1
|
Xiong P, Cheng W, Chen X, Niu H. Research progress of hydrogen sulfide fluorescent probes targeting organelles. Talanta 2025; 281:126869. [PMID: 39270604 DOI: 10.1016/j.talanta.2024.126869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/27/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
Hydrogen sulfide (H2S) is implicated in numerous physiological and pathological processes in living organisms. Abnormal levels of H2S can result in various physiological disorders, highlighting the crucial need for effective identification and detection of H2S at the organellar level. Although numerous H2S fluorescent probes targeting organelles have been reported, a comprehensive review of these probes is required. This review focuses on the strategic selection of organelle-targeting groups and recognition sites for H2S fluorescent probes. This review examines H2S fluorescent probes that can specifically target lysosomes, mitochondria, endoplasmic reticulum, Golgi apparatus, and lipid droplets. These fluorescent probes have been meticulously classified and summarized based on their distinct targets, emphasizing their chemical structure, reaction mechanisms, and biological applications. We carefully designed fluorescent probes to efficiently enhance their ability to recognize target substances and exhibit significant fluorescence variations. Furthermore, we discuss the challenges inherent in the development of fluorescent probes and outline potential future directions for this exciting field.
Collapse
Affiliation(s)
- Pingping Xiong
- College of Food and Bioengineering, Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang, 471000, PR China
| | - Weiwei Cheng
- College of Food and Bioengineering, Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang, 471000, PR China
| | - Xiujin Chen
- College of Food and Bioengineering, Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang, 471000, PR China.
| | - Huawei Niu
- College of Food and Bioengineering, Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang, 471000, PR China.
| |
Collapse
|
2
|
Chen W, Weng S, Zhong W, Huang H, Wei G, Yang J, Zhang Z, Chen Q, Lin J, Yu Y. Rapid intracellular pH measurement based on electroporation- surface-enhanced Raman scattering. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124758. [PMID: 38963945 DOI: 10.1016/j.saa.2024.124758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
In this study, electroporation-surface-enhanced Raman scattering (SERS) was applied to rapidly measure intracellular pH. The generation of a sensitive SERS probe for measuring pH in the range of 6.0-8.0 was accomplished through the conjugation of the pH-sensitive molecule 4-mercaptobenzoic acid (4-MBA) to the surface of gold nanoparticles (Au NPs) through its thiol functional group. This bioprobe was then rapidly introduced into nasopharyngeal carcinoma CNE-1 cells by electroporation, followed by SERS scanning and the fitting of intensity ratios of each detection point's Raman peaks at 1423 cm-1 and 1072 cm-1, to create the pH distribution map of CNE-1 cells. The electroporation-SERS assay introduces pH bioprobes into a living cell in a very short time and disperses the nanoprobe throughout the cytoplasm, ultimately enabling rapid and comprehensive pH analysis of the entire cell. Our work demonstrates the potential of electroporation-SERS for the biochemical analysis of live cells.
Collapse
Affiliation(s)
- Weiwei Chen
- School of Medical Technology and Engineering, Fujian Health College, Fuzhou 350101, China.
| | - Shenghe Weng
- School of Medical Technology and Engineering, Fujian Health College, Fuzhou 350101, China
| | - Weixiong Zhong
- School of Medical Technology and Engineering, Fujian Health College, Fuzhou 350101, China
| | - Hao Huang
- College of Integrative Medicine, Laboratory of Pathophysiology, Key Laboratory of Integrative Medicine on Chronic Diseases (Fujian Province University), Synthesized Laboratory of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Guoqiang Wei
- College of Integrative Medicine, Laboratory of Pathophysiology, Key Laboratory of Integrative Medicine on Chronic Diseases (Fujian Province University), Synthesized Laboratory of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Jian Yang
- School of Medical Technology and Engineering, Fujian Health College, Fuzhou 350101, China
| | - Zhongping Zhang
- The Third Affiliated People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China
| | - Qin Chen
- The Second Affiliated People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
| | - Jinyong Lin
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou 350014, China.
| | - Yun Yu
- College of Integrative Medicine, Laboratory of Pathophysiology, Key Laboratory of Integrative Medicine on Chronic Diseases (Fujian Province University), Synthesized Laboratory of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| |
Collapse
|
3
|
Najm M, Martignetti L, Cornet M, Kelly-Aubert M, Sermet I, Calzone L, Stoven V. From CFTR to a CF signalling network: a systems biology approach to study Cystic Fibrosis. BMC Genomics 2024; 25:892. [PMID: 39342081 PMCID: PMC11438383 DOI: 10.1186/s12864-024-10752-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 08/30/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Cystic Fibrosis (CF) is a monogenic disease caused by mutations in the gene coding the Cystic Fibrosis Transmembrane Regulator (CFTR) protein, but its overall physio-pathology cannot be solely explained by the loss of the CFTR chloride channel function. Indeed, CFTR belongs to a yet not fully deciphered network of proteins participating in various signalling pathways. METHODS We propose a systems biology approach to study how the absence of the CFTR protein at the membrane leads to perturbation of these pathways, resulting in a panel of deleterious CF cellular phenotypes. RESULTS Based on publicly available transcriptomic datasets, we built and analyzed a CF network that recapitulates signalling dysregulations. The CF network topology and its resulting phenotypes were found to be consistent with CF pathology. CONCLUSION Analysis of the network topology highlighted a few proteins that may initiate the propagation of dysregulations, those that trigger CF cellular phenotypes, and suggested several candidate therapeutic targets. Although our research is focused on CF, the global approach proposed in the present paper could also be followed to study other rare monogenic diseases.
Collapse
Affiliation(s)
- Matthieu Najm
- Center for Computational Biology (CBIO), Mines Paris-PSL, 75006, Paris, France.
- Institut Curie, Université PSL, 75005, Paris, France.
- INSERM U900, 75005, Paris, France.
| | - Loredana Martignetti
- Center for Computational Biology (CBIO), Mines Paris-PSL, 75006, Paris, France
- Institut Curie, Université PSL, 75005, Paris, France
- INSERM U900, 75005, Paris, France
| | - Matthieu Cornet
- Center for Computational Biology (CBIO), Mines Paris-PSL, 75006, Paris, France
- Institut Curie, Université PSL, 75005, Paris, France
- INSERM U900, 75005, Paris, France
- Institut Necker Enfants Malades, INSERM U1151, 75015, Paris, France
| | - Mairead Kelly-Aubert
- Institut Necker Enfants Malades, INSERM U1151, 75015, Paris, France
- Université Paris Cité, 75015, Paris, France
| | - Isabelle Sermet
- Institut Necker Enfants Malades, INSERM U1151, 75015, Paris, France
- Université Paris Cité, 75015, Paris, France
- Centre de Référence Maladies Rares, Mucoviscidose et Maladies Apparentées, Hôpital Necker Enfants Malades AP-HP Centre Paris Cité, 75015, Paris, France
| | - Laurence Calzone
- Center for Computational Biology (CBIO), Mines Paris-PSL, 75006, Paris, France.
- Institut Curie, Université PSL, 75005, Paris, France.
- INSERM U900, 75005, Paris, France.
| | - Véronique Stoven
- Center for Computational Biology (CBIO), Mines Paris-PSL, 75006, Paris, France.
- Institut Curie, Université PSL, 75005, Paris, France.
- INSERM U900, 75005, Paris, France.
| |
Collapse
|
4
|
Maity D, Bari S, Ghosh P, Roy P. Turning a fluorescent probe for Al3+ into a pH sensor by introducing Cl-substitution. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Qiu K, Seino R, Han G, Ishiyama M, Ueno Y, Tian Z, Sun Y, Diao J. De Novo Design of A Membrane-Anchored Probe for Multidimensional Quantification of Endocytic Dynamics. Adv Healthc Mater 2022; 11:e2102185. [PMID: 35032365 PMCID: PMC9035050 DOI: 10.1002/adhm.202102185] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/10/2022] [Indexed: 11/10/2022]
Abstract
As a process of cellular uptake, endocytosis, with gradient acidity in different endocytic vesicles, is vital for the homeostasis of intracellular nutrients and other functions. To study the dynamics of endocytic pathway, a membrane-anchored pH probe, ECGreen, is synthesized to visualize endocytic vesicles under structured illumination microscopy (SIM), a super-resolution technology. Being sensitive to acidity with increasing fluorescence at low pH, ECGreen can differentiate early and late endosomes as well as endolysosomes. Meanwhile, membrane anchoring not only improves the durability of ECGreen, but also provides an excellent anti-photobleaching property for long-time imaging with SIM. Moreover, by taking these advantages of ECGreen, a multidimensional analysis model containing spatial, temporal, and pH information is successfully developed for elucidating the dynamics of endocytic vesicles and their interactions with mitochondria during autophagy, and reveals a fast conversion of endosomes near the plasma membrane.
Collapse
Affiliation(s)
- Kangqiang Qiu
- Department of Cancer Biology College of Medicine University of Cincinnati Cincinnati OH 45267 USA
| | - Ryo Seino
- Dojindo Laboratories Kumamoto 861‐2202 Japan
| | - Guanqun Han
- Department of Chemistry University of Cincinnati Cincinnati OH 45221 USA
| | | | | | - Zhiqi Tian
- Department of Cancer Biology College of Medicine University of Cincinnati Cincinnati OH 45267 USA
| | - Yujie Sun
- Department of Chemistry University of Cincinnati Cincinnati OH 45221 USA
| | - Jiajie Diao
- Department of Cancer Biology College of Medicine University of Cincinnati Cincinnati OH 45267 USA
| |
Collapse
|
6
|
|
7
|
Engineering of a dual-site molecular probe for logical bioimaging of lysosomal H2S and pH. Talanta 2020; 219:121286. [DOI: 10.1016/j.talanta.2020.121286] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
|
8
|
Ghosh S, Chang YF, Yang DM, Chattopadhyay S. Upconversion nanoparticle-mOrange protein FRET nanoprobes for self-ratiometric/ratiometric determination of intracellular pH, and single cell pH imaging. Biosens Bioelectron 2020; 155:112115. [DOI: 10.1016/j.bios.2020.112115] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/05/2020] [Accepted: 02/19/2020] [Indexed: 12/16/2022]
|
9
|
Zhang XF, Wang TR, Cao XQ, Shen SL. A near-infrared rhodamine-based lysosomal pH probe and its application in lysosomal pH rise during heat shock. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117761. [PMID: 31707019 DOI: 10.1016/j.saa.2019.117761] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/02/2019] [Accepted: 11/03/2019] [Indexed: 05/10/2023]
Abstract
Heat shock is a potentially fatal condition characterized by high body temperature (>40 °C), which may lead to physical discomfort and dysfunctions of organ systems. Acidic pH environment in lysosomes can activate enzymes, thus facilitating the degradation of proteins in cellular metabolism. Owing to the lack of a practical research tool, it remains difficult to exploit relationship between heat shock and lysosome. Herein, a NIR lysosomal pH chemosensor (NRLH) was developed. One typical lysosome-locating group, morpholine, was incorporated into NRLH. The fluorescence intensity showed pH-dependent characteristics and responded sensitively to pH fluctuations in the pH range of 3.0-5.5. NRLH with a pKa of 4.24 displayed rapid response and high selectivity for H+ among common species. We also demonstrated NRLH was capable of targeting lysosomes. Importantly, NRLH was applied in cellular imaging and the data revealed that lysosomal pH increased but never decreased during the heat shock. Therefore, NRLH may act as an effective molecular tool for exploring the mechanisms of heat-related pathology in bio-systems.
Collapse
Affiliation(s)
- Xiao-Fan Zhang
- Taian Center For Food and Drug Control, Taian 271000, PR China
| | - Tian-Ran Wang
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, PR China
| | - Xiao-Qun Cao
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, PR China
| | - Shi-Li Shen
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, PR China.
| |
Collapse
|
10
|
Dhawa T, Hazra A, Barma A, Pal K, Karmakar P, Roy P. 4-Methyl-2,6-diformylphenol based biocompatible chemosensors for pH: discrimination between normal cells and cancer cells. RSC Adv 2020; 10:15501-15513. [PMID: 35495429 PMCID: PMC9052396 DOI: 10.1039/d0ra00754d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/13/2020] [Indexed: 01/16/2023] Open
Abstract
Two compounds, namely, 2-hydroxy-5-methyl-3-((pyridin-2-ylimino)methyl)benzaldehyde (HM-2py-B) and 2-hydroxy-5-methyl-3-((pyridin-3-ylimino)methyl)benzaldehyde (HM-3py-B), have been explored as fluorescent chemosensors for pH. HM-2py-B and HM-3py-B were synthesized by single step condensation reaction between 4-methyl-2,6-diformylphenol and the appropriate aminopyridine. These compounds have been characterized by elemental analysis, FT-IR, 1H NMR, 13C NMR, ESI mass spectrometry, and absorption and fluorescence spectroscopy. Their structures have been confirmed by single crystal X-ray diffraction analysis. Both of the compounds show low emission at 530 nm at low pH. Fluorescence intensity increases with the increase in pH. With the alteration in pH of the medium from 4.0 to 10.0, the fluorescence intensity at 530 nm enhances by 66 and 195 fold for HM-2py-B and HM-3py-B, respectively. pKa values of HM-2py-B and HM-3py-B have been determined to be 7.15 and 6.57, respectively. Fluorescence increase occurs mainly due to deprotonation of the phenolic OH group. Several cations and anions could not induce significant change in fluorescence behavior for both of the probes. The quantum yield and life-time enhance significantly when the pH of the medium is changed from 5.0 to 9.0. Naked eye identification of different pH environments is possible by using these compounds. Some theoretical calculations have been carried out to support experimentally obtained spectral transitions. As cancer cell has a pH in the range of 5.5–7.0 in comparison to normal cell pH of 7.4, these probes have been used effectively to discriminate between normal cells and cancer cells. Two 4-methyl-2,6-diformylphenol based compounds with pyridylamine have been established as chemosensors for pH. The probes are able to differentiate between normal cells and cancer cells.![]()
Collapse
Affiliation(s)
- Tanumoy Dhawa
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| | - Ananta Hazra
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| | - Arpita Barma
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| | - Kunal Pal
- Department of Life Science and Biotechnology
- Jadavpur University
- Kolkata 700032
- India
| | - Parimal Karmakar
- Department of Life Science and Biotechnology
- Jadavpur University
- Kolkata 700032
- India
| | - Partha Roy
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| |
Collapse
|
11
|
Bi X, Wang Y, Wang D, Liu L, Zhu W, Zhang J, Zha X. A mitochondrial-targetable dual functional near-infrared fluorescent probe to monitor pH and H2O2 in living cells and mice. RSC Adv 2020; 10:26874-26879. [PMID: 35515755 PMCID: PMC9055531 DOI: 10.1039/d0ra03905e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/29/2020] [Indexed: 12/23/2022] Open
Abstract
A lower pH level and high hydrogen peroxide (H2O2) concentration in mitochondria is closely associated with a variety of diseases including cancer and inflammation. Thus, determination of changes in the level of acidic pH and H2O2 is of great importance and could provide new insights into the key functions under both physiological and pathological conditions. Herein, we present a novel mitochondria-targetable probe NIR-pH-H2O2, as the first near infrared (NIR) fluorescent small molecule, to monitor changes of endogenous pH (pka = 6.17) and H2O2 with high sensitivity, good compatibility and low cytotoxicity. Futhermore, it was successfully employed to monitor pH and H2O2 in a mouse acute inflammation model. These results demonstrate that NIR-pH-H2O2 is a novel bifunctional mitochondrial-targeted NIR probe to sense acidic pH and H2O2in vitro and in vivo, indicating its huge potential for the diagnosis of pH and H2O2-related diseases. A lower pH level and high hydrogen peroxide (H2O2) concentration in mitochondria is closely associated with a variety of diseases including cancer and inflammation.![]()
Collapse
Affiliation(s)
- Xueyuan Bi
- School of Engineering
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Yingying Wang
- School of Engineering
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Dandan Wang
- School of Engineering
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Liming Liu
- School of Engineering
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Wen Zhu
- School of Engineering
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Junjie Zhang
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Xiaoming Zha
- School of Engineering
- China Pharmaceutical University
- Nanjing 211198
- China
| |
Collapse
|
12
|
Jiang T, Wang X, Wang G, Wang Y, Wang K, Xuan X, Chen C, Jiang K, Zhang H. Light-activated "cycle-reversible intramolecular charge transfer" fluorescent probe: monitoring of pHi trace change induced by UV light in programmed cell death. Chem Commun (Camb) 2019; 55:5279-5282. [PMID: 30993268 DOI: 10.1039/c9cc01451a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Under the synergistic effects of protonation and deprotonation, a light-activated fluorescent probe (UV-SP) exhibited "cycle-reversible intramolecular charge transfer (ICT)" for different pH after activation by UV light, resulting in emission of multiple ratio fluorescent signals (FI563/FI595 and FI664/FI595). Based on these kinds of response signals, UV-SP can specifically monitor the cycle-reversible trace change of intracellular pH caused by UV radiation. More importantly, according to the stable and invariant multiple ratio fluorescent signals, UV-SP can sort cells entering programmed death.
Collapse
Affiliation(s)
- Tao Jiang
- Henan Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Key Laboratory of Green Chemical Media and Reactions, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering Institution, Henan Normal University, Xinxiang 453007, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Liu K, Jin H, Guo Y, Liu Y, Wan Y, Zhao P, Zhou Z, Wang J, Wang M, Zou C, Wu W, Cheng Z, Dai Y. CFTR interacts with Hsp90 and regulates the phosphorylation of AKT and ERK1/2 in colorectal cancer cells. FEBS Open Bio 2019; 9:1119-1127. [PMID: 30985981 PMCID: PMC6551490 DOI: 10.1002/2211-5463.12641] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/21/2019] [Accepted: 04/12/2019] [Indexed: 12/21/2022] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CF cells and tissues exhibit various mitochondrial abnormalities. However, the underlying molecular mechanisms remain elusive. Here, we examined the mechanisms through which CFTR regulates Bcl‐2 family proteins, which in turn regulate permeabilization of the mitochondrial outer membrane. Notably, inhibition of CFTR activated Bax and Bad, but inhibited Bcl‐2. Moreover, degradation of phosphorylated extracellular signal‐regulated kinase 1/2 (ERK1/2) and AKT increased significantly in CFTR‐knockdown cells. Dysfunction of CFTR decreased heat‐shock protein 90 (Hsp90) mRNA levels, and CFTR was found to interact with Hsp90. Inhibition of Hsp90 by SNX‐2112 induced the degradation of phosphorylated AKT and ERK1/2 in Caco2 and HRT18 cells. These findings may help provide insights into the physiological role of CFTR in CF‐related diseases.
Collapse
Affiliation(s)
- Kaisheng Liu
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China.,Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hongtao Jin
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Yaomin Guo
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Ying Liu
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Yong Wan
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Pan Zhao
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Zhifan Zhou
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Jianhong Wang
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Maolin Wang
- School of Medicine, Health Science Centre, Shenzhen University, Shenzhen, China
| | - Chang Zou
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Weiqing Wu
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Zhiqiang Cheng
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Yong Dai
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| |
Collapse
|
14
|
EGFET-Based Sensors for Bioanalytical Applications: A Review. SENSORS 2018; 18:s18114042. [PMID: 30463318 PMCID: PMC6263563 DOI: 10.3390/s18114042] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/04/2018] [Accepted: 11/12/2018] [Indexed: 11/29/2022]
Abstract
Since the 1970s, a great deal of attention has been paid to the development of semiconductor-based biosensors because of the numerous advantages they offer, including high sensitivity, faster response time, miniaturization, and low-cost manufacturing for quick biospecific analysis with reusable features. Commercial biosensors have become highly desirable in the fields of medicine, food, and environmental monitoring as well as military applications, whereas increasing concerns about food safety and health issues have resulted in the introduction of novel legislative standards for these sensors. Numerous devices have been developed for monitoring biological processes such as nucleic acid hybridization, protein–protein interaction, antigen–antibody bonds, and substrate–enzyme reactions, just to name a few. Since the 1980s, scientific interest moved to the development of semiconductor-based devices, which also include integrated front-end electronics, such as the extended-gate field-effect transistor (EGFET) biosensor, one of the first miniaturized chemical sensors. This work is intended to be a review of the state of the art focused on the development of biosensors and chemosensors based on extended-gate field-effect transistor within the field of bioanalytical applications, which will highlight the most recent research reported in the literature. Moreover, a comparison among the diverse EGFET devices will be presented, giving particular attention to the materials and technologies.
Collapse
|
15
|
Pyo K, Ly NH, Han SM, Hatshan MB, Abuhagr A, Wiederrecht G, Joo SW, Ramakrishna G, Lee D. Unique Energy Transfer in Fluorescein-Conjugated Au 22 Nanoclusters Leading to 160-Fold pH-Contrasting Photoluminescence. J Phys Chem Lett 2018; 9:5303-5310. [PMID: 30165739 DOI: 10.1021/acs.jpclett.8b02130] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Accurate measurements of intracellular pH are of crucial importance in understanding the cellular activities and in the development of intracellular drug delivery systems. Here we report a highly sensitive pH probe based on a fluorescein-conjugated Au22 nanocluster. Steady-state photoluminescence (PL) measurements have shown that, when conjugated to Au22, fluorescein exhibits more than 160-fold pH-contrasting PL in the pH range of 4.3-7.8. Transient absorption measurements show that there are two competing ultrafast processes in the fluorescein-conjugated Au22 nanocluster: the intracore-state relaxation and the energy transfer from the nonthermalized states of Au22 to fluorescein. The latter becomes predominant at a higher pH, leading to dramatic PL enhancement of fluorescein. In addition to the intrinsically low toxicity, fluorescein-conjugated Au22 nanoclusters exhibit high pH sensitivity, wide dynamic range, and excellent photostability, providing a powerful tool for the study of intracellular processes.
Collapse
Affiliation(s)
- Kyunglim Pyo
- Department of Chemistry , Yonsei University , Seoul 03722 , Korea
| | - Nguyen Hoang Ly
- Department of Chemistry , Soongsil University , Seoul 06978 , Korea
| | - Sang Myeong Han
- Department of Chemistry , Yonsei University , Seoul 03722 , Korea
| | - Mohammad Bin Hatshan
- Department of Chemistry , Western Michigan University , Kalamazoo , Michigan 49008 , United States
| | - Abubkr Abuhagr
- Department of Chemistry , Western Michigan University , Kalamazoo , Michigan 49008 , United States
| | - Gary Wiederrecht
- Center for Nanoscale Materials , Argonne National Laboratory , Chicago , Illinois 60439 , United States
| | - Sang-Woo Joo
- Department of Chemistry , Soongsil University , Seoul 06978 , Korea
- Department of Information Communication, Materials Engineering, Chemistry Convergence Technology , Soongsil University , Seoul 06978 , Korea
| | - Guda Ramakrishna
- Department of Chemistry , Western Michigan University , Kalamazoo , Michigan 49008 , United States
| | - Dongil Lee
- Department of Chemistry , Yonsei University , Seoul 03722 , Korea
| |
Collapse
|
16
|
Cystic fibrosis epithelial cells are primed for apoptosis as a result of increased Fas (CD95). J Cyst Fibros 2018; 17:616-623. [DOI: 10.1016/j.jcf.2018.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 01/11/2018] [Accepted: 01/30/2018] [Indexed: 01/06/2023]
|
17
|
Yang S, Chen X, Liu S, Wang F, Ouyang G. Microwave-assisted solid-phase synthesis of highly fluorescent carbon nanoparticles and its application in intracellular pH sensing. Talanta 2018; 186:80-87. [DOI: 10.1016/j.talanta.2018.04.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/04/2018] [Accepted: 04/07/2018] [Indexed: 10/17/2022]
|
18
|
Bag R, Sikdar Y, Sahu S, Maiti DK, Frontera A, Bauzá A, Drew MGB, Goswami S. A versatile quinoxaline derivative serves as a colorimetric sensor for strongly acidic pH. Dalton Trans 2018; 47:17077-17085. [DOI: 10.1039/c8dt02449a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A strongly acidic colorimetric pH sensor induced by the acidity of [Fe(H2O)6]3+, and single crystal to single crystal transformation between the protonated and deprotonated form.
Collapse
Affiliation(s)
- Riya Bag
- Department of Chemistry
- University of Calcutta
- Kolkata
- India
| | - Yeasin Sikdar
- Department of Chemistry
- University of Calcutta
- Kolkata
- India
| | - Sutapa Sahu
- Department of Chemistry
- University of Calcutta
- Kolkata
- India
| | - Dilip K. Maiti
- Department of Chemistry
- University of Calcutta
- Kolkata
- India
| | - Antonio Frontera
- Departament de Química
- Universitat de les IllesBalears
- 07122 Palma de Mallorca
- Spain
| | - Antonio Bauzá
- Departament de Química
- Universitat de les IllesBalears
- 07122 Palma de Mallorca
- Spain
| | | | | |
Collapse
|
19
|
Garg M, Leach ST, Pang T, Needham B, Coffey MJ, Katz T, Strachan R, Widger J, Field P, Belessis Y, Chuang S, Day AS, Jaffe A, Ooi CY. Age-related levels of fecal M2-pyruvate kinase in children with cystic fibrosis and healthy children 0 to 10years old. J Cyst Fibros 2017; 17:109-113. [PMID: 28754328 DOI: 10.1016/j.jcf.2017.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND The pathogenesis of gut inflammation, bacterial dysbiosis and increased rates of malignancy in CF is unclear. Fecal M2-pyruvate kinase (M2-PK) is a biomarker indicative of cellular proliferation that may be raised in intestinal malignancy and inflammation. Biomarkers, including M2-PK, may be useful in assessing effects of novel therapies on the gastrointestinal tract. METHODS M2-PK was measured in stools collected from patients with CF and HC (0-10years). Linear mixed model analysis was used. RESULTS M2-PK levels did not significantly change in children with CF (36 patients, 77 samples) (P=0.998) or HC (45 patients, 45 samples) (P=0.21), over the age range 0-10years. Patients with CF had elevated M2-PK compared to HC (median [IQR; range]: 10.7 [5.7-28.6; 1.0-239.1] (n=77) vs. 1.0 [1.0-1.0; 1.0-50.0] (n=45) U/mL, respectively; P=0.001). CONCLUSIONS Fecal M2-PK was elevated in children with CF compared with HC during infancy and throughout childhood suggesting abnormalities in the CF gut exist in early life.
Collapse
Affiliation(s)
- Millie Garg
- School of Women and Children's Health, Medicine, The University of New South Wales, High Street, Sydney Children's Hospital, Randwick 2031, New South Wales, Australia
| | - Steven T Leach
- School of Women and Children's Health, Medicine, The University of New South Wales, High Street, Sydney Children's Hospital, Randwick 2031, New South Wales, Australia
| | - Tamara Pang
- School of Women and Children's Health, Medicine, The University of New South Wales, High Street, Sydney Children's Hospital, Randwick 2031, New South Wales, Australia
| | - Bronwen Needham
- Sydney Medical Program, The University of Sydney, Camperdown 2050, New South Wales, Australia
| | - Michael J Coffey
- School of Women and Children's Health, Medicine, The University of New South Wales, High Street, Sydney Children's Hospital, Randwick 2031, New South Wales, Australia
| | - Tamarah Katz
- Department of Nutrition and Dietetics, Sydney Children's Hospital, High Street, Randwick 2031, New South Wales, Australia
| | - Roxanne Strachan
- Department of Respiratory Medicine, Sydney Children's Hospital, High Street, Randwick 2031, New South Wales, Australia
| | - John Widger
- School of Women and Children's Health, Medicine, The University of New South Wales, High Street, Sydney Children's Hospital, Randwick 2031, New South Wales, Australia; Department of Respiratory Medicine, Sydney Children's Hospital, High Street, Randwick 2031, New South Wales, Australia
| | - Penelope Field
- School of Women and Children's Health, Medicine, The University of New South Wales, High Street, Sydney Children's Hospital, Randwick 2031, New South Wales, Australia; Department of Respiratory Medicine, Sydney Children's Hospital, High Street, Randwick 2031, New South Wales, Australia
| | - Yvonne Belessis
- School of Women and Children's Health, Medicine, The University of New South Wales, High Street, Sydney Children's Hospital, Randwick 2031, New South Wales, Australia; Department of Respiratory Medicine, Sydney Children's Hospital, High Street, Randwick 2031, New South Wales, Australia
| | - Sandra Chuang
- School of Women and Children's Health, Medicine, The University of New South Wales, High Street, Sydney Children's Hospital, Randwick 2031, New South Wales, Australia; Department of Respiratory Medicine, Sydney Children's Hospital, High Street, Randwick 2031, New South Wales, Australia
| | - Andrew S Day
- Department of Paediatrics, University of Otago, Riccarton Ave, Christchurch 8011, Canterbury, New Zealand
| | - Adam Jaffe
- School of Women and Children's Health, Medicine, The University of New South Wales, High Street, Sydney Children's Hospital, Randwick 2031, New South Wales, Australia; Department of Respiratory Medicine, Sydney Children's Hospital, High Street, Randwick 2031, New South Wales, Australia
| | - Chee Y Ooi
- School of Women and Children's Health, Medicine, The University of New South Wales, High Street, Sydney Children's Hospital, Randwick 2031, New South Wales, Australia; Department of Gastroenterology, Sydney Children's Hospital, High Street, Randwick 2031, New South Wales, Australia.
| |
Collapse
|
20
|
Liu X, Su Y, Tian H, Yang L, Zhang H, Song X, Foley JW. Ratiometric Fluorescent Probe for Lysosomal pH Measurement and Imaging in Living Cells Using Single-Wavelength Excitation. Anal Chem 2017; 89:7038-7045. [PMID: 28553716 DOI: 10.1021/acs.analchem.7b00754] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A novel lysosome-targeting ratiometric fluorescent probe (CQ-Lyso) based on the chromenoquinoline chromorphore has been developed for the selective and sensitive detection of intracellular pH in living cells. In acidic media, the protonation of the quinoline ring of CQ-Lyso induces an enhanced intramolecular charge transfer (ICT) process, which results in large red-shifts in both the absorption (104 nm) and emission (53 nm) spectra which forms the basis of a new ratiometric fluorescence pH sensor. This probe efficiently stains lysosomes with high Pearson's colocalization coefficients using LysoTrackerDeep Red (0.97) and LysoTrackerBlue DND-22 (0.95) as references. Importantly, we show that CQ-Lyso quantitatively measures and images lysosomal pH values in a ratiometric manner using single-wavelength excitation.
Collapse
Affiliation(s)
- Xingjiang Liu
- College of Chemistry and Chemical Engineering, Central South University , Changsha 410083, China
| | - Yuanan Su
- College of Chemistry and Chemical Engineering, Central South University , Changsha 410083, China
| | - Huihui Tian
- College of Chemistry and Chemical Engineering, Central South University , Changsha 410083, China
| | - Lei Yang
- College of Chemistry and Chemical Engineering, Central South University , Changsha 410083, China
| | - Hongyan Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Xiangzhi Song
- College of Chemistry and Chemical Engineering, Central South University , Changsha 410083, China.,State Key Laboratory of Fine Chemicals, Dalian University of Technology , Dalian 116024, China
| | - James W Foley
- Rowland Institute at Harvard, Harvard University , Cambridge, Massachusetts 02142, United States
| |
Collapse
|
21
|
Garg M, Ooi CY. The Enigmatic Gut in Cystic Fibrosis: Linking Inflammation, Dysbiosis, and the Increased Risk of Malignancy. Curr Gastroenterol Rep 2017; 19:6. [PMID: 28155088 DOI: 10.1007/s11894-017-0546-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Intestinal inflammation, dysbiosis, and increased gastrointestinal malignancy risks are well-described in patients with cystic fibrosis (CF). However, there is limited understanding of their pathophysiology. This review aims to discuss these issues and assess potential links between them. RECENT FINDINGS Evidence of links between intestinal inflammation and dysbiosis (an imbalance in intestinal microbial populations) exist. Recent studies have demonstrated reduction in intestinal inflammation with probiotic administration. Both bacterial dysbiosis and gut inflammation contribute to the suboptimal nutritional status seen in children with CF. Short-chain fatty acids may be reduced in the gut lumen as a result of bacterial imbalances and may promote inflammation. Inflammation and bacterial dysbiosis in CF may also contribute to emerging adult complications such as gastrointestinal malignancy. An increase in carcinogenic microbes and reduction in microbes protective against cancer have been found in CF, linking bacterial dysbiosis and cancer. Murine studies suggest the CF gene, cystic fibrosis transmembrane conductance regulator (CFTR) gene, itself may be a tumour suppressor gene. The pathophysiology of interactions among intestinal inflammation, dysbiosis, and malignancy in CF is not clearly understood and requires further research.
Collapse
Affiliation(s)
- Millie Garg
- School of Women's and Children's Health, Medicine, University of New South Wales, Randwick, NSW, 2031, Australia
| | - Chee Y Ooi
- School of Women's and Children's Health, Medicine, University of New South Wales, Randwick, NSW, 2031, Australia.
- Department of Paediatric Gastroenterology, Sydney Children's Hospital, Randwick, NSW, 2031, Australia.
| |
Collapse
|
22
|
Abstract
The development of sustainable intestinal organoid cell culture has emerged as a new modality for the study of intestinal function and cellular processes. Organoid culture is providing a new testbed for therapeutic research and development. Intestinal organoids, self-renewing 3-dimensional structures comprised intestinal stem cells and their differentiated epithelial progeny allow for more facile and robust exploration of cellular activity, cell organization and structure, genetic manipulation, and vastly more physiologic modeling of intestinal response to stimuli as compared to traditional 2-dimensional cell line cultures. Intestinal organoids are affecting a wide variety of research into gastrointestinal pathology. The purpose of this review is to discuss the current state-of-the-art and future effect of research using enteroids and colonoids (organoids grown from the small and large intestines, respectively).
Collapse
|
23
|
Massip-Copiz MM, Clauzure M, Valdivieso ÁG, Santa-Coloma TA. CFTR impairment upregulates c-Src activity through IL-1β autocrine signaling. Arch Biochem Biophys 2017; 616:1-12. [PMID: 28088327 DOI: 10.1016/j.abb.2017.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 12/24/2022]
Abstract
Cystic Fibrosis (CF) is a disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Previously, we found several genes showing a differential expression in CFDE cells (epithelial cells derived from a CF patient). One corresponded to c-Src; its expression and activity was found increased in CFDE cells, acting as a signaling molecule between the CFTR activity and MUC1 overexpression. Here we report that bronchial IB3-1 cells (CF cells) also showed increased c-Src activity compared to 'CFTR-corrected' S9 cells. In addition, three different Caco-2 cell lines, each stably transfected with a different CFTR-specific shRNAs, displayed increased c-Src activity. The IL-1β receptor antagonist IL1RN reduced the c-Src activity of Caco-2/pRS26 cells (expressing a CFTR-specific shRNA). In addition, increased mitochondrial and cellular ROS levels were detected in Caco-2/pRS26 cells. ROS levels were partially reduced by incubation with PP2 (c-Src inhibitor) or IL1RN, and further reduced by using the NOX1/4 inhibitor GKT137831. Thus, IL-1β→c-Src and IL-1β→NOX signaling pathways appear to be responsible for the production of cellular and mitochondrial ROS in CFTR-KD cells. In conclusion, IL-1β constitutes a new step in the CFTR signaling pathway, located upstream of c-Src, which is stimulated in cells with impaired CFTR activity.
Collapse
Affiliation(s)
- María Macarena Massip-Copiz
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Mariángeles Clauzure
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Ángel Gabriel Valdivieso
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Tomás Antonio Santa-Coloma
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
24
|
Wanitchakool P, Ousingsawat J, Sirianant L, MacAulay N, Schreiber R, Kunzelmann K. Cl - channels in apoptosis. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2016; 45:599-610. [PMID: 27270446 DOI: 10.1007/s00249-016-1140-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/06/2016] [Accepted: 05/14/2016] [Indexed: 12/28/2022]
Abstract
A remarkable feature of apoptosis is the initial massive cell shrinkage, which requires opening of ion channels to allow release of K+, Cl-, and organic osmolytes to drive osmotic water movement and cell shrinkage. This article focuses on the role of the Cl- channels LRRC8, TMEM16/anoctamin, and cystic fibrosis transmembrane conductance regulator (CFTR) in cellular apoptosis. LRRC8A-E has been identified as a volume-regulated anion channel expressed in many cell types. It was shown to be required for regulatory and apoptotic volume decrease (RVD, AVD) in cultured cell lines. Its presence also determines sensitivity towards cytostatic drugs such as cisplatin. Recent data point to a molecular and functional relationship of LRRC8A and anoctamins (ANOs). ANO6, 9, and 10 (TMEM16F, J, and K) augment apoptotic Cl- currents and AVD, but it remains unclear whether these anoctamins operate as Cl- channels or as regulators of other apoptotic Cl- channels, such as LRRC8. CFTR has been known for its proapoptotic effects for some time, and this effect may be based on glutathione release from the cell and increase in cytosolic reactive oxygen species (ROS). Although we find that CFTR is activated by cell swelling, it is possible that CFTR serves RVD/AVD through accumulation of ROS and activation of independent membrane channels such as ANO6. Thus activation of ANO6 will support cell shrinkage and induce additional apoptotic events, such as membrane phospholipid scrambling.
Collapse
Affiliation(s)
- Podchanart Wanitchakool
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Jiraporn Ousingsawat
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Lalida Sirianant
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Nanna MacAulay
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rainer Schreiber
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
| |
Collapse
|
25
|
Abstract
Activation of ion channels and pores are essential steps during regulated cell death. Channels and pores participate in execution of apoptosis, necroptosis and other forms of caspase-independent cell death. Within the program of regulated cell death, these channels are strategically located. Ion channels can shrink cells and drive them towards apoptosis, resulting in silent, i.e. immunologically unrecognized cell death. Alternatively, activation of channels can induce cell swelling, disintegration of the cell membrane, and highly immunogenic necrotic cell death. The underlying cell death pathways are not strictly separated as identical stimuli may induce cell shrinkage and apoptosis when applied at low strength, but may also cause cell swelling at pronounced stimulation, resulting in regulated necrosis. Nevertheless, the precise role of ion channels during regulated cell death is far from being understood, as identical channels may support regulated death in some cell types, but may cause cell proliferation, cancer development, and metastasis in others. Along this line, the phospholipid scramblase and Cl(-)/nonselective channel anoctamin 6 (ANO6) shows interesting features, as it participates in apoptotic cell death during lower levels of activation, thereby inducing cell shrinkage. At strong activation, e.g. by stimulation of purinergic P2Y7 receptors, it participates in pore formation, causes massive membrane blebbing, cell swelling, and membrane disintegration. The LRRC8 proteins deserve much attention as they were found to have a major role in volume regulation, apoptotic cell shrinkage and resistance towards anticancer drugs.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
| |
Collapse
|
26
|
Xie C, Cao X, Chen X, Wang D, Zhang WK, Sun Y, Hu W, Zhou Z, Wang Y, Huang P. Mechanosensitivity of wild-type and G551D cystic fibrosis transmembrane conductance regulator (CFTR) controls regulatory volume decrease in simple epithelia. FASEB J 2016; 30:1579-89. [PMID: 26683699 PMCID: PMC6137689 DOI: 10.1096/fj.15-283002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/08/2015] [Indexed: 12/22/2022]
Abstract
Mutations of cystic fibrosis transmembrane conductance regulator (CFTR), an epithelial ligand-gated anion channel, are associated with the lethal genetic disease cystic fibrosis. The CFTR G551D mutation impairs ATP hydrolysis and thereby makes CFTR refractory to cAMP stimulation. Both wild-type (WT) and G551D CFTR have been implicated in regulatory volume decrease (RVD), but the underlying mechanism remains incompletely understood. Here, we show that the channel activity of both WT and G551D CFTR is directly stimulated by mechanical perturbation induced by cell swelling at the single-channel, cellular, and tissue levels. Hypotonicity activated CFTR single channels in cell-attached membrane patches and WT-CFTR-mediated short-circuit current (Isc) in Calu-3 cells, and this was independent of Ca(2+)and cAMP/PKA signaling. Genetic suppression and ablation but not G551D mutation of CFTR suppressed the hypotonicity- and stretch-inducedIscin Calu-3 cells and mouse duodena. Moreover, ablation but not G551D mutation of the CFTR gene inhibited the RVD of crypts isolated from mouse intestine; more importantly, CFTR-specific blockers markedly suppressed RVD in both WT- and G551D CFTR mice, demonstrating for the first time that the channel activity of both WT and G551D CFTR is required for epithelial RVD. Our findings uncover a previously unrecognized mechanism underlying CFTR involvement in epithelial RVD and suggest that the mechanosensitivity of G551D CFTR might underlie the mild phenotypes resulting from this mutation.-Xie, C., Cao, X., Chen, X, Wang, D., Zhang, W. K., Sun, Y., Hu, W., Zhou, Z., Wang, Y., Huang, P. Mechanosensitivity of wild-type and G551D cystic fibrosis transmembrane conductance regulator (CFTR) controls regulatory volume decrease in simple epithelia.
Collapse
Affiliation(s)
- Changyan Xie
- *Division of Life Science, Division of Biomedical Engineering, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Xu Cao
- *Division of Life Science, Division of Biomedical Engineering, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Xibing Chen
- *Division of Life Science, Division of Biomedical Engineering, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Dong Wang
- *Division of Life Science, Division of Biomedical Engineering, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Wei Kevin Zhang
- *Division of Life Science, Division of Biomedical Engineering, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Ying Sun
- *Division of Life Science, Division of Biomedical Engineering, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Wenbao Hu
- *Division of Life Science, Division of Biomedical Engineering, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Zijing Zhou
- *Division of Life Science, Division of Biomedical Engineering, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yan Wang
- *Division of Life Science, Division of Biomedical Engineering, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Pingbo Huang
- *Division of Life Science, Division of Biomedical Engineering, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
27
|
Abstract
Cystic fibrosis is a life-limiting, recessive disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Increased survival outcomes and the multisystem nature of the disease, including the involvement of hepatobiliary and gastrointestinal tracts, now require the need for more extensive knowledge and expertise in cystic fibrosis among gastroenterologists. Manifestations are either a direct consequence of the primary defect in cystic fibrosis or a secondary complication of the disease or therapy. Adult patients with cystic fibrosis also have an increased risk of malignancy in the gastrointestinal and pancreatico-biliary tracts compared with the general population. Novel treatments that target the basic defects in the CFTR protein have emerged, but to date not much is known about their effects on the gastrointestinal and hepatobiliary systems. The introduction of such therapies has provided new opportunities for the application of intestinal endpoints in clinical trials and the understanding of underlying disease mechanisms that affect the gut in cystic fibrosis.
Collapse
Affiliation(s)
- Chee Y Ooi
- Sydney Children's Hospital, School of Women's and Children's Health, High Street, Randwick, New South Wales 2031, Sydney, Australia
| | - Peter R Durie
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children 555 University Avenue Toronto, Ontario M5G 1X8, Canada
| |
Collapse
|
28
|
Lee JJ, Kim YS, Nam E, Lee SY, Lim MH, Kim C. A PET-based fluorometric chemosensor for the determination of mercury(II) and pH, and hydrolysis reaction-based colorimetric detection of hydrogen sulfide. Dalton Trans 2016; 45:5700-12. [PMID: 26928649 DOI: 10.1039/c6dt00147e] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A simple fluorescent chemosensor 1 for the detection of Hg(2+) and pH was developed by a combination of 2-aminoethyl piperazine and 4-chloro-7-nitrobenz-2-oxa-1,3-diazole. The sensor 1 showed OFF-ON behavior for different colors of fluorescence in the presence of Hg(2+) and under acidic conditions, respectively, in a near-perfect aqueous solution. The turn-on fluorescence caused by inhibition of photoinduced electron transfer was explained by theoretical calculations. 1 could be used to quantify Hg(2+) in water samples, and its in vitro studies with HeLa cells showed fluorescence in the presence of Hg(2+). In addition, 1 could selectively detect S(2-) by changing its color from orange to pink in a near-perfect aqueous solution. Moreover, 1 could be used as a practical, visible test kit for S(2-).
Collapse
Affiliation(s)
- Jae Jun Lee
- Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials, Seoul National University of Science and Technology, Seoul 139-743, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
29
|
Li X, Zhang M, Liang H, Huang Z, Tang J, Chen Z, Yang L, Ma LJ, Wang Y, Xu B. 4-(8-quinolyl)amino-7-nitro-2,1,3-benzoxadiazole as a new selective and sensitive fluorescent and colorimetric pH probe with dual-responsive ranges in aqueous solutions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 153:517-521. [PMID: 26414554 DOI: 10.1016/j.saa.2015.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 09/04/2015] [Accepted: 09/11/2015] [Indexed: 06/05/2023]
Abstract
Fluorescent and colorimetric pH probe possess many advantages including rapid response time, nondestructive testing, and excellent pH sensitivity. However, they usually cannot be utilized simultaneously in both acidic and basic pH ranges. In this study, a new selective and sensitive fluorescent and colorimetric pH probe, 4-(8-quinolyl)amino-7-nitro-2,1,3-benzoxadiazole (1), was designated and synthesized. The optical probe exhibited dual-responsive pH ranges to both acidic and basic aqueous solutions. When the solution pH was gradually increased from 8.5 to 13.3, the absorption spectra of 1 showed an obvious hyperchromicity, accompanied with a red shift of the absorption band at 340 nm, a blue shift of the absorption band at 482 nm, and a distinct color change from orange to violet pink to yellow. Within the pH range from 2.2 to 0.2, the fluorescent spectra of 1 showed a "turn-on" response signal to solution pH. In order to understand the response mechanism of the probe to solution pH, the probe molecule was split into two parts, 8-aminoquinoline (2) and 4-amino-7- nitro-benzofurazan (3). UV-vis absorption and fluorescent experiments of 2 and 3 indicated that both are sensitive optical pH probes. Furthermore, the NMR experiment of 1 was explored in basic and acidic conditions. The results indicated that the colorimetric responses of 1 to pH under basic condition should be attributed to the deprotonation of the imino group on the quinolyl ring, and the fluorescent recognition of 1 to pH under acidic condition was probably due to the protonation of the nitrogen atoms from the benzofurazan and quinolyl rings.
Collapse
Affiliation(s)
- Xutian Li
- School of Chemistry and Environment, South China Normal University, Shipai, Guangzhou 510631, PR China
| | - Min Zhang
- School of Chemistry and Environment, South China Normal University, Shipai, Guangzhou 510631, PR China
| | - Haipeng Liang
- School of Chemistry and Environment, South China Normal University, Shipai, Guangzhou 510631, PR China
| | - Zhaowei Huang
- School of Chemistry and Environment, South China Normal University, Shipai, Guangzhou 510631, PR China
| | - Jiang Tang
- School of Chemistry and Environment, South China Normal University, Shipai, Guangzhou 510631, PR China
| | - Zhi Chen
- School of Chemistry and Environment, South China Normal University, Shipai, Guangzhou 510631, PR China
| | - Liting Yang
- School of Chemistry and Environment, South China Normal University, Shipai, Guangzhou 510631, PR China
| | - Li-Jun Ma
- School of Chemistry and Environment, South China Normal University, Shipai, Guangzhou 510631, PR China; Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, PR China.
| | - Yuhai Wang
- School of Chemistry and Environment, South China Normal University, Shipai, Guangzhou 510631, PR China
| | - Baiping Xu
- Technology Development Center for Polymer Processing Engineering of Guangdong Colleges and Universities, Guangdong Industry Technical College, Guangzhou 510300, PR China
| |
Collapse
|
30
|
Walker NM, Liu J, Stein SR, Stefanski CD, Strubberg AM, Clarke LL. Cellular chloride and bicarbonate retention alters intracellular pH regulation in Cftr KO crypt epithelium. Am J Physiol Gastrointest Liver Physiol 2016; 310:G70-80. [PMID: 26542396 PMCID: PMC4719062 DOI: 10.1152/ajpgi.00236.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/29/2015] [Indexed: 01/31/2023]
Abstract
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), an anion channel providing a major pathway for Cl(-) and HCO3 (-) efflux across the apical membrane of the epithelium. In the intestine, CF manifests as obstructive syndromes, dysbiosis, inflammation, and an increased risk for gastrointestinal cancer. Cftr knockout (KO) mice recapitulate CF intestinal disease, including intestinal hyperproliferation. Previous studies using Cftr KO intestinal organoids (enteroids) indicate that crypt epithelium maintains an alkaline intracellular pH (pHi). We hypothesized that Cftr has a cell-autonomous role in downregulating pHi that is incompletely compensated by acid-base regulation in its absence. Here, 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein microfluorimetry of enteroids showed that Cftr KO crypt epithelium sustains an alkaline pHi and resistance to cell acidification relative to wild-type. Quantitative real-time PCR revealed that Cftr KO enteroids exhibit downregulated transcription of base (HCO3 (-))-loading proteins and upregulation of the basolateral membrane HCO3 (-)-unloader anion exchanger 2 (Ae2). Although Cftr KO crypt epithelium had increased Ae2 expression and Ae2-mediated Cl(-)/HCO3 (-) exchange with maximized gradients, it also had increased intracellular Cl(-) concentration relative to wild-type. Pharmacological reduction of intracellular Cl(-) concentration in Cftr KO crypt epithelium normalized pHi, which was largely Ae2-dependent. We conclude that Cftr KO crypt epithelium maintains an alkaline pHi as a consequence of losing both Cl(-) and HCO3 (-) efflux, which impairs pHi regulation by Ae2. Retention of Cl(-) and an alkaline pHi in crypt epithelium may alter several cellular processes in the proliferative compartment of Cftr KO intestine.
Collapse
Affiliation(s)
- Nancy M. Walker
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; and
| | - Jinghua Liu
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; and
| | - Sydney R. Stein
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; and
| | - Casey D. Stefanski
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; and ,2Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Ashlee M. Strubberg
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; and ,2Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Lane L. Clarke
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; and ,2Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| |
Collapse
|
31
|
Ghule NV, Kharat K, Bhosale RS, Puyad AL, Bhosale SV, Bhosale SV. The fluorescence detection of autophagosomes in live cells under starvation using core-substituted naphthalenediimide probes. RSC Adv 2016. [DOI: 10.1039/c5ra24133b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We developed NDI-C probe for the analysis of the autophagosomes in live cells. A new flow cytometric method was also developed for the analysis of cell population on the basis of intracellular pH.
Collapse
Affiliation(s)
- Namdev V. Ghule
- Polymers and Functional Materials Division
- CSIR – Indian Institute of Chemical Technology
- Hyderabad-500007
- India
| | - Kiran Kharat
- Department of Biotechnology
- Deogiri College
- Aurangabad-431005
- India
| | - Rajesh S. Bhosale
- Polymers and Functional Materials Division
- CSIR – Indian Institute of Chemical Technology
- Hyderabad-500007
- India
| | - Avinash L. Puyad
- School of Chemical Sciences
- Swami Ramanand Teerth Marathwada University
- Nanded-431606
- India
| | | | - Sidhanath V. Bhosale
- Polymers and Functional Materials Division
- CSIR – Indian Institute of Chemical Technology
- Hyderabad-500007
- India
| |
Collapse
|
32
|
Halder S, Bhattacharjee A, Roy A, Chatterjee S, Roy P. Chromogenic and fluorescence sensing of pH with a Schiff-base molecule. RSC Adv 2016. [DOI: 10.1039/c6ra06284a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
33
|
Ma Y, Li J, Hou S, Zhang J, Shi Z, Jiang T, Wei X. pH-Sensitive perylene tetra-(alkoxycarbonyl) probes for live cell imaging. NEW J CHEM 2016. [DOI: 10.1039/c6nj00153j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel perylene pH probe for imaging of living cells in neutral to weak basic pH changes.
Collapse
Affiliation(s)
- Yongshan Ma
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
| | - Jiaofu Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
| | - Shuguo Hou
- School of Municipal and Environmental Engineering
- Shandong Jianzhu University
- Jinan 250101
- P. R. China
- Co-Innovation Center of Green Building
| | - Jinfeng Zhang
- School of Municipal and Environmental Engineering
- Shandong Jianzhu University
- Jinan 250101
- P. R. China
| | - Zhiqiang Shi
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
| | - Tianyi Jiang
- School of Municipal and Environmental Engineering
- Shandong Jianzhu University
- Jinan 250101
- P. R. China
- Co-Innovation Center of Green Building
| | - Xiaofeng Wei
- School of Municipal and Environmental Engineering
- Shandong Jianzhu University
- Jinan 250101
- P. R. China
| |
Collapse
|
34
|
Luo R, Li Y, Zhou Q, Zheng J, Ma D, Tang P, Yang S, Qing Z, Yang R. SERS monitoring the dynamics of local pH in lysosome of living cells during photothermal therapy. Analyst 2016; 141:3224-7. [DOI: 10.1039/c6an00467a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A gold nanorod-based SERS nanotracker is proposed to monitor the local pH change during photothermal therapy.
Collapse
Affiliation(s)
- Rongxing Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| | - Yinhui Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| | - Qifeng Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| | - Jing Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| | - Dandan Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| | - Pinting Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| | - Sheng Yang
- School of Chemistry and Biological Engineering
- Changsha University of Science and Technology
- Changsha
- China
| | - Zhihe Qing
- School of Chemistry and Biological Engineering
- Changsha University of Science and Technology
- Changsha
- China
| | - Ronghua Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| |
Collapse
|
35
|
Sarkar Y, Das S, Ray A, Jewrajka SK, Hirota S, Parui PP. A simple interfacial pH detection method for cationic amphiphilic self-assemblies utilizing a Schiff-base molecule. Analyst 2016; 141:2030-9. [DOI: 10.1039/c5an02128f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A simple pH-sensing method to monitor interfacial pH deviation from the bulk pH for cationic micelle and vesicle is introduced by estimating the change in the Schiff-base molecule (AH) proton dissociation between interface and bulk.
Collapse
Affiliation(s)
- Yeasmin Sarkar
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | - Sanju Das
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
- Department of Chemistry
| | - Ambarish Ray
- Department of Chemistry
- Maulana Azad College
- Kolkata 700013
- India
| | - Suresh K. Jewrajka
- CSIR-Central Salt & Marine Chemicals Research Institute
- Gujarat-364002
- India
| | - Shun Hirota
- Graduate School of Materials Science
- Nara Institute of Science and Technology
- Nara 630-0192
- Japan
| | | |
Collapse
|
36
|
Liang F, Wang D, Ma P, Wang X, Song D, Yu Y. A highly selective and sensitive ratiometric fluorescent probe for pH measurement based on fluorescence resonance energy transfer. Chem Res Chin Univ 2015. [DOI: 10.1007/s40242-015-5124-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
37
|
He L, Lin W, Xu Q, Ren M, Wei H, Wang JY. A simple and effective "capping" approach to readily tune the fluorescence of near-infrared cyanines. Chem Sci 2015; 6:4530-4536. [PMID: 28717473 PMCID: PMC5499489 DOI: 10.1039/c5sc00348b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/01/2015] [Indexed: 01/23/2023] Open
Abstract
A simple and effective capping approach was introduced to readily tune the fluorescence of NIR cyanines.
Heptamethine cyanines are favorable for fluorescence imaging applications in biological systems owing to their near-infrared (NIR) absorption and emission. However, it is very difficult to quench the fluorescence of NIR dyes by the classic photoinduced electron transfer mechanism due to their relatively high-lying occupied molecular orbital energy levels. Herein, we present a simple and effective “capping” approach to readily tune the fluorescence of NIR cyanines. The resulting new functional NIR CyBX (X = O, N, or S) dyes not only retain the intact tricarbocyanine scaffold, but also have a built-in switch to regulate the fluorescence by spiro-cyclization. When compared to traditional cyanines, novel CyBX dyes have a superior character in that their NIR optical properties can be readily tuned by the intrinsic spiro-cyclization mechanism. We expect that this “capping” strategy can be extended across not only the visual spectrum but also to structurally distinct fluorophores.
Collapse
Affiliation(s)
- Longwei He
- State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Hunan University , Changsha , Hunan 410082 , P.R. China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging , School of Chemistry and Chemical Engineering , School of Biological Science and Technology , University of Jinan , Jinan , Shandong 250022 , P.R. China . .,State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Hunan University , Changsha , Hunan 410082 , P.R. China
| | - Qiuyan Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Hunan University , Changsha , Hunan 410082 , P.R. China
| | - Mingguang Ren
- Institute of Fluorescent Probes for Biological Imaging , School of Chemistry and Chemical Engineering , School of Biological Science and Technology , University of Jinan , Jinan , Shandong 250022 , P.R. China .
| | - Haipeng Wei
- State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Hunan University , Changsha , Hunan 410082 , P.R. China
| | - Jian-Yong Wang
- Institute of Fluorescent Probes for Biological Imaging , School of Chemistry and Chemical Engineering , School of Biological Science and Technology , University of Jinan , Jinan , Shandong 250022 , P.R. China .
| |
Collapse
|
38
|
Pang T, Leach ST, Katz T, Jaffe A, Day AS, Ooi CY. Elevated fecal M2-pyruvate kinase in children with cystic fibrosis: a clue to the increased risk of intestinal malignancy in adulthood? J Gastroenterol Hepatol 2015; 30:866-71. [PMID: 25376228 DOI: 10.1111/jgh.12842] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM Adult patients with cystic fibrosis (CF) have an increased risk of gastrointestinal malignancies. We hypothesized that increased intestinal cell turnover beginning in childhood may explain the increased risk of malignancy in early adulthood. Therefore, we aimed to measure fecal M2-pyruvate kinase (M2-PK), a biomarker of intestinal cell turnover, in children with CF. To assess whether the increased cell turnover is secondary to intestinal inflammation, the secondary aims were to measure fecal calprotectin and evaluate its association with fecal M2-PK. METHODS Fecal samples, for M2-PK and calprotectin measurements, were prospectively collected from children with CF and healthy controls (HC). RESULTS Thirty-three children with CF (mean [standard deviation] 7.3 [3.8] years old; 29 pancreatic insufficient [PI]) were enrolled and compared with 33 age-matched HC. Fecal M2-PK in CF patients (median [interquartile range, IQR]: 4.7 [1.5-9.7]) was greater than HC (1.0 [1.0-1.0] U/mL; P < 0.0001), and higher in PI (median [IQR]: 5.1 [1.8-13.7]) than pancreatic sufficient patients (1.0 [1.0-1.0] U/mL; P = 0.002). Fecal calprotectin was significantly elevated in CF than HC (median [IQR] 61.3 [43.8-143.8] vs 19.5 [19.5-35.1] mg/kg; P < 0.0001). However, there was no correlation between fecal M2-PK and fecal calprotectin levels among subjects with CF (r = 0.29; P = 0.1). CONCLUSION Increased intestinal cell turnover is present in children with PI CF. The lack of relationship between fecal M2-PK and calprotectin suggests that contributing factor(s) other than inflammation may be present.
Collapse
Affiliation(s)
- Tamara Pang
- Discipline of Paediatrics, School of Women's and Children's Health, Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | | | | | | | | | | |
Collapse
|
39
|
He L, Yang X, Zhao F, Wang K, Wang Q, Liu J, Huang J, Li W, Yang M. Self-Assembled Supramolecular Nanoprobes for Ratiometric Fluorescence Measurement of Intracellular pH Values. Anal Chem 2015; 87:2459-65. [DOI: 10.1021/ac504458r] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Leiliang He
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Key
Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan
Province, Hunan University, Changsha 410082, People’s Republic of China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Key
Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan
Province, Hunan University, Changsha 410082, People’s Republic of China
| | - Fang Zhao
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Key
Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan
Province, Hunan University, Changsha 410082, People’s Republic of China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Key
Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan
Province, Hunan University, Changsha 410082, People’s Republic of China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Key
Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan
Province, Hunan University, Changsha 410082, People’s Republic of China
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Key
Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan
Province, Hunan University, Changsha 410082, People’s Republic of China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Key
Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan
Province, Hunan University, Changsha 410082, People’s Republic of China
| | - Wenshan Li
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Key
Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan
Province, Hunan University, Changsha 410082, People’s Republic of China
| | - Meng Yang
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Key
Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan
Province, Hunan University, Changsha 410082, People’s Republic of China
| |
Collapse
|
40
|
Li Y, Wang Y, Yang S, Zhao Y, Yuan L, Zheng J, Yang R. Hemicyanine-based High Resolution Ratiometric near-Infrared Fluorescent Probe for Monitoring pH Changes in Vivo. Anal Chem 2015; 87:2495-503. [DOI: 10.1021/ac5045498] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yinhui Li
- State Key Laboratory
of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yijun Wang
- State Key Laboratory
of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Sheng Yang
- State Key Laboratory
of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yirong Zhao
- State Key Laboratory
of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lin Yuan
- State Key Laboratory
of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jing Zheng
- State Key Laboratory
of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ronghua Yang
- State Key Laboratory
of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
41
|
Abstract
A new Schiff-base compound, 1,4-bis-(quinolin-6-ylimino methyl)benzene (BQB), has been explored as reversible ratiometric fluorescence pH sensor.
Collapse
Affiliation(s)
| | - Sudipto Dey
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| | - Partha Roy
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| |
Collapse
|
42
|
You QH, Lee YM, Chan WH, Mak NK, Lee AWM, Hau SCK, Mak TCW. A colorimetric and ratiometric fluorescent pH probe based on ring opening/closing approach and its applications in monitoring cellular pH change. RSC Adv 2015. [DOI: 10.1039/c4ra13445a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A cell permeable colorimetric and ratiometric fluorescent pH probe with a pKavalue of 6.0 has been developed.
Collapse
Affiliation(s)
- Qi-Hua You
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
- Partner State Key Laboratory of Environmental and Bioanalysis
| | - Yee Man Lee
- Department of Biology
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Wing Hong Chan
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
- Partner State Key Laboratory of Environmental and Bioanalysis
| | - Nai Ki Mak
- Department of Biology
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Albert W. M. Lee
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Sam C. K. Hau
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
- Department of Chemistry
| | | |
Collapse
|
43
|
Shi XL, Mao GJ, Zhang XB, Liu HW, Gong YJ, Wu YX, Zhou LY, Zhang J, Tan W. Rhodamine-based fluorescent probe for direct bio-imaging of lysosomal pH changes. Talanta 2014; 130:356-62. [DOI: 10.1016/j.talanta.2014.07.030] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/03/2014] [Accepted: 07/10/2014] [Indexed: 11/29/2022]
|
44
|
Wu YX, Zhang XB, Li JB, Zhang CC, Liang H, Mao GJ, Zhou LY, Tan W, Yu RQ. Bispyrene–Fluorescein Hybrid Based FRET Cassette: A Convenient Platform toward Ratiometric Time-Resolved Probe for Bioanalytical Applications. Anal Chem 2014; 86:10389-96. [DOI: 10.1021/ac502863m] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yong-Xiang Wu
- Molecular Science and Biomedicine Laboratory, State Key
Laboratory of Chemo/Biosensing and Chemometrics, College
of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key
Laboratory of Chemo/Biosensing and Chemometrics, College
of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Jun-Bin Li
- Molecular Science and Biomedicine Laboratory, State Key
Laboratory of Chemo/Biosensing and Chemometrics, College
of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Cui-Cui Zhang
- Molecular Science and Biomedicine Laboratory, State Key
Laboratory of Chemo/Biosensing and Chemometrics, College
of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Hao Liang
- Molecular Science and Biomedicine Laboratory, State Key
Laboratory of Chemo/Biosensing and Chemometrics, College
of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Guo-Jiang Mao
- Molecular Science and Biomedicine Laboratory, State Key
Laboratory of Chemo/Biosensing and Chemometrics, College
of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Li-Yi Zhou
- Molecular Science and Biomedicine Laboratory, State Key
Laboratory of Chemo/Biosensing and Chemometrics, College
of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key
Laboratory of Chemo/Biosensing and Chemometrics, College
of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Ru-Qin Yu
- Molecular Science and Biomedicine Laboratory, State Key
Laboratory of Chemo/Biosensing and Chemometrics, College
of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| |
Collapse
|
45
|
A wide range optical pH sensor for living cells using Au@Ag nanoparticles functionalized carbon nanotubes based on SERS signals. Anal Bioanal Chem 2014; 406:6337-46. [DOI: 10.1007/s00216-014-8064-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/21/2014] [Accepted: 07/24/2014] [Indexed: 01/06/2023]
|
46
|
Pan ZH, Luo GG, Zhou JW, Xia JX, Fang K, Wu RB. A simple BODIPY-aniline-based fluorescent chemosensor as multiple logic operations for the detection of pH and CO2gas. Dalton Trans 2014; 43:8499-507. [DOI: 10.1039/c4dt00395k] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
4-Aniline BODIPY dye was developed as a highly sensitive fluorescent chemosensor for the detection of pH and CO2gas.
Collapse
Affiliation(s)
- Zhong-Hua Pan
- College of Materials Science and Engineering
- Huaqiao University
- Xiamen 361021, P. R. China
| | - Geng-Geng Luo
- College of Materials Science and Engineering
- Huaqiao University
- Xiamen 361021, P. R. China
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
| | - Jing-Wei Zhou
- School of Pharmaceutical Sciences
- East Campus
- Sun Yat-sen University
- Guangzhou 510006, P. R. China
| | - Jiu-Xu Xia
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Science
- Fuzhou, P. R. China
| | - Kai Fang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Science
- Fuzhou, P. R. China
| | - Rui-Bo Wu
- School of Pharmaceutical Sciences
- East Campus
- Sun Yat-sen University
- Guangzhou 510006, P. R. China
| |
Collapse
|
47
|
Huang W, Lin W, Guan X. Development of ratiometric fluorescent pH sensors based on chromenoquinoline derivatives with tunable pKa values for bioimaging. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2013.10.130] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Yang Z, Cao J, He Y, Yang JH, Kim T, Peng X, Kim JS. Macro-/micro-environment-sensitive chemosensing and biological imaging. Chem Soc Rev 2014; 43:4563-601. [DOI: 10.1039/c4cs00051j] [Citation(s) in RCA: 604] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We have summarized the research progress on fluorescent sensors responsive to environmental factors, including local viscosity, polarity, temperature, hypoxia and pH.
Collapse
Affiliation(s)
- Zhigang Yang
- Department of Chemistry
- Korea University
- Seoul 136-701, Korea
- Key Laboratory of Sensor Analysis of Tumor Marker Ministry of Education
- College of Chemistry and Molecular Engineering
| | - Jianfang Cao
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024, China
| | - Yanxia He
- Department of Chemistry
- Korea University
- Seoul 136-701, Korea
- Key Laboratory of Sensor Analysis of Tumor Marker Ministry of Education
- College of Chemistry and Molecular Engineering
| | - Jung Ho Yang
- Department of Chemistry
- Korea University
- Seoul 136-701, Korea
| | - Taeyoung Kim
- Department of Chemistry
- Korea University
- Seoul 136-701, Korea
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024, China
| | - Jong Seung Kim
- Department of Chemistry
- Korea University
- Seoul 136-701, Korea
| |
Collapse
|
49
|
|
50
|
Zhang XX, Wang Z, Yue X, Ma Y, Kiesewetter DO, Chen X. pH-sensitive fluorescent dyes: are they really pH-sensitive in cells? Mol Pharm 2013; 10:1910-7. [PMID: 23464828 PMCID: PMC3647017 DOI: 10.1021/mp3006903] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chemically synthesized near-infrared aza-BODIPY dyes displayed off-on fluorescence at acidic pH (pKa = 6.2-6.6) through the suppression of the photoinduced electron transfer and/or internal charge transfer process. The apparent pKas of the dyes were shifted well above physiological pH in a hydrophobic microenvironment, which led to "turned-on" fluorescence in micelles and liposomes at neutral and basic pH. Bovine serum albumin also activated the fluorescence, though to a much lesser extent. When these small molecular dyes entered cells, instead of being fluorescent only in acidic organelles, the whole cytoplasm exhibited fluorescence, with a signal/background ratio as high as ∼10 in no-wash live-cell imaging. The dye 1-labeled cells remained highly fluorescent even after 3 days. Moreover, slight variations of the dye structure resulted in significantly different intracellular fluorescence behaviors, possibly because of their different cellular uptake and intracellular activation capabilities. After the separation of cellular components, the fraction of plasma membrane and endoplasmic reticulum showed the highest fluorescence, further confirming the fluorescence activation by membrane structures. The fluorescence intensity of these dyes at different intracellular pHs (6.80 and 8.00) did not differ significantly, indicating that intracellular pH did not play a critical role. Altogether, we showed here for the first time that the fluorescence of pH-sensitive aza-BODIPY dyes was switched intracellularly not by acidic pH, but by intracellular membranes (and proteins as well). The excellent membrane permeability, ultrahigh fluorescence contrast ratio, persistent fluorescent signal, and minimal biological interference of dye 1 make it an ideal choice for live-cell imaging and in vivo cell tracking. These findings also imply that the intracellular fluorescence properties of pH-sensitive dyes should be carefully examined before they are used as pH indicators.
Collapse
Affiliation(s)
- Xiao-Xiang Zhang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Zhe Wang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland 20892, USA
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361005, China
| | - Xuyi Yue
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland 20892, USA
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361005, China
| | - Ying Ma
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Dale O. Kiesewetter
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|