1
|
Georgiou K, Kolocouris A. Conformational heterogeneity and structural features for function of the prototype viroporin influenza AM2. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1867:184387. [PMID: 39424094 DOI: 10.1016/j.bbamem.2024.184387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024]
Abstract
The 97-residue influenza A matrix 2 (ΑM2) protein, a prototype for viroporins, transports protons through water molecules and His37. We discuss structural biology and molecular biophysics experiments and some functional assays that have transformed over 40 years our understanding of the structure and function of AM2. The structural studies on ΑM2 have been performed with different conditions (pH, temperature, lipid, constructs) and using various protein constructs, e.g., AM2 transmembrane (AM2TM) domain, AM2 conductance domain (AM2CD), ectodomain-containing or ectodomain-truncated, AM2 full length (AM2FL) and aimed to describe the different conformations and structural details that are necessary for the stability and function of AM2. However, the conclusions from these experiments appeared sometimes ambiguous and caused exciting debates. This was not due to inaccurate measurements, but instead because of the different membrane mimetic environment used, e.g., detergent, micelles or phospholipid bilayer, the method (e.g., X-ray crystallography, solid state NMR, solution NMR, native mass spectrometry), the used protein construct (e.g., AM2TM or AM2CD), or the amino acids residues to follow observables (e.g., NMR chemical shifts). We present these results according to the different used biophysical methods, the research groups and often by keeping a chronological order for presenting the progress in the research. We discuss ideas for additional research on structural details of AM2 and how the present findings can be useful to explore new routes of influenza A inhibition. The AM2 research can provide inspiration to study other viroporins as drug targets.
Collapse
Affiliation(s)
- Kyriakos Georgiou
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens 157 71, Greece
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens 157 71, Greece.
| |
Collapse
|
2
|
Pankratova Y, McKay MJ, Ma C, Tan H, Wang J, Hong M. Structure and dynamics of the proton-selective histidine and the gating tryptophan in an inward rectifying hybrid influenza B and A virus M2 proton channel. Phys Chem Chem Phys 2024; 26:20629-20644. [PMID: 39037444 PMCID: PMC11290064 DOI: 10.1039/d4cp01648c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
The M2 proteins of influenza A and B viruses form acid-activated proton channels that are essential for the virus lifecycle. Proton selectivity is achieved by a transmembrane (TM) histidine whereas gating is achieved by a tryptophan residue. Although this functional apparatus is conserved between AM2 and BM2 channels, AM2 conducts protons exclusively inward whereas BM2 conducts protons in either direction depending on the pH gradient. Previous studies showed that in AM2, mutations of D44 abolished inward rectification of AM2, suggesting that the tryptophan gate is destabilized. To elucidate how charged residues C-terminal to the tryptophan regulates channel gating, here we investigate the structure and dynamics of H19 and W23 in a BM2 mutant, GDR-BM2, in which three BM2 residues are mutated to the corresponding AM2 residues, S16G, G26D and H27R. Whole-cell electrophysiological data show that GDR-BM2 conducts protons with inward rectification, identical to wild-type (WT) AM2 but different from WT-BM2. Solid-state NMR 15N and 13C spectra of H19 indicate that the mutant BM2 channel contains higher populations of cationic histidine and neutral τ tautomers compared to WT-BM2 at acidic pH. Moreover, 19F NMR spectra of 5-19F-labeled W23 resolve three peaks at acidic pH, suggesting three tryptophan sidechain conformations. Comparison of these spectra with the tryptophan spectra of other M2 peptides suggests that these indole sidechain conformations arise from interactions with the C-terminal charged residues and with the N-terminal cationic histidine. Taken together, these solid-state NMR data show that inward rectification in M2 proton channels is accomplished by tryptophan interactions with charged residues on both its C-terminal and N-terminal sides. Gating of these M2 proton channels is thus accomplished by a multi-residue complex with finely tuned electrostatic and aromatic interactions.
Collapse
Affiliation(s)
- Yanina Pankratova
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, USA.
| | - Matthew J McKay
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, USA.
| | - Chunlong Ma
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, 85721, USA
| | - Haozhou Tan
- Department of Medicinal Chemistry, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Jun Wang
- Department of Medicinal Chemistry, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, USA.
| |
Collapse
|
3
|
Cedillo-Barrón L, García-Cordero J, Visoso-Carvajal G, León-Juárez M. Viroporins Manipulate Cellular Powerhouses and Modulate Innate Immunity. Viruses 2024; 16:345. [PMID: 38543711 PMCID: PMC10974846 DOI: 10.3390/v16030345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 05/23/2024] Open
Abstract
Viruses have a wide repertoire of molecular strategies that focus on their replication or the facilitation of different stages of the viral cycle. One of these strategies is mediated by the activity of viroporins, which are multifunctional viral proteins that, upon oligomerization, exhibit ion channel properties with mild ion selectivity. Viroporins facilitate multiple processes, such as the regulation of immune response and inflammasome activation through the induction of pore formation in various cell organelle membranes to facilitate the escape of ions and the alteration of intracellular homeostasis. Viroporins target diverse membranes (such as the cellular membrane), endoplasmic reticulum, and mitochondria. Cumulative data regarding the importance of mitochondria function in multiple processes, such as cellular metabolism, energy production, calcium homeostasis, apoptosis, and mitophagy, have been reported. The direct or indirect interaction of viroporins with mitochondria and how this interaction affects the functioning of mitochondrial cells in the innate immunity of host cells against viruses remains unclear. A better understanding of the viroporin-mitochondria interactions will provide insights into their role in affecting host immune signaling through the mitochondria. Thus, in this review, we mainly focus on descriptions of viroporins and studies that have provided insights into the role of viroporins in hijacked mitochondria.
Collapse
Affiliation(s)
- Leticia Cedillo-Barrón
- Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV-IPN) Av., IPN # 2508 Col., San Pedro Zacatenco, Mexico City 07360, Mexico; (J.G.-C.); (G.V.-C.)
| | - Julio García-Cordero
- Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV-IPN) Av., IPN # 2508 Col., San Pedro Zacatenco, Mexico City 07360, Mexico; (J.G.-C.); (G.V.-C.)
| | - Giovani Visoso-Carvajal
- Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV-IPN) Av., IPN # 2508 Col., San Pedro Zacatenco, Mexico City 07360, Mexico; (J.G.-C.); (G.V.-C.)
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón esq, Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Mexico City 11340, Mexico
| | - Moisés León-Juárez
- Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico;
| |
Collapse
|
4
|
Tekwani Movellan K, Wegstroth M, Overkamp K, Leonov A, Becker S, Andreas LB. Real-time tracking of drug binding to influenza A M2 reveals a high energy barrier. J Struct Biol X 2023; 8:100090. [PMID: 37363040 PMCID: PMC10285276 DOI: 10.1016/j.yjsbx.2023.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 05/18/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
The drug Rimantadine binds to two different sites in the M2 protein from influenza A, a peripheral site and a pore site that is the primary site of efficacy. It remained enigmatic that pore binding did not occur in certain detergent micelles, and in particular incomplete binding was observed in a mixture of lipids selected to match the viral membrane. Here we show that two effects are responsible, namely changes in the protein upon pore binding that prevented detergent solubilization, and slow binding kinetics in the lipid samples. Using 55-100 kHz magic-angle spinning NMR, we characterize kinetics of drug binding in three different lipid environments: DPhPC, DPhPC with cholesterol and viral mimetic membrane lipid bilayers. Slow pharmacological binding kinetics allowed the characterization of spectral changes associated with non-specific binding to the protein periphery in the kinetically trapped pore-apo state. Resonance assignments were determined from a set of proton-detected 3D spectra. Chemical shift changes associated with functional binding in the pore of M2 were tracked in real time in order to estimate the activation energy. The binding kinetics are affected by pH and the lipid environment and in particular cholesterol. We found that the imidazole-imidazole hydrogen bond at residue histidine 37 is a stable feature of the protein across several lipid compositions. Pore binding breaks the imidazole-imidazole hydrogen bond and limits solubilization in DHPC detergent.
Collapse
|
5
|
Kumari R, Sharma SD, Kumar A, Ende Z, Mishina M, Wang Y, Falls Z, Samudrala R, Pohl J, Knight PR, Sambhara S. Antiviral Approaches against Influenza Virus. Clin Microbiol Rev 2023; 36:e0004022. [PMID: 36645300 PMCID: PMC10035319 DOI: 10.1128/cmr.00040-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Preventing and controlling influenza virus infection remains a global public health challenge, as it causes seasonal epidemics to unexpected pandemics. These infections are responsible for high morbidity, mortality, and substantial economic impact. Vaccines are the prophylaxis mainstay in the fight against influenza. However, vaccination fails to confer complete protection due to inadequate vaccination coverages, vaccine shortages, and mismatches with circulating strains. Antivirals represent an important prophylactic and therapeutic measure to reduce influenza-associated morbidity and mortality, particularly in high-risk populations. Here, we review current FDA-approved influenza antivirals with their mechanisms of action, and different viral- and host-directed influenza antiviral approaches, including immunomodulatory interventions in clinical development. Furthermore, we also illustrate the potential utility of machine learning in developing next-generation antivirals against influenza.
Collapse
Affiliation(s)
- Rashmi Kumari
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Department of Anesthesiology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Suresh D. Sharma
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Amrita Kumar
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Zachary Ende
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Oak Ridge Institute for Science and Education (ORISE), CDC Fellowship Program, Oak Ridge, Tennessee, USA
| | - Margarita Mishina
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yuanyuan Wang
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Association of Public Health Laboratories, Silver Spring, Maryland, USA
| | - Zackary Falls
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Ram Samudrala
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Jan Pohl
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Paul R. Knight
- Department of Anesthesiology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Suryaprakash Sambhara
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Tolomeu HV, Fraga CAM. Imidazole: Synthesis, Functionalization and Physicochemical Properties of a Privileged Structure in Medicinal Chemistry. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020838. [PMID: 36677894 PMCID: PMC9865940 DOI: 10.3390/molecules28020838] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/19/2023]
Abstract
Imidazole was first synthesized by Heinrich Debus in 1858 and was obtained by the reaction of glyoxal and formaldehyde in ammonia, initially called glyoxaline. The current literature provides much information about the synthesis, functionalization, physicochemical characteristics and biological role of imidazole. Imidazole is a structure that, despite being small, has a unique chemical complexity. It is a nucleus that is very practical and versatile in its construction/functionalization and can be considered a rich source of chemical diversity. Imidazole acts in extremely important processes for the maintenance of living organisms, such as catalysis in enzymatic processes. Imidazole-based compounds with antibacterial, anti-inflammatory, antidiabetic, antiparasitic, antituberculosis, antifungal, antioxidant, antitumor, antimalarial, anticancer, antidepressant and many others make up the therapeutic arsenal and new bioactive compounds proposed in the most diverse works. The interest and importance of imidazole-containing analogs in the field of medicinal chemistry is remarkable, and the understanding from the development of the first blockbuster drug cimetidine explores all the chemical and biological concepts of imidazole in the context of research and development of new drugs.
Collapse
Affiliation(s)
- Heber Victor Tolomeu
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Carlos Alberto Manssour Fraga
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Correspondence: ; Tel.: +55-21-39386447
| |
Collapse
|
7
|
Somberg NH, Wu WW, Medeiros-Silva J, Dregni AJ, Jo H, DeGrado WF, Hong M. SARS-CoV-2 Envelope Protein Forms Clustered Pentamers in Lipid Bilayers. Biochemistry 2022; 61:2280-2294. [PMID: 36219675 PMCID: PMC9583936 DOI: 10.1021/acs.biochem.2c00464] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/26/2022] [Indexed: 11/30/2022]
Abstract
The SARS-CoV-2 envelope (E) protein is a viroporin associated with the acute respiratory symptoms of COVID-19. E forms cation-selective ion channels that assemble in the lipid membrane of the endoplasmic reticulum Golgi intermediate compartment. The channel activity of E is linked to the inflammatory response of the host cell to the virus. Like many viroporins, E is thought to oligomerize with a well-defined stoichiometry. However, attempts to determine the E stoichiometry have led to inconclusive results and suggested mixtures of oligomers whose exact nature might vary with the detergent used. Here, we employ 19F solid-state nuclear magnetic resonance and the centerband-only detection of exchange (CODEX) technique to determine the oligomeric number of E's transmembrane domain (ETM) in lipid bilayers. The CODEX equilibrium value, which corresponds to the inverse of the oligomeric number, indicates that ETM assembles into pentamers in lipid bilayers, without any detectable fraction of low-molecular-weight oligomers. Unexpectedly, at high peptide concentrations and in the presence of the lipid phosphatidylinositol, the CODEX data indicate that more than five 19F spins are within a detectable distance of about 2 nm, suggesting that the ETM pentamers cluster in the lipid bilayer. Monte Carlo simulations that take into account peptide-peptide and peptide-lipid interactions yielded pentamer clusters that reproduced the CODEX data. This supramolecular organization is likely important for E-mediated virus assembly and budding and for the channel function of the protein.
Collapse
Affiliation(s)
- Noah H Somberg
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts02139, United States
| | - Westley W Wu
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts02139, United States
| | - João Medeiros-Silva
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts02139, United States
| | - Aurelio J Dregni
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts02139, United States
| | - Hyunil Jo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 555 Mission Bay Blvd. South, San Francisco, California94158, United States
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 555 Mission Bay Blvd. South, San Francisco, California94158, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts02139, United States
| |
Collapse
|
8
|
Yu D, Wang L, Wang Y. Recent Advances in Application of Computer-Aided Drug Design in Anti-Influenza A Virus Drug Discovery. Int J Mol Sci 2022; 23:ijms23094738. [PMID: 35563129 PMCID: PMC9105300 DOI: 10.3390/ijms23094738] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/06/2023] Open
Abstract
Influenza A is an acute respiratory infectious disease caused by the influenza A virus, which seriously threatens global human health and causes substantial economic losses every year. With the emergence of new viral strains, anti-influenza drugs remain the most effective treatment for influenza A. Research on traditional, innovative small-molecule drugs faces many challenges, while computer-aided drug design (CADD) offers opportunities for the rapid and effective development of innovative drugs. This literature review describes the general process of CADD, the viral proteins that play an essential role in the life cycle of the influenza A virus and can be used as therapeutic targets for anti-influenza drugs, and examples of drug screening of viral target proteins by applying the CADD approach. Finally, the main limitations of current CADD strategies in anti-influenza drug discovery and the field's future directions are discussed.
Collapse
Affiliation(s)
| | | | - Ye Wang
- Correspondence: ; Tel.: +86-431-8515-5249
| |
Collapse
|
9
|
Movellan KT, Dervişoğlu R, Becker S, Andreas LB. Porengebundenes Wasser an der Schlüsselaminosäure Histidin‐37 in Influenza A M2. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kumar Tekwani Movellan
- NMR-basierte Strukturbiologie Max-Planck-Institut für biophysikalische Chemie Am Faßberg 11 Göttingen 37077 Deutschland
| | - Rıza Dervişoğlu
- NMR-basierte Strukturbiologie Max-Planck-Institut für biophysikalische Chemie Am Faßberg 11 Göttingen 37077 Deutschland
| | - Stefan Becker
- NMR-basierte Strukturbiologie Max-Planck-Institut für biophysikalische Chemie Am Faßberg 11 Göttingen 37077 Deutschland
| | - Loren B. Andreas
- NMR-basierte Strukturbiologie Max-Planck-Institut für biophysikalische Chemie Am Faßberg 11 Göttingen 37077 Deutschland
| |
Collapse
|
10
|
Movellan KT, Dervişoğlu R, Becker S, Andreas LB. Pore-Bound Water at the Key Residue Histidine 37 in Influenza A M2. Angew Chem Int Ed Engl 2021; 60:24075-24079. [PMID: 34477305 PMCID: PMC8597138 DOI: 10.1002/anie.202103955] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/02/2021] [Indexed: 01/14/2023]
Abstract
Atomic details of structured water molecules are indispensable to understand the thermodynamics of important biological processes including the proton conduction mechanism of the M2 protein. Despite the expectation of structured water molecules based on crystal structures of Influenza A M2, only two water populations have been observed by NMR in reconstituted lipid bilayer samples. These are the bulk‐ and lipid‐associated water populations typically seen in membrane samples. Here, we detect a bound water molecule at a chemical shift of 11 ppm, located near the functional histidine 37 residue in the M2 conductance domain, which comprises residues 18 to 60. Combining 100 kHz magic‐angle spinning NMR, dynamic nuclear polarization and density functional theory calculations, we show that the bound water forms a hydrogen bond to the δ1 nitrogen of histidine 37.
Collapse
Affiliation(s)
- Kumar Tekwani Movellan
- NMR based Structural Biology, Max Planck Institute for biophysical Chemistry, Am Fassberg 11, Göttingen, 37077, Germany
| | - Rıza Dervişoğlu
- NMR based Structural Biology, Max Planck Institute for biophysical Chemistry, Am Fassberg 11, Göttingen, 37077, Germany
| | - Stefan Becker
- NMR based Structural Biology, Max Planck Institute for biophysical Chemistry, Am Fassberg 11, Göttingen, 37077, Germany
| | - Loren B Andreas
- NMR based Structural Biology, Max Planck Institute for biophysical Chemistry, Am Fassberg 11, Göttingen, 37077, Germany
| |
Collapse
|
11
|
Site-directed M2 proton channel inhibitors enable synergistic combination therapy for rimantadine-resistant pandemic influenza. PLoS Pathog 2020; 16:e1008716. [PMID: 32780760 PMCID: PMC7418971 DOI: 10.1371/journal.ppat.1008716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 06/19/2020] [Indexed: 12/05/2022] Open
Abstract
Pandemic influenza A virus (IAV) remains a significant threat to global health. Preparedness relies primarily upon a single class of neuraminidase (NA) targeted antivirals, against which resistance is steadily growing. The M2 proton channel is an alternative clinically proven antiviral target, yet a near-ubiquitous S31N polymorphism in M2 evokes resistance to licensed adamantane drugs. Hence, inhibitors capable of targeting N31 containing M2 (M2-N31) are highly desirable. Rational in silico design and in vitro screens delineated compounds favouring either lumenal or peripheral M2 binding, yielding effective M2-N31 inhibitors in both cases. Hits included adamantanes as well as novel compounds, with some showing low micromolar potency versus pandemic “swine” H1N1 influenza (Eng195) in culture. Interestingly, a published adamantane-based M2-N31 inhibitor rapidly selected a resistant V27A polymorphism (M2-A27/N31), whereas this was not the case for non-adamantane compounds. Nevertheless, combinations of adamantanes and novel compounds achieved synergistic antiviral effects, and the latter synergised with the neuraminidase inhibitor (NAi), Zanamivir. Thus, site-directed drug combinations show potential to rejuvenate M2 as an antiviral target whilst reducing the risk of drug resistance. "Swine flu" illustrated that the spread of influenza pandemics in the modern era is rapid, making antiviral drugs the best way of limiting disease. One proven influenza drug target is the M2 proton channel, which plays an essential role during virus entry. However, resistance against licensed drugs targeting this protein is now ubiquitous, largely due to an S31N change in the M2 sequence. Understandably, considerable effort has focused on developing M2-N31 inhibitors, yet this has been hampered by controversy surrounding two potential drug binding sites. Here, we show that both sites can in fact be targeted by new M2-N31 inhibitors, generating synergistic antiviral effects. Developing such drug combinations should improve patient outcomes and minimise the emergence of future drug resistance.
Collapse
|
12
|
Movellan K, Wegstroth M, Overkamp K, Leonov A, Becker S, Andreas LB. Imidazole-Imidazole Hydrogen Bonding in the pH-Sensing Histidine Side Chains of Influenza A M2. J Am Chem Soc 2020; 142:2704-2708. [PMID: 31970979 PMCID: PMC7307898 DOI: 10.1021/jacs.9b10984] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Indexed: 12/28/2022]
Abstract
The arrangement of histidine side chains in influenza A M2 tetramer determines their pKa values, which define pH-controlled proton conduction critical to the virus lifecycle. Both water-associated and hydrogen-bonded imidazole-imidazolium histidine quaternary structures have been proposed, based on crystal structures and NMR chemical shifts, respectively. Here we show, using the conduction domain construct of M2 in lipid bilayers, that the imidazole rings are hydrogen bonded even at a pH of 7.8 in the neutral charge state. An intermolecular 8.9 ± 0.3 Hz 2hJNN hydrogen bond is observed between H37 Nε and Nδ recorded in a fully protonated sample with 100 kHz magic-angle spinning. This interaction could not be detected in the drug-bound sample.
Collapse
Affiliation(s)
- Kumar
Tekwani Movellan
- Department of NMR Based Structural
Biology, Max Planck Institute for Biophysical
Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | - Melanie Wegstroth
- Department of NMR Based Structural
Biology, Max Planck Institute for Biophysical
Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | - Kerstin Overkamp
- Department of NMR Based Structural
Biology, Max Planck Institute for Biophysical
Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | - Andrei Leonov
- Department of NMR Based Structural
Biology, Max Planck Institute for Biophysical
Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | - Stefan Becker
- Department of NMR Based Structural
Biology, Max Planck Institute for Biophysical
Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | - Loren B. Andreas
- Department of NMR Based Structural
Biology, Max Planck Institute for Biophysical
Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| |
Collapse
|
13
|
Fu R, Miao Y, Qin H, Cross TA. Observation of the Imidazole-Imidazolium Hydrogen Bonds Responsible for Selective Proton Conductance in the Influenza A M2 Channel. J Am Chem Soc 2020; 142:2115-2119. [PMID: 31970982 DOI: 10.1021/jacs.9b09985] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The integral membrane M2 protein is a 97-residue membrane protein that assembles as a tetramer to conduct protons at a slow rate (102-103/s) when activated by low pH. The proton conductance mechanism has been extensively debated in the literature, but it is accepted that the proton conductance is facilitated by hydrogen bonds involving the His37 residues. However, the hydrogen bonding partnership remains unresolved. Here, we report on the measurement of 15N-15N J-couplings of 15N His37-labeled full length M2 (M2FL) protein from Influenza A virus embedded in synthetic liquid crystalline lipid bilayers using two-dimensional J-resolved NMR spectroscopy. We experimentally observed the hydrogen-bond mediated J-couplings between Nδ1 and Nε2 of adjacent His37 imidazole rings, providing direct evidence for the existence of various imidazolium-imidazole hydrogen-bonding geometries in the histidine tetrad at low pH, thus validating the proton conduction mechanism in the M2FL protein by which the proton is transferred through the breaking and reforming of the hydrogen bonds between pairs of His37 residues.
Collapse
Affiliation(s)
- Riqiang Fu
- National High Magnet Field Lab , 1800 East Paul Dirac Drive , Tallahassee , Florida 32310 , United States
| | - Yimin Miao
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306 , United States
| | - Huajun Qin
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306 , United States
| | - Timothy A Cross
- National High Magnet Field Lab , 1800 East Paul Dirac Drive , Tallahassee , Florida 32310 , United States.,Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306 , United States
| |
Collapse
|
14
|
Enhanced oligomerization of full-length RAGE by synergy of the interaction of its domains. Sci Rep 2019; 9:20332. [PMID: 31889156 PMCID: PMC6937306 DOI: 10.1038/s41598-019-56993-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 12/11/2019] [Indexed: 01/10/2023] Open
Abstract
The pattern recognition receptor RAGE (receptor for advanced glycation end-products) transmits proinflammatory signals in several inflammation-related pathological states, including vascular diseases, cancer, neurodegeneration and diabetes. Its oligomerization is believed to be important in signal transduction, but RAGE oligomeric structures and stoichiometries remain unclear. Different oligomerization modes have been proposed in studies involving different truncated versions of the extracellular parts of RAGE. Here, we provide basic characterization of the oligomerization patterns of full-length RAGE (including the transmembrane (TM) and cytosolic regions) and compare the results with oligomerization modes of its four truncated fragments. For this purpose, we used native mass spectrometry, analytical ultracentrifugation, and size-exclusion chromatography coupled with multi-angle light scattering. Our results confirm known oligomerization tendencies of separate domains and highlight the enhanced oligomerization properties of full-length RAGE. Mutational analyses within the GxxxG motif of the TM region show sensitivity of oligomeric distributions to the TM sequence. Using hydrogen–deuterium exchange, we mapped regions involved in TM-dependent RAGE oligomerization. Our data provide experimental evidence for the major role of the C2 and TM domains in oligomerization, underscoring synergy among different oligomerization contact regions along the RAGE sequence. These results also explain the variability of obtained oligomerization modes in RAGE fragments.
Collapse
|
15
|
To J, Torres J. Viroporins in the Influenza Virus. Cells 2019; 8:cells8070654. [PMID: 31261944 PMCID: PMC6679168 DOI: 10.3390/cells8070654] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/21/2019] [Accepted: 06/27/2019] [Indexed: 12/28/2022] Open
Abstract
Influenza is a highly contagious virus that causes seasonal epidemics and unpredictable pandemics. Four influenza virus types have been identified to date: A, B, C and D, with only A–C known to infect humans. Influenza A and B viruses are responsible for seasonal influenza epidemics in humans and are responsible for up to a billion flu infections annually. The M2 protein is present in all influenza types and belongs to the class of viroporins, i.e., small proteins that form ion channels that increase membrane permeability in virus-infected cells. In influenza A and B, AM2 and BM2 are predominantly proton channels, although they also show some permeability to monovalent cations. By contrast, M2 proteins in influenza C and D, CM2 and DM2, appear to be especially selective for chloride ions, with possibly some permeability to protons. These differences point to different biological roles for M2 in types A and B versus C and D, which is also reflected in their sequences. AM2 is by far the best characterized viroporin, where mechanistic details and rationale of its acid activation, proton selectivity, unidirectionality, and relative low conductance are beginning to be understood. The present review summarizes the biochemical and structural aspects of influenza viroporins and discusses the most relevant aspects of function, inhibition, and interaction with the host.
Collapse
Affiliation(s)
- Janet To
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jaume Torres
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
16
|
Radosevic D, Sencanski M, Perovic V, Veljkovic N, Prljic J, Veljkovic V, Mantlo E, Bukreyeva N, Paessler S, Glisic S. Virtual Screen for Repurposing of Drugs for Candidate Influenza a M2 Ion-Channel Inhibitors. Front Cell Infect Microbiol 2019; 9:67. [PMID: 30972303 PMCID: PMC6443897 DOI: 10.3389/fcimb.2019.00067] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/04/2019] [Indexed: 12/20/2022] Open
Abstract
Influenza A virus (IAV) matrix protein 2 (M2), an ion channel, is crucial for virus infection, and therefore, an important anti-influenza drug target. Adamantanes, also known as M2 channel blockers, are one of the two classes of Food and Drug Administration-approved anti-influenza drugs, although their use was discontinued due to prevalent drug resistance. Fast emergence of resistance to current anti-influenza drugs have raised an urgent need for developing new anti-influenza drugs against resistant forms of circulating viruses. Here we propose a simple theoretical criterion for fast virtual screening of molecular libraries for candidate anti-influenza ion channel inhibitors both for wild type and adamantane-resistant influenza A viruses. After in silico screening of drug space using the EIIP/AQVN filter and further filtering of drugs by ligand based virtual screening and molecular docking we propose the best candidate drugs as potential dual inhibitors of wild type and adamantane-resistant influenza A viruses. Finally, guanethidine, the best ranked drug selected from ligand-based virtual screening, was experimentally tested. The experimental results show measurable anti-influenza activity of guanethidine in cell culture.
Collapse
Affiliation(s)
- Draginja Radosevic
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, University of Belgrade, Belgrade, Serbia
| | - Milan Sencanski
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, University of Belgrade, Belgrade, Serbia
| | - Vladimir Perovic
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, University of Belgrade, Belgrade, Serbia
| | - Nevena Veljkovic
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, University of Belgrade, Belgrade, Serbia
| | - Jelena Prljic
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, University of Belgrade, Belgrade, Serbia
| | | | - Emily Mantlo
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Natalya Bukreyeva
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| | - Sanja Glisic
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
17
|
Tauroursodeoxycholic acid (TUDCA) inhibits influenza A viral infection by disrupting viral proton channel M2. Sci Bull (Beijing) 2019; 64:180-188. [PMID: 32288967 PMCID: PMC7104969 DOI: 10.1016/j.scib.2018.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/22/2018] [Accepted: 07/22/2018] [Indexed: 01/20/2023]
Abstract
Influenza is a persistent threat to human health and there is a continuing requirement for updating anti-influenza strategies. Initiated by observations of different endoplasmic reticulum (ER) responses of host to seasonal H1N1 and highly pathogenic avian influenza (HPAI) A H5N1 infections, we identified an alternative antiviral role of tauroursodeoxycholic acid (TUDCA), a clinically available ER stress inhibitor, both in vitro and in vivo. Rather than modulating ER stress in host cells, TUDCA abolished the proton conductivity of viral M2 by disrupting its oligomeric states, which induces inefficient viral infection. We also showed that M2 penetrated cells, whose intracellular uptake depended on its proton channel activity, an effect observed in both TUDCA and M2 inhibitor amantadine. The identification and application of TUDCA as an inhibitor of M2 proton channel will expand our understanding of IAV biology and complement current anti-IAV arsenals.
Collapse
|
18
|
Cao Y, Dong Y, Chou JJ. Structural and Functional Properties of Viral Membrane Proteins. ADVANCES IN MEMBRANE PROTEINS 2018. [PMCID: PMC7122571 DOI: 10.1007/978-981-13-0532-0_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Viruses have developed a large variety of transmembrane proteins to carry out their infectious cycles. Some of these proteins are simply anchored to membrane via transmembrane helices. Others, however, adopt more interesting structures to perform tasks such as mediating membrane fusion and forming ion-permeating channels. Due to the dynamic or plastic nature shown by many of the viral membrane proteins, structural and mechanistic understanding of these proteins has lagged behind their counterparts in prokaryotes and eukaryotes. This chapter provides an overview of the use of NMR spectroscopy to unveil the transmembrane and membrane-proximal regions of viral membrane proteins, as well as their interactions with potential therapeutics.
Collapse
Affiliation(s)
- Yu Cao
- Institute of Precision Medicine, The Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | |
Collapse
|
19
|
Abstract
Viroporins are short polypeptides encoded by viruses. These small membrane proteins assemble into oligomers that can permeabilize cellular lipid bilayers, disrupting the physiology of the host to the advantage of the virus. Consequently, efforts during the last few decades have been focused towards the discovery of viroporin channel inhibitors, but in general these have not been successful to produce licensed drugs. Viroporins are also involved in viral pathogenesis by engaging in critical interactions with viral proteins, or disrupting normal host cellular pathways through coordinated interactions with host proteins. These protein-protein interactions (PPIs) may become alternative attractive drug targets for the development of antivirals. In this sense, while thus far most antiviral molecules have targeted viral proteins, focus is moving towards targeting host proteins that are essential for virus replication. In principle, this largely would overcome the problem of resistance, with the possibility of using repositioned existing drugs. The precise role of these PPIs, their strain- and host- specificities, and the structural determination of the complexes involved, are areas that will keep the fields of virology and structural biology occupied for years to come. In the present review, we provide an update of the efforts in the characterization of the main PPIs for most viroporins, as well as the role of viroporins in these PPIs interactions.
Collapse
Affiliation(s)
| | - David Bhella
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| |
Collapse
|
20
|
Musharrafieh R, Ma C, Wang J. Profiling the in vitro drug-resistance mechanism of influenza A viruses towards the AM2-S31N proton channel blockers. Antiviral Res 2018. [PMID: 29518414 DOI: 10.1016/j.antiviral.2018.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The majority of human influenza A viruses currently in circulation carry the amantadine-resistant AM2-S31N channel mutation. We previously discovered a series of AM2-S31N inhibitors with potent antiviral activity against both oseltamivir-sensitive and -resistant influenza A viruses. To understand the drug-resistance mechanism of AM2-S31N inhibitors, we performed serial viral passage experiments using the influenza virus A/California/07/2009 (H1N1) to select drug-resistant AM2 mutations against two representative AM2-S31N channel blockers (1 and 2). Unlike amantadine, which gives rise to resistance after a single passage, compounds 1 and 2 selected for partially resistant viruses at passages 05 and 04 with a V27I and L26I mutation, respectively. This appears to suggest compounds 1 and 2 have a higher genetic barrier to resistance than amantadine at least in cell culture. Passage with a higher drug concentration of compound 2 selected higher level resistant viruses with a double mutant L26I + A30T. The mechanism of resistance and replication fitness for mutant viruses were evaluated by electrophysiology, reverse genetics, growth kinetics, and competition assays. AM2-S31N/V27I and AM2-S31N/L26I channels achieved similar specific proton conductance as AM2-S31N, but the AM2-S31N/L26I/A30T triple mutant had drastically reduced specific proton conductance. Viral replication fitness of AM2-S31N/V27I and AM2-S31N/L26I double mutant viruses were similar to AM2-S31N containing viruses in cell culture. However, AM2-S31N/L26I/A30T viruses displayed attenuated growth as well as inability to compete with AM2-S31N viruses. The results herein offer insight regarding the resistance mechanism of AM2-S31N inhibitors, and may help guide the design of the next-generation of AM2-S31N inhibitors with a higher genetic barrier to drug resistance.
Collapse
Affiliation(s)
- Rami Musharrafieh
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721, United States
| | - Chunlong Ma
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721, United States
| | - Jun Wang
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721, United States; Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
21
|
Ma C, Wang J. Functional studies reveal the similarities and differences between AM2 and BM2 proton channels from influenza viruses. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:272-280. [PMID: 29106970 DOI: 10.1016/j.bbamem.2017.10.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 11/30/2022]
Abstract
AM2 and BM2 proton channels are attractive antiviral drug targets due to their essential roles during influenza virus replication. Although both AM2 and BM2 are proton-selective ion channels, they share little sequence similarity except for the HXXXW sequence, which suggests that their proton conductance properties might differ. To test this hypothesis, we applied two-electrode voltage clamp electrophysiological assays to study the specific conductance, leakage current, channel activation, and inhibition of AM2 and BM2 proton channels. It was found that BM2 channel has a higher specific conductance than AM2 channel at pH5.5. Unlike AM2 channel, whose proton conductance is asymmetric (from viral exterior to interior), BM2 channel is capable of conducting proton in both directions. Moreover, BM2 requires a more acidic pH for channel activation than AM2, as revealed by its lower pKa values. Finally, both AM2 and BM2 can be inhibited by Cu(II) and Cu(I). Overall, the results from this side-by-side comparison of AM2 and BM2 channels reveal the structure-function relationships of these two viroporins, and such information might be important for the designing of novel ion channels.
Collapse
Affiliation(s)
- Chunlong Ma
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721, United States
| | - Jun Wang
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721, United States; Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
22
|
Anti-influenza activity of diazaadamantanes combined with monoterpene moieties. Bioorg Med Chem Lett 2017; 27:4531-4535. [PMID: 28886889 DOI: 10.1016/j.bmcl.2017.08.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/27/2017] [Accepted: 08/29/2017] [Indexed: 12/31/2022]
Abstract
The antiviral activity of several diaza-adamantanes containing monoterpenoid moieties against a rimantadine-resistant strain of the influenza A/Puerto Rico/8/34 (H1N1) virus was studied. Hetero-adamantanes containing monoterpene moieties at the aminal position of the heterocycle were found to exhibit lower activity compared to compounds with a diaza-adamantane fragment and a monoterpene moiety linked via an amino group at the 6-position of the hetero-adamantane ring. The highest selectivity index (a ratio of the 50% cytotoxic concentration to the 50% inhibitory concentration) out of 30 was observed for compound 8d, which contains a citronellal monoterpenoid moiety. Diaza-adamantane 8d was superior to its adamantane-containing analog 5 both in its anti-influenza activity and selectivity. Furthermore, 8d has more balanced physicochemical properties than 5, making the former a more promising drug candidate. Modelling these compounds against an influenza virus M2 ion channel predicted plausible binding modes to both the wild-type and the mutant (S31N).
Collapse
|
23
|
Qin H, Miao Y, Cross TA, Fu R. Beyond Structural Biology to Functional Biology: Solid-State NMR Experiments and Strategies for Understanding the M2 Proton Channel Conductance. J Phys Chem B 2017; 121:4799-4809. [PMID: 28425709 DOI: 10.1021/acs.jpcb.7b02468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In terms of structural biology, solid-state NMR experiments and strategies have been well established for resonance assignments, leading to the determination of three-dimensional structures of insoluble membrane proteins in their native-like environment. It is also known that NMR has the unique capabilities to characterize structure-function relationships of membrane-bound biological systems beyond structural biology. Here, we report on solid-state NMR experiments and strategies for extracting functional activities on a sub-millisecond time scale. Specifically, we use the His37-labeled full length M2 (M2FL) protein of the Influenza A virus embedded in synthetic lipid bilayers as an example to characterize the proton conduction mechanism and kinetics. The integral membrane M2 protein assembles as a tetrameric bundle to form a proton-conducting channel that is activated by low pH and is essential for the viral lifecycle. Our results present convincing evidence for the formation of imidazolium-imidazole hydrogen bonds in the His37 tetrad at low pH and that these hydrogen bonds have a low barrier that facilitates the proton conduction mechanism in the M2FL protein. Moreover, it has been possible to measure hydronium ion exchange between water and the protons in the His37 NH bonds based on chemical exchange spectroscopy with minimized spin diffusion. The results identify an exchange rate constant of ∼4000 s-1 for pH 5.8 at -10 °C.
Collapse
Affiliation(s)
- Huajun Qin
- Department of Chemistry and Biochemistry, Florida State University , Tallahassee, Florida 32306, United States
| | - Yimin Miao
- Department of Chemistry and Biochemistry, Florida State University , Tallahassee, Florida 32306, United States
| | - Timothy A Cross
- Department of Chemistry and Biochemistry, Florida State University , Tallahassee, Florida 32306, United States.,National High Magnet Field Lab , 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Riqiang Fu
- National High Magnet Field Lab , 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| |
Collapse
|
24
|
Fu R, Miao Y, Qin H, Cross TA. Probing Hydronium Ion Histidine NH Exchange Rate Constants in the M2 Channel via Indirect Observation of Dipolar-Dephased 15N Signals in Magic-Angle-Spinning NMR. J Am Chem Soc 2016; 138:15801-15804. [PMID: 27960325 PMCID: PMC5368641 DOI: 10.1021/jacs.6b08376] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Water-protein chemical exchange in membrane-bound proteins is an important parameter for understanding how proteins interact with their aqueous environment, but has been difficult to observe in membrane-bound biological systems. Here, we demonstrate the feasibility of probing specific water-protein chemical exchange in membrane-bound proteins in solid-state MAS NMR. By spin-locking the 1H magnetization along the magic angle, the 1H spin diffusion is suppressed such that a water-protein chemical exchange process can be monitored indirectly by dipolar-dephased 15N signals through polarization transfer from 1H. In the example of the Influenza A full length M2 protein, the buildup of dipolar-dephased 15N signals from the tetrad of His37 side chains have been observed as a function of spin-lock time. This confirms that hydronium ions are in exchange with protons in the His37 NH bonds at the heart of the M2 proton conduction mechanism, with an exchange rate constant of ∼1750 s-1 for pH 6.2 at -10 °C.
Collapse
Affiliation(s)
- Riqiang Fu
- National High Magnet Field Lab, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Yimin Miao
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Huajun Qin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Timothy A. Cross
- National High Magnet Field Lab, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
25
|
Mapping the Resistance Potential of Influenza's H + Channel against an Antiviral Blocker. J Mol Biol 2016; 428:4209-4217. [PMID: 27524470 DOI: 10.1016/j.jmb.2016.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/02/2016] [Accepted: 08/06/2016] [Indexed: 01/20/2023]
Abstract
The development of drug resistance has long plagued our efforts to curtail viral infections in general and influenza in particular. The problem is particularly challenging since the exact mode of resistance may be difficult to predict, without waiting for untreatable strains to evolve. Herein, a different approach is taken. Using a novel genetic screen, we map the resistance options of influenza's M2 channel against its aminoadamantane antiviral inhibitors. In the process, we could identify clinically known resistant mutations in a completely unbiased manner. Additionally, novel mutations were obtained, which, while known to exist in circulating viruses, were not previously classified as drug resistant. Finally, we demonstrated the approach against an anti-influenza drug that has not seen clinical use, identifying several resistance mutations in the process. In conclusion, we present and employ a method to predict the resistance options of influenza's M2 channel to antiviral agents ahead of clinical use and without medical hazard.
Collapse
|
26
|
Sanz-Hernández M, Vostrikov VV, Veglia G, De Simone A. Accurate Determination of Conformational Transitions in Oligomeric Membrane Proteins. Sci Rep 2016; 6:23063. [PMID: 26975211 PMCID: PMC4791661 DOI: 10.1038/srep23063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/25/2016] [Indexed: 12/27/2022] Open
Abstract
The structural dynamics governing collective motions in oligomeric membrane proteins play key roles in vital biomolecular processes at cellular membranes. In this study, we present a structural refinement approach that combines solid-state NMR experiments and molecular simulations to accurately describe concerted conformational transitions identifying the overall structural, dynamical, and topological states of oligomeric membrane proteins. The accuracy of the structural ensembles generated with this method is shown to reach the statistical error limit, and is further demonstrated by correctly reproducing orthogonal NMR data. We demonstrate the accuracy of this approach by characterising the pentameric state of phospholamban, a key player in the regulation of calcium uptake in the sarcoplasmic reticulum, and by probing its dynamical activation upon phosphorylation. Our results underline the importance of using an ensemble approach to characterise the conformational transitions that are often responsible for the biological function of oligomeric membrane protein states.
Collapse
Affiliation(s)
- Máximo Sanz-Hernández
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Vitaly V. Vostrikov
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, UK
| |
Collapse
|
27
|
Zeng W, Horrocks KJ, Tan ACL, Jackson DC. Chemical Synthesis of Monomeric, Dimeric and Tetrameric Forms of the Ectodomain of Influenza Matrix 2 Protein. European J Org Chem 2016. [DOI: 10.1002/ejoc.201501569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
28
|
Homeyer N, Ioannidis H, Kolarov F, Gauglitz G, Zikos C, Kolocouris A, Gohlke H. Interpreting Thermodynamic Profiles of Aminoadamantane Compounds Inhibiting the M2 Proton Channel of Influenza A by Free Energy Calculations. J Chem Inf Model 2016; 56:110-26. [PMID: 26690735 DOI: 10.1021/acs.jcim.5b00467] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The development of novel anti-influenza drugs is of great importance because of the capability of influenza viruses to occasionally cross interspecies barriers and to rapidly mutate. One class of anti-influenza agents, aminoadamantanes, including the drugs amantadine and rimantadine now widely abandoned due to virus resistance, bind to and block the pore of the transmembrane domain of the M2 proton channel (M2TM) of influenza A. Here, we present one of the still rare studies that interprets thermodynamic profiles from isothermal titration calorimetry (ITC) experiments in terms of individual energy contributions to binding, calculated by the computationally inexpensive implicit solvent/implicit membrane molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) approach, for aminoadamantane compounds binding to M2TM of the avian "Weybridge" strain. For all eight pairs of aminoadamantane compounds considered, the trend of the predicted relative binding free energies and their individual components, effective binding energies and changes in the configurational entropy, agrees with experimental measures (ΔΔG, ΔΔH, TΔΔS) in 88, 88, and 50% of the cases. In addition, information yielded by the MM-PBSA approach about determinants of binding goes beyond that available in component quantities (ΔH, ΔS) from ITC measurements. We demonstrate how one can make use of such information to link thermodynamic profiles from ITC with structural causes on the ligand side and, ultimately, to guide decision making in lead optimization in a prospective manner, which results in an aminoadamantane derivative with improved binding affinity against M2TM(Weybridge).
Collapse
Affiliation(s)
- Nadine Homeyer
- Mathematisch-Naturwissenschaftliche Fakultät, Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf , 40225 Düsseldorf, Germany
| | - Harris Ioannidis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens , 15771 Athens, Greece
| | - Felix Kolarov
- Institut für Physikalische und Theoretische Chemie, Eberhard-Karls-Universität Tübingen , 72076 Tübingen, Germany
| | - Günter Gauglitz
- Institut für Physikalische und Theoretische Chemie, Eberhard-Karls-Universität Tübingen , 72076 Tübingen, Germany
| | - Christos Zikos
- Demokritos, National Center for Scientific Research , 15310 Athens, Greece
| | - Antonios Kolocouris
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens , 15771 Athens, Greece
| | - Holger Gohlke
- Mathematisch-Naturwissenschaftliche Fakultät, Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf , 40225 Düsseldorf, Germany
| |
Collapse
|
29
|
Abstract
Since the discovery that certain small viral membrane proteins, collectively termed as viroporins, can permeabilize host cellular membranes and also behave as ion channels, attempts have been made to link this feature to specific biological roles. In parallel, most viroporins identified so far are virulence factors, and interest has focused toward the discovery of channel inhibitors that would have a therapeutic effect, or be used as research tools to understand the biological roles of viroporin ion channel activity. However, this paradigm is being shifted by the difficulties inherent to small viral membrane proteins, and by the realization that protein-protein interactions and other diverse roles in the virus life cycle may represent an equal, if not, more important target. Therefore, although targeting the channel activity of viroporins can probably be therapeutically useful in some cases, the focus may shift to their other functions in following years. Small-molecule inhibitors have been mostly developed against the influenza A M2 (IAV M2 or AM2). This is not surprising since AM2 is the best characterized viroporin to date, with a well-established biological role in viral pathogenesis combined the most extensive structural investigations conducted, and has emerged as a validated drug target. For other viroporins, these studies are still mostly in their infancy, and together with those for AM2, are the subject of the present review.
Collapse
|
30
|
Mechanism of influenza A M2 transmembrane domain assembly in lipid membranes. Sci Rep 2015; 5:11757. [PMID: 26190831 PMCID: PMC4507135 DOI: 10.1038/srep11757] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 06/04/2015] [Indexed: 12/20/2022] Open
Abstract
M2 from influenza A virus functions as an oligomeric proton channel essential for the viral cycle, hence it is a high-priority pharmacological target whose structure and functions require better understanding. We studied the mechanism of M2 transmembrane domain (M2TMD) assembly in lipid membranes by the powerful biophysical technique of double electron-electron resonance (DEER) spectroscopy. By varying the M2TMD-to-lipid molar ratio over a wide range from 1:18,800 to 1:160, we found that M2TMD exists as monomers, dimers, and tetramers whose relative populations shift to tetramers with the increase of peptide-to-lipid (P/L) molar ratio. Our results strongly support the tandem mechanism of M2 assembly that is monomers-to-dimer then dimers-to-tetramer, since tight dimers are abundant at small P/L’s, and thereafter they assemble as dimers of dimers in weaker tetramers. The stepwise mechanism found for a single-pass membrane protein oligomeric assembly should contribute to the knowledge of the association steps in membrane protein folding.
Collapse
|
31
|
Scott C, Griffin S. Viroporins: structure, function and potential as antiviral targets. J Gen Virol 2015; 96:2000-2027. [PMID: 26023149 DOI: 10.1099/vir.0.000201] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The channel-forming activity of a family of small, hydrophobic integral membrane proteins termed 'viroporins' is essential to the life cycles of an increasingly diverse range of RNA and DNA viruses, generating significant interest in targeting these proteins for antiviral development. Viroporins vary greatly in terms of their atomic structure and can perform multiple functions during the virus life cycle, including those distinct from their role as oligomeric membrane channels. Recent progress has seen an explosion in both the identification and understanding of many such proteins encoded by highly significant pathogens, yet the prototypic M2 proton channel of influenza A virus remains the only example of a viroporin with provenance as an antiviral drug target. This review attempts to summarize our current understanding of the channel-forming functions for key members of this growing family, including recent progress in structural studies and drug discovery research, as well as novel insights into the life cycles of many viruses revealed by a requirement for viroporin activity. Ultimately, given the successes of drugs targeting ion channels in other areas of medicine, unlocking the therapeutic potential of viroporins represents a valuable goal for many of the most significant viral challenges to human and animal health.
Collapse
Affiliation(s)
- Claire Scott
- Leeds Institute of Cancer & Pathology and Leeds CRUK Clinical Centre, Faculty of Medicine and Health, St James's University Hospital, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| | - Stephen Griffin
- Leeds Institute of Cancer & Pathology and Leeds CRUK Clinical Centre, Faculty of Medicine and Health, St James's University Hospital, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| |
Collapse
|
32
|
Gu R, Liu LA, Wei D. Drug inhibition and proton conduction mechanisms of the influenza a M2 proton channel. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 827:205-26. [PMID: 25387967 DOI: 10.1007/978-94-017-9245-5_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The influenza A virus matrix protein 2 (M2 protein) is a pH-regulated proton channel embedded in the viral membrane. Inhibition of the M2 proton channel has been used to treat influenza infections for decades due to the crucial role of this protein in viral infection and replication. However, the widely-used M2 inhibitors, amantadine and rimantadine, have gradually lost their efficiencies because of naturally-occurring drug resistant mutations. Therefore, investigation of the structure and function of the M2 proton channel will not only increase our understanding of this important biological system, but also lead to the design of novel and effective anti-influenza drugs. Despite the simplicity of the M2 molecular structure, the M2 channel is highly flexible and there have been controversies and arguments regarding the channel inhibition mechanism and the proton conduction mechanism. In this book chapter, we will first carefully review the experimental and computational studies of the two possible drug binding sites on the M2 protein and explain the mechanisms regarding how inhibitors prevent proton conduction. Then, we will summarize our recent molecular dynamics simulations of the drug-resistant mutant channels and propose mechanisms for drug resistance. Finally, we will discuss two existing proton conduction mechanisms and talk about the remaining questions regarding the proton-relay process through the channel. The studies reviewed here demonstrate how molecular modeling and simulations have complemented experimental work and helped us understand the M2 channel structure and function.
Collapse
Affiliation(s)
- Ruoxu Gu
- State Key Laboratory of Microbial Metabolism, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | | | |
Collapse
|
33
|
Zhao X, Zhang ZW, Cui W, Chen S, Zhou Y, Dong J, Jie Y, Wan J, Xu Y, Hu W. Identification of camphor derivatives as novel M2 ion channel inhibitors of influenza A virus. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00515e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amantadine derivatives have been the only drugs marketed as M2 inhibitors of influenza A for decades.
Collapse
|
34
|
Gleed ML, Busath DD. Why bound amantadine fails to inhibit proton conductance according to simulations of the drug-resistant influenza A M2 (S31N). J Phys Chem B 2014; 119:1225-31. [PMID: 25426702 PMCID: PMC4306489 DOI: 10.1021/jp508545d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mechanisms responsible for drug resistance in the Asn31 variant of the M2 protein of influenza A are not well understood. Molecular dynamics simulations were performed on wild-type (Ser31) and S31N influenza A M2 in the homotetramer configuration. After evaluation of 13 published M2 structures, a solid-state NMR structure with amantadine bound was selected for simulations, an S31N mutant structure was developed and equilibrated, and the native and mutant structures were used to determine the binding behavior of amantadine and the dynamics of water in the two channels. Amantadine is stable in the plugging region of wild-type M2, with the adamantane in contact with the Val27 side chains, while amantadine in S31N M2 has more variable movement and orientation, and spontaneously moves lower into the central cavity of the channel. Free energy profiles from umbrella sampling support this observation. In this configuration, water surrounds the drug and can easily transport protons past it, so the drug binds without blocking proton transport in the S31N M2 channel.
Collapse
Affiliation(s)
- Mitchell L Gleed
- Department of Physiology and Developmental Biology, Brigham Young University , Provo, Utah 84602, United States
| | | |
Collapse
|
35
|
Kawano K, Yano Y, Matsuzaki K. A dimer is the minimal proton-conducting unit of the influenza a virus M2 channel. J Mol Biol 2014; 426:2679-91. [PMID: 24816000 DOI: 10.1016/j.jmb.2014.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 04/30/2014] [Accepted: 05/01/2014] [Indexed: 12/16/2022]
Abstract
When influenza A virus infects host cells, its integral matrix protein M2 forms a proton-selective channel in the viral envelope. Although X-ray crystallography and NMR studies using fragment peptides have suggested that M2 stably forms a tetrameric channel irrespective of pH, the oligomeric states of the full-length protein in the living cells have not yet been assessed directly. In the present study, we utilized recently developed stoichiometric analytical methods based on fluorescence resonance energy transfer using coiled-coil labeling technique and spectral imaging, and we examined the relationship between the oligomeric states of full-length M2 and its channel activities in living cells. In contrast to previous models, M2 formed proton-conducting dimers at neutral pH and these dimers were converted to tetramers at acidic pH. The antiviral drug amantadine hydrochloride inhibited both tetramerization and channel activity. The removal of cholesterol resulted in a significant decrease in the activity of the dimer. These results indicate that the minimum functional unit of the M2 protein is a dimer, which forms a complex with cholesterol for its function.
Collapse
Affiliation(s)
- Kenichi Kawano
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachicho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Yoshiaki Yano
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachicho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Katsumi Matsuzaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachicho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
36
|
Xu C, Chen H, Hu B, Yang S, Zhang L, Huang Q, Zhang X. Two amino acid residues in ion channel protein M2 and polymerase protein PA contribute to replication difference of H5N1 influenza viruses in mice. Virus Res 2013; 178:511-516. [PMID: 24512754 DOI: 10.1016/j.virusres.2013.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 09/27/2013] [Accepted: 10/03/2013] [Indexed: 10/26/2022]
Abstract
A/swine/Fujian/1/2001 (FJ1) and A/Duck/Zhejiang/52/2000 (DK52) are H5N1 influenza viruses that are lethal in chickens. However, in mice, FJ1 is highly pathogenic, whereas DK52 cannot replicate at all. In this study, we used reverse genetics to demonstrate that amino acid residues at position 54 of polymerase acidic protein (PA) and position 26 of ion channel protein M2 of FJ1 and DK52 are important determinants for replication in mice. In addition, we prove that M2 and PA proteins contribute to the replication of H5N1 viruses in mice.
Collapse
Affiliation(s)
- Chuantian Xu
- Shandong Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, People's Republic of China
| | - Hualan Chen
- Animal Influenza Laboratory of the Ministry of Agriculture and National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, 427 Maduan Street, Harbin 150001, People's Republic of China
| | - Beixia Hu
- Shandong Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, People's Republic of China
| | - Shaohua Yang
- Shandong Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, People's Republic of China
| | - Lin Zhang
- Shandong Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, People's Republic of China
| | - Qinghua Huang
- Shandong Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, People's Republic of China
| | - Xiumei Zhang
- Shandong Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, People's Republic of China.
| |
Collapse
|
37
|
Liao SY, Fritzsching KJ, Hong M. Conformational analysis of the full-length M2 protein of the influenza A virus using solid-state NMR. Protein Sci 2013; 22:1623-38. [PMID: 24023039 DOI: 10.1002/pro.2368] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/04/2013] [Accepted: 09/04/2013] [Indexed: 12/24/2022]
Abstract
The influenza A M2 protein forms a proton channel for virus infection and mediates virus assembly and budding. While extensive structural information is known about the transmembrane helix and an adjacent amphipathic helix, the conformation of the N-terminal ectodomain and the C-terminal cytoplasmic tail remains largely unknown. Using two-dimensional (2D) magic-angle-spinning solid-state NMR, we have investigated the secondary structure and dynamics of full-length M2 (M2FL) and found them to depend on the membrane composition. In 2D (13)C DARR correlation spectra, 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)-bound M2FL exhibits several peaks at β-sheet chemical shifts, which result from water-exposed extramembrane residues. In contrast, M2FL bound to cholesterol-containing membranes gives predominantly α-helical chemical shifts. Two-dimensional J-INADEQUATE spectra and variable-temperature (13)C spectra indicate that DMPC-bound M2FL is highly dynamic while the cholesterol-containing membranes significantly immobilize the protein at physiological temperature. Chemical-shift prediction for various secondary-structure models suggests that the β-strand is located at the N-terminus of the DMPC-bound protein, while the cytoplasmic domain is unstructured. This prediction is confirmed by the 2D DARR spectrum of the ectodomain-truncated M2(21-97), which no longer exhibits β-sheet chemical shifts in the DMPC-bound state. We propose that the M2 conformational change results from the influence of cholesterol, and the increased helicity of M2FL in cholesterol-rich membranes may be relevant for M2 interaction with the matrix protein M1 during virus assembly and budding. The successful determination of the β-strand location suggests that chemical-shift prediction is a promising approach for obtaining structural information of disordered proteins before resonance assignment.
Collapse
Affiliation(s)
- Shu Yu Liao
- Department of Chemistry, Iowa State University, Ames, Iowa, 50011
| | | | | |
Collapse
|
38
|
Alhadeff R, Assa D, Astrahan P, Krugliak M, Arkin IT. Computational and experimental analysis of drug binding to the Influenza M2 channel. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:1068-73. [PMID: 24016551 DOI: 10.1016/j.bbamem.2013.07.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/22/2013] [Accepted: 07/25/2013] [Indexed: 01/23/2023]
Abstract
The Influenza Matrix 2 (M2) protein is the target of Amantadine and Rimantadine which block its H(+) channel activity. However, the potential of these aminoadamantyls to serve as anti-flu agents is marred by the rapid resistance that the virus develops against them. Herein, using a cell based assay that we developed, we identify two new aminoadamantyl derivatives that show increased activity against otherwise resistant M2 variants. In order to understand the distinguishing binding patterns of the different blockers, we computed the potential of mean force of the drug binding process. The results reveal that the new derivatives are less mobile and bind to a larger pocket in the channel. Finally, such analyses may prove useful in designing new, more effective M2 blockers as a means of curbing influenza. This article is part of a Special Issue entitled: Viral Membrane Proteins - Channels for Cellular Networking.
Collapse
Affiliation(s)
- Raphael Alhadeff
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmund J. Safra Campus, Jerusalem 91904, Israel
| | - Dror Assa
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmund J. Safra Campus, Jerusalem 91904, Israel
| | - Peleg Astrahan
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmund J. Safra Campus, Jerusalem 91904, Israel
| | - Miriam Krugliak
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmund J. Safra Campus, Jerusalem 91904, Israel
| | - Isaiah T Arkin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmund J. Safra Campus, Jerusalem 91904, Israel.
| |
Collapse
|
39
|
Gu RX, Liu LA, Wei DQ. Structural and energetic analysis of drug inhibition of the influenza A M2 proton channel. Trends Pharmacol Sci 2013; 34:571-80. [PMID: 24011996 DOI: 10.1016/j.tips.2013.08.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/09/2013] [Accepted: 08/12/2013] [Indexed: 01/07/2023]
Abstract
The type A influenza virus matrix protein 2 (M2) is a highly selective proton channel in the viral envelope. Because of its crucial role in viral infection and replication, the M2 channel has been a target of anti-influenza drugs. Due to the occurrence of drug-resistant mutations in the M2 channel, existing anti-influenza drugs that block the M2 channel, such as amantadine and rimantadine, have lost their efficacy against these mutant channels. Recent experimental and computational efforts have made great progress in understanding the drug resistance mechanisms of these mutations as well as designing novel drug candidates to block the mutant M2 channels. In this review, we briefly summarize the structural characteristics of the M2 channel, and then we discuss these recent studies on drug resistance and drug design of the mutant channels, focusing on the structures and energetics. We show that structural biology experiments and molecular modeling have led to the successful design of novel drugs targeting mutant M2 channels.
Collapse
Affiliation(s)
- Ruo-Xu Gu
- State Key Laboratory of Microbial Metabolism, and College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai Minhang District, 200240, China
| | | | | |
Collapse
|
40
|
Miao Y, Cross TA, Fu R. Identifying inter-residue resonances in crowded 2D (13)C- (13)C chemical shift correlation spectra of membrane proteins by solid-state MAS NMR difference spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2013; 56:265-73. [PMID: 23708936 PMCID: PMC3717563 DOI: 10.1007/s10858-013-9745-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/14/2013] [Indexed: 05/11/2023]
Abstract
The feasibility of using difference spectroscopy, i.e. subtraction of two correlation spectra at different mixing times, for substantially enhanced resolution in crowded two-dimensional (13)C-(13)C chemical shift correlation spectra is presented. With the analyses of (13)C-(13)C spin diffusion in simple spin systems, difference spectroscopy is proposed to partially separate the spin diffusion resonances of relatively short intra-residue distances from the longer inter-residue distances, leading to a better identification of the inter-residue resonances. Here solid-state magic-angle-spinning NMR spectra of the full length M2 protein embedded in synthetic lipid bilayers have been used to illustrate the resolution enhancement in the difference spectra. The integral membrane M2 protein of Influenza A virus assembles as a tetrameric bundle to form a proton-conducting channel that is activated by low pH and is essential for the viral lifecycle. Based on known amino acid resonance assignments from amino acid specific labeled samples of truncated M2 sequences or from time-consuming 3D experiments of uniformly labeled samples, some inter-residue resonances of the full length M2 protein can be identified in the difference spectra of uniformly (13)C labeled protein that are consistent with the high resolution structure of the M2 (22-62) protein (Sharma et al., Science 330(6003):509-512, 2010).
Collapse
Affiliation(s)
- Yimin Miao
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32310, USA
| | - Timothy A. Cross
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32310, USA
- National High Magnet Field Lab, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA
| | - Riqiang Fu
- National High Magnet Field Lab, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA
- Corresponding author: Riqiang Fu (), 1800 East Paul Dirac Drive, Tallahassee, FL 32310, Tel: +1 850 644 5044, Fax: +1 850 644 1366
| |
Collapse
|
41
|
Wanka L, Iqbal K, Schreiner PR. The lipophilic bullet hits the targets: medicinal chemistry of adamantane derivatives. Chem Rev 2013; 113:3516-604. [PMID: 23432396 PMCID: PMC3650105 DOI: 10.1021/cr100264t] [Citation(s) in RCA: 447] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lukas Wanka
- Institute of Organic Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany; Fax +49(641)9934309
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314-6399, USA
| | - Khalid Iqbal
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314-6399, USA
| | - Peter R. Schreiner
- Institute of Organic Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany; Fax +49(641)9934309
| |
Collapse
|
42
|
Muraki Y, Okuwa T, Himeda T, Hongo S, Ohara Y. Effect of cysteine mutations in the extracellular domain of CM2 on the influenza C virus replication. PLoS One 2013; 8:e60510. [PMID: 23593230 PMCID: PMC3617168 DOI: 10.1371/journal.pone.0060510] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 02/27/2013] [Indexed: 11/19/2022] Open
Abstract
CM2 is the second membrane protein of influenza C virus and possesses three conserved cysteines at residue 1, 6 and 20 in its extracellular domain, all of which are involved in the formation of disulfide-linked oligomers of the molecule. In the present study, to examine the effect of CM2 oligomerization on virus replication, we generated a mutant recombinant virus, rC1620A, in which all three cysteines on CM2 were substituted to alanines. The rC1620A virus was more attenuated than the recombinant wild-type (rWT) virus in cultured cells. The CM2 protein synthesized in rC1620A-infected cells could not apparently be detected as a tetramer and was transported to the cell surface less efficiently than was authentic CM2. The amount of CM2 protein incorporated into the rC1620A virions was comparable to that into the rWT virions, although the main CM2 species in the rC1620A virions was in the form of a dimer. Analyses of one-step grown virions and virus-infected cells could not provide evidence for any difference in growth between rC1620A and rWT. On the other hand, the amount of genome present in VLPs possessing the mutant CM2 (C1620A-VLPs) was approximately 31% of that in VLPs possessing wild-type CM2 (WT-VLPs). The incoming genome from VLPs was less efficiently transported to the nucleus in the C1620A-VLP-infected cells than in WT-VLP-infected cells, leading to reduced reporter gene expression in the C1620A-VLP-infected cells. Taken together, these findings demonstrate that CM2 oligomerization affects the packaging and uncoating processes. Thus, we concluded that disulfide-linked CM2 oligomers facilitate virus growth by affecting the replication processes.
Collapse
Affiliation(s)
- Yasushi Muraki
- Department of Microbiology, Kanazawa Medical University School of Medicine Uchinada, Ishikawa, Japan.
| | | | | | | | | |
Collapse
|
43
|
Ibañez LI, Roose K, De Filette M, Schotsaert M, De Sloovere J, Roels S, Pollard C, Schepens B, Grooten J, Fiers W, Saelens X. M2e-displaying virus-like particles with associated RNA promote T helper 1 type adaptive immunity against influenza A. PLoS One 2013; 8:e59081. [PMID: 23527091 PMCID: PMC3601086 DOI: 10.1371/journal.pone.0059081] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 02/11/2013] [Indexed: 11/18/2022] Open
Abstract
The ectodomain of influenza A matrix protein 2 (M2e) is a candidate for a universal influenza A vaccine. We used recombinant Hepatitis B core antigen to produce virus-like particles presenting M2e (M2e-VLPs). We produced the VLPs with and without entrapped nucleic acids and compared their immunogenicity and protective efficacy. Immunization of BALB/c mice with M2e-VLPs containing nucleic acids induced a stronger, Th1-biased antibody response compared to particles lacking nucleic acids. The former also induced a stronger M2e-specific CD4(+) T cell response, as determined by ELISPOT. Mice vaccinated with alum-adjuvanted M2e-VLPs containing the nucleic acid-binding domain were better protected against influenza A virus challenge than mice vaccinated with similar particles lacking this domain, as deduced from the loss in body weight following challenge with X47 (H3N2) or PR/8 virus. Challenge of mice that had been immunized with M2e-VLPs with or without nucleic acids displayed significantly lower mortality, morbidity and lung virus titers than control-immunized groups. We conclude that nucleic acids present in M2e-VLPs correlate with improved immune protection.
Collapse
Affiliation(s)
- Lorena Itatí Ibañez
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kenny Roose
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Marina De Filette
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Michael Schotsaert
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jessica De Sloovere
- Unit of Surveillance, Orientation and Veterinary Support, Operational Direction Interactions and Surveillance, Veterinary and Agrochemical Research Centre (CODA/CERVA), Brussels, Belgium
| | - Stefan Roels
- Unit of Surveillance, Orientation and Veterinary Support, Operational Direction Interactions and Surveillance, Veterinary and Agrochemical Research Centre (CODA/CERVA), Brussels, Belgium
| | - Charlotte Pollard
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Bert Schepens
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Johan Grooten
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Walter Fiers
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Xavier Saelens
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
44
|
Zhao X, Jie Y, Rosenberg MR, Wan J, Zeng S, Cui W, Xiao Y, Li Z, Tu Z, Casarotto MG, Hu W. Design and synthesis of pinanamine derivatives as anti-influenza A M2 ion channel inhibitors. Antiviral Res 2012; 96:91-9. [PMID: 22982118 DOI: 10.1016/j.antiviral.2012.09.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 08/29/2012] [Accepted: 09/03/2012] [Indexed: 01/30/2023]
Abstract
The adamantanes are a class of anti-influenza drugs that inhibit the M2 ion channel of the influenza A virus. However recently, the clinical effectiveness of these drugs has been called into question due to the emergence of adamantane-insensitive A/M2 mutants. Although we previously reported (1R,2R,3R,5S)-3-pinanamine 3 as a novel inhibitor of the wild type influenza A virus M2 protein (WT A/M2), limited inhibition was found for adamantane-resistant M2 mutants. In this study, we explored whether newly synthesized pinanamine derivatives were capable of inhibiting WT A/M2 and selected adamantane-resistant M2 mutants. Several imidazole and guanazole derivatives of pinanamine were found to inhibit WT A/M2 to a comparable degree as amantadine and one of these compounds 12 exhibits weak inhibition of A/M2-S31N mutant and it is marginally more effective in inhibiting S31NM2 than amantadine. This study provides a new insight into the structural nature of drugs required to inhibit WT A/M2 and its mutants.
Collapse
Affiliation(s)
- Xin Zhao
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Gu RX, Liu LA, Wei DQ, Du JG, Liu L, Liu H. Free energy calculations on the two drug binding sites in the M2 proton channel. J Am Chem Soc 2011; 133:10817-25. [PMID: 21711026 DOI: 10.1021/ja1114198] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Two alternative binding sites of adamantane-type drugs in the influenza A M2 channel have been suggested, one with the drug binding inside the channel pore and the other with four drug molecule S-binding to the C-terminal surface of the transmembrane domain. Recent computational and experimental studies have suggested that the pore binding site is more energetically favorable but the external surface binding site may also exist. Nonetheless, which drug binding site leads to channel inhibition in vivo and how drug-resistant mutations affect these sites are not completely understood. We applied molecular dynamics simulations and potential of mean force calculations to examine the structures and the free energies associated with these putative drug binding sites in an M2-lipid bilayer system. We found that, at biological pH (~7.4), the pore binding site is more thermodynamically favorable than the surface binding site by ~7 kcal/mol and, hence, would lead to more stable drug binding and channel inhibition. This result is in excellent agreement with several recent studies. More importantly, a novel finding of ours is that binding to the channel pore requires overcoming a much higher energy barrier of ~10 kcal/mol than binding to the C-terminal channel surface, indicating that the latter site is more kinetically favorable. Our study is the first computational work that provides both kinetic and thermodynamic energy information on these drug binding sites. Our results provide a theoretical framework to interpret and reconcile existing and often conflicting results regarding these two binding sites, thus helping to expand our understanding of M2-drug binding, and may help guide the design and screening of novel drugs to combat the virus.
Collapse
Affiliation(s)
- Ruo-Xu Gu
- State Key Laboratory of Microbial Metabolism, Luc Montagnier Biomedical Research Institute, and College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai Minhang District, China 200240
| | | | | | | | | | | |
Collapse
|
46
|
Leonov H, Astrahan P, Krugliak M, Arkin IT. How Do Aminoadamantanes Block the Influenza M2 Channel, and How Does Resistance Develop? J Am Chem Soc 2011; 133:9903-11. [DOI: 10.1021/ja202288m] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hadas Leonov
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmund J. Safra Campus, Jerusalem 91904, Israel
| | - Peleg Astrahan
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmund J. Safra Campus, Jerusalem 91904, Israel
| | - Miriam Krugliak
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmund J. Safra Campus, Jerusalem 91904, Israel
| | - Isaiah T. Arkin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmund J. Safra Campus, Jerusalem 91904, Israel
| |
Collapse
|
47
|
Wong SS, Chebib M, Haqshenas G, Loveland B, Gowans EJ. Dengue virus PrM/M proteins fail to show pH-dependent ion channel activity in Xenopus oocytes. Virology 2011; 412:83-90. [DOI: 10.1016/j.virol.2010.12.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Revised: 10/24/2010] [Accepted: 12/27/2010] [Indexed: 10/18/2022]
|
48
|
Resistance characteristics of influenza to amino-adamantyls. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:547-53. [DOI: 10.1016/j.bbamem.2010.06.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 06/14/2010] [Accepted: 06/18/2010] [Indexed: 12/17/2022]
|
49
|
Carnevale V, Fiorin G, Levine BG, DeGrado WF, Klein ML. Multiple Proton Confinement in the M2 Channel from the Influenza A Virus. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2010; 114:20856-20863. [PMID: 21359105 PMCID: PMC3045207 DOI: 10.1021/jp107431g] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The tetrameric M2 protein bundle of the influenza A virus is the proton channel responsible for the acidification of the viral interior, a key step in the infection cycle. Selective proton transport is achieved by successive protonation of the conserved histidine amino acids at position 37. A recent X-ray structure of the tetrameric transmembrane (TM) domain of the protein (residues 22-46) resolved several water clusters in the channel lumen, which suggest possible proton pathways to the His37 residues. To explore this hypothesis, we have carried out molecular dynamics (MD) simulations of a proton traveling towards the His37 side chains using MD with classical and quantum force fields. Diffusion through the first half of the channel to the "entry" water cluster near His37 may be hampered by significant kinetic barriers due to electrostatic repulsion. However, once in the entry cluster, a proton can move to one of the acceptor His37 in a nearly barrierless fashion, as evidenced both by MD simulations and a scan of the potential energy surface (PES). Water molecules of the entry cluster, although confined in the M2 pore and restricted in their motions, can conduct protons with a rate very similar to that of bulk water.
Collapse
Affiliation(s)
- Vincenzo Carnevale
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA 19122-6078
| | - Giacomo Fiorin
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA 19122-6078
| | - Benjamin G. Levine
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA 19122-6078
| | - William F. DeGrado
- Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059
| | - Michael L. Klein
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA 19122-6078
| |
Collapse
|
50
|
Blue native PAGE and biomolecular complementation reveal a tetrameric or higher-order oligomer organization of the physiological measles virus attachment protein H. J Virol 2010; 84:12174-84. [PMID: 20861270 DOI: 10.1128/jvi.01222-10] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Members of the Paramyxovirinae subfamily rely on the concerted action of two envelope glycoprotein complexes, attachment protein H and the fusion (F) protein oligomer, to achieve membrane fusion for viral entry. Despite advances in X-ray information, the organization of the physiological attachment (H) oligomer in functional fusion complexes and the molecular mechanism linking H receptor binding with F triggering remain unknown. Here, we have applied an integrated approach based on biochemical and functional assays to the problem. Blue native PAGE analysis indicates that native H complexes extract predominantly in the form of loosely assembled tetramers from purified measles virus (MeV) particles and cells transiently expressing the viral envelope glycoproteins. To gain functional insight, we have established a bimolecular complementation (BiC) assay for MeV H, on the basis of the hypothesis that physical interaction of H with F complexes, F triggering, and receptor binding constitute distinct events. Having experimentally confirmed three distinct H complementation groups, implementation of H BiC (H-BiC) reveals that a high-affinity receptor-to-paramyxovirus H monomer stoichiometry below parity is sufficient for fusion initiation, that F binding and fusion initiation are separable in H oligomers, and that a higher relative amount of F binding-competent than F fusion initiation- or receptor binding-competent H monomers per oligomer is required for optimal fusion. By capitalizing on these findings, H-BiC activity profiles confirm the organization of H into tetramers or higher-order multimers in functional fusion complexes. Results are interpreted in light of a model in which receptor binding may affect the oligomeric organization of the attachment protein complex.
Collapse
|