1
|
Singh G, Skibbens RV. Fdo1, Fkh1, Fkh2, and the Swi6-Mbp1 MBF complex regulate Mcd1 levels to impact eco1 rad61 cell growth in Saccharomyces cerevisiae. Genetics 2024; 228:iyae128. [PMID: 39110836 PMCID: PMC11457938 DOI: 10.1093/genetics/iyae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/19/2024] [Indexed: 10/09/2024] Open
Abstract
Cohesins promote proper chromosome segregation, gene transcription, genomic architecture, DNA condensation, and DNA damage repair. Mutations in either cohesin subunits or regulatory genes can give rise to severe developmental abnormalities (such as Robert Syndrome and Cornelia de Lange Syndrome) and also are highly correlated with cancer. Despite this, little is known about cohesin regulation. Eco1 (ESCO2/EFO2 in humans) and Rad61 (WAPL in humans) represent two such regulators but perform opposing roles. Eco1 acetylation of cohesin during S phase, for instance, stabilizes cohesin-DNA binding to promote sister chromatid cohesion. On the other hand, Rad61 promotes the dissociation of cohesin from DNA. While Eco1 is essential, ECO1 and RAD61 co-deletion results in yeast cell viability, but only within a limited temperature range. Here, we report that eco1rad61 cell lethality is due to reduced levels of the cohesin subunit Mcd1. Results from a suppressor screen further reveals that FDO1 deletion rescues the temperature-sensitive (ts) growth defects exhibited by eco1rad61 double mutant cells by increasing Mcd1 levels. Regulation of MCD1 expression, however, appears more complex. Elevated expression of MBP1, which encodes a subunit of the MBF transcription complex, also rescues eco1rad61 cell growth defects. Elevated expression of SWI6, however, which encodes the Mbp1-binding partner of MBF, exacerbates eco1rad61 cell growth and also abrogates the Mpb1-dependent rescue. Finally, we identify two additional transcription factors, Fkh1 and Fkh2, that impact MCD1 expression. In combination, these findings provide new insights into the nuanced and multi-faceted transcriptional pathways that impact MCD1 expression.
Collapse
Affiliation(s)
- Gurvir Singh
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Robert V Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
2
|
Hiraga K, Inoue YU, Asami J, Hotta M, Morimoto Y, Tatsumoto S, Hoshino M, Go Y, Inoue T. Redundant type II cadherins define neuroepithelial cell states for cytoarchitectonic robustness. Commun Biol 2020; 3:574. [PMID: 33060832 PMCID: PMC7567090 DOI: 10.1038/s42003-020-01297-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Individual cell shape and integrity must precisely be orchestrated during morphogenesis. Here, we determine function of type II cadherins, Cdh6, Cdh8, and Cdh11, whose expression combinatorially demarcates the mouse neural plate/tube. While CRISPR/Cas9-based single type II cadherin mutants show no obvious phenotype, Cdh6/8 double knockout (DKO) mice develop intermingled forebrain/midbrain compartments as these two cadherins' expression opposes at the nascent boundary. Cdh6/8/11 triple, Cdh6/8 or Cdh8/11 DKO mice further cause exencephaly just within the cranial region where mutated cadherins' expression merges. In the Cdh8/11 DKO midbrain, we observe less-constricted apical actin meshwork, ventrally-directed spreading, and occasional hyperproliferation among dorsal neuroepithelial cells as origins for exencephaly. These results provide rigid evidence that, by conferring distinct adhesive codes to each cell, redundant type II cadherins serve essential and shared roles in compartmentalization and neurulation, both of which proceed under the robust control of the number, positioning, constriction, and fluidity of neuroepithelial cells.
Collapse
Affiliation(s)
- Kou Hiraga
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Ogawahigashi 4-1-1, Kodaira, Tokyo, 187-8502, Japan
| | - Yukiko U Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Ogawahigashi 4-1-1, Kodaira, Tokyo, 187-8502, Japan
| | - Junko Asami
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Ogawahigashi 4-1-1, Kodaira, Tokyo, 187-8502, Japan
| | - Mayuko Hotta
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Ogawahigashi 4-1-1, Kodaira, Tokyo, 187-8502, Japan
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, Nakamachi 2-24-16, Koganei, Tokyo, 184-8588, Japan
| | - Yuki Morimoto
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Ogawahigashi 4-1-1, Kodaira, Tokyo, 187-8502, Japan
| | - Shoji Tatsumoto
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Saigo-naka 38, Myoudaiji, Okazaki, Aichi, 444-8585, Japan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Ogawahigashi 4-1-1, Kodaira, Tokyo, 187-8502, Japan
| | - Yasuhiro Go
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Saigo-naka 38, Myoudaiji, Okazaki, Aichi, 444-8585, Japan
- Department of System Neuroscience, National Institute for Physiological Sciences, Saigo-naka 38, Myoudaiji, Okazaki, Aichi, 444-8585, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Saigo-naka 38, Myoudaiji, Okazaki, Aichi, 444-8585, Japan
| | - Takayoshi Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Ogawahigashi 4-1-1, Kodaira, Tokyo, 187-8502, Japan.
| |
Collapse
|
3
|
Brain enhancer activities at the gene-poor 5p14.1 autism-associated locus. Sci Rep 2016; 6:31227. [PMID: 27503586 PMCID: PMC4977510 DOI: 10.1038/srep31227] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/14/2016] [Indexed: 12/19/2022] Open
Abstract
Due to the vast clinical and genetic heterogeneity, identification of causal genetic determinants for autism spectrum disorder (ASD) has proven to be complex. Whereas several dozen ‘rare’ genetic variants for ASD susceptibility have been identified, studies are still underpowered to analyse ‘common’ variants for their subtle effects. A recent application of genome-wide association studies (GWAS) to ASD indicated significant associations with the single nucleotide polymorphisms (SNPs) on chromosome 5p14.1, located in a non-coding region between cadherin10 (CDH10) and cadherin9 (CDH9). Here we apply an in vivo bacterial artificial chromosome (BAC) based enhancer-trapping strategy in mice to scan the gene desert for spatiotemporal cis-regulatory activities. Our results show that the ASD-associated interval harbors the cortical area, striatum, and cerebellum specific enhancers for a long non-coding RNA, moesin pseudogene1 antisense (MSNP1AS) during the brain developing stages. Mouse moesin protein levels are not affected by exogenously expressed human antisense RNAs in our transgenic brains, demonstrating the difficulty in modeling rather smaller effects of common variants. Our first in vivo evidence for the spatiotemporal transcription of MSNP1AS however provides a further support to connect this intergenic variant with the ASD susceptibility.
Collapse
|
4
|
FoxA4 favours notochord formation by inhibiting contiguous mesodermal fates and restricts anterior neural development in Xenopus embryos. PLoS One 2014; 9:e110559. [PMID: 25343614 PMCID: PMC4208771 DOI: 10.1371/journal.pone.0110559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 09/24/2014] [Indexed: 11/19/2022] Open
Abstract
In vertebrates, the embryonic dorsal midline is a crucial signalling centre that patterns the surrounding tissues during development. Members of the FoxA subfamily of transcription factors are expressed in the structures that compose this centre. Foxa2 is essential for dorsal midline development in mammals, since knock-out mouse embryos lack a definitive node, notochord and floor plate. The related gene foxA4 is only present in amphibians. Expression begins in the blastula -chordin and -noggin expressing centre (BCNE) and is later restricted to the dorsal midline derivatives of the Spemann's organiser. It was suggested that the early functions of mammalian foxa2 are carried out by foxA4 in frogs, but functional experiments were needed to test this hypothesis. Here, we show that some important dorsal midline functions of mammalian foxa2 are exerted by foxA4 in Xenopus. We provide new evidence that the latter prevents the respecification of dorsal midline precursors towards contiguous fates, inhibiting prechordal and paraxial mesoderm development in favour of the notochord. In addition, we show that foxA4 is required for the correct regionalisation and maintenance of the central nervous system. FoxA4 participates in constraining the prospective rostral forebrain territory during neural specification and is necessary for the correct segregation of the most anterior ectodermal derivatives, such as the cement gland and the pituitary anlagen. Moreover, the early expression of foxA4 in the BCNE (which contains precursors of the whole forebrain and most of the midbrain and hindbrain) is directly required to restrict anterior neural development.
Collapse
|
5
|
Nolte C, Jinks T, Wang X, Martinez Pastor MT, Krumlauf R. Shadow enhancers flanking the HoxB cluster direct dynamic Hox expression in early heart and endoderm development. Dev Biol 2013; 383:158-73. [PMID: 24055171 DOI: 10.1016/j.ydbio.2013.09.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/03/2013] [Accepted: 09/11/2013] [Indexed: 11/29/2022]
Abstract
The products of Hox genes function in assigning positional identity along the anterior-posterior body axis during animal development. In mouse embryos, Hox genes located at the 3' end of HoxA and HoxB complexes are expressed in nested patterns in the progenitors of the secondary heart field during early cardiogenesis and the combined activities of both of these clusters are required for proper looping of the heart. Using Hox bacterial artificial chromosomes (BACs), transposon reporters, and transgenic analyses in mice, we present the identification of several novel enhancers flanking the HoxB complex which can work over a long range to mediate dynamic reporter expression in the endoderm and embryonic heart during development. These enhancers respond to exogenously added retinoic acid and we have identified two retinoic acid response elements (RAREs) within these control modules that play a role in potentiating their regulatory activity. Deletion analysis in HoxB BAC reporters reveals that these control modules, spread throughout the flanking intergenic region, have regulatory activities that overlap with other local enhancers. This suggests that they function as shadow enhancers to modulate the expression of genes from the HoxB complex during cardiac development. Regulatory analysis of the HoxA complex reveals that it also has enhancers in the 3' flanking region which contain RAREs and have the potential to modulate expression in endoderm and heart tissues. Together, the similarities in their location, enhancer output, and dependence on retinoid signaling suggest that a conserved cis-regulatory cassette located in the 3' proximal regions adjacent to the HoxA and HoxB complexes evolved to modulate Hox gene expression during mammalian cardiac and endoderm development. This suggests a common regulatory mechanism, whereby the conserved control modules act over a long range on multiple Hox genes to generate nested patterns of HoxA and HoxB expression during cardiogenesis.
Collapse
Affiliation(s)
- Christof Nolte
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | | | | | |
Collapse
|
6
|
Rosin JM, Abassah-Oppong S, Cobb J. Comparative transgenic analysis of enhancers from the human SHOX and mouse Shox2 genomic regions. Hum Mol Genet 2013; 22:3063-76. [DOI: 10.1093/hmg/ddt163] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
7
|
Zuniga A, Laurent F, Lopez-Rios J, Klasen C, Matt N, Zeller R. Conserved cis-regulatory regions in a large genomic landscape control SHH and BMP-regulated Gremlin1 expression in mouse limb buds. BMC DEVELOPMENTAL BIOLOGY 2012; 12:23. [PMID: 22888807 PMCID: PMC3541112 DOI: 10.1186/1471-213x-12-23] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 07/12/2012] [Indexed: 02/07/2023]
Abstract
Background Mouse limb bud is a prime model to study the regulatory interactions that control vertebrate organogenesis. Major aspects of limb bud development are controlled by feedback loops that define a self-regulatory signalling system. The SHH/GREM1/AER-FGF feedback loop forms the core of this signalling system that operates between the posterior mesenchymal organiser and the ectodermal signalling centre. The BMP antagonist Gremlin1 (GREM1) is a critical node in this system, whose dynamic expression is controlled by BMP, SHH, and FGF signalling and key to normal progression of limb bud development. Previous analysis identified a distant cis-regulatory landscape within the neighbouring Formin1 (Fmn1) locus that is required for Grem1 expression, reminiscent of the genomic landscapes controlling HoxD and Shh expression in limb buds. Results Three highly conserved regions (HMCO1-3) were identified within the previously defined critical genomic region and tested for their ability to regulate Grem1 expression in mouse limb buds. Using a combination of BAC and conventional transgenic approaches, a 9 kb region located ~70 kb downstream of the Grem1 transcription unit was identified. This region, termed Grem1 Regulatory Sequence 1 (GRS1), is able to recapitulate major aspects of Grem1 expression, as it drives expression of a LacZ reporter into the posterior and, to a lesser extent, in the distal-anterior mesenchyme. Crossing the GRS1 transgene into embryos with alterations in the SHH and BMP pathways established that GRS1 depends on SHH and is modulated by BMP signalling, i.e. integrates inputs from these pathways. Chromatin immunoprecipitation revealed interaction of endogenous GLI3 proteins with the core cis-regulatory elements in the GRS1 region. As GLI3 is a mediator of SHH signal transduction, these results indicated that SHH directly controls Grem1 expression through the GRS1 region. Finally, all cis-regulatory regions within the Grem1 genomic landscape locate to the DNAse I hypersensitive sites identified in this genomic region by the ENCODE consortium. Conclusions This study establishes that distant cis-regulatory regions scattered through a larger genomic landscape control the highly dynamic expression of Grem1, which is key to normal progression of mouse limb bud development.
Collapse
Affiliation(s)
- Aimée Zuniga
- Developmental Genetics, Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058, Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
8
|
Tamm T, Grallert A, Grossman EPS, Alvarez-Tabares I, Stevens FE, Hagan IM. Brr6 drives the Schizosaccharomyces pombe spindle pole body nuclear envelope insertion/extrusion cycle. ACTA ACUST UNITED AC 2012; 195:467-84. [PMID: 22042620 PMCID: PMC3206342 DOI: 10.1083/jcb.201106076] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Insertion into and release of the cytoplasmic domain of the Schizosaccharomyces pombe spindle pole body from a nuclear envelope fenestra during mitosis requires Brr6. The fission yeast interphase spindle pole body (SPB) is a bipartite structure in which a bulky cytoplasmic domain is separated from a nuclear component by the nuclear envelope. During mitosis, the SPB is incorporated into a fenestra that forms within the envelope during mitotic commitment. Closure of this fenestra during anaphase B/mitotic exit returns the cytoplasmic component to the cytoplasmic face of an intact interphase nuclear envelope. Here we show that Brr6 is transiently recruited to SPBs at both SPB insertion and extrusion. Brr6 is required for both SPB insertion and nuclear envelope integrity during anaphase B/mitotic exit. Genetic interactions with apq12 and defective sterol assimilation suggest that Brr6 may alter envelope composition at SPBs to promote SPB insertion and extrusion. The restriction of the Brr6 domain to eukaryotes that use a polar fenestra in an otherwise closed mitosis suggests a conserved role in fenestration to enable a single microtubule organizing center to nucleate both cytoplasmic and nuclear microtubules on opposing sides of the nuclear envelope.
Collapse
Affiliation(s)
- Tiina Tamm
- Cancer Research UK Cell Division Group, Paterson Institute for Cancer Research, Manchester M20 4BX, England, UK
| | | | | | | | | | | |
Collapse
|
9
|
Asami J, Inoue YU, Terakawa YW, Egusa SF, Inoue T. Bacterial artificial chromosomes as analytical basis for gene transcriptional machineries. Transgenic Res 2010; 20:913-24. [PMID: 21132362 PMCID: PMC3139094 DOI: 10.1007/s11248-010-9469-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 11/23/2010] [Indexed: 11/08/2022]
Abstract
Bacterial Artificial Chromosomes (BACs) had been minimal components of various genome-sequencing projects, constituting perfect analytical basis for functional genomics. Here we describe an enhancer screening strategy in which BAC clones that cover any genomic segments of interest are modified to harbor a reporter cassette by transposon tagging, then processed to carry selected combinations of gene regulatory modules by homologous recombination mediated systematic deletions. Such engineered BAC-reporter constructs in bacterial cells are ready for efficient transgenesis in mice to evaluate activities of gene regulatory modules intact or absent in the constructs. By utilizing the strategy, we could speedily identify a critical genomic fragment for spatio-temporally regulated expression of a mouse cadherin gene whose structure is extraordinarily huge and intricate. This BAC-based methodology would hence provide a novel screening platform for gene transcriptional machineries that dynamically fluctuate during development, pathogenesis and/or evolution.
Collapse
Affiliation(s)
- Junko Asami
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Ogawahigashi 4-1-1, Kodaira, Tokyo, 187-8502, Japan
| | | | | | | | | |
Collapse
|
10
|
Abstract
Schizosaccharomyces pombe, the fission yeast, has long been a crucial model for the study
of the eukaryote cell cycle. We take a look at this important yeast, whose genome has
recently been completed, featuring comments from Valerie Wood, Jürg Bähler, Ramsay
McFarlane, Susan Forsburg, Iain Hagan and Paul Nurse on the implications of having the
complete sequence and future prospects for pombe genomics.
Collapse
Affiliation(s)
- Jo Wixon
- Bioinformatics Division, HGMP-RC, Hinxton, Cambridge CB10 1SB, UK
| |
Collapse
|
11
|
Inoue YU, Asami J, Inoue T. Cadherin-6 gene regulatory patterns in the postnatal mouse brain. Mol Cell Neurosci 2008; 39:95-104. [PMID: 18617008 DOI: 10.1016/j.mcn.2008.05.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2008] [Revised: 05/26/2008] [Accepted: 05/28/2008] [Indexed: 11/15/2022] Open
Abstract
Cadherin-6 (Cdh6, K-cadherin) is a synaptic adhesion molecule the expression of which demarcates restricted sets of neuronal circuitries in postnatal mouse brains. While roles for the cadherins in the formation and/or modulation of synaptic junctions have been implicated, that which drives cadherin expression along functional brain circuits has remained elusive. Here we investigate the genetic control of Cdh6 expression by applying a method that permits systematic integration of a reporter cassette into bacterial artificial chromosomes with extensive coverage of the huge Cdh6 gene locus, whereby the reporter activities are efficiently evaluated in stable transgenic mouse lines. Such screenings revealed that divisible genomic segments differentially control each brain region or nucleus specific expression of Cdh6 at the right phases for circuit formation. These separable regulatory modules for cadherin expressions tended to be grouped by working connectivities, suggesting their developmental and/or evolutional value in elaborating brain circuitry.
Collapse
Affiliation(s)
- Yukiko U Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Ogawahigashi 4-1-1, Kodaira, Tokyo 187-8502, Japan
| | | | | |
Collapse
|
12
|
Hochholdinger F, Wen TJ, Zimmermann R, Chimot-Marolle P, da Costa e Silva O, Bruce W, Lamkey KR, Wienand U, Schnable PS. The maize (Zea mays L.) roothairless3 gene encodes a putative GPI-anchored, monocot-specific, COBRA-like protein that significantly affects grain yield. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:888-98. [PMID: 18298667 PMCID: PMC2440564 DOI: 10.1111/j.1365-313x.2008.03459.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 01/24/2008] [Accepted: 02/07/2008] [Indexed: 05/18/2023]
Abstract
The rth3 (roothairless 3) mutant is specifically affected in root hair elongation. We report here the cloning of the rth3 gene via a PCR-based strategy (amplification of insertion mutagenized sites) and demonstrate that it encodes a COBRA-like protein that displays all the structural features of a glycosylphosphatidylinositol anchor. Genes of the COBRA family are involved in various types of cell expansion and cell wall biosynthesis. The rth3 gene belongs to a monocot-specific clade of the COBRA gene family comprising two maize and two rice genes. While the rice (Oryza sativa) gene OsBC1L1 appears to be orthologous to rth3 based on sequence similarity (86% identity at the protein level) and maize/rice synteny, the maize (Zea mays L.) rth3-like gene does not appear to be a functional homolog of rth3 based on their distinct expression profiles. Massively parallel signature sequencing analysis detected rth3 expression in all analyzed tissues, but at relatively low levels, with the most abundant expression in primary roots where the root hair phenotype is manifested. In situ hybridization experiments confine rth3 expression to root hair-forming epidermal cells and lateral root primordia. Remarkably, in replicated field trials involving near-isogenic lines, the rth3 mutant conferred significant losses in grain yield.
Collapse
Affiliation(s)
- Frank Hochholdinger
- Center for Plant Molecular Biology, Department of General Genetics, Eberhard-Karls-University Tuebingen72076 Tuebingen, Germany
| | - Tsui-Jung Wen
- Department of Agronomy, Iowa State UniversityAmes, IA 50011, USA
| | - Roman Zimmermann
- Center for Plant Molecular Biology, Department of General Genetics, Eberhard-Karls-University Tuebingen72076 Tuebingen, Germany
| | - Patricia Chimot-Marolle
- Institute for General Botany and Botanical Garden, University of Hamburg22609 Hamburg, Germany
| | | | - Wesley Bruce
- Pioneer Hi-Bred International, Inc. – a DuPont CompanyJohnston, IA 50131, USA
| | - Kendall R Lamkey
- Department of Agronomy, Iowa State UniversityAmes, IA 50011, USA
| | - Udo Wienand
- Institute for General Botany and Botanical Garden, University of Hamburg22609 Hamburg, Germany
| | - Patrick S Schnable
- Department of Agronomy, Iowa State UniversityAmes, IA 50011, USA
- Pioneer Hi-Bred International, Inc. – a DuPont CompanyJohnston, IA 50131, USA
- Department of Genetics, Development, and Cell Biology, Iowa State UniversityAmes, IA 50011, USA
- Center for Plant Genomics, Iowa State University, Ames, IA 50011-36506, USA
- *For correspondence (fax +1 515 294 5256; e-mail )
| |
Collapse
|
13
|
Inoue T, Inoue YU, Asami J, Izumi H, Nakamura S, Krumlauf R. Analysis of mouse Cdh6 gene regulation by transgenesis of modified bacterial artificial chromosomes. Dev Biol 2007; 315:506-20. [PMID: 18234175 DOI: 10.1016/j.ydbio.2007.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 11/05/2007] [Accepted: 12/09/2007] [Indexed: 11/17/2022]
Abstract
Classic cadherins are cell adhesion molecules whose expression patterns are dynamically modulated in association with their diverse functions during morphogenesis. The large size and complexity of cadherin loci have made it a challenge to investigate the organization of cis-regulatory modules that control their spatiotemporal patterns of expression. Towards this end, we utilized bacterial artificial chromosomes (BACs) containing the Cdh6 gene, a mouse type II classic cadherin, to systematically identify cis-regulatory modules that govern its expression. By inserting a lacZ reporter gene into the Cdh6 BAC and generating a series of modified variants via homologous recombination or transposon insertions that have been examined in transgenic mice, we identified an array of genomic regions that contribute to specific regulation of the gene. These regions span approximately 350 kb of the locus between 161-kb upstream and 186-kb downstream of the Cdh6 transcription start site. Distinct modules independently regulate compartmental expression (i.e. forebrain, hindbrain rhombomeres, and spinal cord) and/or cell lineage-specific expression patterns (i.e. neural crest subpopulations such as Schwann cells) of Cdh6 at the early developmental stages. With respect to regulation of expression in neural crest cells, we have found that distinct regions contribute to different aspects of expression and have identified a short 79-bp region that is implicated in regulating expression in cells once they have emigrated from the neural tube. These results build a picture of the complex organization of Cdh6 cis-regulatory modules and highlight the diverse inputs that contribute to its dynamic expression during early mouse embryonic development.
Collapse
Affiliation(s)
- Takayoshi Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Ogawahigashi 4-1-1, Kodaira, Tokyo 187-8502, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
Smith SJ, Kotecha S, Towers N, Mohun TJ. Targeted cell-ablation in Xenopus embryos using the conditional, toxic viral protein M2(H37A). Dev Dyn 2007; 236:2159-71. [PMID: 17615576 DOI: 10.1002/dvdy.21233] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Harnessing toxic proteins to destroy selective cells in an embryo is an attractive method for exploring details of cell fate and cell-cell interdependency. However, no existing "suicide gene" system has proved suitable for aquatic vertebrates. We use the M2(H37A) toxic ion channel of the influenza-A virus to induce cell-ablations in Xenopus laevis. M2(H37A) RNA injected into blastomeres of early stage embryos causes death of their progeny by late-blastula stages. Moreover, M2(H37A) toxicity can be controlled using the M2 inhibitor rimantadine. We have tested the ablation system using transgenesis to target M2(H37A) expression to selected cells in the embryo. Using the myocardial MLC2 promoter, M2(H37A)-mediated cell death causes dramatic loss of cardiac structure and function by stage 39. With the LURP1 promoter, we induce cell-ablations of macrophages. These experiments demonstrate the effectiveness of M2(H37A)-ablation in Xenopus and its utility in monitoring the progression of developmental abnormalities during targeted cell death experiments.
Collapse
Affiliation(s)
- Stuart J Smith
- Division of Developmental Biology, National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom
| | | | | | | |
Collapse
|
15
|
Kaltenbach LS, Updike DL, Mango SE. Contribution of the amino and carboxyl termini for PHA-4/FoxA function in Caenorhabditis elegans. Dev Dyn 2006; 234:346-54. [PMID: 16127716 DOI: 10.1002/dvdy.20550] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
FoxA transcription factors are central regulators of gut development in all animals that have been studied. Here we examine the sole Caenorhabditis elegans FoxA protein, which is called pha-4. We describe the molecular characterization of five pha-4 mutations and characterize their associated phenotypes. Two nonsense mutations are predicted to truncate PHA-4 after the DNA binding domain and remove the conserved carboxyl terminus. Surprisingly, animals harboring these mutations are viable, provided the mutant mRNAs are stabilized by inactivating the nonsense-mediated decay pathway. Two additional nonsense mutations reveal that the DNA binding domain is critical for activity. A missense mutation predicted to alter the PHA-4 amino terminus leads to a dramatic reduction in pha-4 activity even though the protein is expressed appropriately. We suggest that the PHA-4 amino terminus is essential for PHA-4 function in vivo, possibly as a transactivation domain, and can compensate for loss of the carboxyl terminus. We also provide evidence for autoregulation by PHA-4.
Collapse
Affiliation(s)
- Linda S Kaltenbach
- Huntsman Cancer Institute and Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
16
|
Smith SJ, Ataliotis P, Kotecha S, Towers N, Sparrow DB, Mohun TJ. The MLC1v gene provides a transgenic marker of myocardium formation within developing chambers of the Xenopus heart. Dev Dyn 2005; 232:1003-12. [PMID: 15736168 DOI: 10.1002/dvdy.20274] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many details of cardiac chamber morphogenesis could be revealed if muscle fiber development could be visualized directly within the hearts of living vertebrate embryos. To achieve this end, we have used the active promoter of the MLC1v gene to drive expression of green fluorescent protein (GFP) in the developing tadpole heart. By using a line of Xenopus laevis frogs transgenic for the MLC1v-EGFP reporter, we have observed regionalized patterns of muscle formation within the ventricular chamber and maturation of the atrial chambers, from the onset of chamber formation through to the adult frog. In f1 generation MLC1v-EGFP animals, promoter activity is first detected within the looping heart tube and delineates the forming ventricular chamber and proximal outflow tract throughout their development. The 8-kb MLC1v promoter faithfully reproduces the embryonic expression of the endogenous MLC1v mRNA. At later larval stages, weak patches of EGFP fluorescence are found on the atrial side of the atrioventricular boundary. Subsequently, an extensive lattice of MLC1v-expressing fibers extend across the mature atrial chambers of adult frog hearts and the transgene reveals the differing arrangement of muscle fibers in chamber versus outflow myocardium. The complete activity of the promoter resides within the proximal 4.5 kb of the MLC1v DNA fragment, whereas key elements regulating chamber-specific expression are present in the proximal-most 1.5 kb. Finally, we demonstrate how cardiac and craniofacial muscle expression of the MLC1v promoter can be used to diagnose mutant phenotypes in living embryos, using the injection of RNA encoding a Tbx1-engrailed repressor-fusion protein as an example.
Collapse
Affiliation(s)
- Stuart J Smith
- Division of Developmental Biology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | | | | | | | | | | |
Collapse
|
17
|
Wen TJ, Hochholdinger F, Sauer M, Bruce W, Schnable PS. The roothairless1 gene of maize encodes a homolog of sec3, which is involved in polar exocytosis. PLANT PHYSIOLOGY 2005; 138:1637-43. [PMID: 15980192 PMCID: PMC1176433 DOI: 10.1104/pp.105.062174] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The roothairless1 (rth1) mutant is impaired in root hair elongation and exhibits other growth abnormalities. Unicellular root hairs elongate via localized tip growth, a process mediated by polar exocytosis of secretory vesicles. We report here the cloning of the rth1 gene that encodes a sec3 homolog. In yeast (Saccharomyces cerevisiae) and mammals, sec3 is a subunit of the exocyst complex, which tethers exocytotic vesicles prior to their fusion. The cloning of the rth1 gene associates the homologs of exocyst subunits to an exocytotic process in plant development and supports the hypothesis that exocyst-like proteins are involved in plant exocytosis. Proteomic analyses identified four proteins that accumulate to different levels in wild-type and rth1 primary roots. The preferential accumulation in the rth1 mutant proteome of a negative regulator of the cell cycle (a prohibitin) may at least partially explain the delayed development and flowering of the rth1 mutant.
Collapse
Affiliation(s)
- Tsui-Jung Wen
- Department of Agronomy , Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | |
Collapse
|
18
|
Magor KE, Shum BP, Parham P. The beta 2-microglobulin locus of rainbow trout (Oncorhynchus mykiss) contains three polymorphic genes. THE JOURNAL OF IMMUNOLOGY 2004; 172:3635-43. [PMID: 15004166 DOI: 10.4049/jimmunol.172.6.3635] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Beta2-microglobulin (beta2m) associates with MHC and related class I H chains to form cell surface glycoproteins that mediate a variety of functions in defense. In humans, monomorphism of a single beta2m gene contrasts with the diversity and polymorphism of the class I H chain genes, and a similar picture was seen in almost all other species examined. In this regard, rainbow trout (Oncorhynchus mykiss) appeared unusual: trout beta2m genes gave a complicated and polymorphic pattern in Southern blots, and a minimum of 10 different mRNA encoding two distinct types of beta2m were expressed by a single fish. Characterization of genomic clones from the same fish now shows that the rainbow trout beta2m locus consists of two expressed genes and one partial gene that are closely linked. Four copies of the locus were identified and allelic variants of each gene defined, largely through comparison of the noncoding regions. A dramatic variation in the lengths of introns is caused by variable repetitive elements and accounts for the complex pattern seen in Southern blots. By comparison to noncoding sequences, the coding regions are conserved but the three loci differ within a cluster of codons that encode residues of beta2m that do not interact with class I H chains. Additional diversity in the trout beta2m genes appears to be due to somatic mutation that might be facilitated by the abundance of repetitive DNA elements within the 12 beta2m genes of an individual rainbow trout.
Collapse
Affiliation(s)
- Katharine E Magor
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
19
|
Zuniga A, Michos O, Spitz F, Haramis APG, Panman L, Galli A, Vintersten K, Klasen C, Mansfield W, Kuc S, Duboule D, Dono R, Zeller R. Mouse limb deformity mutations disrupt a global control region within the large regulatory landscape required for Gremlin expression. Genes Dev 2004; 18:1553-64. [PMID: 15198975 PMCID: PMC443518 DOI: 10.1101/gad.299904] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mouse limb deformity (ld) mutations cause limb malformations by disrupting epithelial-mesenchymal signaling between the polarizing region and the apical ectodermal ridge. Formin was proposed as the relevant gene because three of the five ld alleles disrupt its C-terminal domain. In contrast, our studies establish that the two other ld alleles directly disrupt the neighboring Gremlin gene, corroborating the requirement of this BMP antagonist for limb morphogenesis. Further doubts concerning an involvement of Formin in the ld limb phenotype are cast, as a targeted mutation removing the C-terminal Formin domain by frame shift does not affect embryogenesis. In contrast, the deletion of the corresponding genomic region reproduces the ld limb phenotype and is allelic to mutations in Gremlin. We resolve these conflicting results by identifying a cis-regulatory region within the deletion that is required for Gremlin activation in the limb bud mesenchyme. This distant cis-regulatory region within Formin is also altered by three of the ld mutations. Therefore, the ld limb bud patterning defects are not caused by disruption of Formin, but by alteration of a global control region (GCR) required for Gremlin transcription. Our studies reveal the large genomic landscape harboring this GCR, which is required for tissue-specific coexpression of two structurally and functionally unrelated genes.
Collapse
Affiliation(s)
- Aimée Zuniga
- Developmental Genetics, Department of Clinical-Biological Sciences, University of Basel Medical School, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Jin QW, McCollum D. Scw1p antagonizes the septation initiation network to regulate septum formation and cell separation in the fission yeast Schizosaccharomyces pombe. EUKARYOTIC CELL 2003; 2:510-20. [PMID: 12796296 PMCID: PMC161456 DOI: 10.1128/ec.2.3.510-520.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cytokinesis in the fission yeast Schizosaccharomyces pombe is regulated by a signaling pathway termed the septation initiation network (SIN). The SIN is essential for initiation of actomyosin ring constriction and septum formation. In a screen to search for mutations that can rescue the sid2-250 SIN mutant, we obtained scw1-18. Both the scw1-18 mutant and the scw1 deletion mutant (scw1Delta mutant), have defects in cell separation. Both the scw1-18 and scw1Delta mutations rescue the growth defects of not just the sid2-250 mutant but also the other temperature-sensitive SIN mutants. Other cytokinesis mutants, such as those defective for actomyosin ring formation, are not rescued by scw1Delta. scw1Delta does not seem to rescue the SIN by restoring SIN signaling defects. However, scw1Delta may function downstream of the SIN to promote septum formation, since scw1Delta can rescue the septum formation defects of the cps1-191beta-1,3-glucan synthase mutant, which is required for synthesis of the primary septum.
Collapse
Affiliation(s)
- Quan-Wen Jin
- Department of Molecular Genetics and Microbiology and Program in Cell Dynamics, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | |
Collapse
|
21
|
Spitz F, Gonzalez F, Duboule D. A global control region defines a chromosomal regulatory landscape containing the HoxD cluster. Cell 2003; 113:405-17. [PMID: 12732147 DOI: 10.1016/s0092-8674(03)00310-6] [Citation(s) in RCA: 350] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During limb development, coordinated expression of several Hoxd genes is required in presumptive digits. We searched for the underlying control sequences upstream from the cluster and found Lunapark (Lnp), a gene which shares limb and CNS expression specificities with both Hoxd genes and Evx2, another gene located nearby. We used a targeted enhancer-trap approach to identify a DNA segment capable of directing reporter gene expression in both digits and CNS, following Lnp, Evx2, and Hoxd-specific patterns. This DNA region showed an unusual interspecies conservation, including with its pufferfish counterpart. It contains a cluster of global enhancers capable of controlling transcription of several genes unrelated in structure or function, thus defining large regulatory domains. These domains were interrupted in the Ulnaless mutation, a balanced inversion that modified the topography of the locus. We discuss the heuristic value of these results in term of locus specific versus gene-specific regulation.
Collapse
Affiliation(s)
- François Spitz
- Department of Zoology and Animal Biology, NCCR Frontiers in Genetics, University of Geneva, Sciences III, Quai Ernest Ansermet 30, 1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
22
|
Browning H, Hayles J, Mata J, Aveline L, Nurse P, McIntosh JR. Tea2p is a kinesin-like protein required to generate polarized growth in fission yeast. J Cell Biol 2000; 151:15-28. [PMID: 11018050 PMCID: PMC2189814 DOI: 10.1083/jcb.151.1.15] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2000] [Accepted: 08/17/2000] [Indexed: 11/22/2022] Open
Abstract
Cytoplasmic microtubules are critical for establishing and maintaining cell shape and polarity. Our investigations of kinesin-like proteins (klps) and morphological mutants in the fission yeast Schizosaccharomyces pombe have identified a kinesin-like gene, tea2(+), that is required for cells to generate proper polarized growth. Cells deleted for this gene are often bent during exponential growth and initiate growth from improper sites as they exit stationary phase. They have a reduced cytoplasmic microtubule network and display severe morphological defects in genetic backgrounds that produce long cells. The tip-specific marker, Tea1p, is mislocalized in both tea2-1 and tea2Delta cells, indicating that Tea2p function is necessary for proper localization of Tea1p. Tea2p is localized to the tips of the cell and in a punctate pattern within the cell, often coincident with the ends of cytoplasmic microtubules. These results suggest that this kinesin promotes microtubule growth, possibly through interactions with the microtubule end, and that it is important for establishing and maintaining polarized growth along the long axis of the cell.
Collapse
Affiliation(s)
- H Browning
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Brachyury (T), a member of the T-box gene family, is essential for the formation of posterior mesoderm and notochord in vertebrate development. Expression of the Xenopus homologue of Brachyury, Xbra, causes ectopic ventral and lateral mesoderm formation in animal cap explants and co-expression of Xbra with Pintallavis, a forkhead/HNF3beta-related transcription factor, induces notochord. Although eFGF and the Bix genes are thought to be direct targets of Xbra, no other target genes have been identified. Here, we describe the use of hormone-inducible versions of Xbra and Pintallavis to construct cDNA libraries enriched for targets of these transcription factors. Five putative targets were isolated: Xwnt11, the homeobox gene Bix1, the zinc-finger transcription factor Xegr-1, a putative homologue of the antiproliferative gene BTG1 called Xbtg1, and BIG3/1A11, a gene of unknown function. Expression of Xegr-1 and Xbtg1 is controlled by Pintallavis alone as well as by a combination of Xbra and Pintallavis. Overexpression of Xbtg1 perturbed gastrulation and caused defects in posterior tissues and in notochord and muscle formation, a phenotype reminiscent of that observed with a dominant-negative version of Pintallavis called Pintallavis-En(R). The Brachyury-inducible genes we have isolated shed light on the mechanism of Brachyury function during mesoderm formation. Specification of mesodermal cells is regulated by targets including Bix1-4 and eFGF, while gastrulation movements and perhaps cell division are regulated by Xwnt11 and Xbtg1.
Collapse
Affiliation(s)
- Y Saka
- Division of Developmental Biology, National Institute for Medical Research, London, UK
| | | | | |
Collapse
|
24
|
Tosi LR, Beverley SM. cis and trans factors affecting Mos1 mariner evolution and transposition in vitro, and its potential for functional genomics. Nucleic Acids Res 2000; 28:784-90. [PMID: 10637331 PMCID: PMC102556 DOI: 10.1093/nar/28.3.784] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/1999] [Revised: 12/04/1999] [Accepted: 12/04/1999] [Indexed: 11/13/2022] Open
Abstract
Mos1 and other mariner / Tc1 transposons move horizon-tally during evolution, and when transplanted into heterologous species can transpose in organisms ranging from prokaryotes to protozoans and vertebrates. To further develop the Drosophila Mos1 mariner system as a genetic tool and to probe mechanisms affecting the regulation of transposition activity, we developed an in vitro system for Mos1 transposition using purified transposase and selectable Mos1 derivatives. Transposition frequencies of nearly 10(-3)/target DNA molecule were obtained, and insertions occurred at TA dinucleotides with little other sequence specificity. Mos1 elements containing only the 28 bp terminal inverted repeats were inactive in vitro, while elements containing a few additional internal bases were fully active, establishing the minimal cis -acting requirements for transposition. With increasing transposase the transposition frequency increased to a plateau value, in contrast to the predictions of the protein over-expression inhibition model and to that found recently with a reconstructed Himar1 transposase. This difference between the 'natural' Mos1 and 'reconstructed' Himar1 transposases suggests an evolutionary path for down-regulation of mariner transposition following its introduction into a naïve population. The establishment of the cis and trans requirements for optimal mariner transposition in vitro provides key data for the creation of vectors for in vitro mutagenesis, and will facilitate the development of in vivo systems for mariner transposition.
Collapse
MESH Headings
- Animals
- DNA Transposable Elements/genetics
- DNA Transposable Elements/physiology
- DNA, Protozoan/chemistry
- DNA, Protozoan/genetics
- DNA, Protozoan/metabolism
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- DNA, Superhelical/metabolism
- DNA-Binding Proteins/genetics
- Drosophila/enzymology
- Drosophila/genetics
- Evolution, Molecular
- Genome
- Magnesium/metabolism
- Manganese/metabolism
- Mutagenesis, Insertional/methods
- Plasmids/chemistry
- Plasmids/genetics
- Plasmids/metabolism
- Protein Folding
- Protein Renaturation
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- Recombination, Genetic/genetics
- Regulatory Sequences, Nucleic Acid/genetics
- Sequence Deletion/genetics
- Substrate Specificity
- Terminal Repeat Sequences/genetics
- Trans-Activators/physiology
- Transposases/chemistry
- Transposases/genetics
- Transposases/isolation & purification
- Transposases/metabolism
Collapse
Affiliation(s)
- L R Tosi
- Department of Molecular Microbiology, Washington University Medical School, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | | |
Collapse
|
25
|
Liu J, Wang H, McCollum D, Balasubramanian MK. Drc1p/Cps1p, a 1,3-beta-glucan synthase subunit, is essential for division septum assembly in Schizosaccharomyces pombe. Genetics 1999; 153:1193-203. [PMID: 10545452 PMCID: PMC1460829 DOI: 10.1093/genetics/153.3.1193] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Schizosaccharomyces pombe divides by medial fission through the use of an actomyosin-based contractile ring. A division septum is formed centripetally, concomitant with ring constriction. Although several genes essential for cytokinesis have been described previously, enzymes that participate in the assembly of the division septum have not been identified. Here we describe a temperature-sensitive mutation, drc1-191, that prevents division septum assembly and causes mutant cells to arrest with a stable actomyosin ring. Unlike the previously characterized cytokinesis mutants, which undergo multiple mitotic cycles, drc1-191 is the first cytokinesis mutant that arrests with two interphase nuclei. Interestingly, unlike drc1-191, drc1-null mutants proceed through multiple mitotic cycles, leading to the formation of large cells with many nuclei. drc1 is allelic to cps1, which encodes a 1,3-beta-glucan synthase subunit. We conclude that Drc1p/Cps1p is not required for cell elongation and cell growth, but plays an essential role in assembly of the division septum. Furthermore, it appears that constriction of the actomyosin ring might depend on assembly of the division septum. We discuss possible mechanisms that account for the differences in the phenotypes of the drc1-191 and the drc1-null mutants and also reflect the potential links between Drc1p and other cytokinesis regulators.
Collapse
Affiliation(s)
- J Liu
- Cell Division Laboratory, Institute of Molecular Agrobiology, The National University of Singapore, Singapore 117604
| | | | | | | |
Collapse
|
26
|
Formosa T, Nittis T. Dna2 mutants reveal interactions with Dna polymerase alpha and Ctf4, a Pol alpha accessory factor, and show that full Dna2 helicase activity is not essential for growth. Genetics 1999; 151:1459-70. [PMID: 10101169 PMCID: PMC1460564 DOI: 10.1093/genetics/151.4.1459] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mutations in the gene for the conserved, essential nuclease-helicase Dna2 from the yeast Saccharomyces cerevisiae were found to interact genetically with POL1 and CTF4, which encode a DNA Polymerase alpha subunit and an associated protein, suggesting that Dna2 acts in a process that involves Pol alpha. DNA2 alleles were isolated that cause either temperature sensitivity, sensitivity to alkylation damage, or both. The alkylation-sensitive alleles clustered in the helicase domain, including changes in residues required for helicase activity in related proteins. Additional mutations known or expected to destroy the ATPase and helicase activities of Dna2 were constructed and found to support growth on some media but to cause alkylation sensitivity. Only damage-sensitive alleles were lethal in combination with a ctf4 deletion. Full activity of the Dna2 helicase function is therefore not needed for viability, but is required for repairing damage and for tolerating loss of Ctf4. Arrest of dna2 mutants was RAD9 dependent, but deleting this checkpoint resulted in either no effect or suppression of defects, including the synthetic lethality with ctf4. Dna2 therefore appears to act in repair or lagging strand synthesis together with Pol alpha and Ctf4, in a role that is optimal with, but does not require, full helicase activity.
Collapse
Affiliation(s)
- T Formosa
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA.
| | | |
Collapse
|
27
|
Ehrmann IE, Ellis PS, Mazeyrat S, Duthie S, Brockdorff N, Mattei MG, Gavin MA, Affara NA, Brown GM, Simpson E, Mitchell MJ, Scott DM. Characterization of genes encoding translation initiation factor eIF-2gamma in mouse and human: sex chromosome localization, escape from X-inactivation and evolution. Hum Mol Genet 1998; 7:1725-37. [PMID: 9736774 DOI: 10.1093/hmg/7.11.1725] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Delta Sxrb interval of the mouse Y chromosome is critical for spermatogenesis and expression of the male-specific minor transplantation antigen H-Y. Several genes have been mapped to this interval and each has a homologue on the X chromosome. Four, Zfy1 , Zfy2 , Ube1y and Dffry , are expressed specifically in the testis and their X homologues are not transcribed from the inactive X chromosome. A further two, Smcy and Uty , are ubiquitously expressed and their X homologues escape X-inactivation. Here we report the identification of another gene from this region of the mouse Y chromosome. It encodes the highly conserved eukaryotic translation initiation factor eIF-2gamma. In the mouse this gene is ubiquitously expressed, has an X chromosome homologue which maps close to Dmd and escapes X-inactivation. The coding regions of the X and Y genes show 86% nucleotide identity and encode putative products with 98% amino acid identity. In humans, the eIF-2gamma structural gene is located on the X chromosome at Xp21 and this also escapes X-inactivation. However, there is no evidence of a Y copy of this gene in humans. We have identified autosomal retroposons of eIF-2gamma in both humans and mice and an additional retroposon on the X chromosome in some mouse strains. Ark blot analysis of eutherian and metatherian genomic DNA indicates that X-Y homologues are present in all species tested except simian primates and kangaroo and that retroposons are common to a wide range of mammals. These results shed light on the evolution of X-Y homologous genes.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Northern
- Chromosome Mapping
- Chromosomes, Human
- Chromosomes, Human, Pair 12
- Cloning, Molecular
- Dosage Compensation, Genetic
- Eukaryotic Initiation Factor-2/genetics
- Eukaryotic Initiation Factor-2/metabolism
- Evolution, Molecular
- Female
- Humans
- Male
- Mammals/genetics
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Inbred Strains
- Molecular Sequence Data
- Retroelements
- Sequence Homology, Amino Acid
- Sex Chromosomes
- X Chromosome
- Y Chromosome
Collapse
Affiliation(s)
- I E Ehrmann
- Transplantation Biology Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London W12 ONN, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hepworth SR, Friesen H, Segall J. NDT80 and the meiotic recombination checkpoint regulate expression of middle sporulation-specific genes in Saccharomyces cerevisiae. Mol Cell Biol 1998; 18:5750-61. [PMID: 9742092 PMCID: PMC109161 DOI: 10.1128/mcb.18.10.5750] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Distinct classes of sporulation-specific genes are sequentially expressed during the process of spore formation in Saccharomyces cerevisiae. The transition from expression of early meiotic genes to expression of middle sporulation-specific genes occurs at about the time that cells exit from pachytene and form the meiosis I spindle. To identify genes encoding potential regulators of middle sporulation-specific gene expression, we screened for mutants that expressed early meiotic genes but failed to express middle sporulation-specific genes. We identified mutant alleles of RPD3, SIN3, and NDT80 in this screen. Rpd3p, a histone deacetylase, and Sin3p are global modulators of gene expression. Ndt80p promotes entry into the meiotic divisions. We found that entry into the meiotic divisions was not required for activation of middle sporulation genes; these genes were efficiently expressed in a clb1 clb3 clb4 strain, which fails to enter the meiotic divisions due to reduced Clb-dependent activation of Cdc28p kinase. In contrast, middle sporulation genes were not expressed in a dmc1 strain, which fails to enter the meiotic divisions because a defect in meiotic recombination leads to a RAD17-dependent checkpoint arrest. Expression of middle sporulation genes, as well as entry into the meiotic divisions, was restored to a dmc1 strain by mutation of RAD17. Our studies also revealed that NDT80 was a temporally distinct, pre-middle sporulation gene and that its expression was reduced, but not abolished, on mutation of DMC1, RPD3, SIN3, or NDT80 itself. In summary, our data indicate that Ndt80p is required for expression of middle sporulation genes and that the activity of Ndt80p is controlled by the meiotic recombination checkpoint. Thus, middle genes are expressed only on completion of meiotic recombination and subsequent generation of an active form of Ndt80p.
Collapse
Affiliation(s)
- S R Hepworth
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | | | |
Collapse
|
29
|
Sedgwick SG, Taylor IA, Adam AC, Spanos A, Howell S, Morgan BA, Treiber MK, Kanuga N, Banks GR, Foord R, Smerdon SJ. Structural and functional architecture of the yeast cell-cycle transcription factor swi6. J Mol Biol 1998; 281:763-75. [PMID: 9719633 DOI: 10.1006/jmbi.1998.1996] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structural and functional organisation of Swi6, a transcriptional regulator of the budding yeast cell cycle has been analysed by a combination of biochemical, biophysical and genetic methods. Limited proteolysis indicates the presence of a approximately 15 kDa N-terminal domain which is dispensable for Swi6 activity in vivo and which is separated from the rest of the molecule by an extended linker of at least 43 residues. Within the central region, a 141 residue segment that is capable of transcriptional activation encompasses a structural domain of approximately 85 residues. In turn, this is tightly associated with an adjacent 28 kDa domain containing at least four ankyrin-repeat (ANK) motifs. A second protease sensitive region connects the ANK domain to the remaining 30 kDa C-terminal portion of Swi6 which contains a second transcriptional activator and sequences required for heteromerisation with Swi4 or Mbp1. Transactivation by the activating regions of Swi6 is antagonised when either are combined with the central ankyrin repeat motifs. Hydrodynamic measurements indicate that an N-terminal 62 kDa fragment comprising the first three domains is monomeric in solution and exhibits an unusually high frictional coefficient consistent with the extended, multi-domain structure suggested by proteolytic analysis.
Collapse
Affiliation(s)
- S G Sedgwick
- Division of Yeast Genetics, National Institute for Medical Research, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Friesen H, Tanny JC, Segall J. Spe3, which encodes spermidine synthase, is required for full repression through NRE(DIT) in Saccharomyces cerevisiae. Genetics 1998; 150:59-73. [PMID: 9725830 PMCID: PMC1460323 DOI: 10.1093/genetics/150.1.59] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We previously identified a transcriptional regulatory element, which we call NRE(DIT), that is required for repression of the sporulation-specific genes, DIT1 and DIT2, during vegetative growth of Saccharomyces cerevisiae. Repression through this element is dependent on the Ssn6-Tup1 corepressor. In this study, we show that SIN4 contributes to NRE(DIT)-mediated repression, suggesting that changes in chromatin structure are, at least in part, responsible for regulation of DIT gene expression. In a screen for additional genes that function in repression of DIT (FRD genes), we recovered alleles of TUP1, SSN6, SIN4, and ROX3 and identified mutations comprising eight complementation groups of FRD genes. Four of these FRD genes appeared to act specifically in NRE(DIT)mediated repression, and four appeared to be general regulators of gene expression. We cloned the gene complementing the frd3-1 phenotype and found that it was identical to SPE3, which encodes spermidine synthase. Mutant spe3 cells not only failed to support complete repression through NRE(DIT) but also had modest defects in repression of some other genes. Addition of spermidine to the medium partially restored repression to spe3 cells, indicating that spermidine may play a role in vivo as a modulator of gene expression. We suggest various mechanisms by which spermidine could act to repress gene expression.
Collapse
Affiliation(s)
- H Friesen
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
31
|
Samejima I, Mackie S, Warbrick E, Weisman R, Fantes PA. The fission yeast mitotic regulator win1+ encodes an MAP kinase kinase kinase that phosphorylates and activates Wis1 MAP kinase kinase in response to high osmolarity. Mol Biol Cell 1998; 9:2325-35. [PMID: 9693384 PMCID: PMC25494 DOI: 10.1091/mbc.9.8.2325] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Schizosaccharomyces pombe win1-1 mutant has a defect in the G2-M transition of the cell cycle. Although the defect is suppressed by wis1+ and wis4+, which are components of a stress-activated MAP kinase pathway that links stress response and cell cycle control, the molecular identity of Win1 has not been known. We show here that win1+ encodes a polypeptide of 1436 residues with an apparent molecular size of 180 kDa and demonstrate that Win1 is a MAP kinase kinase kinase that phosphorylates and activates Wis1. Despite extensive similarities between Win1 and Wis4, the two MAP kinase kinase kinases have distinct functions. Wis4 is able to compensate for loss of Win1 only under unstressed conditions to maintain basal Wis1 activity, but it fails to suppress the osmosignaling defect conferred by win1 mutations. The win1-1 mutation is a spontaneous duplication of 16 nucleotides, which leads to a frameshift and production of a truncated protein lacking the kinase domain. We discuss the cell cycle phenotype of the win1-1 cdc25-22 wee1-50 mutant and its suppression by wis genes.
Collapse
Affiliation(s)
- I Samejima
- Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | | | | | | | | |
Collapse
|
32
|
Verde F, Wiley DJ, Nurse P. Fission yeast orb6, a ser/thr protein kinase related to mammalian rho kinase and myotonic dystrophy kinase, is required for maintenance of cell polarity and coordinates cell morphogenesis with the cell cycle. Proc Natl Acad Sci U S A 1998; 95:7526-31. [PMID: 9636183 PMCID: PMC22672 DOI: 10.1073/pnas.95.13.7526] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The molecular mechanisms that coordinate cell morphogenesis with the cell cycle remain largely unknown. We have investigated this process in fission yeast where changes in polarized cell growth are coupled with cell cycle progression. The orb6 gene is required during interphase to maintain cell polarity and encodes a serine/threonine protein kinase, belonging to the myotonic dystrophy kinase/cot1/warts family. A decrease in Orb6 protein levels leads to loss of polarized cell shape and to mitotic advance, whereas an increase in Orb6 levels maintains polarized growth and delays mitosis by affecting the p34(cdc2) mitotic kinase. Thus the Orb6 protein kinase coordinates maintenance of cell polarity during interphase with the onset of mitosis. orb6 interacts genetically with orb2, which encodes the Pak1/Shk1 protein kinase, a component of the Ras1 and Cdc42-dependent signaling pathway. Our results suggest that Orb6 may act downstream of Pak1/Shk1, forming part of a pathway coordinating cell morphogenesis with progression through the cell cycle.
Collapse
Affiliation(s)
- F Verde
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, P.O. Box 016129, Miami, FL, 33101-6129, USA.
| | | | | |
Collapse
|
33
|
Murray JM, Lindsay HD, Munday CA, Carr AM. Role of Schizosaccharomyces pombe RecQ homolog, recombination, and checkpoint genes in UV damage tolerance. Mol Cell Biol 1997; 17:6868-75. [PMID: 9372918 PMCID: PMC232543 DOI: 10.1128/mcb.17.12.6868] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The cellular responses to DNA damage are complex and include direct DNA repair pathways that remove the damage and indirect damage responses which allow cells to survive DNA damage that has not been, or cannot be, removed. We have identified the gene mutated in the rad12.502 strain as a Schizosaccharomyces pombe recQ homolog. The same gene (designated rqh1) is also mutated in the hus2.22 mutant. We show that Rqhl is involved in a DNA damage survival mechanism which prevents cell death when UV-induced DNA damage cannot be removed. This pathway also requires the correct functioning of the recombination machinery and the six checkpoint rad gene products plus the Cdsl kinase. Our data suggest that Rqh1 operates during S phase as part of a mechanism which prevents DNA damage causing cell lethality. This process may involve the bypass of DNA damage sites by the replication fork. Finally, in contrast with the reported literature, we do not find that rqh1 (rad12) mutant cells are defective in UV dimer endonuclease activity.
Collapse
Affiliation(s)
- J M Murray
- School of Biological Sciences, Sussex University, Falmer, Brighton, United Kingdom.
| | | | | | | |
Collapse
|
34
|
Garraway LA, Tosi LR, Wang Y, Moore JB, Dobson DE, Beverley SM. Insertional mutagenesis by a modified in vitro Ty1 transposition system. Gene 1997; 198:27-35. [PMID: 9370261 DOI: 10.1016/s0378-1119(97)00288-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Transposable elements are useful tools for insertional mutagenesis and have many potential applications in the characterization of complex genomes. Here we describe a system which facilitates the construction of large transposon insertion libraries useful for genome sequencing and functional genomic analysis. We developed two transposons, TyK and TyK'GFP+, which can be introduced into target DNAs by Ty1-mediated transposition in vitro, and several modifications which decrease the frequency of false transposition events and direct the recovery of transpositions into passenger rather than vector DNA. Insertions of TyK'GFP+ additionally may yield fusions to the Aequorea green fluorescent protein (GFP), useful in studies of gene expression and protein targeting. Transposition in vitro was obtained into target DNAs of up to 50 kb in size, restriction mapping showed insertion to be relatively random, and the sequence of 55 insertion sites showed neither strong site nor base compositional preference. Our data suggest that TyK-based artificial transposons will be suitable for a variety of genetic applications in many organisms.
Collapse
Affiliation(s)
- L A Garraway
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
35
|
Mata J, Nurse P. tea1 and the microtubular cytoskeleton are important for generating global spatial order within the fission yeast cell. Cell 1997; 89:939-49. [PMID: 9200612 DOI: 10.1016/s0092-8674(00)80279-2] [Citation(s) in RCA: 313] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Fission yeast cells identify and maintain growing regions exactly opposed at the ends of a cylindrical cell. tea1 mutants disrupt this organization, producing bent and T-shaped cells. We have cloned tea1 and shown that tea1 is located at the cell poles. Microtubules are continuously required to transfer tea1 to the cell ends, and tea1 is located at the ends of microtubules growing toward the cell poles. We suggest that tea1 acts as an end marker, directing the growth machinery to the cell poles. tea1 is down-regulated in cells treated with pheromone that grow toward a mating partner and no longer maintain their ends exactly opposed. tea1 may also influence microtubular organization, affecting the maintenance of a single central axis.
Collapse
Affiliation(s)
- J Mata
- Cell Cycle Laboratory, Imperial Cancer Research Fund, London, United Kingdom
| | | |
Collapse
|
36
|
Willson J, Wilson S, Warr N, Watts FZ. Isolation and characterization of the Schizosaccharomyces pombe rhp9 gene: a gene required for the DNA damage checkpoint but not the replication checkpoint. Nucleic Acids Res 1997; 25:2138-46. [PMID: 9153313 PMCID: PMC146707 DOI: 10.1093/nar/25.11.2138] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Checkpoint controls exist in eukaryotic cells to ensure that cells do not enter mitosis in the presence of DNA damage or unreplicated chromosomes. In Schizosaccharomyces pombe many of the checkpoint genes analysed to date are required for both the DNA damage and the replication checkpoints, an exception being chk1 . We report here on the characterization of nine new methylmethane sulphonate (MMS)-sensitive S.pombe mutants, one of which is defective in the DNA damage checkpoint but not the replication checkpoint. We have cloned and sequenced the corresponding gene. The predicted protein is most similar to the Saccharomyces cerevisiae Rad9 protein, having 46% similarity and 26% identity. The S.pombe protein, which we have named Rhp9 (Rad9 homologue in S. pombe) on the basis of structural and phenotypic similarity, also contains motifs present in BRCA1 and 53BP1. Deletion of the gene is not lethal and results in a DNA damage checkpoint defect. Epistasis analysis with other S.pombe checkpoint mutants indicates that rhp9 acts in a process involving the checkpoint rad genes and that the rhp9 mutant is phenotypically very similar to chk1.
Collapse
Affiliation(s)
- J Willson
- Department of Biochemistry, School of Biological Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | | | | | | |
Collapse
|
37
|
Morgan BA, Banks GR, Toone WM, Raitt D, Kuge S, Johnston LH. The Skn7 response regulator controls gene expression in the oxidative stress response of the budding yeast Saccharomyces cerevisiae. EMBO J 1997; 16:1035-44. [PMID: 9118942 PMCID: PMC1169703 DOI: 10.1093/emboj/16.5.1035] [Citation(s) in RCA: 228] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Deletion of the bacterial two-component response regulator homologue Skn7 results in sensitivity of yeast to oxidizing agents indicating that Skn7 is involved in the response to this type of stress. Here we demonstrate that following oxidative stress, Skn7 regulates the induction of two genes: TRX2, encoding thioredoxin, and a gene encoding thioredoxin reductase. TRX2 is already known to be induced by oxidative stress dependent on the Yap1 protein, an AP1-like transcription factor responsible for the induction of gene expression in response to various stresses. The thioredoxin reductase gene has not previously been shown to be activated by oxidative stress and, significantly, we find that it too is regulated by Yap1. The control of at least TRX2 by Skn7 is a direct mechanism as Skn7 binds to the TRX2 gene promoter in vitro. This shows Skn7 to be a transcription factor, at present the only such eukaryotic two-component signalling protein. Our data further suggest that Skn7 and Yap1 co-operate on the TRX2 promoter, to induce transcription in response to oxidative stress.
Collapse
Affiliation(s)
- B A Morgan
- Department of Biochemistry and Genetics, Medical School, University of Newcastle, Newcastle-upon-Tyne, UK
| | | | | | | | | | | |
Collapse
|
38
|
Best S, Le Tissier P, Towers G, Stoye JP. Positional cloning of the mouse retrovirus restriction gene Fv1. Nature 1996; 382:826-9. [PMID: 8752279 DOI: 10.1038/382826a0] [Citation(s) in RCA: 376] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Vertebrate evolution has taken place against a background of constant retrovirus infection, and much of the mammalian genome consists of endogenous retrovirus-like elements. Several host genes have evolved to control retrovirus replication, including Friend-virus-susceptibility-1, Fv1, on mouse chromosome 4 (refs 3, 4). The Fv1 gene acts on murine leukaemia virus at a stage after entry into the target cell but before integration and formation of the provirus. Although restriction is not absolute, Fv1 prevents or delays spontaneous or experimentally induced viral tumours. In vitro, Fv1 restriction leads to an apparent 50-1,000 fold reduction in viral titre. Genetic evidence implicates a direct interaction between the Fv1 gene product and a component of the viral preintegration complex, the capsid protein CA (refs 7-9). We have now cloned Fv1: the gene appears to be derived from the gag region of an endogenous retrovirus unrelated to murine leukaemia virus, implying that the Fv1 protein and its target may share functional similarities despite the absence of nucleotide-sequence homology.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cell Cycle Proteins
- Chromosome Mapping
- Chromosomes, Artificial, Yeast
- Cloning, Molecular
- Cosmids
- Evolution, Molecular
- Friend murine leukemia virus/genetics
- Gene Expression
- Gene Library
- Gene Products, gag/genetics
- Genetic Markers
- Humans
- Immunity, Innate/genetics
- L Cells
- Leukemia, Experimental/immunology
- Leukemia, Experimental/virology
- Mice
- Mice, Inbred Strains
- Molecular Sequence Data
- Neoplasm Proteins
- Proteins/genetics
- Retroviridae Infections/immunology
- Saccharomyces cerevisiae/genetics
- Sequence Homology, Nucleic Acid
- Tumor Virus Infections/immunology
Collapse
Affiliation(s)
- S Best
- Division of Virology, National Institute for Medical Research, London, UK
| | | | | | | |
Collapse
|
39
|
Conlon FL, Sedgwick SG, Weston KM, Smith JC. Inhibition of Xbra transcription activation causes defects in mesodermal patterning and reveals autoregulation of Xbra in dorsal mesoderm. Development 1996; 122:2427-35. [PMID: 8756288 DOI: 10.1242/dev.122.8.2427] [Citation(s) in RCA: 209] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Brachyury (T) gene is required for formation of posterior mesoderm and for axial development in both mouse and zebrafish embryos. In this paper, we first show that the Xenopus homologue of Brachyury, Xbra, and the zebrafish homologue, no tail (ntl), both function as transcription activators. The activation domains of both proteins map to their carboxy terminal regions, and we note that the activation domain is absent in two zebrafish Brachyury mutations, suggesting that it is required for gene function. A dominant-interfering Xbra construct was generated by replacing the activation domain of Xbra with the repressor domain of the Drosophila engrailed protein. Microinjection of RNA encoding this fusion protein allowed us to generate Xenopus and zebrafish embryos which show striking similarities to genetic mutants in mouse and fish. These results indicate that the function of Brachyury during vertebrate gastrulation is to activate transcription of mesoderm-specific genes. Additional experiments show that Xbra transcription activation is required for regulation of Xbra itself in dorsal, but not ventral, mesoderm. The approach described in this paper, in which the DNA-binding domain of a transcription activator is fused to the engrailed repressor domain, should assist in the analysis of other Xenopus and zebrafish transcription factors.
Collapse
Affiliation(s)
- F L Conlon
- Division of Developmental Biology, National Institute for Medical Research, London, UK
| | | | | | | |
Collapse
|