two alphabeta domains forming a trough in which S-adenosyl-L-homocysteine (AdoHcy) binds. The location of AdoHcy and a number of conserved residues, helps define the precorrin binding site. A second crystal form determined at 3.1 A resolution highlights the flexibility of two loops around this site. CbiF employs a unique mode of AdoHcy binding and represents a new class of transmethylase.
Collapse
Affiliation(s)
- H L Schubert
- Department of Chemistry, University of York, Heslington, UK
| | | | | | | | | |
Collapse
|
20
|
Santander PJ, Roessner CA, Stolowich NJ, Holderman MT, Scott AI. How corrinoids are synthesized without oxygen: nature's first pathway to vitamin B12. CHEMISTRY & BIOLOGY 1997; 4:659-66. [PMID: 9331403 DOI: 10.1016/s1074-5521(97)90221-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND During the biosynthesis of vitamin B12, the aerobic bacterium Pseudomonas denitrificans uses two enzymes, CobG and CobJ, to convert precorrin-3 to the ring-contracted intermediate, precorrin-4. CobG is a monooxygenase that adds a hydroxyl group, derived from molecular oxygen, to C-20, whereas CobJ is bifunctional, inserting a methyl group at C-17 of the macrocycle and catalyzing ring contraction. Molecular oxygen is not available to vitamin B12-producing anaerobic bacteria and members of the ancient Archaea, so the question arises of how these microbes accomplish the key ring-contraction process. RESULTS Cloning and overexpression of Salmonella typhimurium genes has led to the discovery that a single enzyme, CbiH, is responsible for ring contraction during anaerobic biosynthesis of vitamin B12. The process occurs when CbiH is incubated with precorrin-3, but only in the presence of cobalt. CbiH functions as a C-17 methyltransferase and mediates ring contraction and lactonization to yield the intermediate, cobalt-precorrin-4, isolated as cobalt-factor IV. 13C labeling studies have proved that cobalt-precorrin-4 is incorporated into cobyrinic acid, thereby confirming that cobalt-precorrin-4 is an intermediate in vitamin B12 biosynthesis. CONCLUSIONS Two distinct mechanisms exist in nature for the ring contraction of porphyrinoids to corrinoids-an ancient anaerobic pathway that requires cobalt complexation prior to nonoxidative rearrangement, and a more recent aerobic route in which molecular oxygen serves as the cofactor. The present results offer a rationale for the main differences between aerobic and anaerobic biosynthesis of vitamin B12. Thus, in anaerobes there is exchange of oxygen at the C-27 acetate site, extrusion of acetaldehyde and early insertion of cobalt, whereas the aerobes show no exchange of oxygen at C-27, extrude acetic acid and insert cobalt very late in the biosynthetic pathway, after ring contraction has occurred. These parallel routes to vitamin B12 have now been clearly distinguished by their differing mechanisms for ring contraction.
Collapse
Affiliation(s)
- P J Santander
- Chemistry Department, Texas A&M University, College Station 77843-3255, USA
| | | | | | | | | |
Collapse
|
21
|
Wang J, Stolowich NJ, Santander PJ, Park JH, Scott AI. Biosynthesis of vitamin B12: concerning the identity of the two-carbon fragment eliminated during anaerobic formation of cobyrinic acid. Proc Natl Acad Sci U S A 1996; 93:14320-2. [PMID: 8962048 PMCID: PMC26129 DOI: 10.1073/pnas.93.25.14320] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
It has been proved that, during anaerobic biosynthesis of the corrin macrocycle, the two-carbon fragment excised from the precursor, precorrin-3, is acetaldehyde, which originates from C-20 and its attached methyl group. This apparently contradictory finding is rationalized in terms of the subsequent enzymatic oxidation of acetaldehyde to acetic acid, which was previously regarded as the volatile fragment released by the action of the biosynthetic enzymes of Propionibacterium shermanii. The observation that acetaldehyde (rather than acetic acid) is extruded during anaerobic B12 synthesis is in full accord with the structure of factor IV, a new intermediate on the pathway.
Collapse
Affiliation(s)
- J Wang
- Department of Chemistry, Texas A&M University, College Station 77843, USA
| | | | | | | | | |
Collapse
|