1
|
García-Arcos JM, Ziegler J, Grigolon S, Reymond L, Shajepal G, Cattin CJ, Lomakin A, Müller DJ, Ruprecht V, Wieser S, Voituriez R, Piel M. Rigidity percolation and active advection synergize in the actomyosin cortex to drive amoeboid cell motility. Dev Cell 2024:S1534-5807(24)00401-5. [PMID: 39047738 DOI: 10.1016/j.devcel.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/11/2023] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Spontaneous locomotion is a common feature of most metazoan cells, generally attributed to the properties of actomyosin networks. This force-producing machinery has been studied down to the most minute molecular details, especially in lamellipodium-driven migration. Nevertheless, how actomyosin networks work inside contraction-driven amoeboid cells still lacks unifying principles. Here, using stable motile blebs from HeLa cells as a model amoeboid motile system, we imaged the dynamics of the actin cortex at the single filament level and revealed the co-existence of three distinct rheological phases. We introduce "advected percolation," a process where rigidity percolation and active advection synergize, spatially organizing the actin network's mechanical properties into a minimal and generic locomotion mechanism. Expanding from our observations on simplified systems, we speculate that this model could explain, down to the single actin filament level, how amoeboid cells, such as cancer or immune cells, can propel efficiently through complex 3D environments.
Collapse
Affiliation(s)
- Juan Manuel García-Arcos
- Institut Pierre Gilles de Gennes, PSL Research University, 6 rue Jean Calvin, 75005 Paris, France; Institut Curie, PSL Research University, CNRS UMR 144, Paris, France
| | - Johannes Ziegler
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Spain
| | - Silvia Grigolon
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 75005 Paris, France
| | - Loïc Reymond
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Spain; Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Gaurav Shajepal
- Institut Pierre Gilles de Gennes, PSL Research University, 6 rue Jean Calvin, 75005 Paris, France
| | - Cédric J Cattin
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| | - Alexis Lomakin
- Center for Pathobiochemistry and Genetics, Institute of Medical Chemistry, Medical University of Vienna, Währingerstraße 10, 1090 Vienna, Austria; Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Währingerstraße 10, 1090 Vienna, Austria
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| | - Verena Ruprecht
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Stefan Wieser
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Spain
| | - Raphael Voituriez
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 75005 Paris, France; Laboratoire de Physique Théorique de la Matière Condensée, CNRS/Sorbonne Université, 4 Place Jussieu, 75005 Paris, France.
| | - Matthieu Piel
- Institut Pierre Gilles de Gennes, PSL Research University, 6 rue Jean Calvin, 75005 Paris, France; Institut Curie, PSL Research University, CNRS UMR 144, Paris, France.
| |
Collapse
|
2
|
Alonso-Matilla R, Provenzano PP, Odde DJ. Biophysical modeling identifies an optimal hybrid amoeboid-mesenchymal phenotype for maximal T cell migration speeds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.29.564655. [PMID: 39026744 PMCID: PMC11257493 DOI: 10.1101/2023.10.29.564655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Despite recent experimental progress in characterizing cell migration mechanics, our understanding of the mechanisms governing rapid cell movement remains limited. To effectively limit tumor growth, antitumoral T cells need to rapidly migrate to find and kill cancer cells. To investigate the upper limits of cell speed, we developed a new hybrid stochastic-mean field model of bleb-based cell motility. We first examined the potential for adhesion-free bleb-based migration and show that cells migrate inefficiently in the absence of adhesion-based forces, i.e., cell swimming. While no cortical contractility oscillations are needed for cells to swim in viscoelastic media, high-to-low cortical contractility oscillations are necessary for cell swimming in viscous media. This involves a high cortical contractility phase with multiple bleb nucleation events, followed by an intracellular pressure buildup recovery phase at low cortical tensions, resulting in modest net cell motion. However, our model suggests that cells can employ a hybrid bleb- and adhesion-based migration mechanism for rapid cell motility and identifies conditions for optimality. The model provides a momentum-conserving mechanism underlying rapid single-cell migration and identifies factors as design criteria for engineering T cell therapies to improve movement in mechanically complex environments.
Collapse
Affiliation(s)
- Roberto Alonso-Matilla
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
- University of Minnesota Physical Sciences in Oncology Center, Minneapolis, MN, USA
- University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, MN, USA
| | - Paolo P. Provenzano
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
- University of Minnesota Physical Sciences in Oncology Center, Minneapolis, MN, USA
- University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, USA
- Department of Hematology, Oncology, and Transplantation, University of Minnesota, USA
- Stem Cell Institute, University of Minnesota, USA
| | - David J. Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
- University of Minnesota Physical Sciences in Oncology Center, Minneapolis, MN, USA
- University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, USA
| |
Collapse
|
3
|
Clausen BE, Amon L, Backer RA, Berod L, Bopp T, Brand A, Burgdorf S, Chen L, Da M, Distler U, Dress RJ, Dudziak D, Dutertre CA, Eich C, Gabele A, Geiger M, Ginhoux F, Giusiano L, Godoy GJ, Hamouda AEI, Hatscher L, Heger L, Heidkamp GF, Hernandez LC, Jacobi L, Kaszubowski T, Kong WT, Lehmann CHK, López-López T, Mahnke K, Nitsche D, Renkawitz J, Reza RA, Sáez PJ, Schlautmann L, Schmitt MT, Seichter A, Sielaff M, Sparwasser T, Stoitzner P, Tchitashvili G, Tenzer S, Tochoedo NR, Vurnek D, Zink F, Hieronymus T. Guidelines for mouse and human DC functional assays. Eur J Immunol 2023; 53:e2249925. [PMID: 36563126 DOI: 10.1002/eji.202249925] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 12/24/2022]
Abstract
This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs and various non-lymphoid tissues. Recent studies have provided evidence for an increasing number of phenotypically distinct conventional DC (cDC) subsets that on one hand exhibit a certain functional plasticity, but on the other hand are characterized by their tissue- and context-dependent functional specialization. Here, we describe a selection of assays for the functional characterization of mouse and human cDC. The first two protocols illustrate analysis of cDC endocytosis and metabolism, followed by guidelines for transcriptomic and proteomic characterization of cDC populations. Then, a larger group of assays describes the characterization of cDC migration in vitro, ex vivo, and in vivo. The final guidelines measure cDC inflammasome and antigen (cross)-presentation activity. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all co-authors, making it an essential resource for basic and clinical DC immunologists.
Collapse
Affiliation(s)
- Björn E Clausen
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Ronald A Backer
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Luciana Berod
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Institute of Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Tobias Bopp
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Institute of Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Anna Brand
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sven Burgdorf
- Laboratory of Cellular Immunology, LIMES Institute, University of Bonn, Bonn, Germany
| | - Luxia Chen
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Meihong Da
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ute Distler
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Institute of Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Regine J Dress
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
- Medical Immunology Campus Erlangen (MICE), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Germany
| | - Charles-Antoine Dutertre
- Gustave Roussy Cancer Campus, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
| | - Christina Eich
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Anna Gabele
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Institute of Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Melanie Geiger
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Florent Ginhoux
- Gustave Roussy Cancer Campus, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Lucila Giusiano
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Gloria J Godoy
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Ahmed E I Hamouda
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Lukas Hatscher
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Gordon F Heidkamp
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Lola C Hernandez
- Cell Communication and Migration Laboratory, Institute of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas Jacobi
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Tomasz Kaszubowski
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Wan Ting Kong
- Gustave Roussy Cancer Campus, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
| | - Christian H K Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
- Medical Immunology Campus Erlangen (MICE), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Germany
| | - Tamara López-López
- Cell Communication and Migration Laboratory, Institute of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karsten Mahnke
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Dominik Nitsche
- Laboratory of Cellular Immunology, LIMES Institute, University of Bonn, Bonn, Germany
| | - Jörg Renkawitz
- Biomedical Center (BMC), Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, LMU Munich, Munich, Germany
| | - Rifat A Reza
- Biomedical Center (BMC), Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, LMU Munich, Munich, Germany
| | - Pablo J Sáez
- Cell Communication and Migration Laboratory, Institute of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura Schlautmann
- Laboratory of Cellular Immunology, LIMES Institute, University of Bonn, Bonn, Germany
| | - Madeleine T Schmitt
- Biomedical Center (BMC), Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, LMU Munich, Munich, Germany
| | - Anna Seichter
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Malte Sielaff
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Institute of Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Tim Sparwasser
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Patrizia Stoitzner
- Department of Dermatology, Venerology & Allergology, Medical University Innsbruck, Innsbruck, Austria
| | - Giorgi Tchitashvili
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Stefan Tenzer
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Institute of Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Helmholtz Institute for Translational Oncology Mainz (HI-TRON Mainz), Mainz, Germany
| | - Nounagnon R Tochoedo
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Damir Vurnek
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Fabian Zink
- Laboratory of Cellular Immunology, LIMES Institute, University of Bonn, Bonn, Germany
| | - Thomas Hieronymus
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
- Institute of Cell and Tumor Biology, RWTH Aachen University, Medical Faculty, Germany
| |
Collapse
|
4
|
Friedl P, Konstantopoulos K, Sahai E, Weiner O. Adhesion-independent topography-based leukocyte migration. Fac Rev 2022; 11:18. [PMID: 35979144 PMCID: PMC9354731 DOI: 10.12703/r-01-0000013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cells need to couple intracellular actin flows with the substrate to generate forward movement. This has traditionally been studied in the context of specific transmembrane receptors, particularly integrin adhesion receptors, which link extracellular adhesive molecules to the actin cytoskeleton. However, leukocytes and other cells can also migrate using integrin-independent strategies both in vivo and in vitro, though the cellular and environmental requirements for this mode are not fully understood. In seminal recent work, Reversat et al.1 develop a range of innovative 2D and 3D engineered microdevices and probe the biophysical mechanisms underlying T lymphocytes and dendritic cells in conditions of limited substrate adhesion. They identify a physical principle of mechano-coupling between retrograde actin flow and irregular extracellular confinement, which allows the cell to generate mechanical resistance and move in the absence of receptor-mediated adhesion. Through the combined use of experiments and theoretical modeling, this work resolves a long-standing question in cell biology and establishes mechanical interaction with an irregular-shaped 3D environment which may be relevant to cell migration in a range of tissue contexts.
Collapse
|
5
|
Michael M, McCormick B, Anderson KE, Karmakar U, Vermeren M, Schurmans S, Amour A, Vermeren S. The 5-Phosphatase SHIP2 Promotes Neutrophil Chemotaxis and Recruitment. Front Immunol 2021; 12:671756. [PMID: 33953730 PMCID: PMC8089392 DOI: 10.3389/fimmu.2021.671756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
Neutrophils, the most abundant circulating leukocytes in humans have key roles in host defense and in the inflammatory response. Agonist-activated phosphoinositide 3-kinases (PI3Ks) are important regulators of many facets of neutrophil biology. PIP3 is subject to dephosphorylation by several 5’ phosphatases, including SHIP family phosphatases, which convert the PI3K product and lipid second messenger phosphatidylinositol 3,4,5-trisphosphate (PIP3) into PI(3,4)P2, a lipid second messenger in its own right. In addition to the leukocyte restricted SHIP1, neutrophils express the ubiquitous SHIP2. This study analyzed mice and isolated neutrophils carrying a catalytically inactive SHIP2, identifying an important regulatory function in neutrophil chemotaxis and directionality in vitro and in neutrophil recruitment to sites of sterile inflammation in vivo, in the absence of major defects of any other neutrophil functions analyzed, including, phagocytosis and the formation of reactive oxygen species. Mechanistically, this is explained by a subtle effect on global 3-phosphorylated phosphoinositide species. This work identifies a non-redundant role for the hitherto overlooked SHIP2 in the regulation of neutrophils, and specifically, neutrophil chemotaxis/trafficking. It completes an emerging wider understanding of the complexity of PI3K signaling in the neutrophil, and the roles played by individual kinases and phosphatases within.
Collapse
Affiliation(s)
- Melina Michael
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Barry McCormick
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Karen E Anderson
- Signalling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Utsa Karmakar
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Matthieu Vermeren
- Centre of Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Stéphane Schurmans
- Laboratory of Functional Genetics, GIGA Research Centre, University of Liège, Liège, Belgium
| | - Augustin Amour
- Adaptive Immunity Research Unit, GlaxoSmithKline, Stevenage, United Kingdom
| | - Sonja Vermeren
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
6
|
Dalle Nogare DE, Natesh N, Vishwasrao HD, Shroff H, Chitnis AB. Zebrafish Posterior Lateral Line primordium migration requires interactions between a superficial sheath of motile cells and the skin. eLife 2020; 9:58251. [PMID: 33237853 PMCID: PMC7688310 DOI: 10.7554/elife.58251] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
The Zebrafish Posterior Lateral Line primordium migrates in a channel between the skin and somites. Its migration depends on the coordinated movement of its mesenchymal-like leading cells and trailing cells, which form epithelial rosettes, or protoneuromasts. We describe a superficial population of flat primordium cells that wrap around deeper epithelialized cells and extend polarized lamellipodia to migrate apposed to the overlying skin. Polarization of lamellipodia extended by both superficial and deeper protoneuromast-forming cells depends on Fgf signaling. Removal of the overlying skin has similar effects on superficial and deep cells: lamellipodia are lost, blebs appear instead, and collective migration fails. When skinned embryos are embedded in Matrigel, basal and superficial lamellipodia are recovered; however, only the directionality of basal protrusions is recovered, and migration is not rescued. These observations support a key role played by superficial primordium cells and the skin in directed migration of the Posterior Lateral Line primordium.
Collapse
Affiliation(s)
- Damian E Dalle Nogare
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Naveen Natesh
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Harshad D Vishwasrao
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, United States
| | - Hari Shroff
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, United States.,Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| | - Ajay B Chitnis
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| |
Collapse
|
7
|
Bodor DL, Pönisch W, Endres RG, Paluch EK. Of Cell Shapes and Motion: The Physical Basis of Animal Cell Migration. Dev Cell 2020; 52:550-562. [PMID: 32155438 DOI: 10.1016/j.devcel.2020.02.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 01/31/2023]
Abstract
Motile cells have developed a variety of migration modes relying on diverse traction-force-generation mechanisms. Before the behavior of intracellular components could be easily imaged, cell movements were mostly classified by different types of cellular shape dynamics. Indeed, even though some types of cells move without any significant change in shape, most cell propulsion mechanisms rely on global or local deformations of the cell surface. In this review, focusing mostly on metazoan cells, we discuss how different types of local and global shape changes underlie distinct migration modes. We then discuss mechanical differences between force-generation mechanisms and finish by speculating on how they may have evolved.
Collapse
Affiliation(s)
- Dani L Bodor
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Oncode Institute, Hubrecht Institute-KNAW, Utrecht, the Netherlands
| | - Wolfram Pönisch
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Robert G Endres
- Department of Life Sciences and Centre for Integrative Systems Biology and Bioinformatics, Imperial College, London SW7 2AZ, UK
| | - Ewa K Paluch
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK.
| |
Collapse
|
8
|
Principles of Leukocyte Migration Strategies. Trends Cell Biol 2020; 30:818-832. [DOI: 10.1016/j.tcb.2020.06.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/14/2022]
|
9
|
Stroka KM. Swimming Cells Can Stay in Shape. Biophys J 2020; 119:1048-1049. [PMID: 32853560 DOI: 10.1016/j.bpj.2020.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/10/2020] [Indexed: 11/25/2022] Open
Affiliation(s)
- Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland; Biophysics Program, University of Maryland, College Park, Maryland; Center for Stem Cell Biology and Regenerative Medicine, University of Maryland, Baltimore, Maryland; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland.
| |
Collapse
|
10
|
Aoun L, Farutin A, Garcia-Seyda N, Nègre P, Rizvi MS, Tlili S, Song S, Luo X, Biarnes-Pelicot M, Galland R, Sibarita JB, Michelot A, Hivroz C, Rafai S, Valignat MP, Misbah C, Theodoly O. Amoeboid Swimming Is Propelled by Molecular Paddling in Lymphocytes. Biophys J 2020; 119:1157-1177. [PMID: 32882187 DOI: 10.1016/j.bpj.2020.07.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/04/2020] [Accepted: 07/15/2020] [Indexed: 11/25/2022] Open
Abstract
Mammalian cells developed two main migration modes. The slow mesenchymatous mode, like crawling of fibroblasts, relies on maturation of adhesion complexes and actin fiber traction, whereas the fast amoeboid mode, observed exclusively for leukocytes and cancer cells, is characterized by weak adhesion, highly dynamic cell shapes, and ubiquitous motility on two-dimensional and in three-dimensional solid matrix. In both cases, interactions with the substrate by adhesion or friction are widely accepted as a prerequisite for mammalian cell motility, which precludes swimming. We show here experimental and computational evidence that leukocytes do swim, and that efficient propulsion is not fueled by waves of cell deformation but by a rearward and inhomogeneous treadmilling of the cell external membrane. Our model consists of a molecular paddling by transmembrane proteins linked to and advected by the actin cortex, whereas freely diffusing transmembrane proteins hinder swimming. Furthermore, continuous paddling is enabled by a combination of external treadmilling and selective recycling by internal vesicular transport of cortex-bound transmembrane proteins. This mechanism explains observations that swimming is five times slower than the retrograde flow of cortex and also that lymphocytes are motile in nonadherent confined environments. Resultantly, the ubiquitous ability of mammalian amoeboid cells to migrate in two dimensions or three dimensions and with or without adhesion can be explained for lymphocytes by a single machinery of heterogeneous membrane treadmilling.
Collapse
Affiliation(s)
- Laurene Aoun
- Aix Marseille University, CNRS, INSERM, LAI, Turing Centre for Living Systems, Marseille, France
| | | | - Nicolas Garcia-Seyda
- Aix Marseille University, CNRS, INSERM, LAI, Turing Centre for Living Systems, Marseille, France
| | - Paulin Nègre
- Aix Marseille University, CNRS, INSERM, LAI, Turing Centre for Living Systems, Marseille, France
| | | | - Sham Tlili
- Aix Marseille University, CNRS, INSERM, LAI, Turing Centre for Living Systems, Marseille, France; Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Solene Song
- Aix Marseille University, CNRS, INSERM, LAI, Turing Centre for Living Systems, Marseille, France
| | - Xuan Luo
- Aix Marseille University, CNRS, INSERM, LAI, Turing Centre for Living Systems, Marseille, France
| | - Martine Biarnes-Pelicot
- Aix Marseille University, CNRS, INSERM, LAI, Turing Centre for Living Systems, Marseille, France
| | - Rémi Galland
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Jean-Baptiste Sibarita
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Alphée Michelot
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Claire Hivroz
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, Paris, France
| | - Salima Rafai
- University Grenoble Alpes, CNRS, LIPhy, Grenoble, France
| | - Marie-Pierre Valignat
- Aix Marseille University, CNRS, INSERM, LAI, Turing Centre for Living Systems, Marseille, France
| | - Chaouqi Misbah
- University Grenoble Alpes, CNRS, LIPhy, Grenoble, France.
| | - Olivier Theodoly
- Aix Marseille University, CNRS, INSERM, LAI, Turing Centre for Living Systems, Marseille, France.
| |
Collapse
|
11
|
Wang M, Cheng B, Yang Y, Liu H, Huang G, Han L, Li F, Xu F. Microchannel Stiffness and Confinement Jointly Induce the Mesenchymal-Amoeboid Transition of Cancer Cell Migration. NANO LETTERS 2019; 19:5949-5958. [PMID: 31414817 DOI: 10.1021/acs.nanolett.9b01597] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The physical confinement of cell microenvironment could enhance the invasive capability and drug resistance of cancer cells. However, due to the lack of in vitro experimental platform to mimic both stiffness and confinement of the tumor microenvironment, the underlying mechanism remains elusive. Here, we developed a hydrogel-based microchannel platform with independently tunable channel stiffness and width in a physiological range. We found that the migration speed of the cancer cell is influenced by the synergistic effect of channel stiffness and width. In addition, the mesenchymal-amoeboid transition has a strong correlation with the channel stiffness. Besides, with a developed computational model, the role of nuclear stiffness on cancer migration speed and thus the mesenchymal-amoeboid transition in microchannels was also revealed. This platform is capable of mimicking the native physical microenvironment during metastasis, providing a powerful tool for high-throughput screening applications and investigating the interaction between cancer migration and biophysical microenvironment.
Collapse
Affiliation(s)
| | | | | | | | | | - Lichun Han
- Department of Anesthesia , Xi'an Daxing Hospital , Xi'an 710049 , P.R. China
| | | | | |
Collapse
|
12
|
Holle A, Govindan Kutty Devi N, Clar K, Fan A, Saif T, Kemkemer R, Spatz JP. Cancer Cells Invade Confined Microchannels via a Self-Directed Mesenchymal-to-Amoeboid Transition. NANO LETTERS 2019; 19:2280-2290. [PMID: 30775927 PMCID: PMC6463244 DOI: 10.1021/acs.nanolett.8b04720] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/11/2019] [Indexed: 05/30/2023]
Abstract
Cancer cell invasion through physical barriers in the extracellular matrix (ECM) requires a complex synergy of traction force against the ECM, mechanosensitive feedback, and subsequent cytoskeletal rearrangement. PDMS microchannels were used to investigate the transition from mesenchymal to amoeboid invasion in cancer cells. Migration was faster in narrow 3 μm-wide channels than in wider 10 μm channels, even in the absence of cell-binding ECM proteins. Cells permeating narrow channels exhibited blebbing and had smooth leading edge profiles, suggesting an ECM-induced transition from mesenchymal invasion to amoeboid invasion. Live cell labeling revealed a mechanosensing period in which the cell attempts mesenchymal-based migration, reorganizes its cytoskeleton, and proceeds using an amoeboid phenotype. Rho/ROCK (amoeboid) and Rac (mesenchymal) pathway inhibition revealed that amoeboid invasion through confined environments relies on both pathways in a time- and ECM-dependent manner. This demonstrates that cancer cells can dynamically modify their invasion programming to navigate physically confining matrix conditions.
Collapse
Affiliation(s)
- Andrew
W. Holle
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Heidelberg 69120, Germany
- Department
of Biophysical Chemistry, University of
Heidelberg, Heidelberg 69117, Germany
| | | | - Kim Clar
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Heidelberg 69120, Germany
- Department
of Applied Chemistry, Reutlingen University, Reutlingen 72762, Germany
| | - Anthony Fan
- Department
of Mechanical Science and Engineering, University
of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Taher Saif
- Department
of Mechanical Science and Engineering, University
of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Ralf Kemkemer
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Heidelberg 69120, Germany
- Department
of Applied Chemistry, Reutlingen University, Reutlingen 72762, Germany
| | - Joachim P. Spatz
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Heidelberg 69120, Germany
- Department
of Biophysical Chemistry, University of
Heidelberg, Heidelberg 69117, Germany
| |
Collapse
|
13
|
Garcia-Arcos JM, Chabrier R, Deygas M, Nader G, Barbier L, Sáez PJ, Mathur A, Vargas P, Piel M. Reconstitution of cell migration at a glance. J Cell Sci 2019; 132:132/4/jcs225565. [PMID: 30745333 DOI: 10.1242/jcs.225565] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Single cells migrate in a myriad of physiological contexts, such as tissue patrolling by immune cells, and during neurogenesis and tissue remodeling, as well as in metastasis, the spread of cancer cells. To understand the basic principles of single-cell migration, a reductionist approach can be taken. This aims to control and deconstruct the complexity of different cellular microenvironments into simpler elementary constrains that can be recombined together. This approach is the cell microenvironment equivalent of in vitro reconstituted systems that combine elementary molecular players to understand cellular functions. In this Cell Science at a Glance article and accompanying poster, we present selected experimental setups that mimic different events that cells undergo during migration in vivo These include polydimethylsiloxane (PDMS) devices to deform whole cells or organelles, micro patterning, nano-fabricated structures like grooves, and compartmentalized collagen chambers with chemical gradients. We also outline the main contribution of each technique to the understanding of different aspects of single-cell migration.
Collapse
Affiliation(s)
- Juan Manuel Garcia-Arcos
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France.,Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| | - Renaud Chabrier
- Institut Curie, PSL Research University, CNRS UMR3348, F-91405 Orsay, France
| | - Mathieu Deygas
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France.,Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| | - Guilherme Nader
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France.,Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| | - Lucie Barbier
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France.,Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| | - Pablo José Sáez
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France.,Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| | - Aastha Mathur
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France.,Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| | - Pablo Vargas
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France.,Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| | - Matthieu Piel
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France .,Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| |
Collapse
|
14
|
Salvermoser M, Begandt D, Alon R, Walzog B. Nuclear Deformation During Neutrophil Migration at Sites of Inflammation. Front Immunol 2018; 9:2680. [PMID: 30505310 PMCID: PMC6250837 DOI: 10.3389/fimmu.2018.02680] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/30/2018] [Indexed: 12/22/2022] Open
Abstract
Cell migration is indispensable for various biological processes including angiogenesis, wound healing, and immunity. In general, there are two different migration modes described, the mesenchymal migration mode and the amoeboid migration mode. Neutrophils rapidly migrate toward the sites of injury, infection, and inflammation using the amoeboid migration mode which is characterized by cell polarization and a high migration velocity. During site-directed trafficking of neutrophils from the blood stream into the inflamed tissue, neutrophils must first withstand shear stress while migrating on the 2-dimensional endothelial surface. Subsequently, they have to cross different physical barriers during the extravasation process including the squeezing through the compact endothelial monolayer that comprises the blood vessel, the underlining basement membrane and then the 3-dimensional meshwork of extracellular matrix (ECM) proteins in the tissue. Therefore, neutrophils have to rapidly switch between distinct migration modes such as intraluminal crawling, transmigration, and interstitial migration to pass these different confinements and mechanical barriers. The nucleus is the largest and stiffest organelle in every cell and is therefore the key cellular element involved in cellular migration through variable confinements. This review highlights the importance of nuclear deformation during neutrophil crossing of such confinements, with a focus on transendothelial migration and interstitial migration. We discuss the key molecular components involved in the nuclear shape changes that underlie neutrophil motility and squeezing through cellular and ECM barriers. Understanding the precise molecular mechanisms that orchestrate these distinct neutrophil migration modes introduces an opportunity to develop new therapeutic concepts for controlling pathological neutrophil-driven inflammation.
Collapse
Affiliation(s)
- Melanie Salvermoser
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Planegg-Martinsried, Germany
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Planegg-Martinsried, Germany
| | - Daniela Begandt
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Planegg-Martinsried, Germany
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Planegg-Martinsried, Germany
| | - Ronen Alon
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Barbara Walzog
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Planegg-Martinsried, Germany
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Planegg-Martinsried, Germany
| |
Collapse
|
15
|
Moreau HD, Piel M, Voituriez R, Lennon-Duménil AM. Integrating Physical and Molecular Insights on Immune Cell Migration. Trends Immunol 2018; 39:632-643. [PMID: 29779848 DOI: 10.1016/j.it.2018.04.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 01/09/2023]
Abstract
The function of most immune cells depends on their ability to migrate through complex microenvironments, either randomly to patrol for the presence of antigens or directionally to reach their next site of action. The actin cytoskeleton and its partners are key conductors of immune cell migration as they control the intrinsic migratory properties of leukocytes as well as their capacity to respond to cues present in their environment. In this review we focus on the latest discoveries regarding the role of the actomyosin cytoskeleton in optimizing immune cell migration in complex environments, with a special focus on recent insights provided by physical modeling.
Collapse
Affiliation(s)
- Hélène D Moreau
- INSERM U932, Institut Curie, ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043, Paris, France.
| | - Matthieu Piel
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France; Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| | - Raphaël Voituriez
- Laboratoire Jean Perrin, UM 8237 CNRS/UPMC, 4 place Jussieu, 75005 Paris, France
| | | |
Collapse
|
16
|
Myosin 1f is specifically required for neutrophil migration in 3D environments during acute inflammation. Blood 2018; 131:1887-1898. [PMID: 29487067 DOI: 10.1182/blood-2017-10-811851] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/21/2018] [Indexed: 01/13/2023] Open
Abstract
Neutrophil extravasation and interstitial migration are important steps during the recruitment of neutrophils to sites of inflammation. In the present study, we addressed the functional importance of the unconventional class I myosin 1f (Myo1f) for neutrophil trafficking during acute inflammation. In contrast to leukocyte rolling and adhesion, the genetic absence of Myo1f severely compromised neutrophil extravasation into the inflamed mouse cremaster tissue when compared with Myo1f+/+ mice as studied by intravital microscopy. Similar results were obtained in experimental models of acute peritonitis and acute lung injury. In contrast to 2-dimensional migration, which occurred independently of Myo1f, Myo1f was indispensable for neutrophil migration in 3-dimensional (3D) environments, that is, transmigration and migration in collagen networks as it regulated squeezing and dynamic deformation of the neutrophil nucleus during migration through physical barriers. Thus, we provide evidence for an important role of Myo1f in neutrophil trafficking during inflammation by specifically regulating neutrophil extravasation and migration in 3D environments.
Collapse
|
17
|
Kienle K, Lämmermann T. Neutrophil swarming: an essential process of the neutrophil tissue response. Immunol Rev 2017; 273:76-93. [PMID: 27558329 DOI: 10.1111/imr.12458] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neutrophil infiltration into inflamed and infected tissues is a fundamental process of the innate immune response. While neutrophil interactions with the blood vessel wall have been intensely studied over the last decades, neutrophil dynamics beyond the vasculature have for a long time remained poorly investigated. Recent intravital microscopy studies of neutrophil populations directly at the site of tissue damage or microbial invasion have changed our perspective on neutrophil responses within tissues. Swarm-like migration patterns of neutrophils, referred to as 'neutrophil swarming', have been detected in diverse tissues under conditions of sterile inflammation and infection with various pathogens, including bacteria, fungi, and parasites. Current work has begun to unravel the molecular pathways choreographing the sequential phases of highly coordinated chemotaxis followed by neutrophil accumulation and the formation of substantial neutrophil clusters. It is now clear that intercellular communication among neutrophils amplifies their recruitment in a feed-forward manner, which provides them with a level of self-organization during neutrophil swarming. This review will summarize recent developments and current concepts on neutrophil swarming, an important process of the neutrophil tissue response with a critical role in maintaining the balance between host protection and inflammation-driven tissue destruction.
Collapse
Affiliation(s)
- Korbinian Kienle
- Max Planck Institute of Immunobiology and Epigenetics, Group Immune Cell Dynamics, Freiburg, Germany.,International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Group Immune Cell Dynamics, Freiburg, Germany
| |
Collapse
|
18
|
Graziano BR, Gong D, Anderson KE, Pipathsouk A, Goldberg AR, Weiner OD. A module for Rac temporal signal integration revealed with optogenetics. J Cell Biol 2017; 216:2515-2531. [PMID: 28687663 PMCID: PMC5551696 DOI: 10.1083/jcb.201604113] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 11/23/2016] [Accepted: 05/18/2017] [Indexed: 01/07/2023] Open
Abstract
Dissecting the logic of individual signaling modules in complex networks can be challenging for cascades that exhibit feedback and redundancy. In this study, Graziano et al. take an optogenetics-based approach to identify and dissect a module that converts sustained PIP3 production to transient Rac activation in the neutrophil chemotaxis signaling network. Sensory systems use adaptation to measure changes in signaling inputs rather than absolute levels of signaling inputs. Adaptation enables eukaryotic cells to directionally migrate over a large dynamic range of chemoattractant. Because of complex feedback interactions and redundancy, it has been difficult to define the portion or portions of eukaryotic chemotactic signaling networks that generate adaptation and identify the regulators of this process. In this study, we use a combination of optogenetic intracellular inputs, CRISPR-based knockouts, and pharmacological perturbations to probe the basis of neutrophil adaptation. We find that persistent, optogenetically driven phosphatidylinositol (3,4,5)-trisphosphate (PIP3) production results in only transient activation of Rac, a hallmark feature of adaptive circuits. We further identify the guanine nucleotide exchange factor P-Rex1 as the primary PIP3-stimulated Rac activator, whereas actin polymerization and the GTPase-activating protein ArhGAP15 are essential for proper Rac turnoff. This circuit is masked by feedback and redundancy when chemoattractant is used as the input, highlighting the value of probing signaling networks at intermediate nodes to deconvolve complex signaling cascades.
Collapse
Affiliation(s)
- Brian R Graziano
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
| | - Delquin Gong
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
| | | | - Anne Pipathsouk
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
| | - Anna R Goldberg
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
| | - Orion D Weiner
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA .,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
19
|
Long-term imaging of cellular forces with high precision by elastic resonator interference stress microscopy. Nat Cell Biol 2017. [PMID: 28628084 DOI: 10.1038/ncb3561] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cellular forces are crucial for many biological processes but current methods to image them have limitations with respect to data analysis, resolution and throughput. Here, we present a robust approach to measure mechanical cell-substrate interactions in diverse biological systems by interferometrically detecting deformations of an elastic micro-cavity. Elastic resonator interference stress microscopy (ERISM) yields stress maps with exceptional precision and large dynamic range (2 nm displacement resolution over a >1 μm range, translating into 1 pN force sensitivity). This enables investigation of minute vertical stresses (<1 Pa) involved in podosome protrusion, protein-specific cell-substrate interaction and amoeboid migration through spatial confinement in real time. ERISM requires no zero-force reference and avoids phototoxic effects, which facilitates force monitoring over multiple days and at high frame rates and eliminates the need to detach cells after measurements. This allows observation of slow processes such as differentiation and further investigation of cells, for example, by immunostaining.
Collapse
|
20
|
Abstract
Cell migration results from stepwise mechanical and chemical interactions between cells and their extracellular environment. Mechanistic principles that determine single-cell and collective migration modes and their interconversions depend upon the polarization, adhesion, deformability, contractility, and proteolytic ability of cells. Cellular determinants of cell migration respond to extracellular cues, including tissue composition, topography, alignment, and tissue-associated growth factors and cytokines. Both cellular determinants and tissue determinants are interdependent; undergo reciprocal adjustment; and jointly impact cell decision making, navigation, and migration outcome in complex environments. We here review the variability, decision making, and adaptation of cell migration approached by live-cell, in vivo, and in silico strategies, with a focus on cell movements in morphogenesis, repair, immune surveillance, and cancer metastasis.
Collapse
Affiliation(s)
- Veronika Te Boekhorst
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030;
| | - Luigi Preziosi
- Department of Mathematical Sciences, Politecnico di Torino, 10129 Torino, Italy
| | - Peter Friedl
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030; .,Department of Cell Biology, Radboud University Medical Centre, 6525GA Nijmegen, The Netherlands; .,Cancer Genomics Center, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
21
|
Abstract
Cell migration is central to a multitude of physiological processes, including embryonic development, immune surveillance, and wound healing, and deregulated migration is key to cancer dissemination. Decades of investigations have uncovered many of the molecular and physical mechanisms underlying cell migration. Together with protrusion extension and cell body retraction, adhesion to the substrate via specific focal adhesion points has long been considered an essential step in cell migration. Although this is true for cells moving on two-dimensional substrates, recent studies have demonstrated that focal adhesions are not required for cells moving in three dimensions, in which confinement is sufficient to maintain a cell in contact with its substrate. Here, we review the investigations that have led to challenging the requirement of specific adhesions for migration, discuss the physical mechanisms proposed for cell body translocation during focal adhesion-independent migration, and highlight the remaining open questions for the future.
Collapse
Affiliation(s)
- Ewa K Paluch
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom WC1E 6BT; .,Institute for the Physics of Living Systems, University College London, London, United Kingdom, WC1E 6BT
| | - Irene M Aspalter
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom WC1E 6BT; .,Institute for the Physics of Living Systems, University College London, London, United Kingdom, WC1E 6BT
| | - Michael Sixt
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| |
Collapse
|
22
|
Irimia D, Ellett F. Big insights from small volumes: deciphering complex leukocyte behaviors using microfluidics. J Leukoc Biol 2016; 100:291-304. [PMID: 27194799 DOI: 10.1189/jlb.5ru0216-056r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/04/2016] [Indexed: 12/13/2022] Open
Abstract
Inflammation is an indispensable component of the immune response, and leukocytes provide the first line of defense against infection. Although the major stereotypic leukocyte behaviors in response to infection are well known, the complexities and idiosyncrasies of these phenotypes in conditions of disease are still emerging. Novel tools are indispensable for gaining insights into leukocyte behavior, and in the past decade, microfluidic technologies have emerged as an exciting development in the field. Microfluidic devices are readily customizable, provide tight control of experimental conditions, enable high precision of ex vivo measurements of individual as well as integrated leukocyte functions, and have facilitated the discovery of novel leukocyte phenotypes. Here, we review some of the most interesting insights resulting from the application of microfluidic approaches to the study of the inflammatory response. The aim is to encourage leukocyte biologists to integrate these new tools into increasingly more sophisticated experimental designs for probing complex leukocyte functions.
Collapse
Affiliation(s)
- Daniel Irimia
- BioMEMS Resource Center, Division of Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Burns Hospital, Boston, Massachusetts, USA
| | - Felix Ellett
- BioMEMS Resource Center, Division of Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Burns Hospital, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Schmidt EP, Kuebler WM, Lee WL, Downey GP. Adhesion Molecules: Master Controllers of the Circulatory System. Compr Physiol 2016; 6:945-73. [PMID: 27065171 DOI: 10.1002/cphy.c150020] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This manuscript will review our current understanding of cellular adhesion molecules (CAMs) relevant to the circulatory system, their physiological role in control of vascular homeostasis, innate and adaptive immune responses, and their importance in pathophysiological (disease) processes such as acute lung injury, atherosclerosis, and pulmonary hypertension. This is a complex and rapidly changing area of research that is incompletely understood. By design, we will begin with a brief overview of the structure and classification of the major groups of adhesion molecules and their physiological functions including cellular adhesion and signaling. The role of specific CAMs in the process of platelet aggregation and hemostasis and leukocyte adhesion and transendothelial migration will be reviewed as examples of the complex and cooperative interplay between CAMs during physiological and pathophysiological processes. The role of the endothelial glycocalyx and the glycobiology of this complex system related to inflammatory states such as sepsis will be reviewed. We will then focus on the role of adhesion molecules in the pathogenesis of specific disease processes involving the lungs and cardiovascular system. The potential of targeting adhesion molecules in the treatment of immune and inflammatory diseases will be highlighted in the relevant sections throughout the manuscript.
Collapse
Affiliation(s)
- Eric P Schmidt
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Wolfgang M Kuebler
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Departments of Surgery and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Warren L Lee
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Division of Respirology and the Interdepartmental Division of Critical Care Medicine, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Gregory P Downey
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Departments of Medicine, Pediatrics, and Biomedical Research, National Jewish Health, Denver, Colorado, USA
- Departments of Medicine, and Immunology and Microbiology, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
24
|
Perinuclear Arp2/3-driven actin polymerization enables nuclear deformation to facilitate cell migration through complex environments. Nat Commun 2016; 7:10997. [PMID: 26975831 PMCID: PMC4796365 DOI: 10.1038/ncomms10997] [Citation(s) in RCA: 237] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/09/2016] [Indexed: 12/27/2022] Open
Abstract
Cell migration has two opposite faces: although necessary for physiological processes such as immune responses, it can also have detrimental effects by enabling metastatic cells to invade new organs. In vivo, migration occurs in complex environments and often requires a high cellular deformability, a property limited by the cell nucleus. Here we show that dendritic cells, the sentinels of the immune system, possess a mechanism to pass through micrometric constrictions. This mechanism is based on a rapid Arp2/3-dependent actin nucleation around the nucleus that disrupts the nuclear lamina, the main structure limiting nuclear deformability. The cells' requirement for Arp2/3 to pass through constrictions can be relieved when nuclear stiffness is decreased by suppressing lamin A/C expression. We propose a new role for Arp2/3 in three-dimensional cell migration, allowing fast-moving cells such as leukocytes to rapidly and efficiently migrate through narrow gaps, a process probably important for their function.
Collapse
|
25
|
Lämmermann T. In the eye of the neutrophil swarm-navigation signals that bring neutrophils together in inflamed and infected tissues. J Leukoc Biol 2015; 100:55-63. [PMID: 26416718 DOI: 10.1189/jlb.1mr0915-403] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 12/21/2022] Open
Abstract
Neutrophils are sentinel cells that express in higher vertebrates >30 chemokine and chemoattractant receptors to sense and quickly react to tissue damage signals. Intravital microscopy studies in mouse models of wounding, inflammation, and infection have revealed that neutrophils form cell swarms at local sites of tissue injury and cell death. This swarming response is choreographed by chemokines, lipids, and other chemoattractants, controlling sequential phases of highly coordinated chemotaxis, intercellular signal relay, and cluster formation among neutrophils. This review will give a brief overview about the basic principles and key molecules that have led to the refined multistep model of how neutrophils come together to isolate sites of tissue injury and microbial invasion from healthy tissue. Whereas auto- and paracrine signaling among neutrophils during later phases of swarming can provide a level of self-organization for robust navigation in diverse inflammatory settings, guidance factors from primary tissue lesions, resident bystander cells, and dying cells regulate the initial phases of the swarming response. This review will discuss how the specific environmental context and mixture of attractants at the locally inflamed site can lead to variants of the multistep attraction model and influence the extent of neutrophil swarming, ranging from accumulations of only few individual cells to the aggregation of several hundreds of neutrophils, as found in abscesses. Given the critical roles of neutrophils in both host protection and tissue destruction, novel insights on neutrophil swarming might provide useful for the therapeutic modulation of neutrophil-dependent inflammatory processes.
Collapse
Affiliation(s)
- Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
26
|
Wu J, Pipathsouk A, Keizer-Gunnink A, Fusetti F, Alkema W, Liu S, Altschuler S, Wu L, Kortholt A, Weiner OD. Homer3 regulates the establishment of neutrophil polarity. Mol Biol Cell 2015; 26:1629-39. [PMID: 25739453 PMCID: PMC4436775 DOI: 10.1091/mbc.e14-07-1197] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 01/10/2023] Open
Abstract
Most chemoattractants rely on activation of the heterotrimeric G-protein Gαi to regulate directional cell migration, but few links from Gαi to chemotactic effectors are known. Through affinity chromatography using primary neutrophil lysate, we identify Homer3 as a novel Gαi2-binding protein. RNA interference-mediated knockdown of Homer3 in neutrophil-like HL-60 cells impairs chemotaxis and the establishment of polarity of phosphatidylinositol 3,4,5-triphosphate (PIP3) and the actin cytoskeleton, as well as the persistence of the WAVE2 complex. Most previously characterized proteins that are required for cell polarity are needed for actin assembly or activation of core chemotactic effectors such as the Rac GTPase. In contrast, Homer3-knockdown cells show normal magnitude and kinetics of chemoattractant-induced activation of phosphoinositide 3-kinase and Rac effectors. Chemoattractant-stimulated Homer3-knockdown cells also exhibit a normal initial magnitude of actin polymerization but fail to polarize actin assembly and intracellular PIP3 and are defective in the initiation of cell polarity and motility. Our data suggest that Homer3 acts as a scaffold that spatially organizes actin assembly to support neutrophil polarity and motility downstream of GPCR activation.
Collapse
Affiliation(s)
- Julie Wu
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158
| | - Anne Pipathsouk
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158
| | - A Keizer-Gunnink
- Department of Cell Biochemistry, Groningen Biological Sciences and Biotechnology Institute, University of Groningen, 9700 AB Groningen, Netherlands
| | - F Fusetti
- Department of Biochemistry and Netherlands Proteomics Centre, Groningen Biological Sciences and Biotechnology Institute, University of Groningen, 9700 AB Groningen, Netherlands
| | - W Alkema
- NIZO Food Research, 6718 ZB Ede, Netherlands Centre for Molecular and Biomolecular Informatics, Radboud University Medical Center, Nijmegen, 6525 GA Nijmegen, Netherlands
| | - Shanshan Liu
- Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Steven Altschuler
- Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Lani Wu
- Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Arjan Kortholt
- Department of Cell Biochemistry, Groningen Biological Sciences and Biotechnology Institute, University of Groningen, 9700 AB Groningen, Netherlands
| | - Orion D Weiner
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158
| |
Collapse
|
27
|
Solanes P, Heuzé ML, Maurin M, Bretou M, Lautenschlaeger F, Maiuri P, Terriac E, Thoulouze MI, Launay P, Piel M, Vargas P, Lennon-Duménil AM. Space exploration by dendritic cells requires maintenance of myosin II activity by IP3 receptor 1. EMBO J 2015; 34:798-810. [PMID: 25637353 PMCID: PMC4369315 DOI: 10.15252/embj.201489056] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Dendritic cells (DCs) patrol the interstitial space of peripheral tissues. The mechanisms that regulate their migration in such constrained environment remain unknown. We here investigated the role of calcium in immature DCs migrating in confinement. We found that they displayed calcium oscillations that were independent of extracellular calcium and more frequently observed in DCs undergoing strong speed fluctuations. In these cells, calcium spikes were associated with fast motility phases. IP3 receptors (IP3Rs) channels, which allow calcium release from the endoplasmic reticulum, were identified as required for immature DCs to migrate at fast speed. The IP3R1 isoform was further shown to specifically regulate the locomotion persistence of immature DCs, that is, their capacity to maintain directional migration. This function of IP3R1 results from its ability to control the phosphorylation levels of myosin II regulatory light chain (MLC) and the back/front polarization of the motor protein. We propose that by upholding myosin II activity, constitutive calcium release from the ER through IP3R1 maintains DC polarity during migration in confinement, facilitating the exploration of their environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Pierre Launay
- Faculté de Médecine X. Bichat, Inserm-U1149, Paris, France
| | | | | | | |
Collapse
|
28
|
Hamza B, Wong E, Patel S, Cho H, Martel J, Irimia D. Retrotaxis of human neutrophils during mechanical confinement inside microfluidic channels. Integr Biol (Camb) 2014; 6:175-83. [PMID: 24419464 DOI: 10.1039/c3ib40175h] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The current paradigm of unidirectional migration of neutrophils from circulation to sites of injury in tissues has been recently challenged by observations in zebrafish showing that neutrophils can return from tissues back into the circulation. However, the relevance of these observations to human neutrophils remains unclear, the forward and reverse migration of neutrophils is difficult to quantify, and the precise conditions modulating the reverse migration cannot be isolated. Here, we designed a microfluidic platform inside which we observed human neutrophil migration in response to chemoattractant sources inside channels, simulating the biochemical and mechanical confinement conditions at sites of injury in tissues. We observed that, after initially following the direction of chemoattractant gradients, more than 90% of human neutrophils can reverse their direction and migrate persistently and for distances longer than one thousand micrometers away from chemoattractant sources (retrotaxis). Retrotaxis is enhanced in the presence of lipoxin A4 (LXA4), a well-established mediator of inflammation resolution, or Tempol, a standard antioxidant. Retrotaxis stops after neutrophils encounter targets which they phagocytise or on surfaces presenting high concentrations of fibronectin. Our microfluidic model suggests a new paradigm for neutrophil accumulation at sites of inflammation, which depends on the balance of three simultaneous processes: chemotaxis along diffusion gradients, retrotaxis following mechanical guides, and stopping triggered by phagocytosis.
Collapse
Affiliation(s)
- Bashar Hamza
- BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, Charlestown, MA 02129, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Heuzé ML, Vargas P, Chabaud M, Le Berre M, Liu YJ, Collin O, Solanes P, Voituriez R, Piel M, Lennon-Duménil AM. Migration of dendritic cells: physical principles, molecular mechanisms, and functional implications. Immunol Rev 2014; 256:240-54. [PMID: 24117825 DOI: 10.1111/imr.12108] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dendritic cells (DCs) constitute a complex cell population that resides in both peripheral tissues and lymphoid organs. Their major function in tissues is to patrol their environment in search of danger-associated antigens to transport to lymph nodes and present to T lymphocytes. This process constitutes the first step of the adaptive immune response and relies on specific DC properties, including a high endocytic capacity as well as efficient motility in confined three-dimensional environments. Although cell motility has been widely studied, little is known on how the geometric characteristics of the environment influence DC migration and function. In this review, we give an overview of the basic physical principles and molecular mechanisms that control DC migration under confinement and discuss how such mechanisms impact the environment-patrolling capacity of DCs.
Collapse
|
30
|
Henry SJ, Crocker JC, Hammer DA. Ligand density elicits a phenotypic switch in human neutrophils. Integr Biol (Camb) 2014; 6:348-56. [PMID: 24480897 PMCID: PMC5850933 DOI: 10.1039/c3ib40225h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neutrophils are mediators of innate immunity and motility is critical to their function. We used microcontact printing to investigate the relationship between density of adhesive ligands and the dynamics of neutrophil motility. We show that neutrophils adopt a well-spread morphology without a uropod on moderate densities of adhesion ligand. As density is increased, the morphology switches to a classic amoeboid shape. In addition to the morphological differences, the dynamics of motility were quantitatively distinct. Well-spread cells without uropods glide slowly with high persistence, while amoeboid cells made frequent directional changes migrating quickly with low persistence. Using an antibody panel against various integrin chains, we show that adhesion and motility on fibronectin are mediated by MAC-1 (αMβ2). The phenotypic switch could be generalized to other surface ligands, such as bovine serum albumin, to which the promiscuous MAC-1 also binds. These results suggest that neutrophils are capable of displaying multiple modes of motility as dictated by their adhesive environment.
Collapse
Affiliation(s)
- Steven J Henry
- Department of Bioengineering, University of Pennsylvania, 210 S 33rd St, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
31
|
Lämmermann T, Germain RN. The multiple faces of leukocyte interstitial migration. Semin Immunopathol 2014; 36:227-51. [PMID: 24573488 DOI: 10.1007/s00281-014-0418-8] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 01/26/2014] [Indexed: 12/22/2022]
Abstract
Spatiotemporal control of leukocyte dynamics within tissues is critical for successful innate and adaptive immune responses. Homeostatic trafficking and coordinated infiltration into and within sites of inflammation and infection rely on signaling in response to extracellular cues that in turn controls a variety of intracellular protein networks regulating leukocyte motility, migration, chemotaxis, positioning, and cell-cell interaction. In contrast to mesenchymal cells, leukocytes migrate in an amoeboid fashion by rapid cycles of actin polymerization and actomyosin contraction, and their migration in tissues is generally referred to as low adhesive and nonproteolytic. The interplay of actin network expansion, contraction, and adhesion shapes the exact mode of amoeboid migration, and in this review, we explore how leukocyte subsets potentially harness the same basic biomechanical mechanisms in a cell-type-specific manner. Most of our detailed understanding of these processes derives from in vitro migration studies in three-dimensional gels and confined spaces that mimic geometrical aspects of physiological tissues. We summarize these in vitro results and then critically compare them to data from intravital imaging of leukocyte interstitial migration in mouse tissues. We outline the technical challenges of obtaining conclusive mechanistic results from intravital studies, discuss leukocyte migration strategies in vivo, and present examples of mode switching during physiological interstitial migration. These findings are also placed in the context of leukocyte migration defects in primary immunodeficiencies. This overview of both in vitro and in vivo studies highlights recent progress in understanding the molecular and biophysical mechanisms that shape robust leukocyte migration responses in physiologically complex and heterogeneous environments.
Collapse
Affiliation(s)
- Tim Lämmermann
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA,
| | | |
Collapse
|
32
|
Weissmann G. Stephen E. Malawista (1934-2013): infection and rheumatic disease. FASEB J 2014; 28:521-3. [PMID: 24482449 DOI: 10.1096/fj.14-0201ufm] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Abstract
We describe a protocol for measuring the speed of human neutrophils migrating through small channels, in conditions of mechanical confinement comparable to those experienced by neutrophils migrating through tissues. In such conditions, we find that neutrophils move persistently, at constant speed for tens of minutes, enabling precise measurements at single cells resolution, for large number of cells. The protocol relies on microfluidic devices with small channels in which a solution of chemoattractant and a suspension of isolated neutrophils are loaded in sequence. The migration of neutrophils can be observed for several hours, starting within minutes after loading the neutrophils in the devices. The protocol is divided into four main steps: the fabrication of the microfluidic devices, the separation of neutrophils from whole blood, the preparation of the assay and cell loading, and the analysis of data. We discuss the practical steps for the implementation of the migration assays in biology labs, the adaptation of the protocols to various cell types, including cancer cells, and the supplementary device features required for precise measurements of directionality and persistence during migration.
Collapse
Affiliation(s)
- Daniel Irimia
- Massachusetts General Hospital, Harvard Medical School, and Shirners Hospitals for Children, Boston, Massachusetts, USA
| |
Collapse
|
34
|
Gambardella L, Vermeren S. Molecular players in neutrophil chemotaxis-focus on PI3K and small GTPases. J Leukoc Biol 2013; 94:603-12. [DOI: 10.1189/jlb.1112564] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
35
|
Loomis WF, Fuller D, Gutierrez E, Groisman A, Rappel WJ. Innate non-specific cell substratum adhesion. PLoS One 2012; 7:e42033. [PMID: 22952588 PMCID: PMC3432024 DOI: 10.1371/journal.pone.0042033] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 06/29/2012] [Indexed: 11/18/2022] Open
Abstract
Adhesion of motile cells to solid surfaces is necessary to transmit forces required for propulsion. Unlike mammalian cells, Dictyostelium cells do not make integrin mediated focal adhesions. Nevertheless, they can move rapidly on both hydrophobic and hydrophilic surfaces. We have found that adhesion to such surfaces can be inhibited by addition of sugars or amino acids to the buffer. Treating whole cells with αlpha-mannosidase to cleave surface oligosaccharides also reduces adhesion. The results indicate that adhesion of these cells is mediated by van der Waals attraction of their surface glycoproteins to the underlying substratum. Since glycoproteins are prevalent components of the surface of most cells, innate adhesion may be a common cellular property that has been overlooked.
Collapse
Affiliation(s)
- William F Loomis
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America.
| | | | | | | | | |
Collapse
|
36
|
Weigelin B, Bakker GJ, Friedl P. Intravital third harmonic generation microscopy of collective melanoma cell invasion: Principles of interface guidance and microvesicle dynamics. INTRAVITAL 2012; 1:32-43. [PMID: 29607252 PMCID: PMC5858865 DOI: 10.4161/intv.21223] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 06/21/2012] [Indexed: 12/21/2022]
Abstract
Cancer cell invasion is an adaptive process based on cell-intrinsic properties to migrate individually or collectively, and their adaptation to encountered tissue structure acting as barrier or providing guidance. Whereas molecular and physical mechanisms of cancer invasion are well-studied in 3D in vitro models, their topographic relevance, classification and validation toward interstitial tissue organization in vivo remain incomplete. Using combined intravital third and second harmonic generation (THG, SHG), and three-channel fluorescence microscopy in live tumors, we here map B16F10 melanoma invasion into the dermis with up to 600 µm penetration depth and reconstruct both invasion mode and tissue tracks to establish invasion routes and outcome. B16F10 cells preferentially develop adaptive invasion patterns along preformed tracks of complex, multi-interface topography, combining single-cell and collective migration modes, without immediate anatomic tissue remodeling or destruction. The data suggest that the dimensionality (1D, 2D, 3D) of tissue interfaces determines the microanatomy exploited by invading tumor cells, emphasizing non-destructive migration along microchannels coupled to contact guidance as key invasion mechanisms. THG imaging further detected the presence and interstitial dynamics of tumor-associated microparticles with submicron resolution, revealing tumor-imposed conditioning of the microenvironment. These topographic findings establish combined THG, SHG and fluorescence microscopy in intravital tumor biology and provide a template for rational in vitro model development and context-dependent molecular classification of invasion modes and routes.
Collapse
Affiliation(s)
- Bettina Weigelin
- Department of Cell Biology; Radboud University Nijmegen Medical Centre; Nijmegen, The Netherlands
| | - Gert-Jan Bakker
- Department of Cell Biology; Radboud University Nijmegen Medical Centre; Nijmegen, The Netherlands
| | - Peter Friedl
- Department of Cell Biology; Radboud University Nijmegen Medical Centre; Nijmegen, The Netherlands.,David H. Koch Center for Applied Research of Genitourinary Cancers; Department of Genitourinary Medical Oncology; The University of Texas MD Anderson Cancer Center; Houston, TX USA
| |
Collapse
|
37
|
Balzer EM, Tong Z, Paul CD, Hung WC, Stroka KM, Boggs AE, Martin SS, Konstantopoulos K. Physical confinement alters tumor cell adhesion and migration phenotypes. FASEB J 2012; 26:4045-56. [PMID: 22707566 DOI: 10.1096/fj.12-211441] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cell migration on planar surfaces is driven by cycles of actin protrusion, integrin-mediated adhesion, and myosin-mediated contraction; however, this mechanism may not accurately describe movement in 3-dimensional (3D) space. By subjecting cells to restrictive 3D environments, we demonstrate that physical confinement constitutes a biophysical stimulus that alters cell morphology and suppresses mesenchymal motility in human breast carcinoma (MDA-MB-231). Dorsoventral polarity, stress fibers, and focal adhesions are markedly attenuated by confinement. Inhibitors of myosin, Rho/ROCK, or β1-integrins do not impair migration through 3-μm-wide channels (confinement), even though these treatments repress motility in 50-μm-wide channels (unconfined migration) by ≥50%. Strikingly, confined migration persists even when F-actin is disrupted, but depends largely on microtubule (MT) dynamics. Interfering with MT polymerization/depolymerization causes confined cells to undergo frequent directional changes, thereby reducing the average net displacement by ≥80% relative to vehicle controls. Live-cell EB1-GFP imaging reveals that confinement redirects MT polymerization toward the leading edge, where MTs continuously impact during advancement of the cell front. These results demonstrate that physical confinement can induce cytoskeletal alterations that reduce the dependence of migrating cells on adhesion-contraction force coupling. This mechanism may explain why integrins can exhibit reduced or altered function during migration in 3D environments.
Collapse
Affiliation(s)
- Eric M Balzer
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins Physical Sciences-Oncology Center, Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Lorentzen A, Bamber J, Sadok A, Elson-Schwab I, Marshall CJ. An ezrin-rich, rigid uropod-like structure directs movement of amoeboid blebbing cells. J Cell Sci 2011; 124:1256-67. [PMID: 21444753 DOI: 10.1242/jcs.074849] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Melanoma cells can switch between an elongated mesenchymal-type and a rounded amoeboid-type migration mode. The rounded 'amoeboid' form of cell movement is driven by actomyosin contractility resulting in membrane blebbing. Unlike elongated A375 melanoma cells, rounded A375 cells do not display any obvious morphological front-back polarisation, although polarisation is thought to be a prerequisite for cell movement. We show that blebbing A375 cells are polarised, with ezrin (a linker between the plasma membrane and actin cytoskeleton), F-actin, myosin light chain, plasma membrane, phosphatidylinositol (4,5)-bisphosphate and β1-integrin accumulating at the cell rear in a uropod-like structure. This structure does not have the typical protruding shape of classical leukocyte uropods, but, as for those structures, it is regulated by protein kinase C. We show that the ezrin-rich uropod-like structure (ERULS) is an inherent feature of polarised A375 cells and not a consequence of cell migration, and is necessary for cell invasion. Furthermore, we demonstrate that membrane blebbing is reduced at this site, leading to a model in which the rigid ezrin-containing structure determines the direction of a moving cell through localised inhibition of membrane blebbing.
Collapse
Affiliation(s)
- Anna Lorentzen
- Institute of Cancer Research, Cancer Research UK, Cancer Research UK Tumour Cell Signalling Unit, 237 Fulham Road, London SW3 6JB, UK
| | | | | | | | | |
Collapse
|
39
|
The GTPase-activating protein ARAP3 regulates chemotaxis and adhesion-dependent processes in neutrophils. Blood 2011; 118:1087-98. [PMID: 21490342 DOI: 10.1182/blood-2010-10-312959] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Neutrophils form a vital part of the innate immune response, but at the same time their inappropriate activation contributes to autoimmune diseases. Many molecular components are involved in fine-tuning neutrophil function. We report here the first characterization of the role of ARAP3, a PI3K and Rap-regulated GTPase-activating protein for RhoA and Arf6 in murine neutrophils. We show that neutrophils lacking ARAP3 are preactivated in vitro and in vivo, exhibiting increased β2 integrin affinity and avidity. ARAP3-deficient neutrophils are hyperresponsive in several adhesion-dependent situations in vitro, including the formation of reactive oxygen species, adhesion, spreading, and granule release. ARAP3-deficient cells adhere more firmly under flow conditions in vitro and to the vessel wall in vivo. Finally, loss of ARAP3 interferes with integrin-dependent neutrophil chemotaxis. The results of the present study suggest an important function of ARAP3 downstream of Rap. By modulating β2 integrin activity, ARAP3 guards neutrophils in their quiescent state unless activated.
Collapse
|
40
|
Selz KA. A third measure-metastable state in the dynamics of spontaneous shape change in healthy human's white cells. PLoS Comput Biol 2011; 7:e1001117. [PMID: 21490721 PMCID: PMC3072360 DOI: 10.1371/journal.pcbi.1001117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 03/04/2011] [Indexed: 12/03/2022] Open
Abstract
Human polymorphonuclear leucocytes, PMN, are highly motile cells with average 12-15 µm diameters and prominent, loboid nuclei. They are produced in the bone marrow, are essential for host defense, and are the most populous of white blood cell types. PMN also participate in acute and chronic inflammatory processes, in the regulation of the immune response, in angiogenesis, and interact with tumors. To accommodate these varied functions, their behavior is adaptive, but still definable in terms of a set of behavioral states. PMN morphodynamics have generally involved a non-equilibrium stationary, spheroid Idling state that transitions to an activated, ellipsoid translocating state in response to chemical signals. These two behavioral shape-states, spheroid and ellipsoid, are generally recognized as making up the vocabulary of a healthy PMN. A third, "random" state has occasionally been reported as associated with disease states. I have observed this third, Treadmilling state, in PMN from healthy subjects, the cells demonstrating metastable dynamical behaviors known to anticipate phase transitions in mathematical, physical, and biological systems. For this study, human PMN were microscopically imaged and analyzed as single living cells. I used a microscope with a novel high aperture, cardioid annular condenser with better than 100 nanometer resolution of simultaneous, mixed dark field and intrinsic fluorescent images to record shape changes in 189 living PMNs. Relative radial roundness, R(t), served as a computable order parameter. Comparison of R(t) series of 10 cells in the Idling and 10 in the Treadmilling state reveals the robustness of the "random" appearing Treadmilling state, and the emergence of behaviors observed in the neighborhood of global state transitions, including increased correlation length and variance (divergence), sudden jumps, mixed phases, bimodality, power spectral scaling and temporal slowing. Wavelet transformation of an R(t) series of an Idling to Treadmilling state change, demonstrated behaviors concomitant with the observed transition.
Collapse
Affiliation(s)
- Karen A Selz
- Fetzer Franklin Laboratory of the Cielo Institute, Asheville, North Carolina, USA.
| |
Collapse
|
41
|
Ambravaneswaran V, Wong IY, Aranyosi AJ, Toner M, Irimia D. Directional decisions during neutrophil chemotaxis inside bifurcating channels. Integr Biol (Camb) 2010; 2:639-47. [PMID: 20676444 PMCID: PMC3001269 DOI: 10.1039/c0ib00011f] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The directional migration of human neutrophils in classical chemotaxis assays is often described as a "biased random walk" implying significant randomness in speed and directionality. However, these experiments are inconsistent with in vivo observations, where neutrophils can navigate effectively through complex tissue microenvironments towards their targets. Here, we demonstrate a novel biomimetic assay for neutrophil chemotaxis using enclosed microfluidic channels. Remarkably, under these enclosed conditions, neutrophils recapitulate the highly robust and efficient navigation observed in vivo. In straight channels, neutrophils undergo sustained, unidirectional motion towards a chemoattractant source. In more complex maze-like geometries, neutrophils are able to select the most direct route over 90% of the time. Finally, at symmetric bifurcations, neutrophils split their leading edge into two sections and a "tug of war" ensues. The competition between the two new leading edges is ultimately resolved by stochastic, symmetry-breaking behavior. This behavior is suggestive of directional decision-making localized at the leading edge and a signaling role played by the cellular cytoskeleton.
Collapse
Affiliation(s)
- Vijayakrishnan Ambravaneswaran
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School, Boston, MA 02129
| | - Ian Y Wong
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School, Boston, MA 02129
| | - Alexander J Aranyosi
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School, Boston, MA 02129
| | - Mehmet Toner
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School, Boston, MA 02129
| | - Daniel Irimia
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School, Boston, MA 02129
| |
Collapse
|
42
|
Guck J, Lautenschläger F, Paschke S, Beil M. Critical review: cellular mechanobiology and amoeboid migration. Integr Biol (Camb) 2010; 2:575-83. [PMID: 20871906 DOI: 10.1039/c0ib00050g] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cell motility is important for tissue homeostasis and plays a central role in various pathologies, notably inflammation and cancer. Research into the critical processes involved in cell migration has so far mostly focused on cell adhesion and proteolytic degradation of the extracellular matrix. However, pharmacological interference with these processes only partially blocks cell motility in vivo. In this review we summarize the arising evidence that the mechanical properties of the cell body have a major role to play in cell motility--especially in a low-adhesion, amoeboid-like migration mode in three-dimensional tissue structures. We summarize the processes determining cell mechanics and discuss relevant measurement technologies including their applications in medical cell biology.
Collapse
Affiliation(s)
- Jochen Guck
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, UK.
| | | | | | | |
Collapse
|
43
|
Renkawitz J, Sixt M. Mechanisms of force generation and force transmission during interstitial leukocyte migration. EMBO Rep 2010; 11:744-50. [PMID: 20865016 DOI: 10.1038/embor.2010.147] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Accepted: 08/27/2010] [Indexed: 01/12/2023] Open
Abstract
For innate and adaptive immune responses it is essential that inflammatory cells use quick and flexible locomotion strategies. Accordingly, most leukocytes can efficiently infiltrate and traverse almost every physiological or artificial environment. Here, we review how leukocytes might achieve this task mechanistically, and summarize recent findings on the principles of cytoskeletal force generation and transduction at the leading edge of leukocytes. We propose a model in which the cells switch between adhesion-receptor-mediated force transmission and locomotion modes that are based on cellular deformations, but independent of adhesion receptors. This plasticity in migration strategies allows leukocytes to adapt to the geometry and molecular composition of their environment.
Collapse
Affiliation(s)
- Jörg Renkawitz
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | | |
Collapse
|
44
|
Confinement-optimized three-dimensional T cell amoeboid motility is modulated via myosin IIA-regulated adhesions. Nat Immunol 2010; 11:953-61. [PMID: 20835229 PMCID: PMC2943564 DOI: 10.1038/ni.1936] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 08/17/2010] [Indexed: 12/16/2022]
Abstract
During trafficking through tissues, T cells fine-tune their motility to balance the extent and duration of cell-surface contacts with the need to traverse an entire organ. In vivo, Myosin-IIA-deficient T cells exhibited a triad of defects including over-adherence to high-endothelial venules, reduced interstitial migration, and inefficient completion of recirculation through lymph nodes. Spatiotemporal analysis of 3-dimensional motility in microchannels revealed that the degree of confinement and Myosin-IIA function, rather than integrin adhesion as proposed by the haptokinetic model, optimize motility rate. This occurs via a Myosin-IIA-dependent rapid ‘walking’ motility mode using multiple small and simultaneous adhesions to the substrate, which prevent spurious and prolonged adhesions. Adhesion discrimination provided by Myosin-IIA is thus necessary for optimizing motility through complex tissues.
Collapse
|
45
|
Butler KL, Ambravaneswaran V, Agrawal N, Bilodeau M, Toner M, Tompkins RG, Fagan S, Irimia D. Burn injury reduces neutrophil directional migration speed in microfluidic devices. PLoS One 2010; 5:e11921. [PMID: 20689600 PMCID: PMC2912851 DOI: 10.1371/journal.pone.0011921] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Accepted: 07/04/2010] [Indexed: 01/08/2023] Open
Abstract
Thermal injury triggers a fulminant inflammatory cascade that heralds shock, end-organ failure, and ultimately sepsis and death. Emerging evidence points to a critical role for the innate immune system, and several studies had documented concurrent impairment in neutrophil chemotaxis with these post-burn inflammatory changes. While a few studies suggest that a link between neutrophil motility and patient mortality might exist, so far, cumbersome assays have prohibited exploration of the prognostic and diagnostic significance of chemotaxis after burn injury. To address this need, we developed a microfluidic device that is simple to operate and allows for precise and robust measurements of chemotaxis speed and persistence characteristics at single-cell resolution. Using this assay, we established a reference set of migration speed values for neutrophils from healthy subjects. Comparisons with samples from burn patients revealed impaired directional migration speed starting as early as 24 hours after burn injury, reaching a minimum at 72–120 hours, correlated to the size of the burn injury and potentially serving as an early indicator for concurrent infections. Further characterization of neutrophil chemotaxis using this new assay may have important diagnostic implications not only for burn patients but also for patients afflicted by other diseases that compromise neutrophil functions.
Collapse
Affiliation(s)
- Kathryn L. Butler
- Surgery Department, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Vijayakrishnan Ambravaneswaran
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nitin Agrawal
- Surgery Department, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School, Boston, Massachusetts, United States of America
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Maryelizabeth Bilodeau
- Surgery Department, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mehmet Toner
- Surgery Department, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School, Boston, Massachusetts, United States of America
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ronald G. Tompkins
- Surgery Department, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shawn Fagan
- Surgery Department, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniel Irimia
- Surgery Department, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School, Boston, Massachusetts, United States of America
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
46
|
Nourshargh S, Hordijk PL, Sixt M. Breaching multiple barriers: leukocyte motility through venular walls and the interstitium. Nat Rev Mol Cell Biol 2010; 11:366-78. [PMID: 20414258 DOI: 10.1038/nrm2889] [Citation(s) in RCA: 406] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The shuttling of leukocytes between the bloodstream and interstitial tissues involves different locomotion strategies that are governed by locally presented soluble and cell-bound signals. Recent studies have furthered our understanding of the rapidly advancing field of leukocyte migration, particularly regarding cellular and subcellular events at the level of the venular wall. Furthermore, emerging cellular models are now addressing the transition from an adherent mode to a non-adherent state, incorporating mechanisms that support an efficient migratory profile of leukocytes in the interstitial tissue beyond the venular wall.
Collapse
Affiliation(s)
- Sussan Nourshargh
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, William Harvey Research Institute, Charterhouse Square, London, UK.
| | | | | |
Collapse
|
47
|
Carbo C, Duerschmied D, Goerge T, Hattori H, Sakai J, Cifuni SM, White GC, Chrzanowska-Wodnicka M, Luo HR, Wagner DD. Integrin-independent role of CalDAG-GEFI in neutrophil chemotaxis. J Leukoc Biol 2010; 88:313-9. [PMID: 20413728 DOI: 10.1189/jlb.0110049] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chemotaxis and integrin activation are essential processes for neutrophil transmigration in response to injury. CalDAG-GEFI plays a key role in the activation of beta1, beta2, and beta3 integrins in platelets and neutrophils by exchanging a GDP for a GTP on Rap1. Here, we explored the role of CalDAG-GEFI and Rap1b in integrin-independent neutrophil chemotaxis. In a transwell assay, CalDAG-GEFI-/- neutrophils had a 46% reduction in transmigration compared with WT in response to a low concentration of LTB4. Visualization of migrating neutrophils in the presence of 10 mM EDTA revealed that CalDAG-GEFI-/- neutrophils had abnormal chemotactic behavior compared with WT neutrophils, including reduced speed and directionality. Interestingly, Rap1b-/- neutrophils had a similar phenotype in this assay, suggesting that CalDAG-GEFI may be acting through Rap1b. We investigated whether the deficit in integrin-independent chemotaxis in CalDAG-GEFI-/- neutrophils could be explained by defective cytoskeleton rearrangement. Indeed, we found that CalDAG-GEFI-/- neutrophils had reduced formation of F-actin pseudopodia after LTB4 stimulation, suggesting that they have a defect in polarization. Overall, our studies show that CalDAG-GEFI helps regulate neutrophil chemotaxis, independent of its established role in integrin activation, through a mechanism that involves actin cytoskeleton and cellular polarization.
Collapse
Affiliation(s)
- Carla Carbo
- Immune Disease Institute, Program in Cellular and Molecular Medicine, Department of Laboratory Medicine, Children's Hospital, and Department of Pathology, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Adaptive force transmission in amoeboid cell migration. Nat Cell Biol 2009; 11:1438-43. [PMID: 19915557 DOI: 10.1038/ncb1992] [Citation(s) in RCA: 207] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 10/21/2009] [Indexed: 11/08/2022]
Abstract
The leading front of a cell can either protrude as an actin-free membrane bleb that is inflated by actomyosin-driven contractile forces, or as an actin-rich pseudopodium, a site where polymerizing actin filaments push out the membrane. Pushing filaments can only cause the membrane to protrude if the expanding actin network experiences a retrograde counter-force, which is usually provided by transmembrane receptors of the integrin family. Here we show that chemotactic dendritic cells mechanically adapt to the adhesive properties of their substrate by switching between integrin-mediated and integrin-independent locomotion. We found that on engaging the integrin-actin clutch, actin polymerization was entirely turned into protrusion, whereas on disengagement actin underwent slippage and retrograde flow. Remarkably, accelerated retrograde flow was balanced by an increased actin polymerization rate; therefore, cell shape and protrusion velocity remained constant on alternating substrates. Due to this adaptive response in polymerization dynamics, tracks of adhesive substrate did not dictate the path of the cells. Instead, directional guidance was exclusively provided by a soluble gradient of chemoattractant, which endowed these 'amoeboid' cells with extraordinary flexibility, enabling them to traverse almost every type of tissue.
Collapse
|
50
|
Mechanical modes of 'amoeboid' cell migration. Curr Opin Cell Biol 2009; 21:636-44. [PMID: 19523798 DOI: 10.1016/j.ceb.2009.05.003] [Citation(s) in RCA: 442] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 05/13/2009] [Indexed: 01/10/2023]
Abstract
The morphological term 'amoeboid' migration subsumes a number of rather distinct biophysical modes of cellular locomotion that range from blebbing motility to entirely actin-polymerization-based gliding. Here, we discuss the diverse principles of force generation and force transduction that lead to the distinct amoeboid phenotypes. We argue that shifting the balance between actin protrusion, actomyosin contraction, and adhesion to the extracellular substrate can explain the different modes of amoeboid movement and that blebbing and gliding are barely extreme variants of one common migration strategy. Depending on the cell type, physiological conditions or experimental manipulation, amoeboid cells can adopt the distinct mechanical modes of amoeboid migration.
Collapse
|